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Abstract

Previous work has suggested that there is a kind of phase transition between

deterministic automata oxhibitlng periodic behavbr and those exhibiting chaotic

behavior. However, unlike the usual phase transltlcms of physics, this transition takes

place over a range of values of the parameter rather than at a speclfk value. The

present paper asks whether the transltbn can be made sharp, either tr~ taking the limit

of an Inflnltety large rule table, or by changing the parameter In terms of whkh the

space of automata Is expbred. We find strong evidence that, for the class of automata we

consider, the transition does became sharp In the limit of an Inflnlte number of symbols,

the size of the neighborhood being hefd fixed. Our work also suggests an alternative

parameter in terms of whkh it Is Ilkely that the Transition will become fairly sharp

even If one does not Increase the number of symbols. In the course of our analysls, we

find that mean field theory, which Is our main tool, gives swprlslngly good predlc!ions

of the statistkal properties of the class of automata we oonslder.



1 Introduction

Of the four Wolfram classes [1] of deterministic cellular automata--

homogeneous, periodic, chaotic, and complex--those exhibiting complex behavior are

for many purposes the most interesting, but they also seem to be the most rare,

particularly when the rule table for the automaton is large [2]. Thus, when the rule

table is large one can think crudely of the set of all rules as being divided into two large

classes: those leading to periodic behavior (we munt a static Ihomogeneous automaton as

trivially periodic), and those leading to chaotic behavior.

LangIon [3,4,5] and Li and Packard [6,7] have shown {hat If one uses an

appropriate parameter, which we call i, to characterize cellular automaton rules, Ihen

one can see a kind of phase transition between these two modes of behavior as the value of

the parameter is varied: For small values of ~ the behavior is typically periodic; for

large values it is typically chaotk. However, there is not a unique value of L at which

the transition occurs, but rather a range of possible transitbn values. In this res~ct

the transition differs from the usual phase transitions of physics, whkh occur at

definite values of, say, temperature or magnetk field strength. The present paper asks

whether in some appropriate Umlt--we consider pafiicularfy the Iimlts of large

neighborhood size and large number of symbols--or wfth a different choke of

parameter, the value at which the transition occurs becomes unique. Our results

indicate that Ihe Iransltion does become sharp In the Ilmlt of an infinite number of

symbols. We also propose a manageable experlmant in which one might hope to see a

reasonably sharp Iransltion with a small set of symbols.

The question of the sharpness of the transltbn Is Interesting for a number of

reasons. First, there Is a good deal of evlder ? that automata exhibiting complex

behavior are located near the transition regbn. If there are situatbns In which the

transition is sharp, then In those sltuatbns one could mnceivabfy be better able to find

compiex automata, because one would know predsety where to bok. Also, Packard has

obtained data suggesting that ceiiular automaton ruies, evcdvlng under seiectlve pressure

towards performing a particular computational Iask, tend to gravitate to the fransltlon

region [8], it wouid be Inlerestlng to see, in such an evoiution, if the fkal evoived ruies

continue to be confined to the transitbn regbn as the latter kmmes narrower and

narrower. Finaily, there are some intriguing parallels between the thwxy of

computation and fhe theory of physical phase transitions [4,5], and these paralleis

wouid be given added signlficawe If one could find In deterministic ceiiuiar automata the

sort of sharp transition that one finds In physics.



The approach taken in this paper is the following. The location of lhe transition

point is a difficult quantity to treat theoretically. But thers is a more accessible

quantity, the single-site entropy, which also exhibits a range of values and which is

related 10 the location of the transition poinl. We study the entropy in detail, asking

whe!her far fixed L it approaches a unique value in the limit of large neighborhood size

or large number of symtmls. If it does, then it seems likely that the location of the

transition point becomes unique In the same limit. We supplement our analysis of

finite-state automata with experimental results bearing particularly on the case of an

infinite number of symbols. Throughout this paper, we focus exclusively on a specific

set of dafa for a particular class of automata. Let us tl)erefore begin by describing this

class.

