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RESEARCH Open Access

Is there a single best estimator? Selection of home
range estimators using area-under-the-curve
W David Walter1*, Dave P Onorato2 and Justin W Fischer3

Abstract

Background: Global positioning system (GPS) technology for monitoring home range and movements of wildlife
has resulted in prohibitively large sample sizes of locations for traditional estimators of home range. We used area-
under-the-curve to explore the fit of 8 estimators of home range to data collected with both GPS and concurrent
very high frequency (VHF) technology on a terrestrial mammal, the Florida panther Puma concolor coryi, to evaluate
recently developed and traditional estimators.

Results: Area-under-the-curve was the highest for Florida panthers equipped with Global Positioning System (GPS)
technology compared to VHF technology. For our study animal, estimators of home range that incorporated a
temporal component to estimation performed better than traditional first- and second-generation estimators.

Conclusions: Comparisons of fit of home range contours with locations collected would suggest that use of VHF
technology is not as accurate as GPS technology to estimate size of home range for large mammals. Estimators of
home range collected with GPS technology performed better than those estimated with VHF technology regardless
of estimator used. Furthermore, estimators that incorporate a temporal component (third-generation estimators)
appeared to be the most reliable regardless of whether kernel-based or Brownian bridge-based algorithms were used
and in comparison to first- and second-generation estimators. We defined third-generation estimators of home range
as any estimator that incorporates time, space, animal-specific parameters, and habitat. Such estimators would
include movement-based kernel density, Brownian bridge movement models, and dynamic Brownian bridge
movement models among others that have yet to be evaluated.

Keywords: Area-under-the-curve, Brownian bridge movement models, Global positioning systems, Home range
estimators, Isopleth, Kernel density, Schedule

Background
Recent advances in global positioning system (GPS) tech-

nology for monitoring wildlife have revolutionized data

collection for spatial analysis of movements, home range,

and resource selection. These datasets acquired with GPS

technology are more copious and locations are more pre-

cise when compared to locational data collected using

very high frequency (VHF) systems. Although published

studies have reported on the reliability of home range esti-

mators using datasets collected with VHF technology

[1,2], few have identified the potential issues of estimating

home ranges using the expansive datasets often collected

with GPS technology [3,4]. Considering most traditional

estimators of home range were developed for VHF data-

sets that typically consist of fewer than 100 locations and

presumed to not be correlated in space and time, re-

searchers are challenged with deciphering the most appro-

priate methods to estimate size of home range using GPS

data sets that are often auto-correlated with extremely

large sample sizes for a defined sampling period.

Concurrent with advances in GPS technology, alterna-

tive methods for estimation of home range have been

developed to accommodate large numbers of auto-

correlated relocations from GPS datasets. Amongst these

are first-generation methods such as kernel density esti-

mators that have proven capable of providing home

ranges using large GPS datasets (KDE; [3-5]), although

selection of the appropriate bandwidth for KDE is not

always straightforward. Subsequent improvements in

bandwidth selection have been developed for KDE using
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second-generation methods (e.g. solve-the-equation, plug-

in; [5-7]). Local convex hull nonparametric kernel method

(LOCO), which generalizes the minimum convex polygon

method, was investigated for identifying hard boundaries

such as water bodies and roads in home ranges but has

not been evaluated with GPS datasets with >1,000 loca-

tions [8-10]. Brownian bridge movement models (BBMM)

and dynamic Brownian bridge movement models (dBBMM)

are ideal for GPS datasets when locations are collected

in rapid succession – short time intervals between fix

attempts producing locations that are serially correlated –

because these methods incorporate time between suc-

cessive locations into the utilization distribution estimation

(hereafter referred to as third-generation estimators;

[11-13]). An additional third-generation estimator, biased-

random bridge, has been suggested as a movement-based

KDE through location interpolation that include habitat-

specific movement vectors [14,15]. Although these methods

have all assisted with deriving more accurate estimation of

home range with GPS datasets, developing a framework

to assist with selecting the most appropriate estimator for

each unique dataset is lacking in the literature.

