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Is there convincing biological or behavioral evidence
linking vitamin D deficiency to brain dysfunction?
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ABSTRACT Vitamin D insufficiency is common in
the United States; the elderly and African-Americans
are at particularly high risk of deficiency. This review,
written for a broad scientific readership, presents a
critical overview of scientific evidence relevant to a
possible causal relationship between vitamin D defi-
ciency and adverse cognitive or behavioral effects.
Topics discussed are 1) biological functions of vitamin
D relevant to cognition and behavior; 2) studies in
humans and rodents that directly examine effects of
vitamin D inadequacy on cognition or behavior; and 3)
immunomodulatory activity of vitamin D relative to the
proinflammatory cytokine theory of cognitive/behav-
ioral dysfunction. We conclude there is ample biologi-
cal evidence to suggest an important role for vitamin D
in brain development and function. However, direct
effects of vitamin D inadequacy on cognition/behavior
in human or rodent systems appear to be subtle, and in
our opinion, the current experimental evidence base
does not yet fully satisfy causal criteria. Possible expla-
nations for the apparent inconsistency between results
of biological and cognitive/behavioral experiments, as
well as suggested areas for further research are dis-
cussed. Despite residual uncertainty, recommendations
for vitamin D supplementation of at-risk groups, in-
cluding nursing infants, the elderly, and African-Amer-
icans appear warranted to ensure adequacy. McCann,
J. C., Ames, B. N. Is there convincing biological or
behavioral evidence linking vitamin D deficiency to
brain dysfunction? FASEB J. 22, 982–1001 (2008)
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A large body of research suggests that an inade-
quate dietary supply of any of a number of essential
micronutrients (some 40 vitamins, minerals, and other
small molecule essential nutrients) can adversely affect
brain function (e.g., refs. 1–4). Some studies also sug-
gest positive effects of multivitamin and mineral sup-
plementation on cognitive function (e.g., refs. 5, 6). A
causal relationship between micronutrient deficiencies
and suboptimal brain function would have major pub-
lic health implications. Large segments of the world
(including the U.S.) population, particularly the poor,
are known to be undernourished for a number of

micronutrients (7–9). A major effort to address micro-
nutrient undernutrition as an adjunct to the various
programs under way to improve dietary habits, partic-
ularly of the poor, would be well justified. One of us has
discussed such an approach as a relatively inexpensive
and efficacious adjunct to current public health pro-
grams (10–12).

This review is part of a series intended to provide
critical summaries for a broad scientific readership of
expert opinion and the available experimental evi-
dence pertinent to whether there are causal linkages
between individual micronutrient deficiencies and
brain function. Recently, we reviewed evidence relevant
to whether a causal relationship exists between cogni-
tive dysfunction and availability during development of
the omega-3 fatty acid docosahexaenoic acid (DHA)
(2), choline (3), and iron (4).

It has been only some 25 years since the first reports
suggesting that functions of vitamin D extended well
beyond its classical role in systemic calcium homeostasis
(13). Here, we provide a brief overview of recent
mechanistic and direct evidence relevant to whether
vitamin D is linked to cognitive or behavioral function.
We also discuss the proinflammatory cytokine theory of
cognitive/behavioral dysfunction relative to the immu-
nomodulatory activity of vitamin D. Included is a criti-
cal summary of rodent studies that have examined
cognitive/behavioral performance in mice lacking a
functional vitamin D receptor, or in animals that have
been restricted for UV light and dietary vitamin D.

Primary resources were recent research reports not
yet reviewed, key earlier studies, and a large number of
expert reviews and commentaries. We searched the
literature by using a combination of techniques, includ-
ing key word and author searches of the National
Library of Medicine’s PubMed database and the Sci-
ence Citation Index Cited References database. We also
surveyed citations included in recent research and
review articles. Abstracts were not included. Because of
the broad subject matter of this review and the fact that
some subjects discussed are very active areas of re-
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search, references cited are selective, with preference
given to the most recent representative references in
order to keep the bibliography of a manageable length.

BACKGROUND

The term “vitamin D” refers to either vitamin D2
(ergocalciferol) or D3 (cholecalciferol). A major
source of vitamin D3 is fortified foods such as milk and
some cereals. Vitamin D3 is naturally present in few
foods, primarily fatty fish such as salmon, mackerel, and
sardines, whereas some vitamin D2 is found in yeast and
plants (14). Vitamin D2 is less active than vitamin D3
(15). The major source of vitamin D3 for most people
is the action of UV radiation from the sun on a
chemical in the skin related to cholesterol (7-dehydro-
cholesterol) to form cholecalciferol, which is then
enzymatically converted to 25-hydroxycholecalciferol
(25OHD3, or calcidiol). 25OHD3 is a stable circulating
form of vitamin D that is usually measured in serum to
indicate vitamin D status. The primary active form of
vitamin D is calcitriol (1�,25-dihydroxycholecalciferol),
which is formed from 25OHD3 by the mitochondrial
enzyme 1,�-hydroxylase (CYP27B1). Throughout this
review, we use the terms “calcitriol” and “25OHD3” to
refer to the active form of vitamin D and its immediate
biosynthetic precursor, respectively. The final activa-
tion step of calcitriol takes place in the kidney and in
many other tissues throughout the body, as well as in
white blood cells. (Vitamin D2 is also converted to a
dihydroxy active form.) Calcitriol synthesized in the
kidney is released into the bloodstream as a hormone,
and circulates bound to a vitamin D-binding protein.
Calcitriol is also synthesized in or adjacent to regulated
cellular targets, thus acting in an autocrine and para-
crine fashion as well. Calcitriol binds to the vitamin D
receptor (VDR), which, in turn, binds to a vitamin D
response element (VDRE) in the promoter region of
regulated genes. Many calcitriol target genes have been
identified (16–21). Calcitriol also binds to cell mem-
brane receptors (22–24), initiating rapid nongenomic
signaling, including rapid Ca2� translocation through
voltage-gated ion channels, and up-regulation of the
mitogen-activated protein kinase (MAPK) cascade via a
protein kinase C signaling pathway (25). A membrane
receptor distinct from the VDR has been described (26,
27), but the VDR may also be involved (23, 28, 29).

The classical hormonal function of calcitriol is to
control blood levels of calcium by regulating the ex-
pression of genes involved in its intestinal absorption,
renal excretion, and movement in and out of bone.
More recently, many other so-called noncalcemic func-
tions of calcitriol have been identified, which include
regulation of proliferative and apoptotic activity, immu-
nomodulatory and prodifferentiation activity, and in-
teraction with the rennin-angiotensin system (involved
in the regulation of blood pressure), insulin secretion,
and neuroprotective functions. These diverse functions
are discussed in many general reviews; a few are cited

here (13, 22, 23, 30–39). In this review, we will discuss
a subset of these functions as they relate to the possible
need for vitamin D for cognitive or behavioral function.

