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Abstract

Background: The importance of Small Area Variation Analysis for policy-making contrasts with
the scarcity of work on the validity of the statistics used in these studies. Our study aims at |)
determining whether variation in utilization rates between health areas is higher than would be
expected by chance, 2) estimating the statistical power of the variation statistics; and 3) evaluating
the ability of different statistics to compare the variability among different procedures regardless
of their rates.

Methods: Parametric bootstrap techniques were used to derive the empirical distribution for each
statistic under the hypothesis of homogeneity across areas. Non-parametric procedures were used
to analyze the empirical distribution for the observed statistics and compare the results in six
situations (low/medium/high utilization rates and low/high variability). A small scale simulation study
was conducted to assess the capacity of each statistic to discriminate between different scenarios
with different degrees of variation.

Results: Bootstrap techniques proved to be good at quantifying the difference between the null
hypothesis and the variation observed in each situation, and to construct reliable tests and
confidence intervals for each of the variation statistics analyzed. Although the good performance
of Systematic Component of Variation (SCV), Empirical Bayes (EB) statistic shows better behaviour
under the null hypothesis, it is able to detect variability if present, it is not influenced by the
procedure rate and it is best able to discriminate between different degrees of heterogeneity.

Conclusion: The EB statistics seems to be a good alternative to more conventional statistics used
in small-area variation analysis in health service research because of its robustness.
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Background

Small Area Variation Analysis (SAVA) is a method used in
health services research to describe how rates of health-
care utilization vary across geographic areas [1]. While uti-
lization rates can be calculated to summarize non-binary
events (hospital days, costs), they are usually computed to
represent counts (procedures, hospital admissions). Stud-
ies based on SAVA have documented dramatic variations
across areas in the use of medical and surgical procedures,
showing that the amount and type of medical care that the
individuals of a population receive depend on where they
live. The principal finding of these studies remains
unchanged: for medical care, geography is destiny [2].
SAVA methods are, thus, used extensively to characterize
medical care, assuming that high variability conditions
are associated with higher uncertainty and supply-sensi-
tive care [3], and Wennberg constructed an influential
general theory describing how to detect physician uncer-
tainty from the variation in small area analysis [4].

The importance of these studies in terms of their impact
on policy-making contrasts with the dearth of work test-
ing the validity of the SAVA statistics themselves. Very lit-
tle has been done to determine whether higher than
randomly expected variability across areas is in fact
detected, or whether certain procedures are more variable
than others [5-12]. Not surprisingly, statistical analysis of
area variations in health service research is often informal,
consisting of plots and maps illustrating admission or sur-
gery rates by healthcare area, and statistics with important
statistical limitations [13,14].

Two groups of statistics of variation are commonly used:
those that describe the distribution of rates (based on
standardization by direct method) and those that use dif-
ferences between expected and observed cases (based on
indirect standardization). Statistics among the former
usually include the high-low ratio or extremal quotient
(EQ, maximum rate divided by minimum rate) [5,7], and
the unweighted (CV) and weighted (CVw) coefficients of
variation.[7] Among the latter, the systematic component
of variation (SCV) proposed by McPherson et al, [15] and
the chi-squared statistic (y2) [7,10] are the most fre-
quently used. Through simulations studies, these statistics
have been shown to be sensitive to specific characteristics,
such as the prevalence of the procedure or condition, the
possibility of multiple admissions, the number of areas
considered, and the population size of small areas [7].
Simulation studies have also shown that the expected var-
iation, when the hypothesis of homogeneity in rates is
true, can be surprisingly large; especially, in low-incidence
procedures or when readmissions are frequent [8]. There-
fore, it is important to assess how far variation estimates
are from the null hypothesis, and how precise the statistics
are in each particular situation.

http://www.biomedcentral.com/1472-6963/9/60

Several studies conducted by Diehr and her colleagues,
including work assessing the power of the tests applied
[9], the effect of multiple admissions [10], and the com-
parison of variability between procedures [11], have con-
tributed extraordinarily to the advance in SAVA
methodology. Nevertheless, these authors were "unable to
recommend a single good descriptive for small-area analysis"
[8]. Additionally, SAVA statistics methodology has still
limitations. The simulation procedure constructed by
Diehr et al did not take into account the well-known age
and sex variability of most health conditions (although
these authors developed an interesting approach in one
appendix) [7]. On the other hand, it is important to study
not only the behaviour of the statistics under the null
hypothesis along with their power, but also to evaluate
their capacity to discriminate between procedures with
different variability. Finally, Diehr carried out the analyses
using a setting with a small number of geographic areas,
and where utilization rates were several times higher than
the usual rates observed in the Spanish context.