Traditionally, the suggested estimator of home range

was based on simulated datasets [16,17] that researchers

cited as the sole justification for selecting KDE to esti-

mate home range. Researchers would not attempt to

identify the most appropriate estimator for their dataset

but arbitrarily choose one to apply across all datasets.

Coupled with the increased popularity of the freely avail-

able, open-source software Program R (R Foundation for

Statistical Computing, Vienna, Austria; hereafter referred

to as R), a method to determine the selection of an ap-

propriate estimator for estimation of home range for

wildlife is warranted.

Recently, area-under-the-curve (AUC) was assessed as

an analytical means of choosing the most appropriate es-

timator of home range for an avian and mammalian spe-

cies [10]. The AUC provides a single relative metric of

goodness-of-fit by assessing how location-specific data

fit the contours or isopleths of the estimator. Although

the “best” estimator has been attempted using simulated

datasets, AUC is a more intuitive metric of fit and is able

to provide a relative metric of best estimator based on

location collection schedules, distribution of points over

the landscape, and inherent species-specific differences

in movements [18]. To assess the use of AUC to help se-

lect appropriate estimators of home range, we used relo-

cations collected on Florida panther (panther; Puma

concolor coryi) with GPS technology and concurrent

VHF technology to explore relationships between 8 esti-

mators of home range. Specifically, our objectives were

to: (1) determine if AUC differed for estimators of home

range between locations collected with GPS versus con-

current VHF technology and (2) assess factors that

influence AUC for estimators of home range across a

range of individual animals using GPS technology.

Methods
Study area

Our study area encompassed a large portion of the range

of the breeding population of panthers in South Florida

(Figure 1) south of the Caloosahatchee River and Lake

Okeechobee that included habitats such as hardwood

hammocks, cypress forests, pine flatwoods, freshwater

marshes, prairies, and grasslands [19-21]. Anthropogenic

land use included citrus, croplands, pastureland, rock

mining, and areas of low- and high-density residential

development [19,20]. Our study area can be categorized

based on habitat types that vary longitudinally in the ratio

of marsh/swamps to upland and wetland forests moving

from the southern to the northern portion of the breeding

range of panther. A small subpopulation of panthers per-

sists in Everglades National Park [Everglades] in Southern

Florida that is partially isolated from the core population

by the semi-permeable barrier of the Shark River Slough

(Figure 1). The core panther population is northwest of

Everglades and is comprised of portions of Big Cypress

National Preserve [Big Cypress] and Additional Land units

of Big Cypress [Big Cypress Addlands], Picayune Strand

State Forest/Fakahatchee Strand Preserve State Park

[Picayune], and Florida Panther National Wildlife Refuge

[Panther NWR]. The northern extent of the panther

breeding range is comprised of a mix of public and pri-

vate lands that includes Corkscrew Regional Ecosystem

Watershed [Corkscrew] and Okaloacoochee Slough State

Forest [Okaloacoochee]. The Caloosahatchee River is the

northern border of the present breeding range of the

Florida panther (Figure 1).

Data collection

We used trained hounds to track and tree adult and sub-

adult panthers for subsequent capture and radiocollaring

by project personnel during concurrent research projects

associated with management and conservation of panther

from 2005 to 2013 [19,20]. We deployed five models of

GPS collars produced by four manufacturers, including

Advanced Telemetry Systems G2110 (Isanti, Minnesota,

USA), Lotek GPS3300s (New Market, Ontario, Canada),

Followit Tellus and Tellus-GSM (Lindesberg, Sweden),

and Telonics TGW-3401 (Mesa, Arizona, USA). All GPS

collars also were equipped with VHF beacons to allow re-

locations of specific panthers via aerial or ground telem-

etry. The GPS collection schedules varied (e.g., hourly,

every 4 hours, every 7 hours) but were programmed into

GPS collars to attempt to collect locations throughout the

diel period.

