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Is there an influence of body mass on digesta mean
retention time in herbivores? A comparative study on

ungulates

Abstract

The relation between body mass (BM) and digesta mean retention time (MRT) in herbivores
was the focus of several studies in recent years. It was assumed that MRT scaled with BM0.25
based on the isometric scaling of gut capacity (BM1.0) and allometric scaling of energy intake
(BM0.75). Literature studies that tested this hypothesis produced conflicting results, arriving
sometimes at higher or lower exponents than the postulated 0.25. This study was conducted
with 8 ruminants (n=2-6 per species) and 6 hindgut fermenting species/breeds (n=2-6, warthog
n=1) with a BM range of 60-4000 kg. All animals received a ration of 100% grass hay with ad
libitum access. Dry matter intake was measured and the MRT was estimated by the use of a
solute and a particle (1-2 mm) marker. No significant scaling of MRTparticle with BM was
observed for all herbivores (32 BM0.04, p=0.518) and hindgut fermenters (32 BM0.00, p=1.00).
The scaling exponent for ruminants only showed a tendency towards significance (29 BM0.12,
p=0.071). Ruminants on average had an MRTparticle 1.61-fold longer than hindgut fermenters.
Whereas an exponent of 0.25 is reasonable from theoretical considerations, much lower
exponents were found in this and other studies. The energetic benefit of increasing MRT is by
no means continuous, since the energy released from a given food unit via digestion decreases
over time. The low and non-significant scaling factors for both digestion types suggest that in
ungulates, MRT is less influenced by BM (maximal allometric exponent≤0.1) than often
reported.
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Abstract 13 

The relation between body mass (BM) and digesta mean retention time (MRT) in herbivores 14 

was the focus of several studies in recent years. It was assumed that MRT scaled with BM
0.25 

15 

based on the isometric scaling of gut capacity (BM
1.0

) and allometric scaling of energy intake 16 

(BM
0.75

). Literature studies that tested this hypothesis produced conflicting results, arriving 17 

sometimes at higher or lower exponents than the postulated 0.25. This study was conducted 18 

with 8 ruminants (n = 2-6 per species) and 6 hindgut fermenting species/breeds (n = 2-6, 19 

warthog n = 1) with a BM range of 60-4000 kg. All animals received a ration of 100% grass 20 

hay with ad libitum access. Dry matter intake was measured and the MRT was estimated by 21 

the use of a solute and a particle (1-2 mm) marker. No significant scaling of MRTparticle with 22 

BM was observed for all herbivores (32 BM
0.04

, p = 0.518) and hindgut fermenters (32 23 

BM
0.00

, p = 1.00). The scaling exponent for ruminants only showed a tendency towards 24 

significance (29 BM
0.12

, p = 0.071). Ruminants on average had a MRTparticle 1.61-fold longer 25 

than hindgut fermenters. Whereas an exponent of 0.25 is reasonable from theoretical 26 

considerations, much lower exponents were found in this and other studies. The energetic 27 

benefit of increasing MRT is by no means continuous, since the energy released from a given 28 

food unit via digestion decreases over time. The low and non-significant scaling factors for 29 

both digestion types suggest that in ungulates, MRT is less influenced by BM (maximal 30 

allometric exponent ≤ 0.1) than often reported. 31 
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1. Introduction 33 

1.1. Mean retention time and body mass 34 

Due to the low degradation rates (%/h) of cell walls, mean retention time (MRT) of food in 35 

the digestive tract is a factor that determines the digestive efficiency of herbivores (Udén et 36 

al., 1982; Owen-Smith, 1988; Van Soest, 1994; Hummel et al., 2006). In combination with 37 

intake capacity, MRT may reflect the separation of nutritional niches within herbivore 38 

communities. Digesta retention time is considered to be influenced by body mass (BM), and a 39 

positive correlation of BM with MRT has been proposed repeatedly (Demment, 1983; 40 

Demment and Van Soest, 1983; Illius and Gordon, 1992; Robbins, 1993; Gordon and Illius, 41 

1994). This is based on the reasoning that the volume of the gastrointestinal tract (GIT) in 42 

herbivorous animals increases in proportion to BM
1.0

 (Parra, 1978; Demment and Van Soest, 43 

1985), while the energy requirements of an animal scale only to BM
0.75

 (Kleiber, 1932). As a 44 

result, larger animals have larger fermentation capacities than smaller animals in relation to 45 

their energy needs. This effect is at the core of the so-called Jarman-Bell principle (Geist, 46 

1974). Accordingly, the MRT of the ingesta should scale to BM
0.25

, and larger animals should 47 

have capacities to digest food longer and more extensively and can therefore handle food of 48 

lower quality (i. e., forage with a high fibre content) (Owen-Smith, 1988; McNab, 2002). 49 

Based on considerations estimates have been derived for the relationship of BM and MRT by 50 

Demment (1983) [ ] [ ]( )30.0%69.0 BMDMDhMRT ××=  and Demment and Van Soest 51 

(1983) [ ] [ ]( )28.0%59.0 BMDMDhMRT ××=  (D = digestibility, DM = dry matter).  52 

Since then, several studies have related measured MRT data to BM; results like that of Gross 53 

et al. (1996) (longer MRT of 57 h in male Nubian ibex (60 kg BM) compared to females (23 54 

kg BM) with 35 h) are only based on the comparison of 2 size classes. Several studies 55 

approached the problem with a collection of MRT literature data, for example, Illius and 56 

Gordon (1992) found a scaling of MRT for both digestion types (MRT = 9.4 BM
0.26

 for 57 
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hindgut fermenters and MRT = 15.3 BM
0.25

 for ruminants). In an expanded data collection, 58 

Gordon and Illius (1994) found a correlation of MRT to BM
0.22

 in ruminants. Robbins (1993) 59 

found a scaling to BM
0.28

 for ruminants. Because of the assumed positive correlation of 60 

retention time and BM, Demment and Van Soest (1983) argued that BM in ruminants is 61 

limited at a point where any further corresponding increase in MRT no longer pays or 62 

becomes a constraint due to excessive methane losses. 63 

However, a scaling exponent of approximately 0.25 or higher has not been generally 64 

accepted. Other studies found considerably lower scaling exponents for hindgut fermenters 65 