Our work has pursued three objectives: 1) to determine
whether variation in rates between areas is higher than
would be expected by chance, complementing the study
under the null hypothesis of homogeneity by constructing
confidence intervals for the observed statistics based on
non-parametric bootstrap techniques; 2) to estimate the
power of the variation statistics; and 3) to evaluate the
ability of different statistics to compare variability among
procedures regardless of their rates. Additionally, we
extended the simulation procedure to other barely used
statistics, such as the empirical Bayes (EB) statistic, that
was first proposed in this context by Shwartz et al.[12].
The EB focuses on estimating rates rather than on testing
significance, and the model underlying this statistic has
been applied in some SAVA papers [16,17]. We also con-
sidered the Dean (DT) [18], and Bohning statistics (BT)
[19], which have been used to test if geographical varia-
tion in rates is larger than that assumed under homogene-
ity in mortality studies [20], but have not been applied yet
in health-services research variation analysis.

Methods

Database, small geographic areas and procedures under
study

We used data from the Atlas of Variations in Medical Prac-
tice in the Spanish National Health System (NHS) [21], a
research project designed to inform Spanish decision-
makers on differences in such parameters as hospital
admissions or surgery for specific conditions across geo-
graphic areas (see: http://www.atlasvpm.org). The Span-
ish Atlas emulates the Dartmouth Atlas of Health Care
Project [22]. Hospital Discharge Administrative Databases
in 2002 (calendar year), with additional data from ambu-
latory surgery registries, were used to build the numerator
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of the rates. These administrative databases, produced by
every acute care hospital in the Spanish NHS, provide the
following information from every single admission: age,
sex, admission and discharge dates, diagnosis and proce-
dure codes [International Classification of Diseases 9th
revision Clinical Modification codes (ICD9CM)], and
postal codes identifying the patient's area of residence.
This latter was used to assign every patient admitted in a
hospital to the Healthcare Area in which he lives.

Denominators to calculate population rates came from
the Municipal Register of Inhabitants of the Spanish
National Institute of Statistics' for 2002. The small geo-
graphic areas used corresponded to the "Healthcare
Areas" defined by the Health Departments of the 14
Autonomous Regions which participated in the Atlas
Project. In total, 147 areas including 75% of the 2002
Spanish population were used. Table 1 shows the popula-
tion distribution across the Healthcare Areas: 27% of the
country's Healthcare areas had less than 100,000 people
and only 4% had over a million.

We chose six procedures (pacemakers implant, appendec-
tomy, admission for hip fracture, lower extremity amputa-
tion, inguinal hernia repair and knee replacement) taking
into account both their utilization rate and their variabil-
ity. We labelled them as low or high-variation procedures,
and as performed at high, medium or low utilization rate.
This classification was carried using as reference the whole
set of procedures analyzed in the Spanish Atlas project,
which add up a total of 35. Hence, by combining the two
dimensions, we were able to reproduce six different situa-
tions that embrace all of the major cases concerning SAVA
studies. ICD9CM codes and inclusion criteria for defining
numerators are shown in Table 2.

Analysis
Extremal Quotient [7], Coefficient of Variation |[7],

Weighted Coefficient of Variation [11], Systematic Com-

Table I: Population distribution of the geographical areas

Inhabitants Frequency Percentage
10,000 — 49,999 9 6.1%
50,000 — 99,999 31 21.1%
100,000 — 149,999 29 19.7%
150,000 — 199,999 13 8.8%
200,000 — 249,999 14 9.5%
250,000 — 299,999 18 12.3%
300,000 — 399,999 17 11.6%
400,000 — 499,999 10 6.8%
500,000 — 999,999 0 0.0%
1,000,000 — 1,500,000 6 4.1%
Total 147 100%

