LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

AUTHOR（S）：

William K．Wootters，Santa Fe Institute， CNLS／T－13 Los Alamos National Laboratory Dept．of Physics，Williams College

Chris G．Langton，T－13 Los Alamos National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government．Neither the United States Government nor any agency thereof，nor any of their employees，makes any warranty，express or implied，or assumes any legal liability or responsi－ bility for the accuracy，completeness，or usefulness of any information，apparatus，roduct，or process disclosed，or represents that its use would not infringe privately owned rights．Refer－ ence herein to any specific commercial product，process，or service by trade name，trademark． manufacturer，or otherwise does not necessarily constitute or imply its endorsement，reinm－ mendation，or favoring by the United States fuvernment or any agency thereof．The views and opinions of authors exprensed herein do not necessarily state or reflect those of the United Staten Government or any agency thereof．

Is There a Sharp Phase Transition for Deterministic Cellular Automata?
 William K. Wootters $(1,2,3)$ and Chris Langton(2)
 (1)Santa Fe Institute, 1120 Canyon Road, Santa Fe, NM 87501
 (2)T-13 and Center for Nonlinear Studies Los Alamos National Laboratory, Los Alamos, NM 87545
 ${ }^{(3)}$ Department of Physics, Williams College, Williamstown, MA 01267

Abstract

Previous work has suggested that there is a kind of phase transition between deterministic automata oxhibiting periodic behavior and those exhlbiting chaotic behavior. However, unlike the usual phase transitions of physics, this transition takes place over a range of values of the parameter rather than at a specific value. The present paper asks whether the transition can be made sharp, elther by taking the limit of an infinitely large rule table, or by changing the parameter in terms of which the space of automata is explored. We find strong evidence that, for the class of automata we consider, the transition doAs become sharp in the limit of an infinite number of symbols, the size of the nelghborthood being held fixed. Our work also suggests an atternative parameter in terms of which it is likely that the transition will become fairly sharp even if one does not increase the number of symbols. In the course of our analysis, we lind that mean fiek theory, which is our main tool, gives surprisingly good predictions of the statistical properties of the class of automata we constder.

1

Introduction

Of the four Wolfram classes [1] of deterministic cellular automata-homiogeneous, periodic, chaotic, and complex-those exhibiting complex behavior are for many purposes the most interesting, but they also seem to be the most rare, particularly when the rule table for the automaton is large [2]. Thus, when the rule table is large one can think crudely of the set of all rules as being divided into two large classes: those leading to perlodic behavior (we count a static liomogeneous automaton as trivially periodic), and those leading to chaotic behavlor.

Langion [3,4,5] and Li and Packard [6,7] have shown that if one uses an appropriate parameter, which we call λ, to characterize cellular automaton rules, then one can see a kind of phase transition between these two modes of behavior as the value of the parameter is varied: For small values of λ the behavior is typically periodic; for large values it is typically chaotic. However, there is not a unique value of λ at which the transition occurs, but rather a range of possible transition values. In this respect the transition differs from the usual phase transitions of physics, which occur at definite values of, say, temperature or magnetic field strength. The present paper asks whether in some appropriate limit--we consider particularly the limits of large neighborhood size and large number of symbols--or with a different choice of parameter, the value at which the transition occurs becomes unique. Our results indicate that the transition does become sharp in the limit of an infinite number of symbols. We also propose a manageable experimient in which one might hope to see a reasonably sharp transition with a small set of symbols.

The quesition of the sharpness of the transition is interesting for a number of reasons. First, there is a good deal of evider : that automata exhibiting complex behavior are located near the transition region. If there are situations in which the transition is sharp, then in those situations ene could concelvably be better able to find complex automata, because one would know precisely where to look. Also, Packard has obtained data suggesting that cellular automaton rules, evolving under selective pressure lowards pertorming a particular computational task, tend to gravitate to the transition region [8]. It would be interesting to see, in such an evolution, if the firal evolved rules continue to be confined to the transition region as the latter becomes narrower and narrower. Finally, there are some intriguing parallels between the theory of computation and the theory of physical phase transitions [4,5], and these parallels would be given added significance if one could find in deterministic cellular automate the sort of sharp transition that one finds in physics.