(32.0 BM
0.08

) and perissodactyls (22.8 BM
0.14

) (Owen-Smith, 1988), or even no significant 66 

scaling in ruminants (Duncan et al., 1990), or in data collections combining all ungulates 67 

(Owen-Smith, 1988; Clauss et al., 2009). These evaluations relied basically on the 68 

comprehensive data set of Foose (1982). In a recent re-evaluation of the problem, based on an 69 

comprehensive literature review excluding the Foose data set, Clauss et al. (2007a) found a 70 

non-significant scaling of MRT in colon fermenters (BM
0.04

), non-ruminant foregut 71 

fermenters (BM
0.08

) and in browsing (BM
0.06

) and grazing (BM
0.04

) ruminants. Only for 72 

caecum fermenters did they find a significant scaling of MRT with BM
0.24

, implying that in 73 

mammalian herbivores, the assumed BM
0.25

 scaling applied only to the low end of the BM 74 

spectrum, below a certain threshold. 75 

1.2. Digestive strategies 76 

Animals ingesting forage with high fibre contents can be ranked along a continuum regarding 77 

their retention times. Long MRT/low intake, and in consequence, relatively high digestibility 78 

are a typical strategy of ruminants, while the other extreme (high intake, short MRT, lower 79 

digestibility) is found in equids and elephants (Foose, 1982; Owen-Smith, 1988; Duncan et 80 

al., 1990). Differences in chewing efficiency will additionally modify these relationships 81 

(Clauss et al., 2009); for example, equids achieve a particularly high degree of particle size 82 
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reduction (compared to other non-ruminants) and can therefore attain higher digestibilities in 83 

spite of their comparatively short MRT. It should not be forgotten that the hindgut 84 

fermentation system can also allow a strategy of food intake and MRT closer to ruminants, as 85 

evident in rhinoceroses and perhaps, also in tapirs (Clauss et al., 2010b; Meyer et al., 2010; 86 

Steuer et al., 2010). 87 

Aims of this study  88 

To date, results on the influence of BM on MRT can be considered equivocal to some extent. 89 

Since other studies were mainly based on the data set of Foose (1982) and/or a summary of 90 

results of different trials from literature, this study, with an independent data set derived from 91 

relatively uniform conditions, aimed at evaluating the influence of BM (and the digestion 92 

type) on food intake, and particularly the MRT. By measuring intake and MRT in a variety of 93 

uniformly fed ungulate species ranging in average BM from 60-4000 kg, the following 94 

questions should be answered: 95 

1. How does DM intake (DMI) scale with BM? 96 

2. Is there an influence of BM on the MRT in ungulates? 97 

3. To what extent do hindgut fermenters have shorter MRT and higher intake levels than 98 

ruminants? 99 

2. Materials and methods 100 

2.1. Animals and feeding  101 

Food intake and MRT were measured for 8 ruminants: domestic goat (Capra aegagrus 102 

hircus), domestic sheep (Ovis orientalis aries), blue wildebeest (Connochaetes taurinus), 103 

oryx antelope (Oryx gazella), sable antelope (Hippotragus niger), waterbuck (Kobus 104 

ellipsiprymnus), forest buffalo (Syncerus caffer nanus), domestic cattle (Bos primigenius 105 
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taurus), and 6 hindgut fermenting species/breeds
1
: warthog (Phacochoerus africanus), 106 

domestic pony (Equus ferus caballus), Grevy’s zebra (Equus grevyi), domestic horse (Equus 107 

ferus caballus), white rhinoceros (Ceratotherium simum) and African elephant (Loxodonta 108 

africana). Trials were conducted in the winter seasons 2008 and 2009. All animals were adult 109 

and not pregnant or lactating during the trials except the sable antelopes, which were in the 110 

first stage of pregnancy (1-2 month). Species were chosen that were known to readily accept a 111 

grass hay only diet. Due to inevitable logistical limitations when working with non-domestic 112 

animals in a zoo, in some instances only a limited (< 3) number of individuals could be 113 

measured. Only species means are used in the calculation of the final results (Table 1). All 114 

animals were kept separately during the collection period. Exceptions were the African 115 

elephants, which as a group had access to an outside enclosure for 4-6 hours a day. They were 116 

constantly monitored to ascribe defecations to the correct individuals. The BM of the animals 117 

ranged from 49 kg (a domestic goat) up to 6500 kg (an African elephant) (Table 1). Cattle, 118 

goats, sheep, horses, ponies and a warthog were weighed; BM of the other zoo animals were 119 

derived from estimations by zoo keepers, zoo veterinarians and the first author, based on 120 

literature data and personal experiences. For an adaptation period of 14 days and a collection 121 

period of at least 6 days for zoo animals (African elephants: 5 days) and 8 days for farm 122 

animals, all animals had ad libitum access to a 100% grass hay ration. 123 

The range of the neutral detergent fibre (NDF) content of the grass hay fed at different 124 

feeding places was 64.2-75.8% organic matter (OM), for acid detergent fibre (ADF) 30.0-125 

43.1% OM, for acid detergent lignin (ADL) 3.1-7.8% OM and for crude protein (CP) 6.8-126 

12.1% OM (Table 2). Because of the large amount of grass hay that was needed, delivery in 127 

three batches was necessary. While some variation of hay quality was present, no unbalanced 128 

distribution of hay quality with respect to BM or digestion type was evident. 129 

                                                
1
 While a plethora of mammalian herbivores belong to the group of hindgut fermenters, ungulates are at the 

centre of interest of this contribution. For the sake of simplicity, the term “hindgut fermenters” refers to ungulate 

hindgut fermenters (such as equids, rhinoceroses and elephants) in this study. 
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All boxes and stables were covered with material the animals did not feed on (saw dust, 130 

rubber mats or bare floor). For all animals, daily food intake was measured during the 131 

collection period. Every morning, the leftover grass hay from the previous day was quantified 132 

and fresh hay was offered. For most of the animals it was possible to collect the leftovers 133 

twice a day (exceptions were the African elephants and the warthog). Several times a day the 134 

animals received additional hay to ensure ad libitum access at all times. 135 

2.2. Nutrient analysis 136 

The grass hay (as offered and left-overs) was analyzed for DM during the sampling periods. 137 

For further analysis, food samples were ground through a 1 mm sieve. The DM and ash were 138 

analyzed according to VDLUFA
2
 (2007; method 8.1). Grass hay and faeces were analyzed 139 

sequentially with the Gerhardt fibre bag system (Gerhardt, Königswinter, Germany) for NDF, 140 