To collect concurrent VHF locations of GPS-collared

panthers, we used a Cessna 172 (Cessna Aircraft
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Company, Wichita, KS) equipped with a pair of direc-

tional antennas that were attached to a radio receiver via

coaxial cable to estimate location of a VHF beacon in

the GPS collar by selectively listening to radio signals

from either or both antennas mounted to the struts of

the wings and homing in on signal strength. We demar-

cated these locations using an application on a laptop

computer synchronized with a GPS and loaded with sat-

ellite imagery to obtain Universal Transverse Mercator

coordinates in flight. We conducted most telemetry

flights between 0700 hours and 1100 hours 3 times per

week (Monday, Wednesday, and Friday). We estimated

the location of collars at fixed locations unknown to the

observer (dropped collars, n = 2; mortalities, n = 23; and

denning panthers, n = 20) during flights and determined

VHF aerial telemetry location error to be 124 m [20].

The mean horizontal spatial accuracy for the GPS radio-

collars used to collect data for this study was 34 m [19].

We collared 31 independent-aged panthers (12 females,

19 males) between February 2005 and February 2013

(Additional file 1). We monitored 25 of the 31 GPS-

collared panthers concurrently with VHF technology for

comparison of home range estimates using GPS versus

VHF technology (Additional file 1). Age at capture ranged

from 1.5 to 13.3 years and mean time collared was

278 days (49–610 days). We collected 75,758 locations

over 101,865 attempts for an overall mean fix success rate

of 74% (Additional file 1). Mean number of locations used

Figure 1 Map depicting the major public land holdings used in modeling of components that influence area-under-the-curve for estimators of

home range for Florida panther in South Florida, USA. Key study area terms from south to north: Everglades, Everglades National Park; Big Cypress,
Big Cypress National Preserve; Big Cypress Addlands, Additional Land units of Big Cypress National Preserve; Picayune, Picayune Strand State

Forest/Fakahatchee Strand Preserve State Park; Panther NWR, Florida Panther National Wildlife Refuge; Corkscrew, Corkscrew Regional Ecosystem
Watershed; and Okaloacoochee, Okaloacoochee Slough State Forest.
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to estimate annual home range was 1192 ± 1540 (SD) and

105 ± 29 (SD) for GPS and VHF technology, respectively.

First-generation estimators

Local convex hull

We estimated utilization distributions with LOCO that

produces bounded home ranges using a generalization

of the minimum convex polygon method. Minimum

convex polygon construction is applied to a subset of

localized data in space using either k (k − 1 nearest

neighbor), r (sphere of influence), or a (adaptive sphere

of influence) of nearest neighbors [8,9]. The hulls are

then sorted by size, ordered, and progressively unioned

to construct a utilization distribution with hard bound-

aries (e.g., rivers, lakes) excluded. These hard boundaries

often do not contain locations of animals so home range

estimators should not extend beyond these hard boundar-

ies as is often the case when using utilization distributions

for parametric kernel methods [9]. For consistency across

estimators, we only used k and the square root of the

number of relocations for each individual for the value of

k (http://locoh.cnr.berkeley.edu/rtutorial).

Single-linkage cluster

We estimated utilization distributions with the single-

linkage cluster (SLCA) method that links 3 locations in

clusters that minimizes the mean joining distance [22].

The clustering process is then a step process that finds

the next nearest cluster based on minimum mean of

the nearest-neighbor joining distance and the closest

location, then the process stops when all relocations

are assigned to the same cluster and fuse into a single

home range [22].