The approach taken in this paper is the following. The location of the transition point is a difficult quantity to treat theoretically. But there is a more accessible quantity, the single-site entropy, which also exhibits a range of values and which is related to the location of the transition point. We study the entropy in detall, asking whether for fixed λ it approaches a unique value in the limit of large neighborhood size or large number of symbols. If it does, then it seems likely that the location of the transition point becomes unique in the sarne limit. We supplement our analysis of finite-state automata with experimental results bearing particularly on the case of an infinite number of symbols. Tirroughout this paper, we locus exclusively on a specific set of dala for a particular class of automata. Let us therefore begin by describing this class.

2 Our Automata

The automata we consider are two-dimensional, with a square lattice, and win a five-cell neighborhood shaped like a " + ". Each site can be in one of elght possible states; in other words, each site can be occupied by one of eight possible symbols, say, the digits 0 thruugh 7. The symbol 0 plays a special role: if a neighbortood consists entirely of zeros, then its central site is always assigned the value zero in the next step. The rules are required to be invariant under rotations. That is, if a certain neighborhood configuration sends its central site to the state x, then any rotated version of that conflguration must also send its central site to x. Excep: for these restrictions, all rules are allowed. The latices actually used to generate the data were 64 units on a side, with periodic boundary conditions.

The rule table can be plctured as a long column of cross-shaped nelghborhoods, with each possible neighborhood configuration represented exactly once. To the right of each configuration one places the symbol to which that particular configuration is mapped. The paramster λ is defined as the fraction of neighborhood conflgurations that are mapped to something other than zero. Thus a rule with very small $\dot{\lambda}$ has a tendency to generate many zeros, and ultimately such an automaton is likely to end up in the quiescent state consisiling of nothing but zeros. As λ moves away from zero, one has the possibility of more interesiling behavior.

We will be looking particularly at the dependence of entropy on λ. The data was generated as follows: Fix a value of λ, and choose at random a rule table with that particular λ-value. For this rule table, start with a random initial configuration, and
without taking any data, let the automaton run for 500 time steps to give it a chance to reach its asymptotic behavior. Then let it continue to run (for 1000 steps), and count the frequencies of occurrence of the eight possible symbols. From these frequencies p_{s}.
compute the entropy of the automaton, defined as

$$
\begin{equation*}
H=-\sum_{s=0}^{7} p_{s} \log p_{s} \tag{1}
\end{equation*}
$$

where the logarithm is base 2. Then plot the point (λ, H). Now do this one hundred times for each value of λ, with a different randomly chosen rule table each time. Finally, repeat the whole process for many different values of λ ranging from zero to 7/8. ($\lambda=7 / 8$ is the value for which all symbols are equally represented in the rule table. For larger values one does not expect particularly interesting behavior.) The result is the graph shown in Fig. 1.

Note that in the graph, the automata can be grouped loosely into two categories. There is a band of low-entropy automata running along the bottom of the graph, and most of the other automata have entropy above a fairly well defined line at 0.84 bits. Roughly speaking, the low-entropy automata are typically periodic, and those in the highentropy category are typically chaotic. If one starts with the $\lambda=0$ automaton and slowly adds more nonzero elements to the rule table, one usually finds the following: The entropy remains near zero as λ increases, and then at some point it abruptly jumps to a value greater than 0.84 . Occasionally the entropy jumps to an intermediate value before going above 0.84, and these intermediate automata are represented by the scatter of points lying between the two larger clumps. The value of λ at which the jump occurs varies from one trial to the next.

Thus the re is a certain sense in which the transition is sudden--in a glven trial it is sudden--but in another sense the transition is spread ever a range of λ-values.
Our question is whether tiils range can be made to shrink to a single value.
It is not clear what will happen to the graph of Fig. 1 as the size of the neighborhood (n) or the number of symbols (k) grows. In particular, it is not clear whether the spread in entropy for each value of λ will shrink or will stay essentially constant. In a certain sense, n and k are already quite large: there are 85 entries in the rule table, and the number of possible rule tables is roughly equal to $8^{(8 / 4)}$. (The requirement of rolational Invariance reduces the number of choices by a factor of aboul 4.) Thus it is concelvable that we are already close to the infinite-rule-table limit.