ADF and ADL in accordance with Van Soest and Robertson (1985). The NDF and ADF were 141 

corrected for ash using the insoluble ash after ADL determination. Solutions were produced 142 

according to Van Soest and Robertson (1985). The N content of the grass hay was analysed 143 

by the Dumas method (Instrument FP-328, Leco, St. Joseph, USA) and CP expressed as N x 144 

6.25. 145 

2.3. Mean retention time  146 

To estimate the MRT, two passage markers were fed to the animals in a single pulse dose at 147 

the beginning of the collection period. Cobalt-EDTA was used as a marker for the solute 148 

phase of the ingesta and chromium-mordanted fibre (1-2 mm particle size, made of grass hay) 149 

as a marker for the particle phase. The preparation was done according to Udén et al. (1980). 150 

Chromium content of the chromium-mordanted fibre was 1.9% DM. Faecal samples from zoo 151 

animals were collected at particular intervals (see below for details), dried at 103 °C and 152 

ground through a 1 mm sieve. Marker concentration was measured after wet ashing, 153 

                                                
2
Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten 
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according to Behrend et al. (2004) with atomic absorption spectroscopy (Perkin-Elmer 1100 154 

B, Perkin Elmer, Wellesley, USA). 155 

Faeces were sampled twice during the day (one pool sample for the morning, one for the 156 

afternoon), and one pool sample was taken for the night for a minimum of 6 days (3 157 

samples/24 h). In case of the African elephants, where video surveillance was used to 158 

determine defecation time at night, each dropping was sampled over 5 days. From cattle, 159 

sheep, goat, horse and pony samples were taken from pooled faeces every 4 h (day 1-2), 6 h 160 

(day 3-4), 8 h (day 5-6) and 12 h (day 7-8). 161 

Because of the difference in sampling intervals between the domestic animals and the 162 

elephants and all other zoo animals, the MRT of domestic animals was further calculated to 163 

assume only three collection times per 24 h (see below for details on the MRT calculation). A 164 

linear regression of original MRT averages and those of the MRT values calculated based on 165 

a less frequent sampling regime yielded the equations: 166 

MRTparticle ‘corrected’ = 0.97 (95% CI 0.89, 1.04) MRTparticle + 1.79 (95% CI -1.65, 5.21) 167 

MRTsolute ‘corrected’ = 0.98 (95% CI 0.68, 1.27) MRTsolute + 1.65 (95% CI -6.96, 10.27) 168 

In other words, a slope of one and an intercept of zero were statistically not excluded in either 169 

case, indicating no systematic difference between the two sampling schemes. Only data 170 

calculated from all available sampling intervals are presented in the discussion. 171 

The MRT for the whole gastrointestinal tract (GIT) was calculated according to Thielemans et 172 

al. (1978): 173 

MRT=∑ (ci∗dt∗ti )/∑ ( ci∗dt )  174 

(MRT = mean retention time [h]; ci = marker concentration in the faeces at time i [mg/kg 175 

DM]; dt = length of time interval which represents the marker concentration ci [h]; ti = time 176 

after marker application (middle of time interval which represents the marker concentration 177 

ci) [h]) 178 
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As an estimate of the ability to retain particles selectively in the GIT, the selectivity factor 179 

(SF) was calculated as MRTparticle/MRTsolute (Lechner-Doll et al., 1990). 180 

2.4. Statistics 181 

All statistical comparisons were performed with species' means. In order to account for 182 

ancestry-based correlations in the data sets (i.e., finding a significant result simply because 183 

similar species are closely related) (Felsenstein, 1985; Pagel, 1999), the data was controlled 184 

for phylogenetic influences using the “Phylogenetic Generalized Least-Squares” method 185 

(PGLS; Martins and Hansen, 1997; Rohlf, 2001). This procedure estimates a covariance 186 

matrix of the species due to their ancestral roots and includes these interrelationships in a 187 

generalized least squares algorithm to determine the model parameters. The phylogenetic 188 

trees for the two data sets were derived by pruning the mammalian supertree from Bininda-189 

Emonds et al. (2007) to include only the species of concern for our study, using Mesquite 190 

(Maddison and Maddison, 2006). The two different domestic horse breeds were represented 191 

as direct relatives in the tree. Because the resulting trees were not based on our own 192 

calculations of branch lengths with consistently the same characters, we used trees without 193 

branch lengths. The respective phylogenetic tree is shown in Fig. 1. When analysing 194 

ruminants or hindgut fermenters separately, the corresponding trees were derived as described 195 

above. 196 

To achieve normal distribution, data on BM was log-transformed. Therefore, a regression 197 

analysis of log-transformed measurements was used for the estimation of allometries. 198 

Statistical analyses were performed using ordinary least squares (OLS), which did not account 199 

for phylogeny and using phylogenetic least squares (PGLS). Except in cases where the results 200 

differed, only PGLS results are discussed. In addition, general linear models (GLM) were 201 

used; for food intake (DMI), the model was: 202 

Yijk = µ + αi + ßj + (α × ß)ij + εijk 203 
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where 204 

Yijk = the observed response (dry matter intake); 205 

µ = the population constant, common to all observations; 206 

αi = the effect of BM (continuous variable); 207 

ßj = the effect of digestion type j; j = 1-2 (hindgut fermenter or ruminant); 208 

(α × ß)ij = the effect of interaction between BM i and digestion type j; 209 

εijk = the residual error. 210 

 211 

For the passage parameters (MRTparticle, MRTsolute, SF), the initial model was: 212 

Yijkl = µ + αi + ßj + γk + (α × ß)ij + (ß × γ)jk + εijkl 213 

where 214 

Yijkl = the observed response (MRTparticle, MRTsolute or SF); 215 

µ = the population constant; common to all observations; 216 

αi = the effect of BM (continuous variable); 217 

ßj = the effect of digestion type j; j = 1-2 (hindgut fermenter or ruminant); cofactor; 218 