http://www.biomedcentral.com/1472-6963/9/60

ponent of Variation [15], Empirical Bayes variance com-
ponent [12], y2 statistic [11], Dean statistic [18], and
Bohning statistic [19] were all studied. Because some of
the Spanish Atlas' calculations exclude the 5% of extreme
standardized rates for each tie [21], we have also elimi-
nated the outliers beyond of the 5-95 percentiles, and
labelled our statistics as EQs_q5, CV5_q5; CVW;_gs and
SCV5_gs. The formulation of the statistics is given in Addi-
tional file 1. The EQ, CV and CVw use direct age-standard-
ized rates for each i-th Healthcare Area, denoted by DSR;
fori =1, .., I, and all three are well-known measures of
variation in general contexts. The remaining statistics use
the observed and expected cases per area, denoted by y;
and e, respectively. These expected cases were derived
based on the age-specific rate for 8 groups (0-24, 25-44,
45-64, 65-69, 70-74, 75-79, 80-84, 85 years and over)
and the sex stratum in the standard population, which
was the population from the 147 healthcare areas under
study. More precisely, ¢;=2; ;n;; Ry, where n is the pop-
ulation in area i, age group j and sex stratum k, and Ry is
the age-sex specific rate for the whole region under study.
Hence, the quotient of the observed to the expected
number of cases is the indirect Standardized Utilization
Ratio, SUR, = y/e, for the i-th Healthcare Area. This quo-
tient is in fact the maximum-likelihood estimator of r;, the
unknown relative risk of suffering a given surgical proce-
dure in the area, under the assumption that y; ~Pois-
son(e;r;) independently for each i-th Health Area. The
Poisson distribution is frequently adopted because the
Bernoulli process at the individual level (surgery vs non
surgery) becomes a Binomial process at the area level,
which can be approximated by the Poisson distribution
when rare events are modelled [10]. Hence, the null
hypothesis indicating an homogenous risk surface for the
whole region can be represented by the model y;~Pois-
son(e;r), with r the common risk. The X2, DT and BT ver-
sions applied here were derived to detect heterogeneity
with respect to this homogeneous Poisson model. Finally,
the SCV and the EB statistics are derived under a more gen-
eral framework where the number of admissions per area
is modelled hierarchically in a two-step procedure. The
first step assumes that, conditional on the risk r;, the
number of counts y,; follows a Poisson distribution, y;|r;
~Poisson(e;r;), whereas in the second one, heterogeneity
in rates is modelled adopting a common distribution 7 for
therisk r; (or for its logarithm), 7~ 7(r| 6), with #the vector
of parameters of the density function. Whereas the deriva-
tion of the SCV does not require a parametric form for 7,
as the SCV is precisely the moment estimator of the vari-
ance in the distribution of 7 [15], the EB statistics is based
on the assumption that the log-relative risks are normally
and identically distributed, log(r;) ~N(p, ©2). This last
model, called multivariate Poisson log-normal model or
exchangeable model, is widely used in the disease map-
ping literature [23,24], and can be easily extended to
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Table 2: Codes of the ICD9MC used for selecting cases.
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Procedure ICD9CM codes

Observations

Appendectomy 47.0x; 47.1x

Inguinal hernia repair 53.0x; 53.1x; 53.2x; 53.3x

Lower extremity amputation ~ 84.10 to 84.17
Hip fracture 820.xx
Knee replacement 81.54; 81.55

Pacemaker implant 37.80; 37.81; 37.82; 37.83

All appendectomies, including laparoscopic and incidentals.

Uni or bilateral repair, with or without mesh, of femoral or inguinal hernias.
Lower extremity amputation at any level.

Only emergency admissions.

Total or partial knee replacement

Pacemaker implant, permanent or not, in programmed or emergency admissions.

ICD9CM: International Classification of Diseases 9 revision Clinical Modification; The "x" indicates all the range of digits after the corresponding

code.

accommodate spatial autocorrelation [25,26]. The mar-
ginal distribution of this model is not available in closed
form, and two approaches can be used to derive estimates
for the parameters such as the variance component 62 and
predictions for the random effects representing r;. These
are the Empirical Bayes (EB) approach, which can be
accomplish using the Penalized Quasi Likelihood method
[27], or the Full bayes (FB) approach [25,26] for which
prior distributions for the parameters are required. The EB
statistics used in this paper is the estimate of the variance
component 62 derived under the EB approach, but similar
results would have been obtained under the FB approach.
[28]. Under the null hypothesis of homogeneity among
rates, both the SCV and the EB statistics would be zero.