2 Our Automata

The automata we cmslder are two-dimensional, with a square lattice, and w!.n a

five-cell neighborhood shaped Ilke a “+”. Each she can be In one of e!ght possible states;

in olher words, each site can be occupied by one of eight possible symbols, say, the digits

O thruugh 7. The symbol O plays a s~clal role: if a neighborhood oonsists entirely of

zeros, then its central site is always assigned tl ~evalue zero in the next step. The rules

are required to be Invariant under rotations. That Is, if a cerlaln neighborhood

configuration sends Its central site to the state x, then any rotated version of that

configuration must also send its central site to x. Excep! for these restrlctlons, all rulas

are allowed. The Iatfkes actually used to generate the data were 64 units on a side, with

periodic boundary conditions.

The rule table can be pktured as a bng column of cross-shaped neighborhoods,

with each posslbfe neighborhood conflguratbn represented exactly once. To the right of

each configuration one places the symbol to whkh that particular conflguratbn is

mapped, The paramcder k Is defined as the fraction of neighborhood conflguratbns that

are mapped to something other than zero. Thus a rule with very small h has a tendency

10 generate many zeros, and ultimately such an automaton Is Ilkely to end up In the

qulesoent stale mnslstlng of nothing but zeros. As ~ moves away from zero, one has the

possibility of more Met asting behavior,

We will be looking partlcularfy at the dependence of entropy on ~. The data was

generated as follows: Flx a value of ~, and choose at random a rule table with that

partbular l-value. For this rule table, start with a random Mat conflguratlon, and
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without taking any data, let the automaton run for 500 time steps to give it a chance to

reach its asymptotic behavior. Then let it continue to run (for 1000 steps), and count

the frequencies of occurrence of the eight possible symbols. From these frequencies p~,

compute the entropy of the automaton, defined as

(1)

where the logarithm Is base 2. Then plot the point (~, H). Now do Ibis one hundred

times for each value of A, with a different randomty chosen rule table each time.

Finally, repeat the whole process for many different values of ~ ranging from zero 10

7/8. (~-7/8 is lhe value for which all symbols are equalfy represented in the rule

table. For larger values one does not expect particularly Interesting behavior.) The

result is the graph shown in Fig. 1.

Note that in the graph, the automata can b grouped loosely Into No categories.

There is a band of low-entropy automata running abng the tmttom of the graph, and most

of the other automata have entropy above a fairfy well defined line at 0.84 bits. Roughly

speaking, the low-entropy automata are typkally periodic, and those In the hlgh-

entropy category are typically chaotk. If one starts with the 1-0 automaton and slowly

adds more non zero elements to the rule table, one usualty ffnds the folbwl~: The

entropy remains near zero as X !ncreases, and then at some point it abruptly jumps to a

value greater than 0.84. Occasionally the entropy jumps to an intermediate value before

going above 0,84, and these intermediate aufomata are represented by the scatter of

points Iylng between the two lamer clumps. The value of i at which the jump cwcurs

varies from one trial to the next.

Thus ttwe Is a certain sense In which the transltbn Is sudden--in a given trial

it Is sudden--trot in another sense the transitbn Is spread ctier a range of k-values.

Our questbn Is whether this range can be made to shrink to a single value.

It Is not clear what will happen 10 the graph of F@. 1 as [he size of the

neighborhood (n) or the number of symbols (k) grows. In partkular, it Is not clear

whether the spread In entropy for each value of X wIII shrink or wIII stay essentially

constant. In a certain sense, n and k are already q~dte large: there are 85 entries in the

rule table, and the number of possible rule tables Is roughly equal to 8(85/4). (The

requirement of rotational Invariance reduces the number of choices by a factor of about

4.) Thus l! Is conceivable that we are already close to the Inflnlte-rule-table Ilmlt,



The next four sectnns are devottxl to aaounling for the observed spread in entropy and

determining how it is likely to depend on n and k.

3 Simple Mean Field Theory

Before t~ing to account for the spread, let us illustrate our method by finding a

simple theoretical estimate of the average entropy as a function ot ~.