γk = the effect of rDMI (= relative dry matter intake [g/(kg BM
0.75

*d)]; continuous variable); 219 

(α × ß)ij = the effect of interaction between BM i and digestion type j; 220 

(ß × γ)jk = the effect of interaction between rDMI k and digestion type j; 221 

εijkl = the residual error. 222 

 223 

After running the initial models as outlined above, in a second step models were reduced to 224 

those factors that have been shown to have a significant effect in the first run; the 225 

significances found in this second step are presented in the results. In a post-hoc analysis, 226 

differences between the digestion types (hindgut fermenters vs. ruminants) were tested by t-227 

test. Dry matter intake related to metabolic body size (rDMI) [g/(kg BM
0.75

*d)] was used for 228 

comparison of intake. The statistical calculations were performed with PASW 18.0 (SPSS 229 
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Inc., Chicago, IL) and COMPARE 4.6 (Martins, 2004). The significance level was set to 230 

α=0.05. 95% confidence intervals were calculated for coefficients in allometric regressions. 231 

For 0.1 > p > 0.05, differences are regarded as a trend. 232 

3. Results 233 

3.1. Food intake 234 

The DMI for each species are shown in Table 1. Across all species, DMI scaled to BM as 235 

DMI (in kg/d) = 0.039 BM
0.83

 using PGLS; the 95% CI of the intercept came very close to 236 

both 0.75 and 1.00 (Table 3). In a GLM with DMI as the dependent variable, BM (p<0.001), 237 

digestion type (p=0.054) and their interaction term (BM x digestion type) (p=0.031) had a 238 

significant influence. Hindgut fermenters had a significantly higher rDMI (p=0.008). 239 

3.2. Passage characteristics 240 

Typical marker excretion curves for ruminants (forest buffalo) and hindgut fermenters 241 

(domestic horse, African elephant, warthog) are presented in Fig. 3 (to our knowledge this 242 

represents the first published MRT estimation for the warthog). The range of MRTparticle for 243 

ruminants was between 43 h (blue wildebeest) and 75 h (domestic cattle) (Table 4). For the 244 

hindgut fermenters the range was between 26 h (Shetland pony) and 47 h (white rhinoceros). 245 

The range for MRTsolute was between 23 h (forest buffalo) and 37 h (sable antelope) for 246 

ruminants and between 20 h (domestic pony) and 34 h (warthog) for hindgut fermenters. On 247 

average, equids and elephants had shorter MRTparticle than ruminants, whereas the white 248 

rhinoceros and warthog had MRTparticle approaching the lower level of the ruminant range. In 249 

contrast, MRTsolute was of a similar magnitude for both digestive groups (Table 4). Allometric 250 

equations gave no indication for an increase of MRTparticle with BM in the overall sample 251 

(BM
0.04

, p=0.518) and for hindgut fermenters (BM
0.00

, p=1.00); for ruminants alone, only a 252 

trend was present (ruminants = BM
0.12

, p=0.071) (Table 3; Fig. 4). No significant allometric 253 
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relationships existed for MRTsolute, neither in the whole data set nor within the digestion types 254 

(Table 3). 255 

When a GLM was performed with MRTparticle as the dependent variable, rDMI (p<0.001), BM 256 

(p=0.001) and the digestion type*rDMI-interaction (p=0.019) were shown to have a 257 

significant influence, indicating that the decreasing influence of food intake on MRTparticle 258 

varies between the digestion types (Fig. 5). When using MRTsolute as the dependent variable, 259 

no significant model remained. While MRTparticle was shown to be significantly different 260 

between the digestion types (p=0.007), this was not the case for MRTsolute (p=0.134). 261 

In the overall data set, and within the ruminants, the relationship was negative between 262 

MRTparticle and rDMI, whereas no such relationship was evident in the hindgut fermenters 263 

(Table 5, Fig. 5). In contrast, there was no significant relationship between MRTsolute and 264 

rDMI (Table 5). 265 

The selectivity factor (SF) [MRTparticle/MRTsolute] was, on average, higher in ruminants than in 266 

hindgut fermenters; among the hindgut fermenters, only white rhinoceros achieved values 267 

within the range of those observed in ruminants (Table 4). The SF did not vary with BM in 268 

the overall data set, but increased significantly with BM within the ruminants (Table 3). A 269 

negative relationship between rDMI and SF was observed in the overall data set; this 270 

relationship was also significant within the hindgut fermenters in OLS, but not when PGLS 271 

were used (Table 5). In a GLM with SF as the dependent variable, and BM, rDMI, digestion 272 

type and the interactions of digestion type with BM and rDMI as the independent variables, 273 

only the digestion type*BM-interaction remained after eliminating non-significant variables 274 

(PGLS: p<0.001), indicating that SF was distributed differently across the BM range in each 275 

digestion type. When means were compared, SF was shown to be higher for ruminants 276 

(p=0.001). 277 
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4. Discussion 278 

4.1. General influence of BM on food intake 279 

Various aspects of the biology of a species can be influenced by BM (Owen-Smith, 1988; Fa 280 

and Purvis, 1997; Simard et al., 2008). Among variables related to digestion, absolute food 281 

intake [kg DM/d] is among the most obvious. It can be hypothesised that scaling of intake to 282 

BM
0.75

 indicates an energetic regulation of food intake, while a scaling to BM
1.0

 points to a 283 

regulation by mainly gut fill. Based on the allometric exponent found for DMI (Fig. 2) in this 284 

study, food intake of the animals of the complete data set and for hindgut fermenters alone 285 

could be interpreted to have been regulated by both energy needs and gut fill constraints. 286 

However, when looking at ruminants alone, the scaling to BM
0.69

 would indicate a regulation 287 

by energy requirements alone; this is in contrast to the general view of intake limitation via 288 

gut fill being less significant in hindgut fermenters than in ruminants and implies some 289 

caution in the interpretation of scaling exponents in this way. 290 

In the wild, the quality of the ingested food is a variable that changes significantly with BM in 291 

herbivores (Owen-Smith, 1988; Codron et al., 2007). Larger herbivores may eat the same 292 

daily amount of metabolizable energy per kg BM
0.75

, but due to lower diet quality, they 293 

require larger amounts of food. 294 

4.2. Influence of BM on MRT 295 

Physiologically, an increase of MRT with BM is beneficial if one assumes an increase of 296 

dietary cell wall content (Demment and Van Soest, 1983) or digesta particle size with BM 297 

(Fritz et al., 2009). However, studies find scaling exponents close to and considerably lower 298 

than the postulated 0.25 (Table 6). Our data fits with the idea that MRT is less influenced by 299 

