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Abstract

Previous work has suggested that there is a kind of phase transition between
deterministic automata oxhibiting periodic behavior and those exhibiting chaotic
behavior. However, uniike the usual phase transitions of physics, this transition takes
place over a range of values of the parameter rather than at a specific value. The
present paper asks whether the transition can be made sharp, either by taking the limit
of an Infinitely large rule table, or by changing the parameter In terms of which the
space of automata is explored. We find strong evidence that, for the class of automata we
consider, the transition doas become sharp in the limit of an infinite number of symbols,
the size of the neighborhood being held fixed. Our work also suggests an alternative
parameter in terms of which it is likely that the transition will become fairly sharp
aven if one does not increase the numbaer of symbols. In the course of our analysis, we
find that mean field theory, which is our main tool, gives surprisingly good predictions
of the statistical properties of the class of automata we consider.



1 Introduction

Of the four Wolfram classes [1] of deterministic cellular automata--
homogeneous, periodic, chaotic, and complex--those exhibiting complex behavior are
for many purposes the most interesting, but they also seem to be the most rare,
particularly when the rule table for the automaton is large [2]). Thus, when the rule
table is large one can think crudely of the set of all rules as being divided into two large
classes: those leading to periodic behavior (we count a static liomogeneous automaton as
trivially periodic), and those leading to chaotic behavior.

Langton [3,4,5] and Li and Packard [6,7] have shown that if one uses an
appropriate parameter, which we call A, to characterize cellular automaton rules, then
one can see a kind of phase transition between these two modes of behavior as the value of
the parameter is varied: For small values of A the behavior is typically periodic; for
large values it is typically chaotic. However, there is not a unique value of A at which

the transition occurs, but rather a range of possible transition values. In this respect
the transition differs from the usual phase transitions of physics, which occur at
definite values of, say, temperature or magnetic field strength. The present paper asks
whether in some appropriate limit--we consider particularly the limits of large
neighborhood size and large number of symbols--or with a different choice of
parameter, the value at which the transition occurs becomes unique. Our results
indicate that the transition does become sharp in the limit of an infinite number of
symbols. We also propose a manageable experimeant in which one might hope to see a
reasonably sharp transition with a small set of symbols.

The question of the sharpness of the transition is interesting for a number of
reasons. First, there is a good deal of evider » that automata exhibiting complex
behavior are located near the transition region. If there are situations in which the
transition is sharp, then in those situations cne could conceivably be better able to find
complex automata, because one would know precisely where to look. Also, Packard has
obtained data suggesting that cellular automaton rules, evolving under selective pressure
lowards performing a particular computational lask, tend to gravitate to the transition
region (8]. It would be interesting to see, In such an evolution, if the firal evolved rules
continue 1o be confined to the transition region as the latter becomes narrower and
narrower. Finally, there are some intriguing parallels between the theory of
computation and the theory of physical phase transitions [4,5], and these parallels
would be given added significance if one could find in deterministic cellular automate the
sort of sharp transition that one finds in physics.



The approach taken in this paper is the following. The location of the transition
point is a difficult quantity to treat theoretically. But thera is a more accessible
quantity, the single-site entropy, which also exhibits a range of values and which is
related to the location of the transition point. We study the entropy in detail, asking
whether for fixed A it approaches a unique value in the limit of large neighborhood size
or large number of symbnls. If it does, then it seems likely that the location of the
transition point becomes unique in the same limit. We supplement our analysis of
finite-state automata with experimental results bearing particularly on the case of an
infinite number of symbols. Tiroughout this paper, we focus exclusively on a specific
set of data for a particular class of automata. Let us therefore begin by describing this
class.

2 Our Automata

The automata we consider are two-dimensional, with a square lattice, and w'.n &
five-cell neighborhood shaped like a "+". Each site can be in one of eight possible states;
in other words, each site can be occupied by one of eight possible symbols, say, the digits
0 thruugh 7. The symbol 0 plays a special role: if a neighborhood consists entirely of
zeros, then its central site is always assigned tlie value zero in the next step. The rules
are raquired to be invariant under rotations. That is, if a certain neighborhood
configuration sends its central site to the state x, then any rotated version of that
configuration must also send its central site to x. Excep! for these restrictions, all rulas
are allowed. The lattices actuelly used to generate the data were 64 units on a side, with
periodic boundary conditions.