Assessing the null hypothesis of homogeneity via bootstrap sampling
methods

The null hypothesis of homogeneity tested here is that the
expected admission rate for each procedure is the same in
all counties, so that differences in observed rates are no
bigger than that expected by chance, assuming an under-
lying Poisson process to model admission counts [10].
This hypothesis has been tested using bootstraping
[29,30], which is a resampling procedure that estimates
the properties of an estimator (such as its variance) by
sampling from an approximating empirical distribution.
There are two types of bootstrap procedures, for paramet-
ric and non-parametric inference. The former can be
adopted when exists a parametric model from which sam-
ples can be randomly generated to derive the empirical
distribution of the statistic, whereas the latter relies on the
discrete empirical distribution obtained by random sam-
pling with replacement from the original dataset. Given
that the homogeneous Poisson model (or alternatively
the normal model with common rate) was assumed under
the null hypothesis, the parametric bootstrap procedure
was used to derive upper and lower limit values from "R"
random samples generated from the hypothesis being
tested. Even though the same philosophy was first pro-

posed by Diehr et al. [9], we implemented as additional
analysis the age-sex adjustment. The source of informa-
tion used for each statistics (i.e., standardized rates vs.
observed-expected cases) was also considered in the anal-
ysis. The steps for carrying this analysis out are shown in
Additional file 2.

Deriving confidence intervals for statistics of variation via
nonparametric sampling methods

In order to assess the alternative hypothesis, confidence
intervals for the observed statistics were derived. Here we
used non-parametric methodology in order to avoid para-
metric assumptions about the distribution of both rates
and observed cases. Thus, sampling with re-sampling R
times from the observed standardized rates sample or from
the observed-expected cases paired sample (depending on
the statistic) was used to calculate statistics for each of the R
simulated samples. This made it possible to obtain confi-
dence intervals from the percentile 2.5 and 97.5 as before.

Assessing power and ability to discriminate between procedures with

different variability by means of a small scale simulation study

In order to derive the ability of the aforementioned statis-
tics to distinguish different degrees of variability, we sim-
ulated several situations that emulate different types of
induced variability. This exercise pursued three objectives:
First, to assess the statistical power of each one of the
above described statistics, which in this case represents the
probability of detecting geographic variability when it is
present. Second, to evaluate whether any were better than
the others at distinguishing and ordering the six different
scenarios with regard to the degree of variability; and
finally, to study how different rates influenced statistics of
variation when they are used to compare procedures
according to their variability.

Apart from the scenario named H, representing the
homogeneous Poisson model with a common risk surface
y;~Poisson(ejr;), with r;= 1 for all j in 1, ..., J, and gener-
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ated as described in Additional file 2, six additional sce-
narios with different degrees of variability were designed.
The population structure was based on that observed in
the real geographical pattern with I = 147 areas, whereas
the expected counts were derived using the overall age-sex
specific rates for the most frequent (hip fracture) and the
least frequent (lower extremity amputation) procedure.
While most of the regions were assumed to have homoge-
neous rates, an artificially elevated risk was induced in a
randomly selected group of areas. These was carried out
using two sources of additional variation: incrementing
the risks of the selected areas to r;= 1.2 (§,-S3) orr;= 1.6
(S4-S¢) (and equivalently their mean rates in 1.2p and
1.6p respectively), and varying the number of these areas
with induced elevated risk, being 10 (S, and §,), 20 (S,
and S;), and 40 Healthcare Areas (S; and S;) out of the
147. Counts in all background areas (all but these 10, 20
or 40 respectively) were generated from the null model
with a common underlying rate aforementioned. Hence,
the scenarios were numbered from the lowest to the high-
est expected variability S;<S,<S;<S,<S5<S;.

Once the scenarios were designed, 2000 samples were
simulated from the null distribution following the proce-
dure previously described and named H,. The critical
value of the tests was estimated using the 95-th percentile
of the empirical distribution of the statistics, whereas con-
fidence interval limits were obtained form the same distri-
bution using percentiles 2.5 and 97.5. Another 2000
samples were simulated from each scenario S;-S;, and the
empirical distribution of the statistics was derived. This
allowed us to obtain not only the empirical statistical
power of the test for each scenario, by calculating the pro-
portion of values greater than the critical values obtained
in H, (the proportion of times that the null hypothesis is
surpassed in each scenario), but also the confidence inter-
vals for the statistics in each scenario using percentiles 2.5
and 97.5 of the empirical distribution.