Let vt be the density of zeros in the pattern after t time steps. We can also think

of vt as the probability that a randomly chosen site will have a zero in it. We now

compute vt+l as follows. For a given site, there are two ways in which that site can get a

zero in the next step: Its whole noighborhcod coukf be filled with zeros, In which case

Ihe sile gqts a zero with probability 1, or its neighborhood could cmtaln at least one

nonzero symbol, In which case the site will get a zero with probability (1-~). We

assume that the probability of the neightmhood being all zeros at time t is vts. Thus the

probability that the site will get a zero In the next step is

Vt+l - Vt5 + (l-vts)(l -A). (2)

Once the automaton has reached its steady state, the density v shoufd not change, so v

should satisfy the equation

v - V5 + (1.v5)(l. ~). (3)

For asO.2 the only stabfe solulbn of this equatbn Is v-l (all zeros), and for k>O.2

there Is again exactfy one stable solutbn, whkh Is less than 1. The predicted density of

nonzero symbols, 1-v, Is pbtted as a functbn of ~ in Fig. Z To estimate the entropy,

we simply assume that all seven nortzero symbols appear equally often, so that the

entropy Is relatal to v by the equatbn

H-.
[ Vlogv .,(q),W(q)]. (4)

This estimate of the average entropy Is plotted against ~ in Fig. 3. Notice that the curve

does go roughly through the middle of the actual data. But to account for the spread in the

data, we cleariy need to be more sophisticated.
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4 More Sophisticated Mean Field Theory

In the above calculation, the rule table was characterized by the value of a single

parameter, k. Following Wolfram [9] and Gutowitz et al. [1O], we now make a more

rafinec! characterization of the rule table. Let bj be defined as folbws: For a given rule

table, consider all the neighborhood configurations containing exactly j zeros; bj is the

fraction of these whkh are mapped to zero. In effect we are breaking up the rule table

into six sections (j=O to 5), such that in each section all the neighborhood

cmfigurations have the same number of zeros. The quantity 1- bj is like a ‘local” I for

the jth section. Once one knows the set {bj}, one can easily compute the value of 1 for

the whole rule table, but the converse is not true. A given value of 1 is cmsistent with

many possible sets {bj}.

Our strategy now is simple. Knowing that for each value of ~ the rules were

chosen at random, we can find the distribution of the b~s for each ~. For each set {b]}

we can compute the mean-field-predicted value of the entropy, Because there are many

sets (bj} for each value o? ~, there will be a range of entropy values for each L. Our

question is whether this range agrees with the observed range of values.

First let us wrfte down the mean-field equatbn fx the density v of zeros, using

the more refined estimates of probabllltles provkfed by the bj’s. We write the equation

in terms of arbltra~ values of n and k, since we are ultimately Interested In knowing

how things depend on these quantities. For a given site, the probability that its

()
neighborhood has exactty j zeros is equal to vj(l -V)n-j ~ . (Here we make the usual

mean field approxlmatbn that the probabilities for different sites are independent.)

Given that the neighborhood has exactly j zeros, the probability that the site will get a

zero is b]. Thus the equatbn for a statbnary value of v Is

n-1

Vnvn+ z Vj(l-v)n-j ()~bj.

j-t)

(5)

Here we have used the fact that bn Is equal to unity; that is, a neighborhood mntainlng

nothing but zeros Is certain to yield a zero. The contribution from such a neighborhood

is the first term on the right-hand side. (We use mean field theory here only to find the

stationary density. For an example of what can be done with the full dynamical mean

field theory, see [11 ].)



It is now a matter of mathematics to find the distribution of the bj’s for each i,

and from that to find the distribution of values of v, and finally to find the distribution of

values of the entropy. Let us begin by finding the distribution of the bj’s.

In the actual experiment, the rule tables were constructed by proceeding through

all rotationally inequivalent neighborhood configurations, and assigning to each one the

symbol zero with probability 1-~, and a nonzero zymbol with probability 1. There are

approximately 85/4 independent choices in the canstructfon of such a rule table.