BM than assumed from theoretical considerations. The scaling exponent b was not significant 300 

(Table 3), indicating that an influence of body mass on MRT is not the dominant factor. 301 

Regarding the non-significant, but rather low p-value for the scaling of MRT with BM in 302 
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ruminants in this context, an influence of BM on MRT in this group can be less safely 303 

excluded than for hindgut fermenters or the whole sample. A part of an explanation for that 304 

may lie in be particularly and surprisingly low rDMI in the ruminant BM extreme (cattle) in 305 

this study. While no explanation is evident for the low intake, the resulting particularly high 306 

MRTparticle in the largest ruminant will surely influence the scaling exponent disproportionally, 307 

leading to a tendency of an increase of MRTparticle with BM. It should also not be forgotten 308 

that the GLM detected a significant influence of BM within the data set. However, it can be 309 

stated that applying the statistical approach consistently used by other contributions on the 310 

topic (allometric regression) did not result in a significant (p<0.05) indication for an increase 311 

of MRTparticle with BM this study.  312 

Interestingly, Clauss et al. (2007a) found comparable low scaling factors for BM and MRT 313 

(BM
0.13

 ruminants; BM
0.04

 colon fermenters, the former exponent significantly > 0) as in this 314 

study (BM
0.12

, BM
0.00

 in PGLS). When Clauss et al. (2007a) split the ruminant group into 315 

grazers and browsers, this resulted in lower (non-significant) scaling exponents (grazers: 316 

BM
0.04

; browsers: BM
0.06

). This implies that the inhomogeneous BM distribution of ruminant 317 

feeding types (grazers being on average heavier than browsers), in connection with a tendency 318 

for longer retention times in grazers, has some potential to influence the estimated scaling 319 

factor. In other words, a scaling with BM
0.25

 is too steep to represent the empirical data. 320 

Considerations arriving at an explicit relationship of MRT to BM
0.25

 often do not take into 321 

account the significantly lower degree in selectivity that can be safely assumed for larger 322 

animals (Owen-Smith, 1988). In the wild, one should expect at least a part of the “spare gut 323 

capacity” of large animals to be used up by the lower quality of a less digestible diet 324 

(Hummel and Clauss 2010). Presumably, such differences in diet selectivity, and therefore 325 

quality are also reflected in regular zoo diets. The proportions of coarse forage are regularly 326 

higher in diets of large herbivores like bovinae, white rhinos or elephants than in those of 327 

small antelopes. The larger the differences are in diet quality, the lower a potential increase in 328 
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MRT with BM can be expected. On the other hand, if one assumes an allometric increase of 329 

MRT with BM, this scaling should be particularly evident if the diet of all animals is 330 

comparable. The approach of this study should therefore have resulted in an overestimation 331 

rather than an underestimation of the scaling factor compared to the wild situation, which 332 

makes the finding of an absence of BM-scaling of MRT all the more robust. 333 

Clauss et al. (2007a) found a significant increase of MRT with BM
0.24

 for caecum fermenters, 334 

implying that an increase of MRT coinciding with an increase in BM is only beneficial for 335 

efficiency of the digestive process up to a certain body size limit. Demment and Van Soest 336 

(1985) state that disadvantages will dominate advantages above a certain threshold for 337 

retention times. An endless prolongation of the MRT also makes little sense because energy 338 

gained from a given amount of food per unit time decreases over the digestion process, and 339 

the probability of excessive methane losses is considered to increase, especially for ruminants 340 

(Van Soest, 1994). The degree to which prolonged retention benefits an herbivore ingesting a 341 

diet higher in fibre will finally depend on the extent of lignified or unlignified fibre. The 342 

former will not be degradable, irrespective of the duration of exposure to microbial 343 

fermentation; the latter will be digested to a higher degree the longer it is retained. 344 

The type of relationship between BM and MRT is also of interest in a fascinating chapter of 345 

herbivore digestive physiology: How should we speculate on the digestive physiology of 346 

extraordinarily large dinosaurs, particularly on the sauropods who push the BM envelope to 347 

50 t or even more, and for which extrapolations based on high scaling factors simply result in 348 

“an improbability” (Van Soest, 1994)? Based on the results of this study and other recent 349 

studies (Clauss et al., 2007a), guesses on sauropod retention times cause less problems than 350 

may have been expected, because an increase of BM is by no means inherent with a 351 

continuous increase in MRT beyond the scope of a plausible range. Besides this, elephants are 352 

the best example for an animal contradicting any automatism of an increase of MRT with BM 353 
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(Foose, 1982; Clauss et al., 2003 and this study). Much more than BM, the assumed level of 354 

metabolism gives a better estimation of MRT (Farlow, 1987). 355 

4.3. Differences between MRT of ruminants and hindgut fermenters 356 

While BM was shown to have only limited, if any, influence on MRT, digestive strategy is 357 

important. In this respect, a fundamental difference between ungulate hindgut fermenters and 358 

ruminants is accepted since the seminal contributions of Janis (1976) and Foose (1982). These 359 

differences, however, mostly refer to comparisons between ruminants and equids and need 360 

not necessarily be transferrable to all other hindgut fermenters. 361 

 Foose (1982) and Sponheimer et al. (2003) as well as our study found that some hindgut 362 

fermenters achieve higher rDMI than ruminants. The ability of ruminants to withhold 363 

particles in their fermentation chamber to elongate the digestion time for the rumen microbes 364 

(Udén et al., 1982; Demment and Van Soest, 1985; Renecker and Hudson, 1990; Gordon and 365 

Illius, 1994), allows them to achieve longer MRTparticle than some hindgut fermenting species 366 

(Parra, 1978; Foose, 1982; Udén et al., 1982 and the present study). In this study, ruminants 367 

on average had a MRTparticle 1.61 fold longer than hindgut fermenters, a value close to the 368 

1.50 found in Foose (1982) for grazing ruminants compared to grazing hindgut fermenters. 369 