VITAMIN D STATUS, INSUFFICIENCY,
AND DEFICIENCY

Vitamin D status is currently indicated by 25OHD3
concentration in serum (14). The National Academy of
Sciences (NAS) used a cutoff value of 27.5 nmol/L
(�11 ng/ml) 25OHD3 to indicate “vitamin D defi-
ciency” for the purposes of setting Dietary Reference
Intakes for vitamin D (14). The term “vitamin D
insufficiency” represents the 25OHD3 concentration
below which a subclinical deficiency is considered to
exist; the cutoff value has generally been considered to
correspond to the lower limit of the range of 25OHD3
in a normal population. The NAS cites several cutoff
values determined from different populations, ranging
from 37.5 nmol/L (15 ng/ml) to 77.5 nmol/L (31
ng/ml). Some experts have suggested that these cutoff
values be raised (e.g., refs. 40, 41). In this review, we use
the general terms “low vitamin D” or “vitamin D
inadequacy” to indicate either vitamin D insufficiency
or deficiency. In discussing specific studies, we specify
25OHD3 concentrations when reported. Since calci-
triol is synthesized and acts locally in a paracrine or
autocrine fashion in the brain (as well as in many other
tissues), it is likely that circulating concentrations of
25OHD3 will have a complex relationship to localized
concentrations of calcitriol.

EXPERIMENTAL DESIGNS

The evidence to be discussed involves primarily three
basic experimental designs. First, the supply of vitamin
D or calcitriol were manipulated in vitro or in vivo by
creating the conditions of vitamin D inadequacy
through restricting exposure to UV radiation and lim-
iting dietary intake or through increasing supply by
supplementing the cell culture medium or treating
subjects orally or by injection. Second, the functionality
of calcitriol was restricted by using a mouse knockout
strain (42) lacking a functional VDR (VDR-KO) (43).
And third, experimental or population groups were
examined for associations between blood concentra-
tions of 25OHD3 and behavioral or biochemical end-
points.

RELEVANCE OF THE EXPERIMENTAL
DATABASE TO HUMANS

The majority of evidence concerning the biology and
mechanisms of action of vitamin D in the brain and
most of the direct evidence for effects of vitamin D
inadequacy on cognitive or behavioral function rely on
experiments conducted in laboratory rats or mice. The
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rodent strains used were all derived from species (Rat-
tus norvegicus and Mus musculus) (44), known to be
largely, though not exclusively, nocturnal (45). They
are thus expected to be less exposed to sunlight than
humans. It is unclear how this difference between
rodents and humans might be reflected in differences
in vitamin D biology or in sensitivity to limited availabil-
ity of vitamin D. On the one hand, there is a large body
of evidence indicating that vitamin D plays a key role in
many important biological processes in both the devel-
opment and function of the rodent nervous system, as
will be briefly summarized here. And, on the basis of
the very few comparative studies of which we are aware,
there is evidence to suggest some striking similarities
between humans and rodents. For example, vitamin D
is synthesized in the skin in both rats and humans (46,
47), the distribution of VDR in human and rat brains is
very similar (48), apoptotic effects of calcitriol on brain
glial cells appear to be similar whether cells are from
humans or rats (49), and serum concentrations of
vitamin D-binding protein are similar in laboratory rats
and humans (50). On the other hand, all of calcitriol’s
effects in humans and rodents are not the same. For
example, calcitriol stimulates the production of the
antimicrobial peptide cathelicidin in humans, but not
mice (51, 52). Also, it has recently been demonstrated
that, in rats, lithocholic acid can substitute for vitamin
D under conditions of deficiency (53). It is not known if
this mechanism exists in humans. Throughout the review,
we have attempted to take the possibility of significant
species differences in vitamin D biology into account in
presenting and discussing experimental results.

MECHANISTIC EVIDENCE THAT LINKS
VITAMIN D TO BRAIN DEVELOPMENT
AND FUNCTION

Below are brief summaries of immunohistochemical,
biochemical, and molecular biological evidence that
point to the involvement of calcitriol in brain develop-
ment and function. Because of the enormous size of the
relevant literature, several examples have been selected
for discussion, and references to more detailed treat-
ment of specific topics are provided. The sections below
point to: the ubiquitous presence of VDR and 1,�-
hydroxylase (the terminal rate-limiting enzyme in the
synthesis of calcitriol) in the brain; examples illustrat-
ing the involvement of calcitriol and its target gene
products in neuronal differentiation and brain func-
tion; and the involvement of calcitriol-mediated mem-
brane processes in brain function.

VDR and 1,�-hydroxylase, the terminal calcitriol-
activating enzyme, are distributed throughout both
the fetal and adult brain

VDR have been identified in more than 50 tissues (54).
VDR and 1,�-hydroxylase (55) are distributed through-

out the human adult brain (48, 56) and the rodent
adult (57–61) and fetal (62–64) brain. The distribution
of VDR in human and rodent brains is very similar (48).
VDR have been reported in the nuclei of a number of
cell types in the central nervous system (CNS), includ-
ing microglia, astrocytes, oligodendrocytes (the cells
that make myelin), and Schwann cells, their counter-
part in the peripheral nervous system (60, 65–67). VDR
have been detected in the rat fetal brain at all times
examined (as early as ED12) (62, 64), increasing in
number until birth (64). Calcitriol can cross the blood-
brain barrier (68), but it is also synthesized in the brain
(48). Calcitriol injected into hamster brains was found
strongly concentrated in the nuclei of neurons in several
brain regions involved in memory and cognition (59).

Vitamin D target genes in the brain

As indicated above, the expression of many genes has
been shown to be affected by calcitriol treatment, but
only a relatively small number of studies have investi-
gated target genes in brain tissues or cells. Specific gene
products whose expression in the brain or brain cells
has been shown to be altered by calcitriol treatment are
summarized in Table 1 (57, 68–81). Recently, effects
on expression of multiple genes and proteins in brain
tissue from offspring restricted for dietary vitamin D
and UV radiation during fetal development were re-
ported (21, 82). These are the first studies of which we
are aware that examined effects of vitamin D deficiency
on gene or protein expression. For general discussion
of calcitriol target genes, see several reviews (30, 36–38,
83, 84).

Several gene products that have specific relevance to
cognitive or behavioral function are discussed further
below.

Neurotrophins (NGF, NT-3, NT4/5) and the
neurotrophic factor GDNF

Neurotrophins are secreted proteins that support the
survival and differentiation of neurons (85, 86) and
also function in the adult brain. Of the 4 neurotrophins
in mammals (NGF, BDNF, NT-3, and NT4/5), calcitriol
affects the expression of 3 of them, as indicated above.
NGF is present mainly in the hippocampus and neo-
cortex, where it affects neurotransmission and synaptic
plasticity (85). Functions of the other neurotrophins
linked to calcitriol include enhancement of synaptic
transmission in the hippocampus by NT-3 (87), and
involvement in calcium signaling by NT4/5 (88).

