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Abstract

A trade-off between accuracy and fairness is al-

most taken as a given in the existing literature

on fairness in machine learning. Yet, it is not

preordained that accuracy should decrease with

increased fairness. Novel to this work, we ex-

amine fair classification through the lens of mis-

matched hypothesis testing: trying to find a clas-

sifier that distinguishes between two ideal dis-

tributions when given two mismatched distribu-

tions that are biased. Using Chernoff informa-

tion, a tool in information theory, we theoreti-

cally demonstrate that, contrary to popular belief,

there always exist ideal distributions such that op-

timal fairness and accuracy (with respect to the

ideal distributions) are achieved simultaneously:

there is no trade-off. Moreover, the same clas-

sifier yields the lack of a trade-off with respect

to ideal distributions while yielding a trade-off

when accuracy is measured with respect to the

given (possibly biased) dataset. To complement

our main result, we formulate an optimization

to find ideal distributions and derive fundamen-

tal limits to explain why a trade-off exists on the

given biased dataset. We also derive conditions

under which active data collection can alleviate

the fairness-accuracy trade-off in the real world.

Our results lead us to contend that it is problem-

atic to measure accuracy with respect to data that

reflects bias, and instead, we should be consider-

ing accuracy with respect to ideal, unbiased data.

1. Introduction

This work addresses a fundamental question in the field

of algorithmic fairness (Calmon et al., 2017; Dwork et al.,
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2012; Agarwal et al., 2018; Hardt et al., 2016; Ghassami

et al., 2018; Kusner et al., 2017; Kilbertus et al., 2017;

Zemel et al., 2013):

Is there a trade-off between fairness and accuracy?

The existence of this trade-off has been pointed out in sev-

eral existing works (Menon & Williamson, 2018; Chen et al.,

2018; Zhao & Gordon, 2019) that also propose different

theoretical approaches to characterize it. Yet, it is not preor-

dained as to why such a trade-off should exist between fair-

ness and accuracy. For instance, Friedler et al. (2016) and

Yeom & Tschantz (2018) suggest that the observed features

in a machine learning model (e.g., test scores) are a possibly

noisy mapping from features in an abstract construct space

(e.g., true ability) where there is no such trade-off. Then,

why does correcting for biases worsen predictive accuracy

in the real world? We believe there is value in stepping back

and reposing the fundamental question.

In this work, our main assertion is that the trade-off be-

tween accuracy and fairness (in particular, equal opportu-

nity (Hardt et al., 2016)) in the real world is due to noisier

(and hence biased) mappings for the unprivileged group due

to historic differences in opportunity, representation, etc.,

making their positive and negative labels “less separable.”

To concretize this idea, we adopt a novel viewpoint on fair

classification: the perspective of mismatched hypothesis

testing. In mismatched hypothesis testing, the goal is to find

a classifier that distinguishes between two “ideal” distribu-

tions, but instead, one only has access to two mismatched

distributions that are biased. Our most important result is to

theoretically show that for a fair classifier with sub-optimal

accuracy on the given biased data distributions, there always

exist ideal distributions such that fairness and accuracy are

in accord when accuracy is measured with respect to the

ideal distributions. Through this perspective, there is no

trade-off between fairness and accuracy.

Our contributions in this work are as follows:

Concept of separability to quantify accuracy-fairness trade-

off in the real world: For a group of people in an ob-

served dataset, we quantify the “separability” into positive

and negative class labels using Chernoff information, an

information-theoretic approximation to the best exponent of
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the probability of error in binary classification. We demon-

strate (in Theorem 1) that if the Chernoff information of one

group is lower than that of the other in the observed dataset,

then modifying the best classifier using a group fairness

criterion compromises the error exponent (representative of

accuracy) of one or both the groups, explaining the accuracy-

fairness trade-off. Not only do these tools demonstrate the

existence of a trade-off (as also demonstrated in some exist-

ing works (Menon & Williamson, 2018; Chen et al., 2018)

using alternative formulations), but they also enable us to

approximately quantify the trade-off, e.g., how close can we

bring the probabilities of false negative for two groups in an

attempt to attain equal opportunity for a certain compromise

on accuracy (see Fig. 3 in Section 4). The existence of this

trade-off prompts us to contend that accuracy of a classifier

with respect to the existing (possibly biased) dataset is a

problematic measure of performance. Instead, one should

consider accuracy with respect to an ideal dataset that is an

unbiased representation of the population.

Ideal distributions where fairness and accuracy are in ac-

cord: Novel to this work, we examine the problem of fair

classification through the lens of mismatched hypothesis

testing. We show (in Theorem 2) that there exist ideal

distributions such that both fairness (in the sense of equal

opportunity on both the existing and the ideal distributions)

and accuracy (with respect to the ideal distributions) are in

accord. We also formulate an optimization to show how to

go about finding such ideal distributions in practice. The

ideal distributions provide a target to shift the given biased

distributions toward and to evaluate accuracy on. Their in-

terpretation can be two-fold: (i) plausible distributions in

the observed space resulting from an “unbiased” mapping

from the construct space; or (ii) candidate distributions in

the construct space itself (discussed further in Section 3.2).

Criterion to alleviate the accuracy-fairness trade-off in

the real world: Next, we also address another important

question, i.e., when can we alleviate the accuracy-fairness

trade-off in the real world that we must work in, specif-

ically through additional data collection. We derive an

information-theoretic criterion (in Theorem 3) under which

collecting more features improves separability, and hence,

accuracy in the real world, alleviating the trade-off. This

can also inform our choice of the ideal distributions. Our

analysis serves as a technical explanation for the success

of active fairness (Noriega-Campero et al., 2019; Bakker

et al., 2019; Chen et al., 2018) that uses additional features

to improve fairness.

Numerical example: We demonstrate how the analysis

works through an example (with analytical closed-forms).