The next four sections are devoted to accounting for the observed spread in entropy and determining now it is likely to depend on n and k .

3 Simple Mean Field Theory

Before trying to account for the spread, let us illustrate our method by finding a simple theoretical estimate of the average entropy as a function of λ.

Let $v_{\mathbf{t}}$ be the density of zeros in the pattem after time steps. We can also think of v_{t} as the probability that a randomly chosen site will have a zero in it. We now compute v_{t+1} as follows. For a given site, there are two ways in which that site can get a zero in the next step: Its whole neighborheod could be filled with zeros, in which case the site gats a zero with probability 1, or its neighborhood could contain at least one nonzero symbol, in which case the site will get a zero with probability ($1-\lambda$). We assume that the probability of the neighborhood being all zeros at time t is $v_{t}{ }^{5}$. Thus the probability that the site will get a zero in the next step is

$$
\begin{equation*}
v_{t+1}=v_{t}^{5}+\left(1-v_{t}^{5}\right)(1-\lambda) . \tag{2}
\end{equation*}
$$

Once the automaton has reached its steady state, the density \mathbf{v} should not change, so \mathbf{v} should satisty the equation

$$
\begin{equation*}
v=v^{5}+\left(1-v^{5}\right)(1-\lambda) . \tag{3}
\end{equation*}
$$

For $\lambda \leq 0.2$ the only stable solution of this equation is $v=1$ (all zeros), and for $\lambda>0.2$ there is again exactly one stable solution, which is less than 1. The predicted density of nonzero symbols, $1-\mathrm{v}$. Is plotted as a function of λ in Fig. 2 . To estimate the entropy, we simply assume that all seven nonzero symbols appear equally often, so that the entropy is related to v by the equation

$$
\begin{equation*}
H=\left[v \log v+7\left(\frac{1-v}{7}\right) \log \left(\frac{1-v}{7}\right)\right] . \tag{4}
\end{equation*}
$$

This estimate of the average entropy is plotted against λ in Fig. 3. Notice that the curve does go roughly through the middle of the actual data. But to account for the spread in the data, we cleariy need to be more sophisticated.

4 More Sophisticated Mean Field Theory

In the above calculation, the rule table was characterized by the value of a single parameter, λ. Following Wolfram [9] and Gutowitz et al. [10], we now make a more rəfined characterization of the rule table. Let b_{j} be defined as follows: For a given rule table, consider all the neighborhood configurations containing exactly j zeros; b_{j} is the fraction of these which are mapped to zero. In effect we are breaking up the rule table into six sections (j=0 to 5), such that in each section all the neighborhood configurations have the same number of zeros. The quantity $1-b_{j}$ is like a "local" λ for the $j^{\text {th }}$ section. Once one knows the set $\left\{b_{j}\right\}$, one can easily compute the value of λ for the whole rule table, but the converse is not true. A given value of λ is consistent with many possible sets $\left\{b_{j}\right\}$.

Our strategy now is simple. Knowing that for each value of λ the rules were chosen at random, we can find the distribution of the b_{j} 's for each λ. For each set $\left\{b_{j}\right\}$ we can compute the mean-field-predicted value of the entropy. Because there are many sets $\left\{b_{j}\right\}$ for each value of λ, there will be a range of entropy values for each λ. Our question is whether this range agrees with the observed range of values.

First let us write down the mean-field equation for the density v of zeros, using the more refined estimates of probabilities provided by the bj's. We write the equation in terms of arbitrary values of n and k, since we are ultimately interested in knowing how things depend on these quantities. For a given site, the probability that its neighborhooo has exactly j zeros is equal to $v j(1-v)^{n-j}\binom{n}{j}$. (Here we make the usual mean field approximation that the probabilities for different sites are independent.) Given that the neighborhood has exactly j zeros, the probability that the site will get a zero is b_{j}. Thus the equation for a stationary value of v is

$$
\begin{equation*}
v_{n} v^{n}+\sum_{j=0}^{n-1} v j(1-v)^{n-j}\binom{n}{j} b_{j} \tag{5}
\end{equation*}
$$

Here we have used the fact that b_{n} is equal to unity; that is, a neighborhood containing nothing but zeros is certain to yield a zero. The contribution from such a nelghborhood is the first term on the right-hand side. (We use mean field theory here only to find the stationary density. For an example of what can be done with the full dynamical mean field theory, see [11].)