GDNF (73, 89) is another type of neurotrophic
factor. It is a distant member of the transforming
growth factor � (TGF�) superfamily. GDNF is ex-
pressed in neural and non-neural tissues (85). In the
brain, GDNF affects the survival and differentiation of
dopaminergic cells (90, 91) and is present at relatively
high levels in the developing striatum of the rat (91).
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Recent evidence indicates its probable involvement in
synaptogenesis (92). In striatal neurons in vitro, GDNF
treatment activated intracellular signaling involving the
p42/p44 MAPK pathway and increased dendritic ar-
borization of the neurotransmitter �-aminobutryric
acid (GABA)- and calbindin-positive neurons (93).

GDNF treatment rescued damaged dopamine neu-
rons and associated functions in rodent and primate
Parkinson’s models (94–98), possibly by reducing oxi-
dative stress (99). In the Parkinson’s model in rats,
calcitriol treatment also attenuated neurotoxicity (100,
101). Results of GDNF treatment in alleviating Parkin-
son’s symptoms in human clinical trials have been
mixed (102–106); treatment with calcitriol or calcitriol
analogues has not been investigated. In a different
rodent model of neurotoxicity, neuroprotective effects

were dose dependent and were elicited with calcitriol at
the same concentrations that also increased GDNF
levels (107).

Calcium-binding proteins

Many calcium-binding proteins are present throughout
the body (108) and in the CNS (109, 110). As indicated
above, three have been shown to be modulated by
vitamin D in brain tissues or cells—calbindin-D28K,
parvalbumin, and calretinin (76, 111). All three of
these calcium-binding proteins are widely distributed in
both the adult and fetal brain. In the adult brain, each
of these proteins is uniquely distributed, and they also
exhibit temporal patterns during development (112–
115) and aging (116). They fill the cytoplasm of neu-
ronal processes, are commonly used as neuronal mark-
ers (117), and are present in some areas of the brain at
very high concentrations. For example, calbindin-D28k
comprises some 15% of the total protein in adult
Purkinje cells in the cerebellum (110). All three pro-
teins are believed to serve a neuroprotective role as
calcium buffers (e.g., ref. 118), but they are also in-
volved in critical brain functions. Additional informa-
tion on the functions of parvalbumin and calretinin in
the brain can be found in refs. 109 and 119.

In addition to its calcium-buffering properties, cal-
bindin-D28k undergoes a conformational change on
binding Ca2� and functions as a Ca2� sensor (120,
121). It is required for normal signaling of synaptically
evoked calcium transients (122) and is involved in
synaptic plasticity (123), long-term potentiation (LTP)
(124), and memory formation (125, 126), and possibly
in the regulation of exocytosis (synaptic secretion of
neurotransmitters) (127). Also, in Purkinje cells in the
cerebellum, calbindin-D28k appears to be directly in-
volved in motor control (122, 128), which could suggest
a possible mechanism explaining motor deficits ob-
served in vitamin D-deficient rats (see below).

Possible linkages to vitamin D in the brain have not
been specifically examined for calmodulin, another
important calcium-binding protein in the brain (129),
although two studies reported that calcitriol treatment
shifted the intracellular distribution of calmodulin
(130) and that calmodulin is involved in calcitriol-
regulated intracellular calcium homeostasis (131) in
chick embryo muscle cells. In the brain, calmodulin is
involved in neurotransmitter activity (132), NMDA-
induced synaptic plasticity (133), and short-term plas-
ticity (transient alteration of the efficiency of synaptic
transmission between neurons) (134). Calcium/cal-
modulin-dependent protein kinase II (CAM kinase II)
is highly concentrated in neurons and is believed to
play a central role in a variety of brain functions,
including learning and memory; it has been suggested
that CAM kinase II is the molecular basis of long-term
synaptic memory (135–138).

TABLE 1. Calcitriol target genes in the brain

Gene products whose expression in the brain or brain cells
has been reported to be affected by calcitriol

Neurotrophins and other growth factors
NGF (69–71), NT-3 and NT-4/5 (72), GDNF (73, 74),

TGF-�2 (75)
Calcium-binding proteins

Calbindin D28K, parvalbumin, calretinin (76, 111)
Protein subunits for l-type voltage-sensitive Ca2�

channels (l-type VSCCs) (141, 148)
Transcription factors or enzymes involved in signal

transduction pathways
N-myc, c-myc, protein kinase C family (PKC) (75)

Other enzymes
Choline acetyltransferase, responsible for synthesis of

the neurotransmitter acetylcholine (77)
�-Glutamyltranspeptidase, involved in recyling of the

reactive oxygen species scavenger glutathione (78)
Hormones

Oxytocin, the “trust hormone”a

Biochemical or cellular brain functions in which calcitriol
target gene products are involved

Synaptogenesis (formation of synaptic connections)
Synaptic plasticity (e.g., memory formation)
Calcium signaling and homeostasis
Neurotransmission and neurotransmitter synthesis
Survival and differentiation of dopaminergic and other

neurons
Control of toxic free radicals

Behavior affected by target gene product dysfunction

Learning and memory
Motor control
Maternal or social behavior
Aging (neuronal density)

See text for additional references and discussion. aRecently, an
in silico study identified the VDR DNA binding sequence in the
oxytocin receptor gene (16). On the basis of the colocalization of the
VDR receptor with oxytocin immunoreactivity in the rat hypothala-
mus, it was suggested that calcitriol may affect the expression of
oxytocin (79). Oxtocin, termed the “trust hormone,” is involved in a
variety of physiological processes, including labor induction and the
milk-eject reflex, as well as stimulating the feeling of trust (80).
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Other effects of calcitriol on intracellular
calcium homeostasis

One mechanism by which calcitriol regulates cellular
calcium homeostasis is by down-regulating the expres-
sion of voltage-sensitive calcium channel transcripts
(139, 140), which has been demonstrated in primary
rat hippocampal cells (141). Fluxes in intracellular
calcium concentration regulate many essential cellular
signaling processes throughout the body, including cell
cycle progression, apoptosis, and transcription (142–
144). In the brain, neuronal firing depends on intra-
cellular calcium flux, which also appears to play an
important role in developmental processes, including
neurogenesis, synaptogenesis, myelination, and neuro-
transmitter release (142, 145–147). In addition, dis-
turbed calcium homeostasis is a characteristic of the
neurotoxicity of neurodegenerative disorders such as
amyotrophic lateral sclerosis (ALS) (76). Effects on
L-type voltage-sensitive calcium channels and neuro-
protection were observed to occur at the same concen-
trations of calcitriol treatment (148). Increased L-type
voltage-sensitive calcium channel current is associated
with neuron aging; treatment of aged rats with calcitriol
restored current activity to that seen in younger animals
(141).