Results

Real case study results

Table 3 shows the rates and the observed statistics of vari-
ation for the six procedures under study. Rates varied from
3.77 pacemaker implants to 10.57 hip fracture admis-
sions per 10,000 inhabitants in procedures presumed to
show low variation, and from 2.33 lower extremity ampu-
tations to 7.39 knee replacements per 10,000 inhabitants,
in procedures presumed to have high variation. We could
not calculate the EQ for some of the procedures because
some of the Healthcare Areas had 0 cases. For this reason
we excluded the EQ (not the EQ5_q5) from the simulation
procedures. The exclusion of 5% of outlying areas on each
side of the distribution notoriously reduced the value of
practically all the statistics, including the SCV. This
occurred in procedures with low and high variation, not
depending on prevalence rates. Some statistics, such as the
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%2, and the Dean and Bohning tests, tended to have higher
values as the overall rate increases, regardless of the under-
lying variability.

Figure 1 presents the point estimates for each procedure,
together with the parametric confidence intervals when
the null hypothesis of homogeneity holds (continuous
line), and the non-parametric confidence intervals for the
observed statistic (dotted line). This figure shows that
under the assumed null hypothesis, behaviour differs
depending on whether the statistics of variation are based
on rates (upper row) or on observed-expected cases (lower
row). In particular, the former present wider confidence
intervals for the procedures with the lowest rates (lower
extremity amputation and pacemaker implant); further-
more, they are "shifted to the right" for these procedures.
In contrast, for those statistics based on the observed-
expected cases, no apparent differences related with the
underlying rate are found, with the exception of the SCV,
with a notably wider interval for the less frequent proce-
dure. In these cases, the y2, the Dean and the Bohning sta-
tistics show narrow confidence intervals.

Regarding the observed variation, confidence intervals for
the observed statistics are wider than their null counter-
parts, and these discrepancies in amplitude are higher in
the statistics based on the observed-expected comparisons
than in the rate-based statistics. Of note is the agreement
among the statistics in detecting which is the most varia-
ble procedure, all suggesting that knee replacement has
the highest point and the widest confidence interval esti-
mates, being very far removed from the null hypothesis.
However, this agreement is not observed when trying to
elucidate which procedure presents the lowest variability.
While most statistics detect that admissions for hip frac-
ture and appendectomy seem to have the lowest point
estimates, the %2, Bohning and Dean tests suggest that
pacemaker implant or lower extremity amputation, the
two procedures with the lowest rates, appear to have lower
point estimates than those obtained for the rest of the pro-
cedures. Representing together confidence intervals of the
statistics and those obtained under homogeneity in the
same graph allows us to derive more reliable conclusions
regarding the underlying variability. Specifically, the
closer they are, the less probability for systematic variation
(i-e., beyond chance). Note also that excluding the 5% of
extreme rates in some statistics seems negligible with
regard to the comparison between null and observed
intervals, because the expected variability depicted is
lower when excluding them both under the null hypothe-
sis and under the observed variability.

Small scale simulation study results

The empirical power of the statistics is presented in Figure
2 for a high-rate (hip fracture) and a low-rate (lower
extremity amputation) procedure. In both cases, the most
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Table 3: Number of cases, rates by 10,000 inhabitants and observed statistics of variation in procedures of low and high variability

A: Low variability

Pacemaker Appendectomy Hip Fracture
Estimate Cl Estimate Cl Estimate Cl
7 11973 28164 33851
Rate 3.77 8.90 10.57
EQ NC - 20.61 3.20; 20.61 4.11 3.28;4.11
EQ;s_ys 3.15 2.49; 3.58 2.49 2.20;2.74 237 2.00; 2.69
cv 0.38 0.33; 0.43 0.30 0.25; 0.34 0.26 0.24; 0.29
CV; g5 0.27 0.24;0.31 0.22 0.19; 0.25 0.21 0.19; 0.24
CVw 0.33 0.28; 0.38 0.30 0.25; 0.34 0.27 0.23; 0.31
CVws; g5 0.26 0.23;0.31 0.24 0.19; 0.26 0.21 0.19; 0.24
SCv 0.12 0.08; 0.16 0.11 0.08;0.16 0.07 0.06; 0.08
SCV;_gs 0.05 0.04; 0.08 0.06 0.04; 0.08 0.04 0.03; 0.06
EB 0.13 0.08; 0.20 0.08 0.06; 0.10 0.07 0.05; 0.09
%2 1306.85 964.45;1711,39 2330.55 1710.91;3098.22 2394.66 1820.36;3017.15
Bohning 68.46 47.88; 92.28 136.98 93.89; 187.56 131.32 96.41; 167.70
Dean 67.44 40.11; 107.10 164.03 97.40; 246.83 132.92 80.47; 203.67
B: Low variability
Lower Ext. Amput. Hernia Repair Knee replacement
Estimate Cl Estimate Cl Estimate Cl
7 7022 21101 23257
Rate 2.23 6.67 7.39
EQ 25.59 7.04; 25.59 NC - 29.13 12.09; 29.14
EQ;s_gs 4.11 3.54;5.10 4.06 3.28; 490 5.6l 4.39; 8.66
cv 0.42 0.36; 0.47 0.41 0.37; 0.45 0.49 0.44; 0.55
CV;_ g5 0.33 0.27;0.37 0.34 0.29; 0.37 0.39 0.33;0.44
CVw 0.40 0.34; 0.46 0.41 0.35; 0.47 0.48 0.41; 0.54
CVw; g5 0.31 0.27;0.38 0.34 0.29; 0.38 0.39 0.32; 0.45
SCv 0.20 0.14;0.28 0.17 0.13;0.21 0.25 0.18;0.32
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Table 3: Number of cases, rates by 10,000 inhabitants and observed statistics of variation in procedures of low and high variability