Related Work: We note that several existing works, such

as Garg et al. (2019), Menon & Williamson (2018), Chen

et al. (2018), and Zhao & Gordon (2019), have also used in-

formation theory or Bayes risk to characterize the accuracy-

fairness trade-off. However, computing Bayes risk is not

straightforward. Indeed, even for Gaussians, one resorts to

Chernoff bounds to approximate the Q-function. Chernoff

information is an approximation for Bayes risk that has a

tractable geometric interpretation (see Fig. 2). This enables

us to numerically compute the accuracy-fairness trade-off

(Fig. 3), and also understand “how much” accuracy can be

improved by data collection, going beyond the assertion that

there is some improvement. To the best of our knowledge,

existing works have pointed out the existence of a trade-off

based on Bayes risk but have not provided a method to ex-

actly compute it, motivating us to introduce the additional

tool of Chernoff information to do so approximately. Fur-

thermore, this work goes beyond characterizing the trade-off

imposed by the given dataset. Our novelty lies in adopting

the perspective of mismatched detection and demonstrating

that there exist ideal distributions such that both fairness

and accuracy are in accord when accuracy is measured with

respect to the ideal distributions.

The recent works of Wick et al. (2019) and Sharma et al.

(2020) further elucidate the significance of Theorem 2 and

how it presents an insight that contradicts “the prevailing

wisdom,” i.e., there exists an ideal dataset for which fairness

and accuracy are in accord. In a sense, our work provides

a theoretical foundation that complements the empirical

results of Wick et al. (2019) and Sharma et al. (2020), clari-

fying when a trade-off exists and when it does not.

There are also several existing methods of pre-processing

data to generate a fair dataset (Calmon et al., 2018; Feld-

man et al., 2015; Zemel et al., 2013). Here, our goal is not

to propose another competing strategy of fairness through

pre-processing. Instead, our focus is to theoretically demon-

strate that there exists an ideal dataset such that a fair classi-

fier is also optimal in terms of accuracy, which has not been

formally shown before. We also focus on equal opportunity

rather than statistical parity (as in Calmon et al. (2018)).

Our tools share similarities with Varshney et al. (2018) (that

demonstrates how explainability can improve Chernoff in-

formation), as well as the theory of hypothesis testing in

general (Lee & Sung, 2012; Cover & Thomas, 2012). Our

contribution lies in using these tools in fair machine learn-

ing, where they have not been used to the best of our knowl-

edge (e.g., in the previous analyses of Menon & Williamson

(2018); Zhao & Gordon (2019); Chen et al. (2018)).

Remark 1 (Population Setting). In this work, we operate in

the population setting (motivated from Gretton et al. (2007);

Ravikumar et al. (2009); Scott et al. (2013)), i.e., the limit

as the number of samples goes to infinity, allowing use of

the probability distributions of the data. This allows us

to represent binary classifiers as likelihood ratio detectors

(also called Neyman-Pearson (NP) detectors) and quantify
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the fundamental limits on the accuracy-fairness trade-off.

Indeed, given any classifier, there always exists a likelihood

ratio detector which is at least as good (see NP Lemma in

Cover & Thomas (2012)).

2. Preliminaries

Setup: In this work, we focus on binary classification,

which arises commonly in practice in the fairness literature,

e.g., in deciding whether a candidate should be accepted

or rejected in applications such as hiring, lending, etc. We

let Z denote the protected attribute, e.g., gender, race, etc.

Without loss of generality, let Z = 0 be the unprivileged

group and Z = 1 be the privileged group.

Inspired by Yeom & Tschantz (2018) and Friedler et al.

(2016), we assume that there is an abstract construct space

where Xa is the feature (e.g., true ability) and Ya is the true

label (i.e., takes value 0 or 1). The construct space is not

directly accessible to us. In the real world, we instead have

access to an observed space where X denotes the feature

vector and Y denotes the true label (i.e., takes value 0 or

1). For the sake of simplicity, we assume Ya = Y based

on Yeom & Tschantz (2018).1 The observed features are

derived from features in the construct space as follows:

X = fY,Z(Xa) where fY,Z(·) is a possibly noisy mapping

that can depend on Y and Z.

Let the features in the given dataset in the observed space

have the following distributions: X|Y=0,Z=0∼P0(x) and

X|Y=1,Z=0∼P1(x). Similarly, X|Y=0,Z=1∼Q0(x) and

X|Y=1,Z=1∼Q1(x). For each group Z = z, we will be

denoting classifiers as Tz(x) ≥ τz , i.e., the prediction label

is 1 when Tz(x) ≥ τz and 0 otherwise.

Remark 2 (Decoupled Classifiers). While such models may

exhibit disparate treatment (explicit use of Z), the intent

is to better mitigate disparate impact using the protected

attribute explicitly in the decision making (along the spirit

of fair affirmative action (Dwork et al., 2012; 2018)). Fur-

thermore, a classifier that does not use Z becomes a special

case of our classifier if Tz and τz are same for both groups.

Next, we state two basic assumptions: (A1) Absolute Con-

tinuity: P0(x), P1(x), Q0(x) and Q1(x) are greater than

0 everywhere in range of x. This ensures that likelihood

ratio detectors such as log P1(x)
P0(x)

≥ τ0 and Kullback-Leibler

(KL) divergences between any two of these distributions

are well-defined. (A2) Distinct Hypotheses: D(P0||P1),
D(P1||P0), D(Q0||Q1) and D(Q1||Q0) are strictly greater

than 0, where D(·||·) is the KL divergence.

1This is consistent with the “What You See Is What You Get”
worldview in Yeom & Tschantz (2018) where label bias can be
ignored and our chosen measure of fairness, i.e., equal opportunity
is justified as a measure of fairness.

We let PFP,Tz
(τz) be the probability of false positive

(wrongful acceptance of negative class labels; also called

false positive rate (FPR)) over the group Z = z,

i.e., PFP,Tz
(τz) = Pr (Tz(X) ≥ τz|Y = 0, Z = z). Sim-

ilarly, PFN,Tz
(τz) is the probability of false negative

(wrongful rejection of positive class labels; also called

false negative rate (FNR)), given by: PFN,Tz
(τz) =

Pr (Tz(X) < τz|Y = 1, Z = z). The overall probability of

error of a group is given by: Pe,Tz
(τz) = π0PFP,Tz

(τz) +
π1PFN,Tz

(τz), where π0 and π1 are the prior probabilities

of Y = 0 and Y = 1 given Z = z. For the sake of simplic-

ity, we consider the case where π0 = π1 = 1
2 given Z = z,

and also equal priors on all groups Z = z. We include

a discussion on how to extend our results for the case of

unequal priors in Appendix E. Equal priors also correspond

to the balanced accuracy measure (Brodersen et al., 2010)

which is often favored over ordinary accuracy.