Similarly the rDMI was 1.58 fold higher for hindgut fermenters than for ruminants in this 370 

study and 1.55 fold higher in Foose (1982) (calculated with rOMI). A potential, important 371 

shortcoming in summarizing data appears to be the creation of a uniform ‘hindgut fermenter’ 372 

category. Generally, the hindgut fermenter system allows a broad spectrum of digestive 373 

strategies (Clauss et al., 2010). Therefore, while grazing ruminants can be considered to have 374 

a relatively uniform digestive strategy (as far as intakes and MRT are concerned), this is the 375 

case to a lesser extent for the more variable (and phylogenetically much more heterogeneous) 376 

group of hindgut fermenters (e.g. Foose, 1982). While both equids and elephants follow a 377 

strategy of high rDMI/low MRT, the white rhino and at least the one warthog of this study 378 



 17 

appear to have some traits closer to ruminants. This also points to some potential difficulties 379 

in the establishment of allometric relations. A significant allometry could be considered 380 

regarding the increase of MRT with BM from equids to rhinos (and elephants as outliers). 381 

When the focus is on the data of equids and elephants, and rhinos are considered as deviating 382 

from this rule, then there is no increase of MRT with BM. Corresponding to the heterogeneity 383 

of strategies within the hindgut fermenters, differences between the digestive types were 384 

evident in this study, in particular, in the interaction in the GLM. 385 

As mentioned above, the white rhinoceros differs from the other hindgut fermenters. Its SF of 386 

1.5 is comparable to the SF of the sable antelope (1.5) and the wildebeest (1.4). In contrast, 387 

the warthog, the other hindgut fermenter with a comparatively low rDMI, fits well within the 388 

other hindgut fermenters with a SF of 1.3. With a mean SF of 1.0, the African elephant was at 389 

the lowest end of the SF range of this study. Hence also the SF data of the different hindgut 390 

fermenter species shows the variety of digestive strategies within this group. 391 

In general, a negative correlation can be expected for rDMI and MRT. Such a significant 392 

negative correlation was only found for ruminants, but not for hindgut fermenters. In Foose 393 

(1982) the opposite was found, while Lechner-Doll et al. (1990) and Pearson et al. (2001) 394 

found negative correlations for ruminants and equids, respectively. Clauss et al. (2007a) 395 

found for their entire data set (caecum, colon, non-ruminant and ruminant foregut fermenters) 396 

a low (r
2
 = 0.12) but significant (p = 0.001) negative correlation between rDMI and MRT. An 397 

insensitivity of MRT to an increase in intake has been considered as a major trait in digestive 398 

strategies of herbivores (Clauss et al., 2007b), as appears evident in the group of equids and 399 

elephants in this study (Fig. 5). This result would be in line with the general view of some 400 

hindgut fermenters as being able to maintain high DMI more easily than ruminants when diet 401 

quality decreases. If MRT is less influenced by DMI in some hindgut fermenters, this would 402 

facilitate a strategy where higher intakes could attenuate the negative effects of increased 403 

intakes. However, empirical data does not support the notion that the food intake of hindgut 404 
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fermenters decreases less in response to a decrease in diet quality than that of ruminants 405 

(Meyer et al., 2010), leaving this speculation unresolved. When testing, the influence of rDMI 406 

and BM on MRT was significant, just as the interaction between digestion type and rDMI was 407 

significant, which indicates rDMI affects the digestion types differently. However, whatever 408 

the effect of BM on MRT may be, it cannot be expressed in terms of a simple allometric 409 

function (Table 3). 410 

5. Conclusions 411 

• The influence of BM on DMI between BM
0.75

 and BM
1.00

 was in the expected range 412 

and indicates that the food intake of the animals in this study was restricted by both 413 

energy needs and gut fill. 414 

• The results of this study indicate little influence of BM on MRT; if there is any 415 

influence at all, it will be on the size of BM
0.1

 maximally. 416 

• Digestion type (ruminant or hindgut fermenter) had a significant effect on MRT, 417 

whether in its interaction with BM or in its interaction with rDMI. 418 

• Within the hindgut fermenters, there seems to be a wider spectrum of digestive 419 

strategies than in the ruminants, making the validity of generalized conclusions in 420 

terms of ‘ruminants vs. hindgut fermenters’ questionable. 421 
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Table 1 Mean body mass (BM) [kg], dry matter intake (DMI) [kg/d] and DMI related to metabolic body size (rDMI) 525 

[g/(kg BM
0.75

*d)] (± standard deviation (SD) or individual values when n = 2)  526 

 n Sex BM SD DMI SD rDMI SD 

  [m/f] [kg]  [kg/d]  [g/(kg BM
0.75

*d)]  

Ruminants         

Domestic goat
a 

6 6
1
/0 58 4.7 1.1 0.15 51.5 5.50 

Domestic sheep
b 

3 0/3 94 4.2 1.2 0.31 39.7 9.54 

Blue wildebeest
c 

4 0/4 160* 0.0 3.4 0.25 74.5 5.59 

Oryx antelope
c 

3 2/1 170* 17.3 2.0 0.20 43.3 5.17 

Sable antelope
c 

3 0/3 170* 17.3 2.0 0.22 41.9 7.38 

Waterbuck
c 

2 2/0 210* 180/240 2.4 2.1/2.6 43.9 52.9/34.9 

Forest buffalo
c 

2 0/2 350* 350/350 5.1 4.7/5.5 63.3 68.3/58.3 

Domestic cattle
a 

3 3
1
/0 1287 25.2 8.0 1.15 37.3 4.99 

Mean       49.4 13.05 

Hindgut fermenters         

Warthog
c 

1 1/0 77 -- 1.5 -- 57.0 -- 

Domestic pony
b 

3 0/3 97 6.1 2.2 0.60 71.7 15.95 

Grevy´s zebra
c 

4 1/3 390* 20.0 8.1 2.61 91.5 25.77 

Domestic horse
d 

6 5
1
/1 564 49.2 9.8 2.26 82.8 16.75 

White rhinoceros
c 

2 2/0 1750* 1500/2000 18.6 17.2/20.0 68.4 67.0/69.8 

African elephant
c 

6 1/5 4000* 1300 51.0 13.33 103.1 24.94 

Mean        79.1 16.79 

*BM were estimated; 
a
University of Bonn, Germany;

 b
University and ETH Zurich, Switzerland; 

c
Safari  527 

Park Beekse Bergen, Netherlands;
 d

Riding stable Lückerath, Germany; 
1
males were castrated 528 
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Table 2 Chemical composition of the grass hay of the different trials (± standard deviation 529 

(SD)) 530 

Species NDF ADF ADL CP 

 [% OM] 