Characteristic hull

We estimated utilization distributions with computation

of the Delaunay triangulation to create characteristic

hull (CHAR) polygons using a set of relocations then or-

dering triangles from smallest to largest [23]. The CHAR

is similar in principal to LOCO and SLCA in that the

number of potential characteristic hulls that can be gen-

erated from a set of points can extend to a minimum

convex polygon estimate if no triangles are removed

from Delaunay triangulation [23]. Unlike minimum con-

vex polygon, CHAR produces estimates of home ranges

with concave edges and encompasses fewer regions of

space not used the by the animal when compared to

minimum convex polygons.

Fixed kernel home range

We estimated utilization distributions using the fixed-

KDE method because fixed kernel was considered most

accurate compared with adaptive kernel [17,24]. We se-

lected a location-based estimator using KDE with

smoothing determined by the reference bandwidth

(LKDE). We were unable to use biased cross-validation or

least-squares cross-validation bandwidths for KDE be-

cause of the large number of duplicate locations and the

propensity for numerous clusters of points [3].

Second-generation estimator

We also estimated KDE using the bivariate plug-in

bandwidth (PKDE) that performs well even when analyz-

ing dependent data that is especially common from ani-

mals with locations collected with GPS technology [25].

First- and second-generation estimators do not include a

temporal, error, or variance component in the estimation

of home range.

Third generation estimators

Movement-based kernel density estimator

We estimated utilization distributions with biased ran-

dom bridges using the movement-based kernel density

estimator (MKDE) that can incorporate time, distance,

and habitat into estimates of home range [14,15]. Unlike

traditional KDE, MKDE can integrate habitat-specific

coefficients for movement, boundary constraints, and

states of activity, thus improving estimates of home

range [14,15]. We did not incorporate habitat into esti-

mates of home range using MKDE for consistency be-

cause none of the other estimators we used incorporates

this functionality. Furthermore, we set all parameters the

same for each group of panthers as these values were

based on GPS technology collection schedules thus com-

plicating comparisons between studies or species with

this method [14]. Due to constraints of MKDE for seri-

ally correlated data, we were not able to perform MKDE

on datasets collected with VHF technology that resulted

in <200 relocations for a given year with relocations sep-

arated by several days.

Brownian bridge movement model

We estimated utilization distributions using the BBMM

that requires (1) sequential location data, (2) estimated

error associated with location data, and (3) grid-cell size

assigned for the output utilization distribution [12]. The

BBMM is based on two assumptions: (1) location errors

correspond to a bivariate normal distribution and (2)

movement between successive locations is random [12].

The assumption of conditional random movement be-

tween paired locations becomes less realistic as the time

interval increases [12].

Dynamic Brownian bridge movement model

We estimated utilization distributions using the dBBMM

that requires the same parameters as BBMM [13]. The

variance of the Brownian motion quantifies how diffu-

sive or irregular the path of the animal is and is based
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on an average of all location data for BBMM. However,

for dBBMM, the behaviorally distinct movement pat-

terns are incorporated into estimates of home range and

variance is determined using a moving window across

each movement path and not simply averaging across

the sample space of the animal as with BBMM [13].

Home range estimate criteria

We estimated annual home range for each panther that

had >50 locations for each year for both GPS and VHF

datasets with year defined as a calendar year from 1

January to 31 December. All estimators were calculated

in R using the packages adehabitatHR (LKDE, MKDE,

LOCO, SCLA, CHAR; [26]), ks (PKDE; [27]), BBMM

(BBMM; [28]), and move (dBBMM; [13]). We modified

R code provided in Cumming and Cornelis [10] to: esti-

mate AUC, estimate LOCO directly in R, and included 4

additional estimators (CHAR, PKDE, BBMM, dBBMM)

not evaluated previously. Due the changing parameters

for each estimator, location data was imported, manipu-

lated, and adapted to the appropriate package for each

estimator in a loop function in R (Additional file 2).