It is now a matter of mathematics to find the distribution of the b_{j} s for each $\lambda_{\text {, }}$, and from that to find the distribution of values of v, and finally to find the distribution of values of the entropy. Let us begin by finding the distribution of the b_{j} 's.

In the actual experiment, the rule tables were constructed by procseding through all rotationally inequivalent neighbortood configurations, and assigning to each one the symbol zero with probability $1-\lambda$, and a nonzero zymbol with probabillty λ. There are approximately $85 / 4$ independent choices in the construction of such a rule table. Therefore, if one constructs many rule tables in this way, the standard deviation in the actual value of λ is given approximately by $\Delta \lambda=\sqrt{\lambda(1-\lambda) / N}$, where $N=85 / 4$. This is the usual formula for the standard deviation of a binomial distribution. For $\lambda=1 / 2$, the value of $\Delta \lambda$ is 0.006 , which is much too small to explain the observed spread in entropy. However, the spread in the b_{j} 's is significantly larger, since each b_{j} is determined by fewer choices. Because of the rotational invariance, finding the standard deviation of each b_{j} requires some careful counling, but for a fixed neighborhood size and fixed number of symbols it is a straighforward matter to do the necessary arithmetic. It is convenient to express the results in terms of the quantities c_{j} defined by

$$
\begin{equation*}
c_{j}=\binom{5}{j}^{2} \frac{\Delta b_{j}^{2}}{\lambda(1-\lambda)} \tag{6}
\end{equation*}
$$

For our case ($\mathrm{n}=5, \mathrm{k}=8$), one finds that

$$
\begin{align*}
& c_{4}=2.4286 \\
& c_{3}=0.8047 \\
& c_{2}=0.1150 \tag{7}\\
& c_{1}=0.0083 \\
& c_{0}=0.0002
\end{align*}
$$

(The quantity b_{5} trivially has no spread; it is always equal to unity.) Thus, for example, when $\lambda=1 / 2$, the spread in b_{4} is equal to 0.156 , considerably larger than the spread in λ. Each of the b_{j} 's is distributed according to a binomial distribution, which can be well approximateci by a Gaussian distribution.

The next step is to use our knowledge of the distributions of the bj's to find the distribution of v. The equation relating the b_{j} 's $10 v$ is the mean field equation Eq. (5).

It is convenient to re-express this equation in terms of the difference δb_{j} between b_{j} and its average value $(1-\lambda)$. Thus $b_{j}=(1-\lambda)+\delta b_{j}$. In terms of δb_{j}, Eq. (5) becomes

$$
\begin{equation*}
f(v)=\sum_{j=0}^{n-1} g_{j}(v) \delta b_{j} \tag{8}
\end{equation*}
$$

where the functions f and g are defined by

$$
\begin{align*}
& f(v)=\left(v-v^{n}\right)-\left(1-v^{n}\right)(1-\lambda) \tag{9}\\
& g_{j}(v)=v^{j}(1-v)^{n-j}\binom{n}{j} \tag{10}
\end{align*}
$$

To find the distribution of v, we make one simplifying assumption, namely, that for each set $\left\{b_{j}\right\}$, there is a unique stable solution to Eq. (5). This may not be strictly true, but it appears to be the case for all those sets $\left\{b_{j}\right\}$ which have any appreciable probability. If this assumption is granted, then one can express the distribution ρ of v as follows:

$$
\begin{equation*}
\left.\rho(v)=\int \rho_{0}\left(b_{0}\right) \ldots \rho_{n-1}!b_{n-1}\right) \delta\left(v-v_{0}\left(b_{0}, \ldots, b_{n-1}\right)\right) d b_{0} \ldots d b_{n-1} \tag{11}
\end{equation*}
$$

Here ρ_{j} is the distribution of b_{j}, δ is the Dirac delia function, and v_{0} is the solution of Eq. (5). Assuming Gaussian distributions for the b_{j} 's, one can carry out the integrals in Eq. (11), and the result is an explicit expression for the distribution of v :

$$
\begin{equation*}
\rho(v)=\frac{1}{\sqrt{2 \pi}}\left|\frac{d}{d v}\left(\frac{1}{\sigma}\right)\right| \exp \left(-\frac{f^{2}}{2 \sigma^{2}}\right), \quad v<1 ; \tag{12}
\end{equation*}
$$

(probability that $v=1$) $=1$-(probability that $v<1$).