Neurogenesis is stimulated by calcitriol and some of
its target gene products

As discussed in several reviews (14, 149–151), calcitriol
acts as a prodifferentiation hormone in many tissues.
With reference to the brain, it is of interest that the
increase in apoptotic cells and decrease in mitosis in
the developing rat brain correlates with the appearance
of VDR (64). Chronic treatment with calcitriol or its
analogs increased neurite outgrowth (and some other
markers of differentiation) in human neuroblastoma
cells in some experiments (61, 152), but not others
(153, 154), possibly due to the use of different neuro-
blastoma cell lines (153). In rodents, calcitriol treat-
ment stimulated neurite outgrowth in embryonic hip-
pocampal explant cultures (155) and in a hippocampal
progenitor cell line (156).

Some vitamin D target gene products have also been
observed to stimulate neurite outgrowth in rodent
brain cells in vitro. For example, GDNF treatment of
embryonic striatal (93) or ventral mesencephalic (91)
cells resulted in biochemical and morphological evi-
dence of differentiation. In rodent systems, overexpres-
sion of calbindin-D28k resulted in neurite outgrowth of
dopaminergic neuronal cells (157) and hippocampal
progenitor cells (158).

Adult neurogenesis is a very active area of research
(159, 160). Adult stem cells are believed to be located
in only two regions of the adult brain. One group of
neural stem cells originates in the subventricular region
of the forebrain and migrates to the olfactory bulb; the
second group originates in the subgranular zone of the
hippocampus and differentiates into neural and glial

cells in the dentate gyrus (161, 162). In both cases, new
neurons are local-circuit interneurons that link motor
and sensory neurons (163).

To our knowledge, the possible involvement of cal-
citriol in adult neurogenesis has not been examined. It
is of interest that VDR appear to be essential for the
function of at least one type of non-neural stem cell
(keratinocyte stem cells) (164). With specific reference
to the brain, VDR are widespread in both the olfactory
bulb and the dentate gyrus in rodents (65) and were
recently observed in the subventricular zone of the
neonatal brain (165). Furthermore, an increased den-
sity of hippocampal neurons was observed in some rat
strains supplemented for 6–12 mo with calcitriol (20
ng/rat, administered subcutaneously 5�/wk) (166).
Collectively, this evidence suggests the possibility that
calcitriol could stimulate adult neurogenesis.

Morphological and biochemical effects
of vitamin D restriction

Some morphological and biochemical changes were
observed in the brains of newborn Sprague-Dawley rats
whose serum 25OHD3 levels were �90% lower than
controls after dams were restricted for dietary vitamin D
and UV radiation 6 wk prior to and during pregnancy
(167). These changes included a longer cortex and
enlarged ventricles, reduced expression of NGF and
GDNF, and the low-affinity p75 receptor (83), an
increased number of mitotic cells, and a decreased
number of apoptotic cells (168). Using the same dietary
restriction protocol, at 10 wk of age, enlarged ventricles
and reduced expression of nerve growth factor were
also observed (169). In an experiment in which 3-wk-
old rats were fed a vitamin D-deficient diet for 4 wk,
one-half of the animals were also injected i.p. with
calcitriol (300 ng/100g b.w.) (170). In the diet-re-
stricted groups not injected with calcitriol, results in-
cluded decreased phosphorus and increased citrate
concentrations in cortical homogenates, increased ace-
tylcholinesterase, glucose-6-phosphate dehydrogenase,
and acyl phosphatase activities in cortical synapto-
somes, and increased NAD�-dependent isocitrate dehy-
drogenase in cortical mitochondria. None of these
changes occurred in the diet-restricted groups injected
with calcitriol (170). Finally, reduced concentrations of
brain calcium (10–24%) were observed in vitamin D
diet-restricted rats under conditions that resulted in a
50% reduction in serum calcium (171).

EVIDENCE THAT LINKS VITAMIN D
INADEQUACY TO COGNITIVE OR
BEHAVIORAL DYSFUNCTION

Humans

A possible linkage of low vitamin D to schizophrenia
was hypothesized (172) and reviewed by J. J. McGrath
and colleagues (173–175). Evidence includes the asso-
ciation of schizophrenia with winter births, its greater
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frequency in dark-skinned migrants to cold climates,
and the variation in incidence and prevalence of schizo-
phrenia with latitude (172, 175, 176). It is also notewor-
thy, as investigators point out (83), that two morpho-
logical changes observed in the brains of rats diet-
restricted for vitamin D (see above) are enlarged
ventricles and a thinner cortex, both of which are
consistent with changes consistently observed in the
brains of humans with schizophrenia (177). Two small
studies directly tested for an association between low
25OHD3 and schizophrenia in humans (178, 179). One
of these studies (179) retrospectively compared the use
of vitamin D supplements during the first year of life
with subsequent development of schizophrenia. A sig-
nificantly reduced risk of developing schizophrenia was
observed in males who consumed supplements, but not
in females (179). The second study (178) compared
25OHD3 concentrations in banked sera from the third
trimester of mothers of offspring with schizophrenia
and healthy controls, and concluded that results in an
African-American subgroup (only 7 individuals) were
suggestive of an association, although it was not statis-
tically significant. Another study (180) searched for
VDR gene variants in a small (n�100) population of
individuals with schizophrenia. Two of 14 African-
American patients contained a novel variant compared
to none in African-American controls; the result was
not significant, but was suggestive (P�0.08). Studies
examining VDR polymorphisms (181) and cosegrega-
tion of psychosis and rickets phenotypes in an inbred
family (182) were also negative.

The initial suggestion that low vitamin D might be
linked to depression was based on the higher incidence
of seasonal affective disorder (SAD) in winter, when
exposure to UV in sunlight is low (183). Currently, the
most effective treatment for SAD is treatment with
bright light that does not include UV (184). Most
current research assumes that SAD is a circadian disor-
der and that light acts through the eye (185–187),
although this has not been proven. One randomized
controlled trial (RCT) that specifically tested for the
effectiveness of vitamin D2 treatment (105 IU, single
dose) on SAD patients reported positive results (188).
Four other RCTs compared measures of perceived
well-being before and after treatment with vitamin D3,
with mixed results: positive (1000 IU/day for 6 mo
(189), 400–800 IU/day for 5 days (190); negative (800
IU/day for 6 mo (191), 1000 IU/day for 6 mo (192). It
is difficult to directly compare these RCTs since patient
populations, supplementation protocols, durations,
and endpoints differed. A recent small (n�80) cross-
sectional study reported an association between lower
serum concentrations of 25OHD3 and depression in a
group with mild symptoms of Alzheimer’s disease (AD)
compared to normal controls (193), but since neither
subjects nor controls were institutionalized, it is diffi-
cult to rule out obvious confounders such as less
exposure to sunlight in the AD group. Thus, while the

seasonal and latitudinal associations of SAD are intrigu-
ing observations and are to some extent supported by
RCTs, results are mixed.