The rule table can be pictured as a long column of cross-shaped neighborhoods,
with each possible neighborhood configuration represented exactly once. To the right of

each configuration one places the symbol to which that particular configuration is
mapped. The paramuter A is defined as the fraction of neighborhood configurations that

are mapped to something other than zero. Thus a rule with very small A has a tendency

o generate many zeros, and ultimately such an automaton is likely to end up In the
quiescent state consisting of nothing but zeros. As A moves away from zero, one has the

possibility of more intetasting behavior.

We will be looking particularly at the dependence of entropy on A. The data was
generated as follows: Fix a value of A, and choose at random a rule table with that
particular A-value. For this rule table, start with a random Initial configuration, and



without taking any data, let the automaton run for 500 time steps to give it a chance to
reach its asymptotic behavior. Then let it continue to run (for 1000 steps), and count
the frequencies of occurrence of the eight possible symbols. From these frequencies Ps.

compute the entropy of the automaton, defined as

7
H=-% pglogpg . (1)
s=0

where the logarithm is base 2. Then plot the point (A, H). Now do this one hundred
times for each value of A, with a different randomly chosen rule table each time.
Finally, repeat the whole process for many different values of A ranging from zero to
7/8. (A=7/8 is the value for which all symbols are equally represented in the rule
table. For larger values one does not expect particularly interesting behavior.) The
result is the graph shown in Fig. 1.

Note that in the graph, the automata can be grouped loosely into two categories.
There is a band of low-entropy automata running along the bottom of the graph, and most
of the other automata have entropy above a fairly well defined line at 0.84 bits. Roughly
speaking, the low-entropy automata are typically periodic, and those in the high-
entropy category are typically chaotic. If one starts with the A=0 automaton and slowly

adds more nonzero elements to the rule table, one usually finds the following: The
entropy remains near zero as A increases, and then at some point it abruptly jumps to a
value greater than 0.84. Occasionally the entropy jumps lo an intermediate value before
going above 0.84, and these intermediate automata are represented by the scatter of
points lying between the two larger clumps. The value of A at which the jump occurs
varies from one trial to the next.

Thus thcre is a certain sense in which the transition Is sudden--in a given trial
it Is sudden--but in another sense the transition is spread ~ver a range of A.-values.
Our question is whether fiis range can be made to shrink to a single value.

It is not clear what will happen to the graph of Fig. 1 as the size of the
neighborhood (n) or the number of symbols (k) grows. In particular, it is not clear
whether the spread in entropy for each value of A will shrink or will stay essentially
constant. In a certain sense, n and k are already quiite large: there are 83 entries in the
rule table, and the number of possible rule tables Is roughly equal to 8(8%/4). (The
requirement ot rotational invariance reduces the number of choices by a factor of about
4.) Thus I' Is concelvable that we are already close to the infinite-rule-table limit.



The next four sections are devoted to accounting for the observed spread in entropy and
determining now it is likely to depend on n and k.

3 Simple Mean Field Theory

Before trying to account for the spread, let us illustrate our method by finding a
simple theoretical estimate of the average entropy as a function of A.
Let v, be the density of zeros in the pattemn after t time steps. We can also think

of v, as the probability that a randomly chosen site will have a zero in it. We now
compute v, 4 as follows. For a given site, there are two ways in which that site can get a

zero in the next step: Its whole neighborhcod could be filled with zeros, In which case

the sile gats a zero with probability 1, or its neighborhood could contain at least one
nonzero symbol, in which case the site will get a zero with probability (1-A). We
assume that the probability of the neighborhood being all zeros at time t is vt5. Thus the

probability that the site will get a zero in the next step is

Vi = V3 o+ (1vS)(1-4). (2)

Once the automaton has reached its steady state, the density v should not change, so v
should satisfy the equation

v = VS &+ (1-v5)(1-A). (3)

For As0.2 the only stable solution of this equation Is v=1 (all zeros), and for A>0.2

there Is again exactily one stable solution, which Is less than 1. The predicted density of
nonzero symbols, 1-v, is plotted as a function of A in Fig. 2. To estimate the entropy,

we simply assume that all seven nonzero symbols appear equally often, so that the
entropy is related to v by the equation

s oees o552

This estimate of the average entropy Is plotted against A in Fig. 3. Notice that the curve

does go roughly through the middle of the actual data. But to account for the spread in the
data, we cleariy need to be more sophisticated.