Therefore, if one constructs many rule tables in this way, the standard deviation in the

actual value of X is given approximately by Al - ~where N=85/4. This is

the usual formula for the standard deviation of a binomial distribution. For A=l /2, the

value of Ak is 0.006, which is much too small to expfain the obsetved spread in

entropy. However, the spread in the bj’s Is signlficantfy larger, since each bj Is

determined by fewer choices. Because of the rotational invariance, finding the standard

deviation of each bj rwquires some careful counting, but for a fixed neighborhood size and

fixed number of symbols it is a straighfonvard matter to do the necessary arithmetic. It
is convenient to express the results in terms of the quantities cj defined bY

()C-5-12
jj k(l-x) “

For our case (n=5, k=8), one finds that

C4 = 2.4286

c3 m 0.8047

c~ - 0.1150

C1 - 0.0083

co - 0,0002

(6)

(7)

(The quanthy b5 trivially has no spread; it Is afways equaf to unity.) Thus, for

example, when A-1/2, the spread In b4 Is equal to 0.156, Conswerably larger than the

spread In ~. Each of the bj’s Is distributed according to a Mnomlal dlstrlbutlon, which

can be well approxlmatwi by a GaussIan distribution.
The next step is to use our knowledge of lhe dlstrlbutbns of the bj’s to find the

distribution of v. The equatbn relatlng the bj’s to v !s the mean field equation Eq. (5).
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It inconvenient tore-express this equation in terms of the difference ~bj betweenbj

and its average value (1 -i). Thus bj=(l -k)+~bj. In terms Of bbj, Eq. (5) becomes

n-1

f(v) = x gj(v) ~bj ,
(8)

j=O

whe:e the functions f and g are defined by

To

f(v) = (v-v fl)-(l-vn)(l -A) (9)

9j(v) ()
= Vj(l-v)n-j ~ . (lo)

find the distribution of v, we make one simplifying assumptbn, namely, that for each

set {bj}. there is a unique stable Wlution to Eq. (5). This may not ~ strl~fy truet ~t

it appears to be the case for all those sets {bj} which have any appreciable probability.

If this assumption is granted, then one can express the dlstrfbutlon p of v as follows:

p(v) - [ po(bo)...pl!b nbl)l) ~{v-vo(bo,...,bl )))) dbo...dbl-l . (11)
J

Here pj k the distribution of bj, b is [he Dirac delta function, and V.

Eq. (5). Assuming Gaussian distrlbu!lons for the bisi one -n ~rw

Eq. (11), and the result is an explicit expressbn for the distribution

‘(v)-*1:(:)1‘x(-%)’ ‘“;
(probability that v-l ) - 1-(probability that v<l ).

Here a is defined by

[

n-1

1
112

~.
x 97(V) Abj2 “
j-o

is the solution of

out the integrals in

of v:

(12)

(13)



Eqs. (12) and (13) are the main result of this section. They give us the mean-field

prediction for the distribution of the density of zeros in terms of known quantities.

From this distribution one can easily obtain the distribution of values of the entropy via

Eq. (4). Note that the distribution p(v) depends on i through the function f and through

the Abj”s.

It is of course very interesting to compare this theoretkaf dlstrlbutlon with the

observed distribution. The graph in F@. 4 was constructed as follows: For each value of

~, one hundred values of v were chosen at random in accordance with the distribution

p(v). Then for each of these values, a corresponding value of the entropy was computed

via Eq. (4). The resulting entropy values were plotted. Note that for L larger than

about 1/2, the distribution of entropy values appears to match well the distdbutlon

seen in the data (Fig. 1). Even for smaller values the match Is not bad, except for one

feature: the theoretical predktbn does not show the gap just below H=O.84 that one

sees in the actuaf data. This disagreement is not surprising. The gap is assodatect with

the transition from perbdk to chaotic behavior, and one ckms not expect the predictions

of mean field theory to apply to periodfc automata. only in chaotic automata muld one

hope to find enough mixing of the symbols for the assumptions of mean flefd theory to be

approximately valid. (See, however, the paper by McIntosh in this volume, whkh

relates automaton behavior not to the prediction of mean ffeld theory but rather to the

form of the mean field equation [12].)