A well-known definition of fairness is equalized odds (Hardt

et al., 2016), which states that an algorithm is fair if it has

equal probabilities of false positive (wrongful acceptance

of true negative class labels) and false negative (wrongful

acceptance of true positive class labels) for the two groups,

i.e., Z = 0 and 1. A relaxed variant of this measure, widely

used in the literature, is equal opportunity, which enforces

only equal false negative rate (or equivalently, equal true

positive rate) for the two groups. In this work, we focus

primarly on equal opportunity, although the arguments can

be extended to other measures of fairness as well, e.g., sta-

tistical parity (Agarwal et al., 2018).

We assume that in the construct space, there is no trade-off

between accuracy and equal opportunity, i.e., the Bayes

optimal (Cover & Thomas, 2012) classifiers for the groups

Z = 0 and Z = 1 also satisfy equal opportunity (equal

probabilities of false negative). In this work, our objective

is to explain the accuracy-fairness trade-off in the observed

space and attempt to find ideal distributions with respect

to which there is no trade-off. We now provide a brief

background on error exponents of a classifier to help follow

the rest of the paper.

Background on Error Exponents of a Classifier: The

error exponents of the FPR and FNR are given by

− logPFP,Tz
(τz) and − logPFN,Tz

(τz). Often, we may

not be able to obtain a closed-form expression for the exact

error probabilities or their exponents, but the exponents are

approximated using a well-known lower bound called the

Chernoff bound (see Lemma 1; proof in Appendix A.1), that

is known to be pretty tight (see Remark 3 and also Motwani

& Raghavan (1995); Berend & Kontorovich (2015)).

Definition 1. The Chernoff exponents of PFP,Tz
(τz) and

PFN,Tz
(τz) are defined as:

EFP,Tz
(τz) = sup

u>0
(uτz − Λ0(u)), and
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Figure 1. Let P0(x)∼N (1, 1) and P1(x)∼N (4, 1). For a likelihood ratio detector T (x)= log P1(x)
P0(x)

≥ τ , we can compute the log-

generating functions as follows: Λ0(u) =
9
2
u(u− 1) and Λ1(u) =

9
2
u(u+ 1) (derived in Appendix A.3). Note that, Λ0(u) is strictly

convex with zeros at u=0 and u=1, and Λ1(u)=Λ0(u+ 1). We obtain EFP,T (τ) and EFN,T (τ) as the negative of the y-intercepts for

tangents to Λ0(u) and Λ1(u) respectively with slope τ . As we vary the slope of the tangent (τ), there is a trade-off between EFP,T (τ) and

EFN,T (τ) until they both become equal at τ = 0 (third figure from left). The value of the exponent at τ=0 (negative of the y-intercepts

for tangents with 0-slope) is defined as the Chernoff Information, given by: C(P0, P1):=EFP,T (0)=EFN,T (0), which is equal to 9/8
for this particular example.

EFN,Tz
(τz) = sup

u<0
(uτz − Λ1(u)).

Here, Λ0(u) and Λ1(u) are called log-generating func-

tions, given by Λ0(u) = logE[euTz(X)|Y = 0, Z = z] and

Λ1(u) = logE[euTz(X)|Y = 1, Z = z].

Lemma 1 (Chernoff Bound). The exponents satisfy:

PFP,Tz
(τz)≤e−EFP,Tz (τz) and PFN,Tz

(τz)≤e−EFN,Tz (τz).

Remark 3 (Tightness of the Chernoff Bound). For Gaus-

sian distributions, the tail probabilities are characterized

by the Q-function which has both upper and lower bounds

in terms of Chernoff exponents with constant factors that do

not affect the exponent significantly (Côté et al., 2012). The

Bhattacharya bound (a special case of Chernoff bound) both

upper and lower bounds the Bayes error exponent (Berisha

et al., 2015; Bhattacharyya, 1946; Kailath, 1967).

Geometric Interpretation of Chernoff Exponents: Cher-

noff exponents yield more insight than exact error exponents

because of their geometric interpretation, as we discuss here

(more details in Appendix A.2).

For ease of understanding, we refer to Fig. 1 where we il-

lustrate the idea of Chernoff exponents with a numerical

example. In general, the log-generating functions are convex

and become 0 at u = 0 (see Appendix A.2). Furthermore, if

a detector is well-behaved2, i.e., E[Tz(X)|Y=1, Z=z]>0
and E[Tz(X)|Y=0, Z=z]<0, then Λ0(u) and Λ1(u) are

strictly convex and attain their minima on either sides

of the origin. The Chernoff exponents EFP,Tz
(τz) and

EFN,Tz
(τz) can be obtained as the negative of the y-

intercepts for tangents to Λ0(u) and Λ1(u) with slope τz
(for τz ∈ (E[Tz(X)|Y=0, Z=z],E[Tz(X)|Y=1, Z=z])).

Definition 2. The Chernoff exponent of the overall proba-

2For a detector Tz(x)≥τz, we would expect Tz(X) to
be high when Y=1, and low when Y=0 justifying the crite-
ria E[Tz(X)|Y=1, Z=z]>0 and E[Tz(X)|Y=0, Z=z]<0
for being well-behaved. A likelihood ratio detector

T0(x)= log P1(x)
P0(x)

≥τ0 is well-behaved under assumption A2 in

Section 2 because we have E[Tz(X)|Y=1, Z=z]=D(P1||P0)
and E[Tz(X)|Y=0, Z=z]=−D(P0||P1).

bility of error Pe,Tz
(τz) is defined as:

Ee,Tz
(τz) = min{EFP,Tz

(τz), EFN,Tz
(τz)}.