Area-under-the-curve

Due to scale dependency for AUC-based assessment, all

home ranges were estimated on reference grids that

were 100 × 100 m at identical grain and extent around

each animal [10]. Comparisons of AUC for estimators of

home range across species that occupied varying degrees

of spatial extents and movements across the landscape

would be difficult and would require additional consider-

ations so only one species was considered in our analysis

[10]. We calculated AUC in R using the caTools package

where AUC ranges between 0.5 and 1.0 with 1.0 indicat-

ing relocations fit more accurately to the resulting iso-

pleths of the estimated home range [10]. All values of

AUC were computed for each individual for each of the

8 estimators of home range using a script in R that pro-

duces figures of home range contours and outputs AUC

and associated data (Additional file 2).

Statistical analysis

We performed a Kruskal-Wallis nonparametric analysis-

of-variance to determine if differences occurred between

GPS and VHF technology among AUC for all estimators.

We then used pairwise t-tests with a Bonferroni correc-

tion on AUC because a difference occurred between

technology and estimator combinations (Kruskal-Wallis

chi-squared = 573.99, P < 0.001).

We fit linear mixed models with animal identification

as a random effect to the logit-transformed response

variable (AUC) of home ranges estimated by GPS tech-

nology. Fixed effects were covariates that have been sug-

gested to influence the accuracy of estimating home

range that included 5 covariates: estimator type, fix suc-

cess, study area, GPS collection schedule, and number of

locations used to estimate home range [29,30]. We set

the reference level of the estimator type to SLCA be-

cause it was considered the least preferred estimator due

to length of time to provide estimate and >1,000 loca-

tions often failed to produce home ranges. Number of

locations was placed into 4 categories (1) <100, (2) 101–

500, (3) 501–1000, and (4) >1000 that were within the

ranges of sample sizes for estimating annual/seasonal

home ranges used in previous research [4,9,10]. Fix suc-

cess was determined from the number of locations suc-

cessfully acquired by the GPS divided by the number of

locations attempted. Since the collection schedules for

GPS collars varied, we delineated 3 categories that in-

cluded location collections every (1) hour or less (hourly),

(2) 2–4 hours (four), and (3) 7–14 hours (seven). Study

area was categorical and used as a proxy for habitat inter-

ference in acquiring a GPS location or influencing accur-

acy and represented a continuum of generally more open

marsh landscape in South Florida to more upland and

wetland forested habitats in the northern portion of the

breeding range (Figure 1; [19,20]). We identified 12

models a priori with various combinations of the 5 covari-

ates that may influence size of home range estimates as

determined by AUC (Table 1). We performed model se-

lection using the second-order variant of Akaike’s Infor-

mation Criteria (AICc), which accounts for overdispersion

and small sample size, to select the most parsimonious

model [31]. We did not include any interaction terms to

prevent over-parameterization of the model [31]. Models

were considered a candidate if they had a ΔAICc <4.0 and

we assessed the degree that 95% confidence intervals of

parameter estimates overlapped zero to support AIC as

evidence of important effects [31].

Results
Mean AUC differed among several estimators and tech-

nology type (Kruskal-Wallis x2 = 573.99, df =14, P <

0.001) with the highest AUC consistently occurring for

GPS compared to VHF technology (Figure 2). Mean

AUC for GPS technology was highest for BBMM (mean =

0.982 ± 0.01 (SD)) and lowest for LOCO (mean = 0.916 ±

0.03 (SD); Figure 2). Mean AUC for VHF technology was

highest for dBBMM (mean = 0.942 ± 0.03 (SD)) and low-

est for LOCO (mean = 0.887 ± 0.02 (SD); Figure 2) but we

were not able to estimate MKDE for VHF technology due

to the irregular temporal duration and distances between

locations with this method.

Our model with the most support included only the 8

estimator types with no additional covariates included

(wi = 1.0; Table 1). The global model that included all 5

covariates was the next most supported model but had a

ΔAICc >4.0 so was not considered further (Table 1).
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Parameter estimates identified an increase in AUC for

the BBMM, dBBMM, and MKDE estimators but a de-

crease with LOCO (Table 2).