4 More Sophisticated Mean Field Theory

In the above calculation, the rule table was characterized by the value of a single
parameter, A. Following Wolfram [9] and Gutowitz et al. [10], we now make a more
refinec characterization of the rule table. Let b]- be defined as follows: For a given rule

table, consider all the neighborhood configurations containing exactly j zeros; bj is the

fraction of these which are mapped to zero. in effect we are breaking up the rule table

into six sections (j=0 to 5), such that in each section all the neighborhood

configurations have the same number of zeros. The quantity 1- bj is like a "local” A for

the jth section. Once one knows the set {bi}' one can easily compute the value of A for
the whole rule table, but the converse is not true. A given value of A is consistent with
many possible sets {bi}'

Our strategy now is simple. Knowing that for each value of A the rules were
chosen at random, we can find the distribution of the bi's for each A. For each set {b]}

we can compute the mean-field-predicted value of the entropy. Because there are many
sets {bj} for each value of A, there will be a range of entropy values for each A. Our

question is whether this range agrees with the observed range of values.

First let us write down the mean-fleld equation for the density v of zeros, using
the more refined estimates of probabilities provided by the bl's. We write the equation
in terms of arbitrary values of n and k, since we are ultimately interested in knowing
how things depend on these quantities. For a given site, the probability that its

neighborhooa has exactly j zeros is equal to vi(1-v)"'i(?). (Here we make the usual

mean field approximation that the probabilities for different sites are independent.)

Given that the neighborhood has exactly j zeros, the probability that the site will get a
zero is bl' Thus the equation for a stationary value of v Is

n-1

vnv“+2 vl(1-v)"'l(ln)bl. (5)

j=0

Here we have used the fact that b, Iis equal to unity; that is, a neighborhood containing

nothing but zeros is certain to yield a zero. The contribution from such a neighborhood
is the first tarm on the right-hand side. (We use mean field theory here only to find the
stationary density. For an example of what can be done with the full dynamical mean
tield theory, see [11].)



it is now a matter of mathematics to find the distribution of the bj's for each A,

and from that to find the distribution of values of v, and finally to find the distribution of

values of the enfropy. Let us begin by finding the distribution of the bj's.

In the actual experiment, the rule tables were constructed by procseding through
all rotationally inequivalent neighborhood configurations, and assigning to each one the
symbol zero with probability 1-A, and a nonzero zymbol with probability A. There are
approximately 85/4 independent choices in the construction of such a rule table.
Therefore, if one constructs many rule tables in this way, the standard deviation in the
actual value of A is given approximately by AA = \J A(1-A)/N , where N=85/4. This is
the usual formula for the standard deviation of a binomial distribution. For A=1/2, the
value of AA is 0.006, which is much too small to explain the observed spread in
entropy. However, the spread in the by's Is significantly larger, since each b; Is

determined by fewer choices. Because of the rotational invariance, finding the standard
deviation of each bl requires some careful counting, but for a fixed neighborhood size and

fixed number of symbols it is a straighforward matter to do the necessary arithmetic. It
is convenient to express the results in terms of the quantities Cj defined by

2
c,.(f)z;%_lﬂ. (6)

For our case (n=5, k=8), one finds that

Cq = 2.4286
Cy = 0.8047
Cp = 0.1150 (7)
c, = 0.0083
0.0002

Co

(The quantity bg trivially has no spread; it is always equal to unity.) Thus, for
example, when A=1/2, the spread in b, Is equal to 0.156, considerably larger than the
spread in A. Each of the bl's is distributed according to a binomial distribution, which

can be well approximated by a Gaussian distribution.
The next step Is to use our knowledge of the distributions of the b,'s to find the

distribution of v. The equation relating the b]'s lo v is the mean field equation Eq. (5).



It is convenient to re-express this equation in terms of the difference Sb] between b]
and its average value (1-A). Thus bj=(1-l)+8bj. In terms of 8bj. Eq. (5) becomes

n-i
(v) = ) gj(v) 8bj . (8)
j=0

where the functions f and g are defined by
f(v) = (v-vM)-(1-vM)(1-R) (9)
. . n
gj(v)=v1(1-v)“'l(j) . (10)

To find the distribution of v, we make one simplifying assumption, namely, that for each
set {bj}. there is a unique stable solution to Eq. (5). This may not be strictly true, but

it appears to be the case for all those sets {b]} which have any appreciable probability.
If this assumption Is granted, then one can express the distribution p of v as follows:

p(V) - Ipo(bo)..-pn_1(bn_1) S(V'VO(bo,....bn_1)) dbo--.dbn_1 . (1 1 )