Warthog 75.8 41.6 4.6 12.1 

Oryx antelope and blue wildebeest 70.7 39.1 4.1 11.8 

African elephant 71.0 39.5 4.6 10.4 

Forest buffalo and waterbuck 73.4 42.0 7.8 10.9 

Grevy´s zebra and sable antelope 74.6 39.5 6.4 11.3 

White rhinoceros 64.2 34.3 5.9 11.7 

Domestic sheep and Domestic pony 71.0 39.4 5.7 7.0 

Domestic horse 66.9 30.0 3.1 9.5 

Domestic cattle 73.6 38.9 3.9 9.5 

Domestic goat 74.6 43.1 6.9 7.7 

Mean ± SD 71.5 ± 3.55 38.8 ± 3.71 5.3 ± 1.42 10.2 ± 1.76 

(NDF = neutral detergent fibre, ADF = acid detergent fibre, ADL = acid detergent lignin, CP = crude 531 
protein, NDF and ADF were corrected for ash using the insoluble ash after lignin 532 

determination)533 
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Table 3 Estimated constants of allometric equations for DMI, MRTparticle, MRTsolute and SF (variable = a BM
b
) 534 

Variable Group Statistics a (95%CI) p b (95%CI) p R2 

DMI all OLS 0.033 (0.014, 0.079) <0.001 0.85 (0.70, 1.01) <0.001 0.93 

  PGLS 0.039 (0.017, 0.087) <0.001 0.83 (0.69, 0.97) <0.001 0.92 

 rum OLS 0.066 (0.016, 0.265) 0.003 0.69 (0.43, 0.95) 0.001 0.88 

  PGLS 0.068 (0.022, 0.209) 0.001 0.69 (0.47, 0.91) <0.001 0.87 

 hf OLS 0.045 (0.019, 0.110) 0.001 0.84 (0.70, 0.98) <0.001 0.99 

  PGLS 0.045 (0.024, 0.083) 0.001 0.84 (0.74, 0.94) <0.001 0.99 

MRTparticle  all OLS 53 (16, 135) <0.001 -0.04 (-0.20, 0.13) 0.649 0.02 

  PGLS 32 (13, 74) <0.001 0.04 (-0.08, 0.16) 0.518 0.04 

 rum OLS 29 (14, 59) <0.001 0.12 (-0.02, 0.25) 0.073 0.44 

  PGLS 29 (16, 51) <0.001 0.12 (0.00, 0.24) 0.071 0.43 

 hf OLS 31 (7, 137) 0.003 0.01 (-0.23, 0.24) 0.927 0.00 

  PGLS 32 (12, 87) 0.001 0.00 (-0.16, 0.16) 1.00 0.00 

MRTsolute all OLS 30 (17, 51) <0.001 -0.00 (-0.10, 0.09) 0.935 0.00 

  PGLS 25 (15, 42) <0.001 0.02 (-0.06, 0.10) 0.626 0.03 

 rum OLS 34 (14, 84) <0.001 -0.02 (-0.19, 0.15) 0.766 0.02 

  PGLS 33 (16, 68) <0.001 -0.01 (-0.15, 0.13) 0.889 0.01 

 hf OLS 21 (7, 65) 0.002 0.04 (-0.14, 0.22) 0.574 0.09 

  PGLS 23 (11, 47) 0.001 0.03 (-0.07, 0.13) 0.581 0.05 

SF all OLS 1.84 (0.92, 3.66) 0.079 -0.03 (-0.15, 0.09) 0.545 0.03 

  PGLS 1.51 (0.81, 2.82) 0.221 0.00 (-0.1, 0.1) 1.000 0.00 

 rum OLS 0.88 (0.43, 1.78) 0.671 0.13 (0.00, 0.27) 0.048 0.50 

  PGLS 0.87 (0.49, 1.55) 0.653 0.13 (0.03, 0.23) 0.025 0.50 

 hf OLS 1.49 (0.78, 2.83) 0.162 -0.03 (-0.13, 0.07) 0.437 0.16 

  PGLS 1.48 (0.93, 2.34) 0.164 -0.03 (-0.11, 0.05) 0.495 0.15 
(BM = body mass, all = ruminants + hindgut fermenters, rum = ruminants, hf = hindgut fermenters, DMI = dry matter intake,  535 
MRT = mean retention time, SF = selectivity factor, OLS = Ordinary Least Squares, PGLS = Phylogenetic  536 
Generalized Least-Squares, CI = confidence interval) 537 
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Table 4 Mean retention time of particles (MRTparticle) and solute (MRTsolute) and  538 

selectivity factor (SF) (MRTparticle/MRTsolute) for the whole gastrointestinal tract  539 

(± standard deviation (SD) or individual values when n = 2) 540 
 MRTparticle SD MRTsolute SD SF SD 

 [h]  [h]  (MRTparticle/MRTsolute)  

Ruminants  
Domestic goat 50 5.2 32 3.3 1.6 0.21 

Domestic sheep 54 4.2 34 1.8 1.6 0.19 

Blue wildebeest 43 4.9 32 8.7 1.4 0.33 

Oryx antelope 59 7.8 30 4.5 2.0 0.21 

Sable antelope 54 15.0 37 13.1 1.5 0.33 

Waterbuck 52 42/61 27 19/34 2.0 1.81/2.19 

Forest buffalo 49 48/51 23 21/24 2.2 1.98/2.39 

Domestic cattle 75 5.0 34 0.6 2.2 0.17 

Mean 55  9.5 31 4.5 1.8 0.31 

Hindgut fermenters 

Warthog 44 -- 34 -- 1.3 -- 

Domestic pony 26 1.0 20 1.2 1.3 0.11 

Grevy´s zebra 28 7.2 25 8.5 1.2 0.20 

Domestic horse 29 5.6 25 6.5 1.2 0.15 

White rhinoceros 47 43/50 32 30/34 1.5 1.44/1.45 

African elephant 30 5.2 30 4.0 1.0 0.10 

Mean  34 9.1 28 5.2 1.3 0.16 
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Table 5 The linear regression with rDMI of different parameters (variable = a + b rDMI) for the different  541 