Discussion
Data collected with VHF technology (i.e., intervals be-

tween successive locations spanning days to weeks) to

estimate home range using third-generation estimators

should be critically reviewed based on our comparison

using concurrent GPS location data (i.e., typically <12 hours

between locations) from the same animals. The AUC dif-

fered for estimators of home range determined using data

collected with GPS compared to estimates of home range

derived from concurrent VHF locations, which were typic-

ally estimated with 10% fewer locations (Additional file 1).

Although GPS technology is more expensive to purchase

initially, the high costs of aerial/ground-based location ac-

quisition and the gains in data reliability, quantity, and re-

duced error far outweigh the disadvantages of relying on

<100 locations collected with VHF technology, which then

Table 1 Model selection results for the candidate set of models investigating the effect of covariates on area-under-

the-curve for 8 estimators of home range for Florida Panther from 2005 to 2013 in Southern Florida, USA

Model terms K AICc ∆AICc Weights

Estimator + (1| animal) 10 786.06 0.00 1.0

Estimator + Percent fix success + GPS schedule + Number of locations + Study Area + (1| animal) 22 807.98 21.92 0.00

Intercept 3 1098.29 312.23 0.00

GPS schedule + (1| animal) 5 1103.15 317.09 0.00

Percent fix success + (1| animal) 5 1104.77 318.70 0.00

Number of locations + (1| animal) 6 1105.93 319.86 0.00

Percent fix success + GPS schedule + (1| animal) 7 1107.46 321.39 0.00

GPS schedule + Number of locations + (1| animal) 8 1111.06 324.99 0.00

Study Area + (1| animal) 8 1111.12 325.06 0.00

Percent fix success + GPS schedule + Number of locations + (1| animal) 10 1115.40 329.33 0.00

Number of locations + Study Area + (1| animal) 11 1118.28 332.21 0.00

Number of locations + GPS schedule + Study Area + (1| animal) 13 1122.14 336.07 0.00

The term in parenthesis represents the random effect in our model.

GPS BBMM GPS CHAR GPS dBBMM GPS LKDE GPS LOCO GPS MKDE GPS PKDE GPS SLCA VHF BBMM VHF CHAR VHF dBBMM VHF LKDE VHF LOCO VHF PKDE VHF SLCA
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Figure 2 Mean (± SE) area-under-the-curve for estimators of home range collected with global positioning system (GPS) technology and very

high frequency (VHF) technology. Different numbers above bars indicated differences between estimators at P = 0.05.
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Figure 3 (See legend on next page.)
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assumes that comparatively few locations represents the

home range or space use of an animal [32].

There were clear differences in the fit of location

data to isopleths of each home range estimator as de-

termined through AUC using GPS technology. Kernel-

based or Brownian bridge-based estimators appear to

have the best fit to the data over polygon-derived esti-

mators such as local convex hull and single-linkage

cluster. Furthermore, polygon-derived estimators were

limited in their capabilities of handling large GPS data-

sets over 1,000 locations and large voids in space use

within the extent of a home range prevented estima-

tion of home range for some panthers when using

these estimators. Local-convex hull was considered an

improved method that could identify hard boundaries

such as roads or bodies of water and would exclude

large unused space within the home range [8,9] but

our results support previous studies that suggested

local-convex hull has considerable limitations for

sizeable datasets collected with GPS technology

[10,33,34].