Here σ is defined by

$$
\begin{equation*}
\sigma=\left[\sum_{j=0}^{n-1} g_{j}^{2}(v) \Delta b_{j}^{2}\right]^{1 / 2} \tag{13}
\end{equation*}
$$

Eqs. (12) and (13) are the main result of this section. They give us the mean-field prediction for the distribution of the density of zeros in terms of known quantities. From this distribution one can easily obtain the distribution of values of the entropy via Eq. (4). Note that the distribution $\rho(v)$ depends on λ through the function f and through the $\Delta b_{j}{ }^{\prime}$ s.

It is of course very interesting to compare this theoretical distribution with the observed distribution. The graph in Fig. 4 was constructed as follows: For each value of λ, one hundred values of v were chosen at random in accordance with the distribution $\rho(v)$. Then for each of these values, a corresponding value of the entropy was computed via Eq. (4). The resulting entropy values were plotted. Note that for λ larger than about $1 / 2$, the distribution of entropy values appears to match well the distribution seen in the data (Fig. 1). Even for smaller values the match is not bad, except for one feature: the theoretical prediction does not show the gap just below $\mathrm{H}=0.84$ that one sees in the actual data. This disagreement is not surprising. The gap is assoclated with the transition from periodic to chaotic behavior, and one does not expect the predictions of mean field theory to apply to periodic automata. Only in chaotic automata could one hope to find enough mixing of the symbols for the assumptions of mean fleld theory to be approximately valid. (See, however, the paper by McIntosh in this volume, which relates automaton behavior not to the prediction of mean field theory but rather to the form of the mean fleld equation [12].)

5 A Quantitative Comparison

It is satisfying that the theoretical graph looks something like the actual data, but one would also like to have a more quantitative comparison. An obvious way to maka such a comparison would be to compute the average entropy and the mean deviation as functions of λ, both for the actual data and for the theoretical distribution. However, the low-entropy periodic automata contribute significantly both to the average and to the deviation, and we do not expect agreement when such automata are involved. Therefore, we would like to be able to eliminate these periodic automata from the average, to see whether the theoretical prediction at least works for the chaotic automata.

On the experimental side, it is straightforward to pick out all the periodic automata and to exclude them from the average. In order to get the corresponding results on the theoretical side, we need to tell the theory how to recognize periodic automata. To do this, we adopt the following cut-off hypothesis: Any automaton for which the mean-field-predicted entropy is less than 0.84 is a periodic automaton, and all others are chaotic. This is a very crude assumption, but it will be interesting to see how well it works. In Fig. 5, we have plotted the theoretical predictions for $\langle H\rangle$ and ΔH, having dropped from the average all automata with a predicted entropy less than 0.84. Also plotted in Fig. 5 are the experimental results with the periodic automata dropped from the average. The agreement is very good. From this agreement we draw two conclusions: First, for chaotic automata, the variation in the mean-field parameters $\mathbf{b}_{\mathbf{j}}$ is the principal source of the variation in the entropy. Second, the cut-off hypothesis has some truth to it. (However, it is not strictly true, as we discuss in Section 8.)

6 What happens as n or k gets large

Now that we have good evidence that the source of the variation is in the b_{j} 's, we can predict how this variation will change as we change the values of n and k. Let us estimate the behavior of the spread in two limits: large n with fixed k, and large k with fixed n . In the latter case, the values of H will typically $\mathbf{g o}$ as $\boldsymbol{\operatorname { l o g } (k) - \text { -the entropy }}$ is greater when there are more symbols--so it makes sense to consider the normalized quantity $\mathrm{H}=\mathrm{H} / \log (\mathrm{k})$.