Here Pj is the distribution of b]. d is the Dirac delta function, and v, is the solution of
Eq. (5). Assuming Gaussian distributions for the bl's. one can carry out the integrals in

Eg. (11), and the result is an explicit expression for the distribution of v:

1 (gt 12 .
ven Idv(o)l ”p( 202)' v<l; (12)

(probability that v=1) = 1-(probability that v<1).

p(v) =

Here ¢ is defined by

n-1 172
o-[zgf(v)Abf] . (13)
j=0



Egs. (12) and (13) are the main result of this section. Thay give us the mean-field
prediction for the distribution of the density of zeros in terms of known quantities.

From this distribution one can easily obtain the distribution of values of the entropy via
Eq. (4). Note that the distribution p(v) depends on A through the function f and through
the Abj's.

It is of course very interesting to compare this theoretical distribution with the

observed distribution. The graph in Fig. 4 was constructed as follows: For each value of
A, one hundred values of v were chosen at random in accordance with the distribution

p(v). Then for each of these values, a corresponding value of the entropy was computed
via Eq. (4). The resulting entropy values were plotted. Note that for A larger than
about 1/2, the distribution of entropy values appears to match well the distribution
seen in the data (Fig. 1). Even for smaller values the match is not bad, except for one
feature: the theoretical prediction does not show the gap just below H=0.84 that one
sees in the actual data. This disagreement is not surprising. The gap is associated with
the transition from periodic to chaotic behavior, and one does not expect the predictions
of mean field theory to apply to periodic automata. Only in chactic automata could one
hope to find enough mixing of the symbols for the assumptions of mean field theory to be
approximately valid. (See, however, the paper by Mcintosh in this volume, which
relates automaton behavior not to the prediction of mean field theory but rather to the
form of the mean field equation [12].)

5 A Quantitative Comparison

It is satisfying that the theoretical graph looks something like the actual data, but
one would also like to have a more quantitative comparison. An obvious way to maka such
a comparison would be to compute the average entropy and the mean deviation as
functions of A, both for the actual data and for the theoretical distribution. However, the
low-entropy periodic automata contribute significantly both to the average and to the
deviation, and we do not expect agreement when such automata are involved. Therefore,
we would iike to be able to eliminate these periodic automata from the average, to see
whether the theoretical prediction at least works for the chaotic automata.



On the experimental side, it is straightforward to pick out all the periodic
automata and to exclude them from the average. In order to get the corresponding
results on the theorstical side, we need to tell the theory how to recognize periodic
automata. To do this, we adopt the following cut-off hypothesis: Any automaton for
which the mean-field-predicted entropy is less than 0.84 is a periodic automaton, and
all others are chaotic. This is a very crude assumption, but it will be interesting to see
how well it works. In Fig. 5, we have plotted the theoretical predictions for <H> and AH,
having dropped from the average all automata with a predicted entropy less than 0.84.
Also plotted in Fig. 5 are the experimental results with the periodic automata dropped
from the average. The agreement is very good. From this agreement we draw two
conclusions: First, for chaotic automata, the variation in the mean-field parameters bj
is the principal source of the variation in thu entropy. Second, the cut-off hypothesis
has some truth to it. (However, it is not striclly true, as we discuss in Section 8.)

6 What happens as n or k gets large

Now that we have good evidence that the source of the variation is in the b]-'s, we

can predict how this variation will change as we change the values of n and k. Let us
estimate the behavior of the spread in two limits: large n with fixed k, and large k with
fixed n. In the latter case, the values ot H will typically go as log(k)--the entropy is
greater when there are more symbols--so it makes sense to consider the normalized
quantity HaH/log(k).

The ordar of magnitude of AH is the same as that of the quantity ¢ defined in Eq.
(13). In order 10 estimate &, we need lo estimate the Abl's for arbitrary n and k. A

-1/2
reasonablz estimate is given by Abi'[(]n) (k-1)N -i] . (The quantity in brackets

is the number of ways of filling an n-cell neighborhood, when there are k symbols

available and when exactly j of the cells must contain zero.) Using this estimate, and for

simplicity letting v equal 1/2, one finds that

n-1 1/2

()] 2Nemm | (14

10



If k is held fixed, then this expression decreases exponentially with increasing n. if n is
held fixed and k is allowed to get large, the expression is dominated by the terin with
j=n-1, and the whole expression goes as 1Nk . Thus in both limits, the spread in the
entropy goes to zero.