We also note several additional recent studies in
humans: 1) an interesting report of differences in
performance of 563 elderly participants on tests mea-
suring several aspects of cognitive function and depres-
sion associated with specific VDR polymorphisms
(194); 2) a higher frequency of a VDR polymorphism in
Alzheimer patients (n�104) compared to age-matched
controls (195); and 3) a significant positive correlation
(P�0.01) between serum 25OHD3 concentrations and
scores on the minimental state examination (MMSE)
(a performance test assessing cognitive function) in a
retrospective chart review of data obtained on 32
older adults referred to a clinic because of symptoms
of dementia; the study did not consider potential
confounders, such as the possibility that greater
degrees of dementia might result in less sun expo-
sure (196).

Rodents

Motor activity and cognitive or behavioral effects were
examined using two experimental systems, both de-
signed to impair ability to utilize vitamin D during brain
development. One system utilizes Sprague-Dawley rats
made vitamin D deficient using dietary and UV radia-
tion restriction (197–203), resulting in a greater than
90% reduction in serum 25OHD3 concentration in
neonates (83). The second system uses mice containing
defective VDR that bind calcitriol but cannot bind to
DNA (43) (VDR-KO mice) (204–212). VDR-KO mice
appear normal in growth rate until after weaning, when
they develop a phenotype similar to Type II hereditary
rickets in humans (28, 42, 213, 214). The animals
usually die by 15 wk of age unless they are fed a special
diet (215).

In a series of studies, A. V. Kalueff, who has discussed
his work in several recent reviews (38, 68, 84), reported
that VDR-KO offspring exhibit a variety of behavioral
abnormalities, including aberrant grooming (205, 208,
209) and nest-building activities (206, 210), neglectful
or cannibalistic maternal behavior, and submissive so-
cial behavior (206). Using the dietary restriction model,
an Australian group (J. J. McGrath, D. W. Eyles, A.
Mackay Sim, and collaborators) reported several other
abnormalities, including hyperlocomotion in the hole-
board or open-field tests (199, 201), the absence of
latent inhibition in a shuttle-box test (197), and less
habituation as measured by head-dipping in the hole-
board test (197, 198). On the basis of these results, the
Australian group recently suggested that the gestational
vitamin D dietary restriction design may be a useful
model for studying mechanisms of schizophrenia (198,
201).

Although a detailed critical analysis of all of these
studies is beyond the scope of this review, we raise
several issues below that suggest that further work is
needed to definitively establish that effects observed are
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independently reproducible and that they are directly
related to brain development. Results reported for all
of the activity or behavioral endpoints examined using
both models are summarized in Table 2. Experiments
using the dietary restriction and VDR-KO models can-
not, strictly speaking, be directly compared because of
obvious species and protocol differences. However,

since both models severely limit the ability of the
organism to utilize vitamin D during brain develop-
ment, it is useful to consider whether similar perfor-
mance endpoints are affected. Therefore, Table 2 is
organized by type of test rather than experimental
system. For clarity, experiments using the dietary re-
striction model are in italics, and those using VDR-KO

TABLE 2. Activity and cognitive or behavioral tests of vitamin D-restricted rats or VDR knockout mice

Test

Investigator-reported resultsa

Positive Negative

Exploratory and activity
testsb

Open field: less distance traveled and/or less
rearing (203–205)c (216); greater distance
traveled and more rearing (201)

Bedding/nest-building tests: impaired digging
activity (204); less paper damage and less
accurate nests (206, 210)

Marble burying test: fewer marbles buried
(204)

Swimming behavior: more immobility, sinking,
rotations (207); reduced ability to float
(211)

Light-dark box: less exploration of the light
area (205)

Stabilimeter (216)
Forced swim test (199)
Y-maze: distance traveled, time spent in

each arm, arm entries (204)
Actometer (205, 207, 208)
Food finding (205, 208)
Object finding (205, 207)

Holeboard: fewer head dips at baseline and less
habituationd (197, 198); less distance traveled
(205, 208); more distance traveled (birth group
only)e (199, 202); fewer head dips (205)

Holeboard: head dips (199, 202, 208);
distance (197, 198); weaning and life
groups only (199)e

Rotarod: shorter time on the rotarod (204) Horizontal bar test (205)
Spatial learning Radial maze: more time in the maze (216) Radial maze (197)

T-maze reversal (216)
Y-maze (212)

Conditioned learning Shuttle box: more avoidance reactions in initial
training (197)

Brightness discrimination: fewer errors after 24 h
retention interval (197)

Anxietyf Elevated plus maze (199); birth group only (205) Elevated plus maze (199, 204, 208) weaning
and life groupse

Longer latency to eat novel food (212)
Developmental measures Shorter gait (204) Developmental signs: self-righting reflex,

posture (203), SHIRPA screen (204)
Vertical screen: shorter retention time (207)

Other behavioral Grooming behavior: increased grooming
activity (205, 208); abnormal grooming
sequence (209)

Grooming activity (202, 211)
Social interaction with nonaggressive mice

(199, 206)
Tail suspension (depression test): longer latency

to immobility (206)
Two-bottle preference gustatory test (212)
Buried food pellet olfactory test (212)

Social confrontation: more submissive (206)
Aberrant maternal behavior: neglect,

cannibalism (206)
Acoustic startle: impaired PPI at 10 wkg (200);

lower PPI scores at long, but not short,
prepulse to pulse interval times (204)

Acoustic startle: n.s. at 5 wk (200); n.s. at
10 wk (199, 202)

aResults obtained using a UV radiation and dietary vitamin D restriction model are in italics, and results obtained using VDR-KO mice are
underscored. Note that results that are in italics and underscored were obtained using both systems. bOpen field, light-dark box, and holeboard
tests are usually considered to have an anxiety component, but they also have significant exploratory and activity components, and for those
reasons are listed in that section of the table, but cross-referenced in the Anxiety section. cO’Loan et al. (203) was primarily aimed at examining
effects of MK-801 on activity. Examination of Fig. 2 in that article suggests that, among controls not injected with MK-801, the vitamin
D-restricted group traveled less distance than nonrestricted animals, though investigators do not discuss this finding. dInvestigators reported that
the vitamin D-restricted group demonstrated less habituation than controls because head-dipping decreased over time in controls, but remained
relatively constant in the test group. We note that, in both experiments (197, 198), the restricted group had fewer head dips than controls at
all time points examined, which could suggest a more complex interpretation. eGroups in this study were birth group, deprived of dietary
vitamin D from prior to gestation to birth; weaning group, deprived of vitamin D prior to gestation through PND21; and life group, deprived
of vitamin D from prior to gestation to PND70. fSee also results for the holeboard, open field, and light-dark box tests in the Exploratory and
Activity Tests section above. gPositive result only in the life group; other groups were negative.
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mice are underscored. Several observations are appar-
ent from an examination of Table 2.