SCV; o5 0.13 0.07; 0.20 0.1 0.08; 0.13 0.14 0.16; 0.19
EB 0.17 0.12; 0.24 0.17 0.13;0.22 0.27 0.19; 0.35
%2 1171.47 850.08;1534.95 3531.00 2723.57;4438.64 5164.25 3766.17,6898.34
Bohning 59.35 41.85;78.83 195.84 146.27; 247.92 289.92 207.33; 384.14
Dean 54.57 32.13; 89.46 222.09 149.79; 314.23 275.13 170.29; 424.52

ClI: Confidence interval; EQ: extremal quotient; CV: Coefficient of variation; CVw: weighted coefficient of variation; SCV: Systematic Component of
Variance; EB: Empirical Bayes; Statistic with the subindex 5-95 have been estimated excluding the 5% of areas with rates under percentile 5 and

over percentile 95 for each procedure; NC: Not Calculable.

powerful were those based on the observed-expected rela-
tionship, such as y2, Bohning, EB and Dean statistics.
However, the statistics' behaviour changed radically
depending on the rate of the procedure, and were more
powerful when a high-rate procedure was considered.

Confidence intervals for the statistics under the six scenar-
ios and for the high and low rate procedures are given in

Figure 3. With regard to their capacity to distinguish
between alternative scenarios, most statistics have a para-
bolic shape from H, to S;. They are, thus, able to distin-
guish between the alternatives, and the higher the
variability induced by raising the rates of the non-homo-
geneous risk regions (scenarios S,-S; relative to scenarios
S,-S;) or by increasing the number of regions with non-
homogeneous risk (S; and S; compared to the rest), the
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Figure |

Point estimates and confidence intervals for the statistics of variation applied to the six medical procedures
under the null hypothesis (homogeneity across Healthcare Areas, continuous line) and the alternative hypoth-
esis (observed rates, dotted line). Procedures are sorted from high to low rate and grouped by low and high variability,
see left axis. Clyjomogeneiry €Stimates and confidence intervals when the null hypothesis of homogeneity holds (continuous line);
Clopsvariabilicys €Stimates and non-parametric confidence intervals for the statistics when the observed variability is considered
(dotted Iines; EQ: extremal quotient; CV: Coefficient of variation; CVw: weighted coefficient of variation; SCV: Systematic
Component of Variance; EB: Empirical Bayes. Statistic with the subindex 5-95 have been estimated excluding the areas with
rates under percentile 5 and over percentile 95 for each procedure.
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Power for the statistics in a Low-rate-procedure
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Power for the statistics in a High-rate-procedure
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cient of variation; SCV: Systematic Component of Variance; EB: Empirical Bayes. Statistics with the subindex 5-95 have been
estimated excluding the areas with rates under percentile 5 and over percentile 95 for each procedure.

easier it is to detect differences between scenarios. The
EQs_os statistic seems to be the least able to distinguish
between different degrees of variability, whereas the CVw,
EB, %2 and the Bohning test are the best for this purpose
when the rate of the procedure is high (dotted line). These
tests do not perform as well when this rate is low in low-
variability scenarios S;-S;. Note also that there are not
remarkable differences between the performance of the
statistics based on rates and their counterpart statistics
after excluding the 5% of extreme rates of each tie, apart
from the reduction on the punctual estimates and the
slight reduction on the amplitude in the later, more
apparent in the low-rate procedure setting.