The order of magnitude of ΔH is the same as that of the quantity σ defined in Eq. (13). In order to estimate σ, we need to estimate the Δb_{j} 's for arbitrary n and k. A reasonable estimate is given by $\left.\Delta b_{j}=\left[\begin{array}{l}n \\ j\end{array}\right)(k-1)^{n-j}\right]^{-1 / 2}$. (The quantity in brackets is the number of ways of filling an n-cell neighborhood, when there are k symbols available and when exactly j of the cells must contain zero.) Using this estimate, and for simplicity letting v equal $1 / 2$, one finds that

$$
\begin{equation*}
\sigma=\left(\frac{1}{2}\right)^{n}\left[\sum_{i=0}^{n-1}\binom{n}{i} \frac{1}{(k-1)^{n-j}}\right]^{1 / 2} . \tag{14}
\end{equation*}
$$

If \mathbf{k} is held fixed, then this expression decreases exponentially with increasing \boldsymbol{n}. If \boldsymbol{n} is held fixed and k is allowed to get large, the expression is dominated by the tern with $j=n-1$, and the whole expression goes as $1 / \sqrt{k}$. Thus in both limits, the spread in the entropy goes to zero.

We now have to imagine what happens to the graph of Fig. 1 in each of these limits. Consider first the case in which k gets large while the neighborhood size stays the same. For values of λ to the right of the transition region, the spresd in H will presumably get smaller and smaller, in accordance with the above prediction, probably approaching zero as k goes to infinity. Thus the scatter of points will begin to look like a curve. Assuming that this curve remains a curve for all λ, the transition must occur at a definite value of λ if it occurs at all. In the following section we present evidence that there is indeed a sharp phase transition in this limit, occurring around $\lambda=0.27$.

The limit $\boldsymbol{n} \rightarrow \infty$ is likely to be less interesting. As before, the scatter of points will prohably becoms a line, but in this case one may lose the transition altogether. Mean fleid theory puedcts a transition from the quiescent state to a chaotic state at $\lambda=1 / n$. (This follows from Eq. (3), with the exponent 5 replaced by n.$) This$ predlction is not correct for small n, but as \boldsymbol{n} Increases one expects mean field theory to be more accurate. Thus it is likely that the transition point will be pushed to $\lambda=0$ as n approaches infinity.

7 The Infinite k Limit: An Experimental Test

Let us focus now on the case of a large number of symbols. It is difficult to make a large increase in the size of k experimentally, because the rule table expands as k^{5}. Moreover, the spread in H is predicted 10 go as $1 / \sqrt{\mathrm{k}}$, as we have just seen, and this is a rather slow convergence. If we used 70 symbois instead of 8 , the spread wuuld be reduced only by a factor of 3.

However, It li actually possible to do the experiment when k equals infinity. If there are an infinite number of symbols, then as tong as the lattice is finite and the automaton runs for a finite time, there is zero probability that any nonzero symbol will
appear more than once in the entire run. (The symbol zero can appear frequently because one fixes λ at some value less than 1.) The automaton is therefore constantly exploring riew part of the rule table. Moreover, the rule table was constructed at random, $S O$ in effect one is simply running a probabilistic automaton with two symbols, zero and "other." An all-zero neighborhood is mapped to zero with probability 1 , and any other configuration is mapped to "other" wih probability λ.

We have run this binary probabilistic automaton many times with values of λ ranging from 0 to $1 / 2$. (The size and shape of the neighborhood are the same as in our finite-k case.) Fig. 6 shows the resulting values of the entropy. There does appear to be a shap phase transition at $\lambda=0.27$, and the points fall on a fairly well defined curve, in agreement with our expectations. Note that there does not appear to be a discontinuity in the entropy itself as a function of λ, but rather a discontinuity in the derlvative. The existence of this sharp transition, combined with our prediction that ΔH decreases with increasing k, provides strong evidence that the transition region itself shrinks as \mathbf{k} increases, the width of the region probably going as $1 / \sqrt{k}$.