First, some results appear to have been inconsistently
observed. 1) Hyperlocomotion, measured as “distance
traveled” in holeboard or open-field tests, was inconsis-
tently observed using the gestational dietary restriction
protocol, as also noted by investigators (202). Specifi-
cally, greater distance traveled was reported in several
studies (199, 201, 202) but not observed in other
studies from the same laboratory using the same gesta-
tional dietary restriction protocol (197, 198). Further-
more, less distance traveled was observed in an older
dietary restriction study involving adult rats (216), and
no differences were observed if the period of dietary
restriction was extended beyond birth (199). Using
VDR-KO mice, less distance traveled was observed in all
three experiments from both laboratories that exam-
ined this endpoint (204, 205, 208). 2) Several reports of
altered grooming activity in VDR-KO mice from the
Kalueff group (205, 208, 209) are in apparent contrast
to reports of normal grooming activity from the Aus-
tralian group using the same VDR-KO mutant (204,
211). The two experiments were not identical, and the
different results could be due to a variety of factors,
including the somewhat larger group sizes in the posi-
tive study; its use of only males (vs. mixed sex groups),
animals with an isogenic (vs. mixed) genetic back-
ground, and use of different dietary methods to rescue
VDR-KO offspring. 3) Other differences in results
obtained using the dietary restriction and VDR-KO
systems are also evident in Table 2. These differences
could be due to many factors, including differential
effects in the two models on ability to utilize vitamin D,
differences between rats and mice, or other method-
ological differences. However, since all protocols (with
one exception (216)) should have resulted in vitamin D
inadequacy during development, the lack of consis-
tency makes it difficult to conclude there is a clear
effect on these endpoints.

Second, only a few tests were specifically targeted at
learning. Results in several spatial learning tests were
predominantly negative (197, 212, 216). A brightness
discrimination test suggested that vitamin D-restricted
animals performed better than controls in a relearning
task (197), and a test for latent inhibition in a shuttle
box test was positive (197).

Third, potential confounders were not, in general,
assessed in the studies reviewed. For example, VDR-KO
offspring appear normal in growth rate and behavior
until after weaning, when they develop a phenotype
similar to Type II hereditary rickets in humans (28, 42,
213, 214). The animals usually die by 15 wk of age
unless they are fed a special diet supplemented with
calcium, phosphorus, and lactose (215). In studies
from A.V. Kalueff and colleagues, this antirachitic diet
was used (e.g., ref. 207); in studies from J. J. McGrath,
D. W. Eyles, A. Mackay-Sim, and colleagues, a normal
diet supplemented with calcium was used (e.g., ref.
204). Since virtually all performance tests required
movement and since it is not clear to what degree these

diets attenuated the rachitic phenotype, conclusions of
effects on brain function based on tests requiring
movement must be considered uncertain, as has been
pointed out (211). In addition, the VDR-KO phenotype
is characterized by alopecia, which, in the absence of
information on effects of nonvitamin D related alope-
cia on grooming, must be considered a potential con-
founder.

ARE CAUSAL CRITERIA SATISFIED?

We have previously used five causal criteria (slightly
adapted from the original formulation; ref. 217) to
evaluate the strength of evidence linking the availability
of a micronutrient to cognitive or behavioral function
(2–4). These criteria are: 1) a plausible biological
rationale, 2) a consistent association, 3) specificity of
cause and effect, 4) a dose-response relationship (i.e.,
demonstrating that the intensity of effect depends on
the degree of deficiency or supplementation), and 5)
ability to experimentally manipulate the effect (e.g.,
reversibility of effects).

On the basis of the experiments reviewed above, the
criterion most convincingly satisfied is a plausible biolog-
ical rationale. Evidence includes the widespread pres-
ence of VDR and 1,�-hydroxylase (the terminal rate-
limiting enzyme in the synthesis of calcitriol) in the
developing and adult brain, and the known involve-
ment of some calcitriol target gene products (e.g., the
neurotrophins NGF, NT-3, and NT4/5; GDNF; and the
calcium-binding proteins calbindin-D28k, parvalbu-
min, calretinin, and possibly calmodulin) and calcitriol-
regulated processes (i.e., L-type voltage-gated calcium
channels) in critical functions required for cognition
and behavior.

Among the studies that examined possible associa-
tions between vitamin D inadequacy or treatment and
cognitive or behavioral performance in humans or
rodents, some evidence of association is provided, but,
as discussed above, effects are subtle and some results
have not yet been replicated, suggesting more work is
needed (see Discussion and Conclusions). Specificities of
cause and effect pertain to potential confounding in
experiments that measure disease or performance out-
comes, which has not been sufficiently accounted for in
the studies reviewed. For example, as investigators
point out, the consistent associations of schizophrenia
or SAD with winter or northern latitude could obviously
be due to many factors other than to lower serum
concentrations of 25OHD3. And, altered motor activity
of VDR-KO mice, or rats whose dams were subjected to
dietary and UV radiation restriction during pregnancy,
could be due to effects of vitamin D inadequacy on
bone and muscle development (218) rather than to
effects in the brain. The evidence base is not yet
extensive enough to permit a discussion of the other
two causal criteria.
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PROINFLAMMATORY CYTOKINE-INDUCED
COGNITIVE/BEHAVIORAL DYSFUNCTION:
COULD LOW 25OHD3 STATUS BE AN
EXACERBATING FACTOR?

As discussed in many reviews, a significant body of
evidence suggests that elevated levels of proinflamma-
tory cytokines in the brain can play a causal role in
depression (219–234). Cytokines are small proteins
synthesized by cells directly involved in immune func-
tion, such as macrophages and their counterparts in
the brain, microglia, and also by many other nucleated
cells in the body. Among a range of functions (e.g., ref.
235), cytokines play a key role in the inflammatory
process (236). There are many cytokines; at least 30
interleukins (IL-1, IL-2, etc), and others such as TNF-�,
TGF-�, and the interferons (e.g., IFN-�). Most cytokines
can be classified as either proinflammatory or antiin-
flammatory.

Evidence from a variety of systems supports the
proinflammatory cytokine theory of depression, first
proposed some 25 years ago (237). In humans, support
is provided from studies of clinical depression, sickness
behavior resulting from infection, illnesses accompa-
nied by inflammation (e.g., autoimmune diseases, heart
disease, osteoporosis), chemotherapy, or experimental
treatments with endotoxin. Supporting studies in ani-
mals involve treatment with proinflammatory cytokines
or use of rodent models of human inflammatory dis-
eases (e.g., experimental immune encephalitis, a model
of MS, or the streptozotocin model of type 1 diabetes).