Estimators that incorporate a temporal component ap-

peared to be the most reliable regardless of whether

kernel-based or Brownian bridge-based algorithms were

used. Researchers have identified numerous components

of GPS data collection that should improve estimation

of home range such as consistency in duration between

locations (i.e., collection schedule), GPS error, and

movement-specific parameters that could vary by indi-

vidual [12-14]. Location-based kernel density estimators

that are not able to incorporate temporal duration (i.e.,

LKDE, PKDE) were comparable to polygon-derived esti-

mators with lower mean and greater variability in AUC

further strengthening the suggestions that incorporation

of a temporal component within an estimate of home

range may improve resulting isopleths. Although the

second-generation estimator (PKDE) yielded higher

AUC than the first-generation estimator (LKDE), vari-

ability in AUC indicated that second-generation esti-

mators of KDE may be less appropriate now that time

and space can be incorporated into estimation of home

range with GPS technology. These third-generation esti-

mators of home range (e.g., MKDE, dBBMM) extend be-

yond traditional KDE by incorporating time, space, and

animal-specific parameters in addition to habitat-specific

movement vectors such as in MKDE. Additional estima-

tors, such as time-geographic density estimation and

time-local convex hull, may also prove to be more robust

at providing reliable estimates of home range [35,36], al-

though they have yet to be implemented in R or were not

evaluated.

A caveat in our study is that we evaluated annual home

ranges but we chose not to evaluate the influence of the

extent of location data across the landscape and resulting

estimation of home range on AUC. The variability in our

data for some estimators may be attributed to using an-

nual home range that incorporate animal-specific move-

ments (e.g., seasonal migration, long-distance exploratory

movements), when they are actually present, as opposed

to shorter-duration seasonal home ranges. This issue may

have resulted in poorer estimates for location-based KDE

or polygon-derived estimators than third-generation esti-

mators due to over-estimation of home ranges as previ-

ously reported (Figures 3 and 4; [16,29]). Studies using

location-based kernel estimators traditionally separated

locations by season or pre-defined periods to avoid over-

estimation of size of home range, however, third-

generation-based estimators are able to account for large

movements across the landscape to more accurately re-

flect a home range that may span several seasons or geo-

graphical extents. Furthermore, estimators of home

(See figure on previous page.)
Figure 3 Example of area-under-the-curve showing differences in isopleths for 8 estimators of home range for Florida panther 185 collected with

global positioning system (GPS) technology in 2011. Movement-based kernel density estimator (MKDE), location-based kernel density estimator
using hplug-in smoothing (PKDE), location-based kernel density estimator using href smoothing (LKDE), Brownian Bridge Movement Model (BBMM),

polygon-derived single-linkage cluster analysis (SLCA), polygon-derived characteristic hull (CHAR), polygon-derived local convex hull (LOCO), and
dynamic Brownian Bridge Movement Model (dBBMM). Volume contours reflects isopleths from 0 to 100% (bottom left) and an example ROC
curve (bottom right).

Table 2 Parameter estimates, standard error (SE), and

95% confidence intervals (CI) for parameters in the most

supported model investigating the effect of covariates on

the area-under-the-curve for Florida panther equipped

with GPS technology from 2005 to 2013 in Southern

Florida, USA

Parameter Estimates SE CI

Intercept 2.550 0.108 2.337 to 2.762

BBMM 1.856 0.132 1.598 to 2.134

CHAR 0.368 0.147 0.079 to 0.657

dBBMM 1.474 0.132 1.216 to 1.732

LKDE 0.152 0.132 −0.106 to 0.410

LOCO −0.083 0.141 −0.387 to 0.165

MKDE 1.8642 0.132 1.606 to 2.122

PKDE 0.5673 0.132 0.309 to 0.825
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Figure 4 (See legend on next page.)
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range that incorporate animal-specific data or duration

between locations into estimates of home range intui-

tively would appear to fit a movement trajectory better

than location-based or polygon-derived estimators that

“fill in” the gaps between clusters of locations [3,14].