Recall that, under equal priors, we have Pe,Tz
(τz) =

1
2PFP,Tz

(τz) +
1
2PFN,Tz

(τz). The exponent of Pe,Tz
(τz)

is dominated by the minimum of the error exponents of

PFP,Tz
(τz) and PFN,Tz

(τz), which in turn is bounded by

the minimum of the Chernoff exponents of FPR and FNR

(Definition 1). A higher Ee,Tz
(τz) indicates higher accuracy,

i.e., lower Pe,Tz
(τz). To understand this, first consider likeli-

hood ratio detectors of the form T0(x) = log P1(x)
P0(x)

for Z =

0. As we vary τ0, there is a trade-off between PFP,T0(τ0)
and PFN,T0(τ0), i.e., as one increases, the other decreases. A

similar trade-off is also observed in their Chernoff exponents

(see Fig. 1). Pe,T0
(τ0) is minimized when τ0 = 0 (for equal

priors) and PFP,T0
(0)=PFN,T0

(0). For this optimal value

of τ0 = 0, the Chernoff exponents of FPR and FNR also

become equal, i.e., EFP,T0(0)=EFN,T0(0), and the max-

imum value of Ee,T0(τ0)=min{EFP,T0(τ0), EFN,T0(τ0)}
is attained. This exponent is called the Chernoff informa-

tion (Cover & Thomas, 2012). For completeness, we include

a well-known result on Chernoff information from Cover &

Thomas (2012) with the proof in Appendix A.4.

Lemma 2. For two hypotheses P0(x) under Y = 0 and

P1(x) under Y = 1, the Chernoff exponent of the probabil-

ity of error of the Bayes optimal classifier is given by the

Chernoff information3:

C(P0, P1) = − min
u∈(0,1)

log

(∑

x

P0(x)
1−uP1(x)

u

)
. (1)

Goals: Our metrics of interest for accuracy are Ee,T0(τ0)
and Ee,T1(τ1) because a higher value of the Chernoff expo-

nent of Pe,Tz
(τz) implies a higher accuracy for the respec-

tive groups Z=0 and Z=1. Our metric of interest for fair-

ness is the difference of the Chernoff exponents of FNR, i.e.,

3When P0(x) and P1(x) are continuous distributions, the sum-
mation is replaced by an integral over x (see Appendix A.3).
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|EFN,T0
(τ0) − EFN,T1

(τ1)| (inspired from equal opportu-

nity). A model is fair when |EFN,T0(τ0)−EFN,T1(τ1)| = 0,

and progressively becomes more and more unfair as this

quantity |EFN,T0
(τ0)− EFN,T1

(τ1)| increases.

Our first goal is to quantify fundamental limits on the best

accuracy-fairness trade-off in terms of our metrics of inter-

est on an existing real-world dataset, i.e., given observed

distributions P0(x), P1(x), Q0(x), and Q1(x). Next, our

goal is to find ideal distributions where fairness and accu-

racy are in accord when accuracy is measured with respect

to the ideal distributions.

3. Main Results

3.1. Concept of Separability: Fundamental Limits on

Accuracy-Fairness Trade-Off in the Real World

Given the setup in Section 2, we show that the trade-off

between accuracy and equal opportunity in the observed

space is due to noisier mappings for the unprivileged group

making their positive and negative labels less separable. Let

us first formally define our intuitive notion of separability.

Definition 3. For a group of people with distributions P0(x)
and P1(x) under hypotheses Y=0 and Y=1, we define the

separability as their Chernoff information C(P0, P1).

Definition 3 is motivated from Lemma 2 because Chernoff

information essentially provides an information-theoretic

approximation to the best classification accuracy (in an ex-

ponent sense) for a group of people in a given dataset. Next,

we define unbiased mappings from a separability standpoint.

Definition 4. Consider the setup in Section 2. The mapping

X = fY,Z(Xa) from the construct space to the observed

space is said to be unbiased if C(P0, P1) = C(Q0, Q1).

Our next result demonstrates that the trade-off between fair-

ness and accuracy arises due to a bias in the mappings from

a separability standpoint, i.e., C(P0, P1) 6= C(Q0, Q1). Be-

cause we assumed that Z = 0 is the unprivileged group, we

let C(P0, P1) be either equal to, or less than C(Q0, Q1).

Theorem 1 (Explaining the Trade-Off). For the setup in

Section 2, one of the following is true:

1. Unbiased Mappings, i.e., C(P0, P1)=C(Q0, Q1): The

Bayes optimal detectors T0(x) ≥ τ0 and T1(x) ≥ τ1 for

the two groups with Chernoff exponents of the probability

of error C(Q0, Q1)(= C(P0, P1)) also attain fairness,

i.e., |EFN,T0
(τ0)− EFN,T1

(τ1)| = 0.

2. Biased Mappings, i.e., C(P0, P1) < C(Q0, Q1): The

Bayes optimal detectors T0(x) ≥ τ0 and T1(x) ≥ τ1
for the two groups are not fair, i.e., |EFN,T0

(τ0) −
EFN,T1

(τ1)| 6= 0. Furthermore, no likelihood ratio de-

tector can improve the Chernoff exponent of the probabil-

ity of error for the unprivileged group beyond C(P0, P1).

The first scenario is where the mappings are unbiased from

a separability standpoint, and there is no trade-off between

accuracy and fairness. The second scenario, which oc-

curs more commonly in practice, is where discrimination is

caused due to an inherent limitation of the dataset: the map-

pings from the construct space are biased and do not have

enough separability information about one group compared

to the other. For the rest of the paper, we will focus on the

case of C(P0, P1) < C(Q0, Q1). Under this scenario, the

Chernoff exponents of FNR of the Bayes optimal detectors

for the two groups are C(P0, P1) and C(Q0, Q1) which are

unequal, and hence unfair. An attempt to ensure fairness

by using any alternate likelihood ratio detector for any of

the groups will therefore only reduce accuracy (Chernoff

exponent of the probability of error) for that group below

the Bayes optimal (best) classifier for that group, explaining

the accuracy-fairness trade-off. We formalize this intuition

in Lemma 3 (used in proof of Theorem 1; see Appendix B).

Lemma 3. Let C(P0, P1)<C(Q0, Q1). Suppose that there

are two likelihood ratio detectors T0(x)≥τ0 and T1(x)≥τ1,

one for each group, such that EFN,T0
(τ0)=EFN,T1

(τ1).
Then, at least one of the following statements is true:

(i) Ee,T0
(τ0) < C(P0, P1), or (ii) Ee,T1

(τ1) < C(Q0, Q1).