Primary evidence (see reviews cited above for specific
references) includes 1) associations or correlations
between the severity of depression and increased concen-
trations of inflammatory markers; 2) several plausible
mechanisms based on observations that proinflammatory
cytokines alter neurotransmitters, neuropeptides, and the
HPA axis, which are also altered in depression; 3) evi-
dence that depression is induced in patients with cancer
or infectious diseases by cytokine therapy with IFN-�,
which induces other proinflammatory cytokines; 4) evi-
dence that psychological stress, known to be strongly
associated with depression, induces proinflammatory cy-
tokines; 5) evidence that antidepressants and some other
treatments for depression are anti-inflammatory; 6) con-
trolled experiments in humans treated with endotoxin
that demonstrate cognitive/behavioral effects; and 7)
experiments in rodents demonstrating that cognitive dys-
function or depressive-like behavior can be elicited by
treatment with proinflammatory cytokines such as IL-1�
and prevented by antagonists (e.g., refs. 238–241).

Calcitriol’s complex, and still incompletely under-
stood, interactions with the immune system have been
discussed in many expert reviews (e.g., refs. 31, 36,
242–244). Discussion of these interactions is beyond
the scope of this review. However, important elements
in calcitriol’s spectrum of function appear to be the
modulation of enhanced cellular immune response
pathways (Th1) or autoimmune (loss of tolerance)
responses. Thus, calcitriol appears to participate in

regulating Th1:Th2 balance by down-regulating the
Th1 pathway, promoting the Th2 pathway, and promot-
ing tolerance by enhancing the production of T regu-
latory cells. These regulatory shifts are accomplished in
part by decreasing the production of proinflammatory
cytokines and increasing the production of antiinflam-
matory cytokines.

There is considerable direct evidence for a modula-
tory effect of calcitriol treatment on proinflammatory
cytokines both in vitro and in vivo. A few examples are
listed: 1) decreased production of proinflammatory
cytokines (or increased production of anti-inflamma-
tory cytokines) in a variety of cell types; examples
include monocytes (245–247), microglia (an important
source of proinflammatory cytokines in the brain)
(248), keratinocytes (249, 250), endothelial cells (251),
and human benign prostatic hyperplastic cells (252); 2)
decreased serum concentrations of the proinflamma-
tory cytokine TNF-� and increased concentrations of
the antiinflammatory cytokine IL-10 in a recent ran-
domized controlled trial (RCT) involving vitamin D3
supplementation of congestive heart failure patients
(253); 3) decreased TNF-� levels and suppressed dis-
ease symptoms in a rodent model of inflammatory
bowel disease (IBD) after treatment with calcitriol and
calcium (254); 4) higher levels of proinflammatory
cytokines in VDR-KO mice, which are more susceptible
to induced IBD (255); and 5) an inverse correlation of
25OHD3 status with inflammation markers in a study of
171 healthy adults (256) and a positive correlation with
IL-10 (an antiinflammatory cytokine) concentrations in
cord blood (257).

The down-regulation by calcitriol of NF-	B, a central
mediator of inflammation, (see reviews cited above)
(258) is also consistent with calcitriol’s modulatory
effect on proinflammatory states. NF-	B is induced in
the brain following treatment with the proinflamma-
tory cytokine IL-1 and is believed to mediate its adverse
behavioral effects (259). Increased concentrations of
NF-	B are also linked to increased stress in humans
(260) and to stress-induced neuronal cell loss in ro-
dents (261).

While cytokine signals from the periphery can be
transmitted to the brain via the circumventricular
organs or vagal afferents (262, 263), a key question is
whether calcitriol can also directly modulate proinflam-
matory cytokine production in the brain. Calcitriol is
known to be synthesized by microglial cells (264),
which are the primary mediators of proinflammatory
immune responses in the brain (265–267). Calcitriol
has been observed to inhibit the synthesis of proinflam-
matory cytokines in a microglial cell line (248). In
addition, oral treatment with 25OHD3 reduced IL-1�
production in the rat hippocampus (268).

The possible relationship of low 25OHD3 status to
disease-associated depression has, so far as we are
aware, only been examined in one small study of
anxiety and depression in fibromyalgia patients (269),
which observed a significant relationship. It is well
known that poor 25OHD3 status is common in many
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human diseases associated with inflammation, includ-
ing infection, autoimmune diseases, obesity and meta-
bolic syndrome, type 2 diabetes, osteoporosis, cancer,
and cardiovascular diseases (33, 35, 41, 193, 269–293).
Depression is not uncommon in these diseases, which is
the subject of a very large experimental literature; a few
recent examples are cited: multiple sclerosis (294–
297), type 1 diabetes (298–301), rheumatoid arthritis
(221, 302), lupus erythrematosus (303, 304), inflamma-
tory bowel disease (IBD) (305–308), obesity and meta-
bolic syndrome (309–311), type 2 diabetes (312–314),
osteoporosis (315–317), cancer (318, 319), cardiovas-
cular disease (320), infection (321), and fibromyalgia
(269, 322). In this literature, the possible involvement
vitamin D has not been discussed, so far as we are
aware.

DISCUSSION

The primary goal of this review is to provide an
overview of evidence relevant as to whether vitamin D
availability affects cognition or behavior. As summa-
rized in the body of the review, evidence that calcitriol
is involved in both brain development and function is
strong, on the basis of studies involving biochemical or
other biological endpoints, as also reviewed by others

(30, 37–39). Evidence from studies directly measuring
cognitive or behavioral endpoints is suggestive, but less
clear-cut, as summarized in Fig. 1. As we discuss, a
number of studies in humans and rodents that directly
examined effects of vitamin D inadequacy or supple-
mentation on cognitive or behavioral performance
individually suggest subtle cognitive and/or behavioral
changes (179, 188–190, 193, 194, 196–199, 201–212,
216). However, examination of these latter studies as a
group using several causal criteria suggests that the
evidence base does not yet appear to be sufficient to
conclude with certainty that there is a causal connec-
tion.

The inconclusiveness of the human studies is not
particularly surprising, given their small number and
the many difficulties involved in conducting human
trials. However, it is curious that results of rodent
studies are not stronger and more consistent, since
rodents afford the opportunity for more flexibility in
design and ability to control experimental variables
than can be achieved in human studies. If calcitriol
plays an important role in brain development and
function, one might have predicted that performance
deficits would be more obvious, particularly in the
studies using a severe dietary restriction model or
VDR-KO mice (see Table 2 and text).