We now have to imagine what happens to the graph of Fig. 1 in each of these
limits. Consider first the case in which k gets large while the neighborhood size stays
the same. For values of A to the right of the transition region, the spread in H will
presumably get smaller and smaller, in accordance with the above prediction, probably

approaching zero as k goes to infinity. Thus the scatter of points will begin to look like a
curve. Assuming that this curve remains A curve for all A, the transition must occur at

a definite value of A if it occurs at all. In the following section we present evidence that
there is indeed a sharp phase transition in this limit, occurring around A=0.27.

The limit n >0 i3 likely io be less interesting. As before, the scatter of points
will prohably becoma a line, but in this case one may lose the transition altogether.
Mean flieid theory piedicts a transition from the quiescent state to a chaotic state at
A=1/n. (This follows from Eq. (3), with the exponent 5 replaced by n.) This
prediction is not correct for small n, but as n increases one expects mean field theory to
be more accurate. Thus it is likely that the transition point will be pushed to A=0 as n

approaches infinity.

7 The Infinite k Limit: An Experimental Test

Let us focus now on the case of a large number of symbols. It is difficult to make
a large increase in the size of k experimentally, because the rule table expands as k5.
Moreover, the spread in H is predicted to go as 1/\/?. as we have just seen, :nd this Iis a
rather slow convergence. It we used 70 symbols instead of 8, the spread would be
reduced only by a factor of 3.

However, it iy actually possible to do the experiment when k equals Infinity. If
there are an infinite number of symbols, then as long as the lattice is finite and the
automaton runs for a finite time, there is zero probability that any nonzero symbol will

11



12

appear more than once in the entire run. (The symbol zero can appear frequently
because one fixes A at some value less than 1.) The automaton is therefore constantly
exploring riew parte of the rule table. Moreover, the rule table was constructed at
random, s» in effect one Is simply running a probabilistic automaton with two symbols,

zero and "other." An all-zero neighborhood is mapped to zero with probability 1, and
any other configuration Is mapped to "other” with probabiiity A.

We have run this binary probabilistic automaton many times with values of A

ranging from 0 to 1/2. (The size and shape of the neighborhood are the same as in our
finite-k case.) Fig. 6 shows the resulting values of the entropy. There does appear to be
a sharp phase transition at A=0.27, and the points fall on a fairly well defined curve, in
agreement with our expectations. Note that there does not appear to be a discontinuity in
the entropy itself as a function of A, but rather a discontinuity in the derivative. The
existence of this sharp transition, combined with our prediction that AH decreases with
increasing k, provides strong evidence that the transition region itself shrinks as k
increases, the width of the region probably going as 1Nk.

In collecting the above data, we let the automaton run for 1000 time steps before
collecting data. The exact location of the transition changes slightly if one uses a longer
waiting time or a larger lattice. (The dependence of a related transition on lattice size
has been discussed in reference [13].) Our aim here is not so much to locate the
transition point precisely as to show that the transition does become sharp in the
infinite k limit. It is interesting to note that as one approaches the transition point from
the low lambda side, it takes longer and longer for the transients to die out. Thus the
transition appears to be of second order.

Sharp phase transitions in probabillistic automata have been observed before.
(See for example [14] and [15].) They have also been observed in deterministic
inhomogeneous automata with random assignments of rules to sites. (See for example
[16). [17]), (18], and [13]).) Our results show how homogeneous deterministic
automata can approach such behavior.
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8 A Sharper Transition with k=87

Even if the transition region becomes narrower as k gets larger, there will still
be a sizable range of transition points for any realizable finite value of k. If possible,
one would like to find a parameter other than A in terms of which the transition is
sharper, even when the number of symbols Is held fixed.

Such a parameter is suggested by our cut-off hypothesis. Recall that the
hypothesis asserts that an automaton will be periodic or chaotic, depending on whather
its mean-field-predicted entropy Hp,¢ is smaller or larger than 0.84 bits. Suppose this
hypothesis were striclly correct for our automata. Then if one were to plot the actual
entropy H against Hy¢, one would see the following: For values of Hq,¢ less than 0.84,
the actual entropy would be very small; at H.,¢=0.84, the entropy would suddenly jump
to a value close to 0.84 and would rise gradually thereafter. Thus we would have a sharp
phase transition. Or instead of using H,¢, one could use v, the mean-field-predicted
density of zeros. Either of these quantities is computable from the rule table without
having to run the automaton.