The next two results show how current and reasonable ap-

proaches to fair classification can give rise to each of the

two cases in Lemma 3. Consider the following optimization

problem, where the goal is to find classifiers of the form

T0(x) ≥ τ0 and T1(x) ≥ τ1 for the two groups that maxi-

mize the Chernoff exponent of the probability of error under

the constraint that they are fair on the given dataset.

max
T0,τ0,T1,τ1

min {EFP,T0(τ0), EFN,T0(τ0),

EFP,T1(τ1), EFN,T1(τ1)}
such that EFN,T0(τ0) = EFN,T1(τ1). (2)

This optimization is in the spirit of existing works (Zafar

et al., 2017; Agarwal et al., 2018; Donini et al., 2018; Celis

et al., 2019) that maximize accuracy under fairness con-

straints. From the NP Lemma, we know that given any

classifier, there exists a likelihood ratio detector which is at

least as good in terms of accuracy. If we restrict T0(x) and

T1(x) to be likelihood ratio detectors of the form log P1(x)
P0(x)

and log Q1(x)
Q0(x)

, then (2) has a unique solution (τ∗0 , τ
∗
1 ).

Lemma 4. Let C(P0, P1)<C(Q0, Q1) and T0(x) and

T1(x) be restricted to be likelihood ratio detectors. Then

the detectors T0(x) ≥ τ∗0 and T1(x) ≥ τ∗1 that solve the

optimization (2) are the Bayes optimal detector for the un-

privileged group (τ∗0 = 0) and a sub-optimal detector for

the privileged group (τ∗1 > 0) with Ee,T1
(τ∗1 ) < C(Q0, Q1).

As a proof sketch, we refer to Fig. 2 (Left). Let τ∗0 = 0,

which ensures EFN,T0(0) = EFP,T0(0) = C(P0, P1).
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Figure 2. Let the distributions for the unprivileged group (Z = 0) be P0(x)∼N (1, 1) and P1(x)∼N (4, 1). Also, let the distributions of

the privileged group be Q0(x)∼N (0, 1) and Q1(x)∼N (4, 1). In both the figures, the red and blue curves denote the log-generating

functions for the likelihood ratio detectors for the groups Z = 0 and Z = 1 respectively (see Appendix A.3 for derivation). We

have Λ0(u)z=1 = 8u(u − 1) and Λ1(u)z=1 = 8u(u + 1). Also, Λ0(u)z=0 = 9
2
u(u − 1), and Λ1(u)z=0 = 9

2
u(u + 1). Note that,

C(P0, P1)<C(Q0, Q1). (Left) This plot corresponds to the scenario of Lemma 4. The detector for the group Z = 0 is the Bayes optimal

detector with τ∗

0 = 0 and EFN,T0(τ
∗

0 ) = EFP,T0(τ
∗

0 ) = C(P0, P1). The detector for the group Z = 1 is a sub-optimal detector because

in order to satisfy equal opportunity, we have to choose τ∗

1 such that EFN,T1(τ
∗

1 ) = EFN,T0(τ
∗

0 ) = C(P0, P1) and this is strictly less

than C(Q0, Q1). (Right) This plot corresponds to the scenario of Lemma 5. The detector for the group Z = 1 is the Bayes optimal

detector with τ∗

1 = 0 and EFN,T1(τ
∗

1 ) = EFP,T1(τ
∗

1 ) = C(Q0, Q1). In order to satisfy equal opportunity, we have to choose τ∗

0 such

that EFN,T0(τ
∗

0 ) = EFN,T1(τ
∗

1 ) = C(Q0, Q1) which is strictly greater that C(P0, P1). However, this threshold τ∗

0 makes EFP,T0(τ
∗

0 )
lower that C(P0, P1), leading to a sub-optimal detector for the group Z = 0.

Now, the only value of slope τ∗1 that will sat-

isfy EFN,T1(τ
∗
1 )=EFN,T0(0) is a τ∗1>0 such

that EFN,T1
(τ∗1 )=C(P0, P1)<C(Q0, Q1), and

hence EFP,T1
(τ∗1 )>C(Q0, Q1). This leads to,

min{EFP,T0
(0), EFN,T0

(0), EFP,T1
(τ∗1 ), EFN,T1

(τ∗1 )} =
C(P0, P1).

For τ∗0 6=0, either EFP,T0
(τ∗0 )<C(P0, P1)<EFN,T0

(τ∗0 ),
or EFN,T0

(τ∗0 )<C(P0, P1)<EFP,T0
(τ∗0 ), implying that,

min{EFP,T0(τ
∗
0 ), EFN,T0(τ

∗
0 ), EFP,T1(τ

∗
1 ), EFN,T1(τ

∗
1 )} <

C(P0, P1).

This situation of reducing the accuracy of the privileged

group is often interpreted as causing active harm to the priv-

ileged group. To avoid causing active harm while satisfying

a fairness criterion, we may also consider a variant where

we do not alter the optimal detector (or accuracy) of the priv-

ileged group (i.e., EFN,T1
(τ1) = EFP,T1

(τ1) = C(Q0, Q1)
for the privileged group), but only vary the detector for the

unprivileged group to achieve fairness. We propose the

following optimization:

max
T0,τ0

min{EFP,T0
(τ0), EFN,T0

(τ0)}

such that EFN,T0
(τ0) = C(Q0, Q1). (3)

Again, if we restrict T0(x) to be a likelihood ratio detector,

then there exists a unique solution τ∗0 to optimization (3).

Lemma 5. Let T0(x) = log P1(x)
P0(x)

and we have

C(P0, P1) < C(Q0, Q1). The detector T0(x) ≥ τ∗0 that

solves optimization (3) is a sub-optimal detector for the

unprivileged group with Ee,T0
(τ∗0 ) < C(P0, P1).

As a proof sketch, we refer to Fig. 2 (Right). If we choose

τ∗0 6= 0, we get a sub-optimal detector for the unprivileged

group with Ee,T0(τ
∗
0 ) < C(P0, P1). The full proofs for

Lemmas 4 and 5 are provided in Appendix B.3.