groups in this study 542 

Variable Group Statistics a (95%CI) p b (95%CI) p R2 

MRTparticle  all OLS 82 (67, 96) <0.001 -0.58 (-0.80, -0.36) <0.001 0.74 

  PGLS 80 (67, 94) <0.001 -0.55 (-0.75, -0.35) <0.001 0.71 

 rum OLS 81 (55, 106) <0.001 -0.53 (-1.03, -0.03) 0.042 0.53 

  PGLS 81 (62, 101) <0.001 -0.54 (-0.93, -0.15) 0.021 0.56 

 hf OLS 62 (14, 110) 0.023 -0.36 (-0.95, 0.24) 0.173 0.41 

  PGLS 61 (30, 91) 0.018 -0.34 (-0.71, 0.03) 0.148 0.45 

MRTsolute all OLS 37 (28, 46) <0.001 -0.12 (-0.26, 0.01) 0.074 0.24 

  PGLS 37 (29, 45) <0.001 -0.11 (-0.23, 0.01) 0.092 0.22 

 rum OLS 38 (22, 54) 0.001 -0.14 (-0.45, 0.17) 0.311 0.17 

  PGLS 38 (25, 51) <0.001 -0.14 (-0.39, 0.11) 0.305 0.17 

 hf OLS 34 (-1, 70) 0.054 -0.09 (-0.53, 0.35) 0.606 0.07 

  PGLS 34 (14, 55) 0.031 -0.08 (-0.32, 0.16) 0.541 0.11 

SF all OLS 2.40 (1.89, 2.92) <0.001 -0.01 (-0.02, -0.01) 0.003 0.54 

  PGLS 2.34 (1.85, 2.83) <0.001 -0.01 (-0.02, 0.00) 0.028 0.48 

 rum OLS 2.11 (0.93, 3.28) 0.005 -0.01 (-0.03, 0.02) 0.539 0.07 

  PGLS 2.11 (1.33, 2.89) <0.001 -0.01 (-0.03, 0.01) 0.339 0.09 

 hf OLS 1.84 (1.32, 2.36) 0.001 -0.01 (-0.01, -0.00) 0.029 0.73 

  PGLS 1.84 (1.47, 2.21) 0.001 -0.01 (-0.02, 0.00) 0.067 0.73 
(rDMI = relative dry matter intake, all = ruminants + hindgut fermenters, rum = ruminants, hf = hindgut fermenters, 543 
MRT = mean retention time, SF = selectivity factor, OLS = Ordinary Least Squares, PGLS = Phylogenetic  544 
Generalized Least-Squares, CI = confidence interval) 545 
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Table 6 Literature data about allometric exponents for the relationship between body mass (BM) and  546 

MRTparticle, including: exponents, sample size (n), p-value, 95% confidence interval (CI) and  547 

digestion type of the sampled animals 548 
Equation n p-value CI digestion type Source 

BM
0.30 

 - - all herbivores (based on 

theoretical calculations) 

Demment (1983) 

BM
0.28 

 - - all herbivores (based on 

theoretical calculations) 

Demment and Van Soest (1983) 

9.4 BM
0.26 

40 - - hindgut fermenters Illius and Gordon (1992) 

15.3 BM
0.25 

40 - - ruminants  

BM
0.22 

45 - - ruminants Gordon and Illius (1994) 

15.9 BM
0.31 

12 - - ruminants and macropods Robbins (1993) 

43.9 BM
0.41 

5 - - hindgut fermenters 

(marsupials) 

 

15.4 BM
0.13 

14 - - hindgut fermenters 

(eutherians) 

 

3.3 BM
0.24 

6 - - carnivores and insects  

1.6 BM
0.33 

13 - - birds  

32.0 BM
0.08 

11 < 0.05 - hindgut fermenters Owen-Smith (1988) 

22.8 BM
0.14 

9 < 0.01 - perissodactyls  

46.1 BM
0.05 

26 n.s. - ungulates  

7.3 BM
0.17 

60 - - foregut, hindgut and 

caecum fermenters  

White and Seymour (2005) 

23.6 BM
0.24 

29 < 0.001 0.16 - 0.33 caecum fermenters Clauss et al. (2007a) 

34.2 BM
0.04 

20 0.455 -0.07 - 0.14 colon fermenters  

34.7 BM
0.08 

19 0.137 -0.03 - 0.19 non-ruminant foregut 

fermenters 

 

24.7 BM
0.13 

25 0.001 0.06 - 0.21 ruminant foregut 

fermenters 

 

32.8 BM
0.07 

81 0.001 0.03 - 0.10 all herbivores > 0.5 kg  

24.4 BM
0.14 

93 < 0.001 0.10 - 0.17 all herbivores  

29.1 BM
0.12 

8 0.0730 -0.02 - 0.25 ruminants this study 

31.0 BM
0.01 

6 0.9120 -0.22 - 0.24 hindgut fermenters  

(MRTparticle = mean retention time of particle) 549 



  28 

 550 
Fig. 1. Phylogenetic tree for the studied animals  551 
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578 
Fig. 2. Relationship between dry matter intake (DMI) [kg/d] and body mass (BM) [kg] of all 579 

species of this study. (Abbreviations are the same for all figures: AE = African elephant(n = 580 

6), DC = domestic cattle (n = 3), DG = domestic goat (n = 6), DH = domestic horse (n = 6), 581 

DP = domestic pony (n = 3), DS = domestic sheep (n = 3), FB = forest buffalo (n = 2), GZ = 582 

Grevy’s zebra (n = 4), OY = oryx antelope (n = 3), SA = sable antelope (n = 3), WA = 583 

waterbuck (n = 2), WH = warthog (n = 1), WI = blue wildebeest (n = 4), WR = white 584 

rhinoceros (n = 2)) 585 

 586 
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 587 
Fig. 3. Marker excretion pattern of a forest buffalo (a), domestic horse (b), African elephant 588 

(c) and warthog (d). Solute marker (Co-EDTA), small particles (Cr-mordanted fibre, < 2 mm) 589 

(DM = dry matter) 590 
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Fig. 4. Relationship between MRTparticle [h] and body mass (BM) [kg] of all species of this 592 

study. (MRT = mean retention time) (For species abbreviations see Fig. 2) 593 
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 594 
Fig. 5. Relationship between MRTparticle [h] and rDMI [g/(kg BM

0.75
*d)] of all species of this 595 

study. (MRT = mean retention time, rDMI = relative dry matter intake, MBS = metabolic 596 

body size, BM = body mass, DM = dry matter) (For species abbreviations see Fig. 2) 597 