We therefore propose the following experiment. Let v, take values from 0 to 1
in steps of, say, 0.01. For each value, civoose at random some number of automata whose
b]'s satisfy EQ. (5) with the given value of v,¢. Run these automata and compute their
ertropy. If the cut-off hypothesis were correct, the resulting plot of entropy vs. v ¢
would show a sharp jump at the value v, ¢=0.885, which corresponds to Hp,=0.84.

In fact the cut-off hypothesis is not strictly correct. For example, in Fig. 1, one
sees a number of low-entropy periodic automata around A=0.5 whose existence Is not
preaicted by the theoretical result shown in Fig. 4. The values of Hy,¢ for these automata
are surely greater than 0.84, and yet the automata have low entropy. However, these
automata are relatively rare, so one might still hope to see a reasonably sharp transition
in the prnposed experiment.

9 Conclusicns

Our strongest conclusions are these: As the number of symbols increases, the
transition reglon for our automata almost certainly shrinks, approaching a unique
transition point around A=0.27 as k goes to infinity. On the other hand, if one increases

the size of the neighborhood, the transition region probably gets pushed closer and closer



to A=0, so that there Is in fact no transition at all in the infinite-neighborhood limit, at
least none that can be seen by varying A.

These conclusions depend on the fact that for the automata we are considering, an
all-zero neighborhood aiways maps to the symbol zero. If this property were removed,
it is not clear whether there would be a sharp phase transition in the infinite-k limit.

It may also be the case that our resuits depend crucially on the two-dimensionality ot the
lattice. To determine how these features of the automata influence the nature of the
transition will require more experimental and theoretical work.

Our resuits also suggest that even for finita k, one can probably sharpen the
transition by using a different parameter, v ¢ instead of A, to explore the space of
automata. This alternative parameter may be useful for finding complex automata near
the transition point, which was one of our motivations for looking for a sharper
transition. However, there is nothing natural about vp,¢, S0 we dc not expect any deep
insights to emerge through this particular parameterization of the space of automata. In
order to see a closer parailel between the cellular automaton transition and physical
phase transitions, it may be necessary to use a set of quantities none of which can be
computed without actually running the automaton. For exampls;, one might define the
"temperature® as the exponential of the average expansion rate. One could then plo
entropy against temperature. Both entropy and temperature (by this definition) are
measured properties of the automaion's behavior and, unlike A or Vmt: cannol be easily
controlled. It would nevertheless be of great theoretical interest, and ultimately of
practical value, if one found a sharp phase transition in such a plot.

Another more fundamental question is certainly worth investigating: it thsre is
indeed an analogy between cellular automata and thermodynamics, how many independent
thermodynamic variables are there? That is, how many different macroscopic
statistical properties of an automaton does one have 1o specify in order that all other
macroscopic statistical properties are then determined? In order to see a sharp phase
transition, one would have to be able 1o vary separately all the independent variables.
For example, in order to see a sharp phase transition between liquid water and water
vapor, it is not sufficient to plot entropy against temperature while paying no attantion
lo wild variations in the pressure. In a similar way, we may need to pay attention to two
or more independent variables in order o see a sharp transition.
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Figure 1

Measured values of single-site entropy for automata with different values of A. (A is
the fraction of nonzero entries in the rule table.) For each A, one hundred rule tables
were constructed at random. Each automaton was allowed to run for 500 time steps
before the entropy was measured.
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Figure 2

Density of nonzero symbols as a function of A, as predicted by simple mean field theory.
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Figure 3

The solid curve is the single-site entropy as predicted by simple mean field theory. The
dots are the observed values, just as in Fig. 1.
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Figure 4

Theoretical distribution of entropy values versus A. For each A, one hundred values

were chosen at random in accordance with the predicted distribution, Eq. (12). The
distribution is similar to the actual distribution shown in Fig. 1.
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Figure 5

The solid curve shows tha avorage entropy (upper curve) and the mean deviation of the
entropy when periodic automata are dropped from the average. The dashed curves show
the theoretical predictions for the same quantities, when all automata with predicted
entropies less than 0.84 are dropped from the average.
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Figure 6

Entropy versus A for a probabilistic automaton intended to simulate our deterministic
automata in the infinite k limit. The lattice was 128x128 with periodic boundary
conditions. Each automaton was allowed to run for 1000 time steps before data was
taken. The location of the transition point shifts slightly with larger lattices and longer
waiting times.
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