5 A Quantitative Comparison

It is satisfying that the theoretkaf graph looks something Ilke the actual data, but

one would also like to have a more quantitative comparison. An obvbus way to maka such

a comparison would be to compute the average entropy and the mean deviation as

functions of ~, both for the actual data and for the theoretkal distribution. However, the

low-entropy perlodlc automata contribute signifkant!y both to the average and to the

deviatbn, and we do not expect agreement when such automata are Involved. Therefore,

we would like to be able to eflmlnate these perbdk automata from the average, !O see

whether the theoretical prediction at least works for the chaotk automata.
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On the experimental side, it is straightforward to pick out all the periodic

automata and to exclude them from the average. In order to get the mrrespmding

results on the theoretical side, we need to tell the theory how to recognize periodic

automata. To do this, we adopt the following ~-off ~ - : Any automaton for

which the mean-field-predicted entropy is less than 0.84 is a periodic automaton, and

aii others are chaotic. This is a very crude assumption, but it wiii be interesting to see

how weli it works. in Fig. 5, we have pbttecf the theoretbai predictbns for <H> and AH,

having dropped from the average ali automata with a predicted entropy less than 0.84.

Aiso piotted in Fig. 5 are the experimental results with the periodic automata dropped

from the average. The agreement is very good. From this agreement we draw two

conclusions: First, for chaotic automata, the variation in the mean-fieid parameters bj

is the principai source of the variation in thu entropy. Second, the cut-off hypothesis

has some truth to it. (However, it Is not strictiy true, as we discuss in Section 8.)

6 What happens as n or k gets large

Now that we have good evidence that the source of

can predict how this variatbn wiii change as we change the

the variatbn is in the bj’sr we

vaiues of n and k. Let us

estimate the behavbr of the spread in two iimits: iarge n with fixed k, and iarge k with

fixed n. in the iatter case, the vaiues of H wiii typbaiiy go as iog(k)--the entropy is

greater when there are more symbois--so it makes sense to consider the normalized

quantity H-H/iog(k).

The ordor of magnitude of AH is the same as that of the quantity o defined in Eq.

(13). in order to estimate O, we need to estimate the Abj’s for arbitra~ n and k. A

[() 1

-1/2

reasonable estimate is given by Abj= ; (k-l)f’m . (The quantity in brackets

is the number of ways of fiiiing an

avaiiabie and when exactly j of the

simplicity letting v equai 1/2, one

n-cell neighborhood, when there are k symbois

ceiis must oontain zero,) Using this estimate, and for

finds that

“=($)”[$(;)*]”. (14)
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If k is held fixed, then this expression decreases exponentially with increasing n. If n is

held fixed and k is allowed to get large, the expression Is dominated by the term with

j-n-l, and the whole expression goes as 1A . Thus in lmth limits, the spread in the

entropy goes to zero.

We now have to imagine what happens to the graph of Fig. 1 in each of these

limits. Consider first the case in whkh k gets large while the neighbwhood size stays

the same. For values of ~ to the right of the transition region, the spread in H will

presumably get smaller and smaller, in accordance with the above prediction, probably

appro~hing zero as k goes to infinity. Thus the scatter of points will begin to look like a

curve. Assuming that this cume ~ a curve for all i, the transition must occur at

a definite value of X if it occurs at all. In the folbwing section we present evidence that

there is indeed a sharp phase transhbn In this limit, ooourrlng around L= O.27.

The limit n+- is likely to be less Interesting. As before, the smtter of points

wIII pmhabfy haxno a Ilne, but in this ease one may bee the transttbn altogether.

Mean ffeid thmy pedkts a transltbn from the quiescent state to a chaotic state at

~-1/n, (This folbws from

prediction Is not correct for

be more accurate. Thus it

approaches Inffnity.

Eq. (3). with the exponent 5 replaced by n.) This

small n, but as n increases one expects mean field theory to

Is Ilkety that the transltbn point wIII be pushed to ~-o as n

7 The Infinite k LimN: An Experimental Teat

Let us focus now on the ease of a large number of symbols. It Is diffkult to make

a large Increase In the size of k experimentally, because the rule Iabfe expands as k5.

Moreover, the spread In H is pdcted to go as l/fi, as we have just seen, ~nd this Is a

rather sbw mnvergem. If we used 70 symbols Instead of 8, the apead wJukl be

reducaf only by a factor of 3.