Remark 4 (Equal priors on Z). Along the lines of balanced

accuracy measures, the optimization assumes equal priors

on Z = 0 and Z = 1 as well. We refer to Appendix E.2

for modification of the optimization to account for unequal

priors on Z = 0 and Z = 1.

Remark 5 (Generalization to other fairness measures).

While we focus on equal opportunity here, the idea extends

to other fairness measures as well. For example, if the best

likelihood detectors for each group, i.e., T0(x) ≥ 0 and

T1(x) ≥ 0 do not satisfy statistical parity (Agarwal et al.,

2018), while there are other pairs of detectors for the two

groups that do satisfy the criterion, then for at least one of

the two groups, a sub-optimal detector is being used.

3.2. The Mismatched Hypothesis Testing Perspective:

Ideal Distributions with no Accuracy-Fairness

Trade-Off

Here, we will show that there exist ideal distributions such

that fairness and accuracy are in accord. Since the trade-off

arises due to insufficient separability of the unprivileged

group in the observed space, we are specifically interested

in finding ideal distributions for the unprivileged group that

match the separability of the privileged, and the same de-

tector that achieved fairness with sub-optimal accuracy in

Lemma 5 now achieves optimal accuracy with respect to

the ideal distributions. We show the existence of such ideal

distributions and also provide an explicit construction.

Theorem 2 (Existence of Ideal Distributions). For the setup

in Section 2, let C(P0, P1) < C(Q0, Q1). Let us choose
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the Bayes optimal detector T1(x) = log Q1(x)
Q0(x)

≥0 for the

group Z = 1. Then, for group Z = 0, there exist P̃0(x)

and P̃1(x) of the form P̃0(x) = P0(x)
(1−w)P1(x)

w

∑
x
P0(x)(1−w)P1(x)w

and

P̃1(x) =
P0(x)

(1−v)P1(x)
v

∑
x
P0(x)(1−v)P1(x)v

for w, v ∈ R such that:

• (Fairness on given data) The Bayes optimal detector for

the ideal distributions, i.e., T̃0(x)= log P̃1(x)

P̃0(x)
≥0 is equiv-

alent to the detector T0(x) = log P1(x)
P0(x)

≥τ∗0 of Lemma 5

that satisfies equal opportunity on the given dataset, i.e.,

EFN,T0
(τ0) = EFN,T1

(0) = C(Q0, Q1).

• (Accuracy and Fairness on ideal data) The Chernoff ex-

ponent of the probability of error of the Bayes optimal

detector on the ideal distributions, i.e., C(P̃0, P̃1) =
C(Q0, Q1), and is hence greater than C(P0, P1).

The proof is provided in Appendix C. The first criterion

demonstrates that one can always find ideal distributions

such that the fair detector with respect to the given distri-

butions (see Lemma 5) is in fact the Bayes optimal de-

tector with respect to the ideal distributions. Note that

there exist multiple pairs of (v, w) such that P̃0(x) =
P0(x)

(1−w)P1(x)
w

∑
x
P0(x)(1−w)P1(x)w

and P̃1(x) =
P0(x)

(1−v)P1(x)
v

∑
x
P0(x)(1−v)P1(x)v

sat-

isfy the first criterion of the theorem.

The second criterion goes a step further and demonstrates

that among such pairs of ideal distributions, one can always

find at least one pair such that they are just as separable as

the privileged group (i.e.,C(P̃0, P̃1) = C(Q0, Q1)). The

Bayes optimal detector for the unprivileged group with re-

spect to the ideal distributions, i.e., T̃0(x) = log P̃1(x)

P̃0(x)
≥0

is thus not only fair on the given dataset but also satisfies

equal opportunity on the ideal data because its Chernoff ex-

ponent of FNR is also equal to that of the privileged group,

i.e., C(Q0, Q1). Note that, in order to satisfy the second

criterion, we restrict ourselves to choosing v = 1 which

leads to an appropriate value of w.

Remark 6 (Uniqueness). Theorem 2 provides a proof of ex-

istence of ideal distributions along with an explicit construc-

tion. In general, there may exist other pairs of distributions,

which are not of the particular form mentioned in Theo-

rem 2, but might satisfy the two conditions of the theorem.

Therefore, given only P0(x) and P1(x), the ideal distribu-

tions are not necessarily unique unless further assumptions

are made about their desirable properties.

In order to go about finding such ideal distributions in prac-

tice, we therefore propose an additional desirable property

of such an ideal dataset. We require the ideal dataset to be

a useful representative of the given dataset. This motivates

a constraint that π0D(P̃0||P0) + π1D(P̃1||P1) be as small

as possible, i.e., the KL divergences of the ideal distribu-

tions from their respective given real-world distributions

are small. Building on this perspective, we formulate the

following optimization for specifying two ideal distributions

P̃0 and P̃1 for the unprivileged group:

min
P̃0,P̃1

π0D(P̃0||P0) + π1D(P̃1||P1)

such that, E
FN,T̃0

(0) = C(Q0, Q1), (4)

where T̃0(x) = log P̃1(x)

P̃0(x)
≥ 0 is the Bayes optimal detec-

tor with respect to the ideal distributions and E
FN,T̃0

(0) is

the Chernoff exponent of the probability of false negative

for this detector when evaluated on the given distributions

P0(x) and P1(x). Theorem 2 already shows that the afore-

mentioned optimization is feasible.

The results of this subsection can be extended to optimiza-

tion (2), or to other measures of fairness altogether, e.g.,

statistical parity, or to other kinds of constraints such as

minimal individual distortion.

Relation to the construct space: The ideal distributions

for the unprivileged group, in conjunction with the given

distributions of the privileged group, have two interpreta-

tions: (i) They could be viewed as plausible distributions in

the observed space if the mappings were unbiased from a

separability standpoint (recall Definition 4). (ii) Given our

limited knowledge of the construct space, they could also

be viewed as candidate distributions in the construct space

itself if the mappings for the group Z = 1 were identity

mappings. This can be justified because we do not have

much knowledge about the construct space (or even its di-

mensionality) except through the observed data. It is not

unfathomable to assume they would have a separability of

at least C(Q0, Q1), which is the separability exhibited by

the privileged group in the observed space. Theorem 2 thus

also demonstrates that the construct space is non-empty.