Figure 1. Vitamin D, proinflammatory cytokines, and cognitive or behavioral dysfunction. Types of evidence from human or
rodent studies that link cognitive and behavioral performance to vitamin D adequacy, proinflammatory cytokine status, and
inflammation-associated diseases. See text for discussion and citations.
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Several observations suggest that additional research
may help to explain this apparent paradox. First, a
relatively small number of cognitive/behavioral tests
have been conducted. If individual neural systems are
affected by vitamin D inadequacy, tests specifically
targeted at those systems may be required to achieve
sufficient sensitivity to detect an effect (323, 324).
Second, it is possible, given the importance of vitamin
D in so many aspects of mammalian biology, that there
are homeostatic and/or back-up mechanisms that pro-
tect vital organs, such as the brain, from loss of calci-
triol-regulated functions. This may be particularly true
in rodents, who are covered with fur and primarily
nocturnal. In this regard, the recent observation that
lithocholic acid can substitute for vitamin D under
deficiency conditions in rodents is potentially relevant
(53). Third, effects observed in all in vivo rodent studies
that demonstrated effects of calcitriol treatment on
gene expression in the brain used relatively high doses
of calcitriol (69, 73, 76, 77, 107, 111); some of these
studies injected calcitriol directly into the brain (69, 76,
77). The only study that used vitamin D3 instead of
calcitriol (111) treated animals by gastric cannulation
with 20,000 IU/kg/day for 4 mo. It is possible that
effects resulting from these high-dose treatments do
not occur under physiological conditions. However,
calcitriol is believed to exert its effects in an autocrine
or paracrine manner, even within tiny “nanodomains”
within the cell (23, 25). Hence, the classical concept of
“concentration” may not apply, and very high concen-
trations of calcitriol may be delivered subcellularly
under normal physiological conditions. Fourth, there
are very few studies that examined effects of vitamin D
deficiency on gene expression (21, 82). And, we are
also not aware of any studies in rodents that examined
effects of calcitriol treatment on cognitive or behavioral
performance. These experiments seem important to
do. And fifth, with respect to use of VDR-KO strains,
some critical vitamin D-regulated functions during fetal
and neonatal brain development could involve non-
VDR-mediated mechanisms (22). Also, other VDR
knockout strains are available (28, 213), as are 1,�-
hydroxylase-knockout strains (325–327), which might
be productive to explore as alternative models.

Additional suggested areas for research

The independent associations of inflammation, low
25OHD3 status, and cognitive or behavioral dysfunc-
tion in a number of human diseases are intriguing. To
our knowledge, a possible relationship between
25OHD3 status and disease-associated depression has
only been addressed experimentally in one small study
of fibromyalgia patients, with encouraging results
(269). We also note that the broad spectrum of calci-
triol’s functions (e.g., effects on cell proliferation and
differentiation) have suggested the use of calcitriol and
its analogues to treat cancer and autoimmune diseases
(currently the only therapeutically recommended use

of calcitriol is for treatment of psoriasis) (328, 329).
Some analogues, as well as calcitriol, are effective in
treating a variety of cancers and autoimmune diseases
in model systems (e.g., refs. 254, 330–332). It would be
of interest to include cognitive and behavioral end-
points, in addition to primary disease endpoints, in
future human trials and rodent studies using disease
models.

Rickets is the only human disease that is known to be
caused by vitamin D deficiency during early postnatal
life, a critical period of brain development (218). To
our knowledge, no studies have examined cognitive or
behavioral function in children with rickets. We have
also been unable to locate any studies that have mea-
sured inflammatory markers in children with rickets.
While overt symptoms of mental dysfunction in rickets
patients would most likely have been noticed, cognitive
or behavioral deficits resulting from nutritional inade-
quacies are frequently subtle and require focused test-
ing to detect (e.g., refs. 2, 4).

Public health issues

Vitamin D inadequacy is largely based on whether
circulating concentrations of 25OHD3 are below cer-
tain cutoff levels (14). There is a great deal of discus-
sion and uncertainty as to what cutoff levels should be
used (35, 333–336). For example, in surveys of �18,000
individuals in the United States (337) and �7000
individuals in the United Kingdom (338), inadequacy
was calculated using several different 25OHD3 cutoff
values, resulting in prevalence estimates ranging from 3
to 57% (337) or 15.5 to 87.1% (338) for adult men and
women. Prevalence estimates are much higher for some
other groups, including the elderly (337, 339) and
African-Americans, who are 2–8 times more likely to be
insufficient compared to age-matched Caucasians
(340–342). The lower end of the prevalence estimate
ranges indicate minimum 25OHD3 concentrations re-
quired to prevent rickets (14). The higher end of the
ranges reflect opinions of a number of experts based
on recent data concerning 25OHD3 concentrations
required to decrease fracture risk or to prevent or
mitigate certain forms of cancer (41, 335, 343), as well
as evidence suggesting that vitamin D can be tolerated
at higher levels than formerly thought (35, 334–336). It
has been suggested that research to determine what
concentrations of 25OHD3 are required to optimize
these and other functions of calcitriol should be a high
priority (e.g., refs. 41, 270, 334).

The involvement of calcitriol in brain function
only serves to underline the importance of ensuring
an adequate supply of vitamin D, as has been pointed
out (e.g., refs. 38, 82). It remains to be seen to what
degree evidence for this involvement can be trans-
lated into quantitative information relevant to setting
adequacy requirements. Clearly relevant, if they can
be more consistently replicated, are studies suggest-
ing that depression may be linked to lower concen-
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trations of 25OHD3 (183, 188 –190, 193, 196, 269).
However, in our opinion, it is uncertain whether
cognitive/behavioral endpoints, which are inher-
ently difficult to quantify and are often nonspecific
(323), are amenable to the level of precision re-
quired to optimize 25OHD3 concentrations. Other
more readily quantifiable markers of altered brain
function would be highly desirable.

CONCLUSIONS

While mechanistic and biological evidence strongly
suggests that calcitriol is involved in brain development
and critical brain functions, it has proved more difficult
experimentally to demonstrate obvious effects of vita-
min D inadequacy on cognitive or behavioral end-
points. Although there is some limited evidence for a
relationship between vitamin D inadequacy and depres-
sion, or possibly schizophrenia, studies are relatively
few in number and results are mixed. The evidence
base in rodents is larger, with two laboratories provid-
ing intriguing and clearly suggestive, though in our
opinion not definitive, evidence of subtle behavioral
effects of vitamin D inadequacy. Despite residual un-
certainty, we believe the evidence overall suggests that
supplementation to ensure adequacy is prudent, partic-
ularly for groups whose 25OHD3 status is exceptionally
low, including nursing infants, the elderly, and African-
Americans. Such supplementation is already recom-
mended to protect against rickets, fracture risk, and
possibly some forms of cancer.
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