Figure 3 also reveals some interesting findings with regard
to the differences between the statistics' behaviour when
the procedure rate is considered. To compare the variabil-
ity of different procedures, statistics must not be affected
by the procedure rate. As we can see in Figure 3, only the
SCV, SCVs_o5 and EB statistics uphold this assumption.
Furthermore, EB has the narrowest confidence intervals,
particularly for the low-rate procedures compared to the
SCV and SCV;_4s. This finding explains why EB is more
powerful than the others when low rate procedures are
studied. In contrast, all the statistics based on rates (upper
row) show that a high-rate procedure would always be
considered to have lower variability than a low-rate proce-
dure. For the 2 and the Bohning and Dean statistics the
opposite is true, and only under H, they are equivalent.

All analyses were carried out using the free statistical pack-
age R2.4.0. [31]

Discussion

Our first objective was to analyze whether variation among
areas is higher than would be expected by chance. Our find-
ings are not completely consistent with previous literature, in
which the expected variability when the null hypothesis of
homogeneity is true was said to be surprisingly large
[7,8,10]. In our work, practically all the statistics under the
null hypothesis have narrow intervals which are close to the
zero value (or 1 for the EQs_q5) compared to those derived
from the observed data, which are shifted to the right (see
Figure 1). The distance between the upper limits of the null
intervals null and the lower limit of the observed intervals is
present in all procedures and occurs for all statistics, indicat-
ing that we observed more variability than the expected by
chance even for some procedures that are known to have low
variation, such as hip fracture. This discrepancy with previ-
ous studies could be related to the size of our sample (n =
147 Healthcare Areas), which was larger than the sample size
used in the reference article by Diehr et al (n = 39 counties)
[7], and suggests that significant variation is expected to be
found for most procedures in studies with large number
Healthcare Areas, such as the Dartmouth Atlas of Health
Care, with more than 300 hospital reference areas, or the
Spanish NHS Atlas of Variations, with more than 140 areas,
making the interpretation of procedure variations difficult
when the significance of statistics such as the X2 is given. Fur-
thermore, the fact that some statistics perform differently
under the null hypothesis depending on the rate of the pro-
cedure (see Figure 1) indicates that it is not adequate to pro-
vide only the observed statistics, because the same observed
value may represent different degrees of variability depend-
ing on the procedure rate. These are relevant aspects that sug-
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Figure 3

Point estimates and confidence intervals for the statistics using six scenarios of variation and two different
rates. EQ: extremal quotient; CV: Coefficient of variation; CVw: weighted coefficient of variation; SCV: Systematic Compo-
nent of Variance; EB: Empirical Bayes. Statistic with the subindex 5-95 have been estimated excluding the 5% of areas with
rates under percentile 5 and over percentile 95 for each procedure.

gest that providing both the null and observed performance
jointly over a simple observed descriptive statistic value or a
simple p-value is more appropriate.

Another interesting question broached by Diehr [7] and
other authors [32] was the better performance of the 2
statistic (compared to others) because of its lower depend-
ence on population size, condition rates or readmissions.
In fact, Diehr et al recommended its use. However, these
findings were only described under the null hypothesis.
Our work has confirmed the aforementioned behaviour
of the y2 statistic (see scenario H, on Figure 3), but its sta-
bility for different rates diminished when the alternative
was true (see S, to S, scenarios, Figure 3). In fact, the y2 sta-
tistic appears to have higher values as a procedure rate
increased, regardless of the actual underlying variability.

With regard to the new statistics we have tested, Dean and
Bohning tests performed almost identically to 2, as they
all were designed to detect departures from homogeneity
rather than to discriminate among degrees of variability.
In fact, the expected value of the first statistic under the
null hypothesis is the number of area minus one, whereas

the other two have asymptotically a standard normal dis-
tribution; all the three show a good performance under
the null hypothesis, but are highly dependent on the pro-
cedure rate under alternative scenarios. On the other
hand, the results obtained with EB were closer to those
find using SCV and SCV;_ys. This concordance among sta-
tistics was also expected since the first three tests are based
on the discrepancy between observed and expected cases
given the homogeneous Poisson model, while the other
three are based on a generalized linear mixed model
where the area-specific effect is the random effect. Overall,
the last three statistics, and especially the EB, show a good
performance both under the null and the alternative
hypotheses, being stable even when procedure rates
change. EB's good behaviour is consistent with Shwartz's
results [12], and confirms that this statistic should
become an essential part of SAVA studies.