Remark 7 (Explicit Use of an Ideal Dataset). Several ex-

isting methods (Calmon et al., 2018; Feldman et al., 2015;

Kamiran & Calders, 2012) propose pre-processing the given

dataset to generate an alternate dataset that satisfies cer-

tain fairness and utility (representation) properties, in the

same spirit as optimization (4), and train models on them.

The trained detector may be sub-optimal with respect to the

given dataset but is deemed to be fair. The results in this

subsection help to explain why these approaches result in an

accuracy-fairness trade-off on the given dataset, and also

demonstrate that both accuracy and fairness can improve

simultaneously when the accuracy is measured with respect

to the alternate/ideal dataset. Optimization (4) is also remi-

niscent of the formulation of Jiang & Nachum (2019), who

posit that a given biased label function is closest to an ideal

unbiased label function in terms of KL divergence. In that

work however, the KL divergence is applied to conditional

label distributions pY |X as opposed to conditional feature

distributions pX|Y . Furthermore, Jiang & Nachum (2019)
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do not analytically characterize trade-offs.

Remark 8 (Implicit Use of an Ideal Dataset). Existing meth-

ods that fall in this category include training with fairness

regularization in the loss function or post-processing the

output to meet a fairness criterion. Instead of explicitly gen-

erating an ideal dataset, these methods aim to find a clas-

sifier that satisfies a fairness criterion on the given dataset,

with minimal compromise of accuracy on the given dataset

(recall optimizations (2) and (3)). Here, we show that there

exist ideal distributions corresponding to these fair detec-

tors such that a sub-optimal detector on the given dataset

can be optimal with respect to the ideal dataset.

3.3. Active Data Collection: Alleviating Real-World

Trade-Offs with Improved Knowledge

The inherent limitation of disparate separability between

groups in the given dataset, discussed in Section 3.1, can in

fact be overcome but with an associated cost: active data

collection. In this section, we demonstrate when gathering

more features can help in improving the Chernoff informa-

tion of the unprivileged group without affecting that of the

privileged group. Gathering more features helps us classify

members of the unprivileged group more carefully with ad-

ditional separability information that was not present in the

initial dataset. In fact, this is the idea behind active fairness

(Noriega-Campero et al., 2019; Bakker et al., 2019; Chen

et al., 2018). Our analysis below also serves as a technical

explanation for the success of active fairness.

Let X ′ denote the additional features so that (X,X ′) is

now used for classification of the group Z=0. Note that X ′

could also easily be other forms of additional information

including extra explanations to go along with the data or

decision, similar to Varshney et al. (2018). Let (X,X ′) have

the following distributions: (X,X ′)|Y=0,Z=0 ∼ W0(x, x
′)

and (X,X ′)|Y=1,Z=0 ∼ W1(x, x
′), where Y is the true

label. Note that, P0(x) =
∑

x′ W0(x, x
′) and P1(x) =∑

x′ W1(x, x
′). Our goal is to derive the conditions un-

der which the separability improves with addition of more

features, i.e., C(W0,W1) > C(P0, P1).

Theorem 3 (Improving Separability). The Chernoff infor-

mation C(W0,W1) is strictly greater than C(P0, P1) if and

only if X ′ and Y are not independent of each other given

X and Z = 0, i.e., the conditional mutual information

I(X ′;Y |X,Z = 0) > 0.

The proof is provided in Appendix D. Note that, in general

C(W0,W1) ≥ C(P0, P1) because separability can only

improve or remain the same (see Appendix D). We identify

the scenario where the inequality is strict.

Let x′ be a deterministic function of x, i.e., f(x). Then

W0(x, x
′)=P0(x) if x′=f(x), and 0 otherwise. Similarly,

W1(x, x
′)=P1(x) if x′=f(x), and 0 otherwise, leading to

C(W0,W1)=C(P0, P1). This agrees with the intuition that

if X ′ is fully determined by X , then it does not improve

the separability beyond what one could achieve using X
alone. Therefore, for C(W0,W1)>C(P0, P1), we require

X ′ to contribute some information that helps in separating

hypotheses Y = 0 and Y = 1 better, that essentially leads

to X ′ not being independent of Y given X and Z = 0.

If new data improves the separability of the group Z = 0,

its accuracy-fairness trade-off is alleviated (see Fig. 3 in

Section 4). New ideal distributions can also be found using

the techniques of Section 3.2 that are more plausible as ei-

ther candidate observed-space distributions under unbiased

mappings or construct-space distributions. The new ideal

distributions will also have better separability if the new

data improves the separability of both groups.

4. Numerical Example

We use a simple numerical example to show how our theo-

retical concepts and results can be computed in practice.

Example 1. Let the exam score for Z = 0 be

P0(x)∼N (1, 1) and P1(x)∼N (4, 1), and that for Z = 1
be Q0(x)∼N (0, 1) and Q1(x)∼N (4, 1).

Let us restrict ourselves to likelihood ratio detectors of the

form T0(x) = log P0(x)
P1(x)

≥ τ0 and T1(x) = log Q0(x)
Q1(x)

≥ τ1
for the two groups. The log generating functions for Z = 1
can be computed analytically as: Λ0(u)z=1 = 8u(u−1) and

Λ1(u)z=1 = 8u(u+1) (derivation in Appendix A.3) and the

Chernoff information can be computed as C(Q0, Q1) = 2.

Now, for the unprivileged group Z = 0, the log generat-

ing functions can be computed as Λ0(u)z=0 = 9
2u(u − 1)

and Λ1(u)z=0 = 9
2u(u + 1) (again see Appendix A.3 for

derivation). The Chernoff information is C(P0, P1) = 9/8.

Accuracy-Fairness Trade-off in Real World: We restrict

the detector for the privileged group to be the Bayes optimal

detector T1(x)= log Q1(x)
Q0(x)

≥ 0 (equivalent to x ≥ 2). For

this detector, EFP,T1(0)=EFN,T1(0) = C(Q0, Q1) = 2.