In collecting the above data, we let the automaton run for 1000 time steps before collecting data. The exact location of the transition changes slightly if one uses a longer waiting time or a larger lattice. (The dependence of a related transition on lattice size has been discussud in reference [13].) Our aim here is not so much to locate the transition point precisely as to show that the transition does become sharp in the Infinite \mathbf{k} limit. It is interesting to note that as one approaches the transition point from the low lambda side, it takes longer and longer for the transients to die out. Thus the transition appears to be of second order.

Sharp phase transitions in probabilistic automata have been observed before. (See for example [14] and [15].) They have also been observed in deterministic inhomogeneous automata with random assignments of rules to sites. (See for example [16]. [17]. [18], and [13].) Our results show how homogeneous deterministic automata can approach such behavior.

8 A Sharper Transition with $k=8$?

Even if the transition region becomes narrower as \mathbf{k} gets larger, there will still be a sizable range of transition points for any realizable finite value of k. If possible, one would like to find a parameter other than λ in terms of which the transtion is sharper, even when the number of symbols is held fixed.

Such a parameter is suggested by our cut-oft hypothesis. Recall that the hypothesis asserts that an automaton will be periodic or chaotic, depending on whother its mean-field-predicted entropy $H_{m f}$ is smaller or larger than 0.84 bits. Suppose this hypothesis were striclly correct for our automata. Then if one were to plot the actual entropy H against $H_{m f}$, one would see the following: For values of $H_{m f}$ less than 0.84 , the actual entropy would be very small; at $H_{m f}=\mathbf{0 . 8 4}$, the entropy would suddenly jump to a value close to 0.84 and would rise gradually thereafter. Thus we would have a sharp phase transition. Or instead of using $H_{\text {mf }}$, one could use $\mathbf{V}_{\mathbf{m f}}$, the mean-fleld-predicted density of zeros. Either of these quantilies is computable from the rule table without having to run the automaton.

We therefore propose the following experiment. Let $v_{m f}$ take values from 0 to 1 in steps of, say, 0.01. For each value, ciroose at random some number of automata whose b_{j} 's satisfy Eq. (5) with the given value of $\boldsymbol{v}_{\mathrm{mf}}$. Run these automata and compute their eritropy. If the cut-off hypothesis were correct, the resulting plot of entropy vs. v_{mf} would show a sharp jump at the value $v_{m f}=0.885$, which corresponds to $H_{m f}=0.84$.

In lact the cut-off hypothesis is not strictly correct. For example, in Fig. 1, one sees a nu'mber of low-entropy perlodic automata around $\lambda=0.5$ whose existence is not prealcted by the theoretical result shown in Fig. 4. The values of H_{mf} for these automata are surely greater than 0.84, and yet the automata have tow entropy. However, these automata are relatively rare, so one might still hope to see a reasonably sharp transition In the praposed experiment.

9 Conclusicns

Our strongest conclusions are these: As the number of symbols increases, the transition region for our automata almost certainly shrinks, approaching a unique transition point around $\lambda=0.27$ as k goes to infinity. On the other hand, if one increases the size of the neighborhood, the transition region probably gets pushed closer and closer
to $\lambda=0$, so that there is in fact no transition at all in the infinite-neighborhood limit, at least none that can be seen by varying λ.

These conclusions depend on the fact that for the automata we are considering, an all-zero neighborhood always maps to the symbol zero. If this property were removed, it is not clear whether there would be a sharp phase transition in the infinite-k limit. It may also be the case that our results depend crucially on the two-dimensionality of the lattice. To determine how these features of the automata influence the nature of the transition will require more experimental and theoretical work.

Our resuits also suggest that even for finite k, one can probably sharpen the transition by using a different parameter, v_{mf} instead of λ, to explore the space of automats. This alternative parameter may be useful for finding complex automata near the transition point, which was one of our motvations for looking for a sharper Iransition. However, there is no:hing natural akout v_{mf}, so we do not expect any deep insights to emerge through this particular parameterization of the space of automata. In order to see a closer parallel between the cellular automaton transition and physical phase transitions, it may be necessary to use a set of quantities none of which can be computed whthout actually running the automaton. For examples, one might diefine the "temperature" as the exponential of the average expanston rate. One could then plot entropy against temperature. Both entropy and temperature (by this definition) are measured properties of the automaion's behavior and, unlike λ or $v_{m f}$, cannot be easily controlled. It would nevertheless be of great theoretical interest, and ultimately of practical value, if one found a sharp phase transition in such a plot.