However, It Iti actually posslbfe to do the experiment when k equals Inffnlty. If

there are an Infinite number of symbols, then au bng as the Iattke is flnlte and the

automaton runs for a flnlte time, thero Is zero probability that any nonzero symbol wIII
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appear mow than once in the entire run. (The symbol zero can appear frequently

because one fixes ~ at some value less than 1.) The automaton k therefore constantly

exploring rlew park of the rule table. Moreover, the rub table was oonsfructed at

random, so in effect one Is simpty running a probabilistic automaton with two symbols,

zero and ‘other.” An all-zero neighborhood is mappd to zero with probability 1, and

any other mnfiguration is mapped to “other wi~~ probability 1.

WfJ have run this binary probabilistic automaton many times with values of k

ranging from O to 1K?. (The size and shape of the neighborhood are the same as in our

finite-k case,) FQ. 6 shows the resulting values of the entropy. There does appear to be

a sharp phase transition at i= O.27, and the points fall on a fairly well defined cuwe, in

agreement with our expectatbns. Note that there does not appear to be a discontinuity in

the entropy itself as a function of ~, but rather a discontinuity in the derivative. The

existence of this sharp transition, combined with our prediction that AH decreases with

increasing k, provides strong evidexe tha! the transitbn regbn itself shrinks as k

increases, the wtdth of the regbn pmbabty going as 1W.

In collecting the above data, we let the automaton run for 1000 time steps before

collecting data. The exact tocatbn of the transitbn changesslightfy if one uses a bnger

waiting time or a larger lattice. (The dependence of a related transitbn on lattice size

has been discussed in reference [13].) Our aim here is not so much to locate the

transitbn point preclsety as to show that the transitbn does become sham in the

Infinite k limit. It is interesting to note that as one approaches the transttbn point from

the bw lambda side, it takes bnger and bnger for the transients to die out. Thus lhe

transition appears to be of semnd order.

Shw pha= transltbns in probabilistic automatahave been observed before.

(See for example [14] and [15].) They have also been obsewed in detenninistk

inhomogeneous automata with random assignments of rules to sites. (Sea for example

[16], [1~, [18], and [13].) Our results show how homogeneous deterministic

automata can approach such behavbr.
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8 A Sharper Transition with -k=8?

Even if the transition region becomes narrower as k gets larger, there will sfill

be a sizable range of transit&n points for any realizable finite value of k. If possible,

one would like to find a parameter other than A in terms of which the transition is

sharper, even when the number of symbls Is held fixed.

Such a parameter is suggested by our cut-off hypothesis. Recall that the

hypothesis asserts that an automaton will be parfodic or chaotk, depending on whether

its mean-field-predicted entropy Hmf is smaller or larger than 0.84 bits. Suppose this

hypothesis were strictly correct for our automata. Then if one were to pfot the actual

entropy H against Hmf, one woutd see the folbwing: For values of Hmf less than 0.84,

Ihe actual entropy would be very small; at Hmf-0.84, the entropy would suddmly jump

to a value close to 0.84 and would rise gradually thereafter. Thus we woufd have a sham

phase transitbn, Or instead of using Hmf, one could use vmf. the mean-flekt-pradicted

density of zeros. Either of these quantifies is computable from the rule table without

having to run the automaton.

We fherefore propose the folbwing experiment. Let vmf take vafues from O to 1

in steps of, say, 0.01. For each value, cimose at random some number of automata whose

bjs sat!sfy Eq. (5) with theOlvenvalueof Vmf. Run these automata and oompute their

ectropy. If the cut-off hypothesis were mrrect, ttw resultlng pbt of entropy vs. Vm f

WOukf show a shaW jump at the value vmf=0.8850 which corresponds to Hmf_0.84.

In fact the cut-off hypothesis is not strktly correct. For example, In Fig. 1, one

sees a nlimber of bw-entropy perbdk automata around &O.5 whose existence is not

preaktad by the theoretical result shown In Fig. 4. The values of Hmf for these automata

are surely greater than 0.84, and yet the automala have bw entropy. However, these

automata are relatively rare, so one might still hope to see a reasonably sharp transition

In the preposed experiment.