Conclusions
Our results indicated that locations collected with GPS

technology consistently performed better than those col-

lected with VHF technology to estimate home range and

use of the latter in home range studies should be

avoided. All estimators of home range performed better

using GPS-based locations likely because several vari-

ables can affect estimation of home range using GPS

location data (e.g., sample size of locations, duration be-

tween locations) and these variables can be directly

accounted for within third-generation estimators. Devel-

opment of these third-generation estimators were a re-

sult of GPS datasets and previous research suggesting

that location-specific parameters and landscape charac-

teristics influenced accuracy of estimates of size of home

range [3,34,37]. Our focal species exhibited relatively

large home ranges, but these ranges can have extensive

areas that may not be used such as urban development

or fenced roadways. Estimators that more accurately

reflect the utilization of the landscapes by species,

especially those that are endangered, is important to de-

veloping conservation initiatives that will assist with re-

covery. The extent of the available landscape a species

travels across during a season or year should be consid-

ered and likely influenced AUC in our study. Further

examination by study area across the range of a species

or multiple species should be explored to further assess

landscape-level covariates that may influence selection

and accuracy of third-generation estimators of home

range. The availability of third-generation estimators and

inconsistency of first- and second-generation estimators

in determining size of home range along a range of sam-

ple sizes and individual panther in our study would ap-

pear to justify exclusive use of and evaluation of third-

generation methods as estimators of home range using

GPS technology.
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Additional file 2: Table S2. Script for Program R to determine home
range for each of 8 estimators with subsequent analysis of fit using area-
under-the-curve.

Abbreviations

GPS: Global positioning system; VHF: Very high frequency; KDE: Kernel
density estimator; LOCO: The local convex hull nonparametric kernel
method; SLCA: Single-linkage cluster; CHAR: Characteristic hull; LKDE: Kernel
density estimator with reference bandwidth; PKDE: Kernel density estimator
with plug-in bandwidth; MKDE: Movement-based kernel density estimator;
BBMM: Brownian bridge movement models; dBBMM: Dynamic Brownian
bridge movement models; AUC: Area-under-the-curve.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All co-authors participated in writing the manuscript. DPO collected and
processed data and WDW and JWF conducted analyses. All authors read and
approved the final manuscript.

Acknowledgments

We would like to acknowledge the citizens of Florida who continue to support
research and management on the Florida panther by the FWC via the purchase
of Florida panther license plates. This study was funded in its entirety with
panther license plate revenue accrued in the Florida Panther Research and
Management Trust Fund. We recognize Roy McBride, the contracted
houndsman for the FWC for >30 years, who continues to be an invaluable part
of the FWC Panther Research Project. We thank the following individuals for
their assistance and cooperation on different facets of panther research related
to this study: M. Criffield, M. Lotz, M. Cunningham, D. Land, C. McBride,
L. Oberhoffer, M. Alvarado, and D. Shindle. In addition, we extend our
appreciation to the staffs at the Big Cypress National Preserve, Big Cypress
Seminole Indian Reservation, Collier-Seminole State Park, Corkscrew, Audubon
Corkscrew Swamp Sanctuary, Picayune Strand State Forest, Okaloacoochee
Slough State Forest, and South Florida Water Management District for their
continued support of our research and management efforts. We would like to
thank G. Cumming for review of an earlier draft of this manuscript.

(See figure on previous page.)
Figure 4 Example of area-under-the-curve showing differences in isopleths for 8 estimators of home range for Florida panther 185 collected with

concurrent Very High Frequency (VHF) technology in 2011. Movement-based kernel density estimator (MKDE) was not able to be estimated with
VHF technology so was replaced with location-based kernel density estimator using least squares cross-validation smoothing (LSCV). Location-

based kernel density estimator using hplug-in smoothing (PKDE), location-based kernel density estimator using href smoothing (LKDE), Brownian
Bridge Movement Model (BBMM), polygon-derived single-linkage cluster analysis (SLCA), polygon-derived characteristic hull (CHAR), polygon-
derived local convex hull (LOCO), and dynamic Brownian Bridge Movement Model (dBBM). Volume contours reflects color scheme for isopleths

from 0 to 100% (bottom left) and an example ROC curve (bottom right).
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