Another more fundamental question is certainly worth investigating: If there is indeed an analogy between cellular automata and thermodynamics, how many independent thermodynamic variables are there? That is, tow many different macroscopic statistical properties of an automaton does one have to specity in order that all other macroscoplc statisical properties are then determined? in order to see a sharp phase transition, one would have to be able to vary separately all the independent variables. For example, in order to see a sharp phase transition between liquid water and water vapor, it is not sufficient to plot entropy against temperature while paying no altinntion to wild variations in the presstre. In a similar way, we may need to pay attention to two or more independent variables in order to see a sharp transition.

Acknowledgments

The ideas presented in this paper have emerged from conversations with a number of people, including David Cai, Doyne Farmer, Howard Gutowitz, Stuart Kauffman, Wentian Li, John Miller, Norman Packard, and Steen Rasmussen. We thank them for their insights and questions. We would also like to thank Stuart Kauffman and Gerard Weisbuch for directing us to some of the work on inhomogeneous automata. Work by WKW was supported in part by the Theoretical Astrophysics group at Los Alamos National Laboratory.

References

1. S. Wolfram, Physica 100 (1984), 1.
2. S. Wolfram, Physica Scripta T9 (1985), 170.
3. C. G. Langion, Physica 22D (1986), 120.
4. C. G. Langton, "Computation at the Edge of Chaos," to appear in Physica D.
5. C. G. Langton, Ph. D. thesis, University of Michigan, 1990.
6. W. Li and N. Packard, submitted to Complex Systems.
7. W. Li, N. Packard, and C. Langton, in this volume.
8. N. Packard, "Adaptation Toward the Edge of Chaos," Technical Report CCSR-88-5, Center for Complex Systems Research, Untversity of IIlinols (1988).
9. S. Woliram, Rev. Mod. Phys. 55 (1983), 601.
10. H. A. Gutowitz, J. D. Victor, and B. W. Knight, Physica 28D (1987), 18.
11. Z. Burda, J. Jurklewicz, and H. Flyvbjerg, preprint NBI-HE-90-04, The Niels Bohr Institute (1990).
12. H. V. Mcintosh, in this volume.
13. D. Stauffer, Physica 38D (1989), 341.
14. P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A: Math. Gen. 17 (1984), L105.
15. W. Kinzel, Z. Phys. B58 (1985), 229.
16. B. Derrida and D. Stauffer, Europhys. Leit. 2 (1986), 739.
17. G. Weisbuch and D. Stauffer, J. de Physique 48 (1987), 11.
18. L. de Arcangelis, J. Phys. A: Math. Gen. 20 (1987), L369.

Figure 1

Measured values of single-site entropy for automata with different values of λ. (λ is the fraction of nonzero entries in the rule table.) For each λ, one hundred rule tables were constructed at random. Each automaton was allowed to run for 500 time steps before the entropy was measured.

Figure 2

Density of nonzero symbols as a function of λ, as predicted by simple mean field theory.

Figure 3

The solid curve is the single-site entropy as predicted by simple mean field theory. The dots are the observed values, just as in Fig. 1.

Figure 4

Theoretical distribution of entropy values versus λ. For each λ, one hundred values were chosen at random in accordance with the predicted distribution, Eq. (12). The distribution is similar to the actual distribution shown in Fig. 1.

Figure 5

The solid curve shows the average entropy (upper curve) and the mean deviation of the entropy when periodic automata are dropped from the average. The dashed curves show the theoretical predictions for the same quantities, when all automata with predicted entroples less than 0.84 are dropped from the average.

Figure 6

Entropy versus λ for a probabilistic automaton intended to simulate our deterministic automata in the infinite k limit. The lattice was 128×128 with periodic boundary conditions. Each automaton was allowed to run for 1000 time steps before data was taken. The location of the transition point shifts slightly with larger lattices and longer waiting times.

$F_{j, \ldots} 6$