Now, for Z=0, the Bayes optimal detector

T0(x)= log P1(x)
P0(x)

≥0 (or, x≥1.5) will be unfair since

EFN,T0
(0)=C(P0, P1)<EFN,T1

(0). Using the geometric

interpretation of Chernoff information (recall Fig. 2),

we can compute the Chernoff exponents of FPR and

FNR, i.e., EFP,T0
(τ0) and EFN,T0

(τ0) as the negative

of the y-intercept of the tangents to Λ0(u)z=0 and

Λ1(u)z=0 for detectors T0(x)= log P1(x)
P0(x)

≥τ0. This enables

us to numerically plot the trade-off between accuracy

(Ee,T0(τ0)=min{EFP,T0(τ0), EFN,T0(τ0)}) and fairness

(|EFN,T0(τ0)−EFN,T1(τ0)|) by varying τ0 as shown by the

blue curve in Fig. 3.

Note that, the detector that satisfies fairness (equal op-
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Figure 3. Computation of the trade-off between fairness and ac-

curacy using a numerical example: For the unprivileged group,

we let P0(x)∼N (1, 1) and P1(x)∼N (4, 1). We restrict the de-

tector of the privileged group to its Bayes optimal detector with

C(Q0, Q1) = 2. The blue curve denotes the trade-off between

accuracy and fairness in the existing dataset for the unprivileged

group. Now suppose we are able to collect an additional fea-

ture X ′ for the unprivileged group such that (X,X ′)|Y =0,Z=0 ∼
N ((1, 1), I) and (X,X ′)|Y =1,Z=0 ∼ N ((4, 2), I), where I is

the 2× 2 identity matrix. The green curve shows how active data

collection alleviates the trade-off between fairness and accuracy.

portunity) on the given distributions can also be com-

puted analytically as log P1(x)
P0(x)

≥τ∗0 where τ∗0=−3/2 (equiv-

alent to x≥2). This leads to equal exponent of FNR,

i.e., EFN,T0(−3/2)=2=EFN,T1(0) but for this detec-

tor EFP,T0(τ
∗
0 )=1/2 leading to reduced Chernoff ex-

ponent of overall error probability (represents accu-

racy), i.e., Ee,T0
(τ∗0 )=min{EFP,T0

(τ∗0 ), EFN,T0
(τ∗0 )} =

min{1/2, 2} = 1/2 which is less than C(P0, P1) = 9/8.

Ideal Distributions: We refer to Fig. 4. It turns out that

one pair of ideal distributions prescribed by Theorem 2 is

P̃0=Q0 and P̃1=P1=Q1. The Bayes optimal detector with

respect to the ideal distributions for Z = 0 is given by

log P̃1(x)

P̃0(x)
≥0 (equivalent to x≥2). Note that, this is equiva-

lent to the detector log P1(x)
P0(x)

≥ τ∗0 where τ∗0=− 3/2 which

satisfied equal opportunity on the given dataset. This detec-

tor is now Bayes optimal with respect to the ideal distribu-

tions P̃0 and P̃1, and has a Chernoff exponent of the overall

probability of error equal to C(P̃0, P̃1) = 2 when measured

with respect to the ideal distributions. Thus, we demon-

strate that both fairness (in the sense of equal opportunity

on existing dataset as well as ideal dataset) and accuracy

(with respect to the ideal distributions) are in accord. Note

that, one may also find alternate pairs of ideal distributions

using optimization (4) or any variant of the optimization,

e.g., using statistical parity.

Active Data Collection: Now suppose we are able to

collect an additional feature X ′ for Z = 0 such that
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Figure 4. (Top) For the distributions in Example 1, we denote the

Bayes optimal detector log Q1(x)
Q0(x)

≥0 (equivalent to x ≥ 2) for the

privileged group Z = 1. (Bottom) For Z = 0, the optimal detec-

tor log P1(x)
P0(x)

≥0 does not satisfy equal opportunity on the given

dataset but a sub-optimal detector does (notice the equal area cor-

responding to false negative rate for two groups). However, there

exist ideal distributions given by P̃0 = Q0 and P̃1 = P1 = Q1

such that this detector is optimal w.r.t. the ideal distributions, and

also achieves fairness w.r.t. both existing and ideal distributions.

(X,X ′)|Y=0,Z=0 ∼ N ((1, 1), I) and (X,X ′)|Y=1,Z=0 ∼
N ((4, 2), I), where I is the 2× 2 identity matrix. The log

generating functions can be derived as: Λ0(u) = 5u(u− 1)
and Λ1(u) = 5u(u + 1). Note that, the Chernoff informa-

tion (separability) C(W0,W1) = 5/4 which is greater than

C(P0, P1) = 9/8. Thus, the collection of the new feature

has improved the separability of the unprivileged group.

Now, we examine the effect of active data collection on the

accuracy-fairness trade-off in the real world. We again

refer to Fig. 3 (green curve). Consider the likelihood

ratio detector for Z = 0 based on the total set of fea-

tures, i.e., T0(x, x
′) = log W0(x,x

′)
W1(x,x′) ≥ τ0. To satisfy

our fairness constraint, we need to choose a τ∗0 such that

EFN,T0(τ
∗
0 )=EFN,T1

(0) = C(Q0, Q1) = 2. Upon solv-

ing, we obtain that τ∗0 = 5 −
√
40 ≈ −1.32. For this

value of τ∗0 , we obtain EFP,T0
(τ∗0 )=7 −

√
40) ≈ 0.68.

The Chernoff exponent of the probability of error for this

fair detector is given by min{EFN,T0(τ
∗
0 ), EFP,T0(τ

∗
0 )} =

min{2, 0.68} = 0.68 which is greater than 0.5 (the Cher-

noff exponent of the probability of error for the fair detector

before collection of the additional feature X ′).

5. Conclusion

Our results provide novel analytical insights that explain and

characterize accuracy-fairness trade-offs on real datasets.

Our Chernoff information based analysis can help quantify

the separability of a dataset, even before any classification

algorithm is applied. We believe that our demonstration that

fairness and accuracy are in accord with respect to ideal

datasets will motivate the use of accuracy with respect to an

ideal dataset as a performance metric in algorithmic fairness

research (Sharma et al., 2020; Wick et al., 2019). Lastly,

our results also inform how and when active data collection

can alleviate the trade-off in the real world.
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