9 Conclualcns

Our slrongest concfusbns are Ihese: As the number of symbols Increases, Ihe

Iransillon region for our automala almost certainty shrinks, approaching a unique

Iransltion @nt around ~-0i27 as k goes to infinity. On the other hand, if one increases

the size of the nelghtmrhood, the transltbn regbn probably gets pushed cbser and cbser
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to ~=0, so that there Is In fact no transition at all in the infinite-neighborhood limit, at

least none that can be seen by varying ~.

These conclusions depend on the fact that for the automata we are considering, an

all-zero neighborhood afways maps to the symbol zero. If this property were removed,

it is not clear whether there woukf be a sharp phase transition in the Infinite-k Ilmlt.

It may also be the case that our results depend crucially on the two-dimenslonality of the

Iatttce, To determine how these features of the automata influence the nature of the

transition will require more experimental and theoretical work.

Our results also suggest that even for finlta k, one can probably sharpen the

transitbn by using a different parameter, vmf instead of 1, to explore the space of

automata, This altemattve parameter may be useful for finding complex automata near

the transition @nl, which was one of our motivatbns for looking for a sharper

Iransitbn. However, there Is nothing natural about vmf, so we do not expect any deep

Insights to emerge through this particular parameterlzatlon of the space of automata. In

order to see a cbser parellel between the cellular automaton transition and physical

phase transhbns, It maybe nacassaryto use a set of quantities none of which can be

computed wtthout actualfytunningthe automaton.For exarnplu, one might define the

“temperature” as the exponential of the average expansbn rate. One coukf then pbi

entropy against temperature, Both entropy and Temperature (by this deflnitkm) are

measured properties of Ihe automaton’s behavbr and, unllke ~ or vmf, cannot be easily

mntrolled. It would nevertheless be of great theoretkal Inlerest, and ultimately of

practical value, If one found a sharp phase transltbn In such a plot,

Another more fundamental questbn Is certainly worth investlgatlng: If thsre is

indeed an anabgybetween cellular automata and thermodynarnks, how many Independent

thermodynamic variablesare there? That Is, tiowmanydifferentmacroscopk

slatistkal properties of an automaton does one have to specify In order that all other

macroscopk statistkal properties are then determined? In order 10 see a sharp phase

transltbn, one would have to be abfe 10 vary separaIety all the independent variables.

For example, In order to see a sharp phase trarmltbn between Ilquld water and water

va~r, It Is not sufficient 10 pbt entropy against temperature while paying no attmtlon

to wild varlatbns In the pressl’re. In a similar way, we may need to pay attention to two

or more Independent variables In order to see a sharp transition.
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Figure 1

Measured values of single-site entropy for automata with different values of ~. (~ is

the fraction of nonzero entries in the rule table.) For each ~, one hundred rule tables

were cwrstructed at random. Each automaton was albwed to run for 500 time steps

before the entropy was measured.
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Figure 2

Density of nonzero symbols as a function of a, as pmdlcted by simple mean field theory.
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Figure 3

The solid curve is the single-site enlropy as predicted by simple mean field theory. The

dots are the obsemd values, just as in Fig. 1.
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Figure 4

Theoretical distribution of entropy va!ues versus A. For each 1, one hundred values

were chosen at random in acaxdance with the predicted distribution, Eq. (12). The

distribution is similar to the actual distribution shown In Fig. 1.
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Figure 5

The solid curve shows tha avmge entropy (upper curve) and the mean deviation of the

entropy when periodic automata are dropped from the average. The dashed cuwes show

the thwretical predktbns for the same quantifies, when all automata with predicted

entropies less than 0.84 are droppxf from the average.
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Figure 6

Entropy versus i for a probabilistic automaton intended to simulate our deterministic

automata in the infinite k limit. The lattice Was 128xl 28 with perkdc kmdary

conditions. Each automaton vvas albwed to run for 1000 time steps before data was

taken. The bcatbn of the transition point shifts slightiy with larger lattices and ionger

waiting times.
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