The second aim of our paper consisted on estimating the
statistical power of the variation statistics, and our results
are consistent with Diehr's [9]. There were relevant differ-
ences between theirs and our scenarios of study: their pro-
cedures were more prevalent than ours (18 per 10,000,
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while ours ranged from 2.2 to 10.6 per 10,000 depending
on conditions) and their sample size was smaller (39
counties compared to our 147 Healthcare Areas). In spite
of this, the outcomes of both studies point in the same
direction: the 2 test appears to have the most statistical
power, and the CV and EQ the least. Nevertheless, Diehr's
work did not evaluate other statistics such as the EB,
which has practically the same power that the widely rec-
ommended y2 and performs better in terms of stability
under the alternative hypothesis.

With regard to our third objective, our work sought to
compare variation profiles between different procedures.
Traditionally, this objective in SAVA studies is pursued by
using simple dot plots, descriptive statistics without sig-
nificance testing or ratios between the SCV of the revised
procedures and the SCV of hospitalization for hip frac-
ture, a known low-variation condition [22,33,34]. In our
work, all the statistics evaluated seem to agree when the
procedure or condition presents high variability. This
finding is important because it confirms that conditions
identified as highly variable remain consistent across sta-
tistics, suggesting that SAVA analysis is a useful method
for targeting conditions for intervention or further study.
Moreover, it is important to be aware that the sensitivity
to low-rate procedure of the y2 statistic (and the Dean and
Bohning tests) may suggest low variability, as seems to
have happened in the case of lower extremity amputation.
Because of this problem, the y2 statistic appears not to be
the best choice in SAVA studies.

In order to truly compare variation among procedures,
SAVA studies must use reliable statistics that are able to
detect variability when it exists. These statistics must per-
form robustly when there are differences in utilization rates
among the procedures, and when small-sized samples are
studied. The main conclusion of our study is that the SCV
and, mainly, the EB statistic have been shown to be the
best, because they do not seem to be influenced by the uti-
lization rates of the conditions or procedures under study
(a relevant advantage when conditions of very different
rates are compared), and because it is able to accurately dis-
criminate between different degrees of heterogeneity (see
confidence intervals in S, to S, Figure 3).

Our work has not included all the statistics suggested in
the literature, but has concentrated on those most widely
used, and those that are commonly used in other contexts,
such as mortality analysis. Diehr et al proposed the use of
the CVA [7], which was recommended when procedures
had high prevalence rates. They showed that the CVA,
which is derived from an analysis of variance where the
response variable is the number of admissions for each
person in each area and the area is the random effect, do
not correlate with the procedure rate in contrast to other
estimates of variation (CV, CVw). Our study corroborates

http://www.biomedcentral.com/1472-6963/9/60

the influence of prevalence in the latter statistics and also
shows that neither the SCV nor the EB have this limita-
tion. Furthermore, the underlying Poisson distribution
assumed for SCV and EB statistics [12] was considered
more appropriate than normal assumptions with equal
variances needed for the CVA calculations. In particular,
the peculiarities of the model underlying the EB computa-
tion, that takes into account the reliability of each area to
weight the information each of them gives to the pooled
variation, encouraged us to prefer the properties of the EB
to be used in these studies. Smoothing techniques such as
the EB are now dominating the literature in disease map-
ping, and can be easily programmed using standard soft-
ware such as R.

Our work has several limitations. First, we have not
addressed the analysis considering recurrent events (i.e.
readmissions). Although the six procedures under study
are not likely to have recurrent events in a one-year period
(with the exception of lower extremity amputation) it is
important to note that the possibility of multiple counts
in recurrent events violates the assumption of independ-
ence of Poisson events. The variance may be higher and
the standard approaches may not account for the extra
variation, underestimating variability [7,10,35]. Different
approaches to overcome this problem have been pro-
posed in the literature. These include the Multiple Admis-
sion Factor [10], or the use of other distributions rather
than Poisson. Additionally, the assumed null model does
not consider the variability that may be present due to dis-
ease prevalence variation. This could have been incorpo-
rated with models accounting for overdispersion and
estimated if reliable outpatient registers had been availa-
ble. Although some interesting attempts are being carried
out in this direction [16,36], at present these registers are
not reliable enough in our setting. The approach pre-
sented here has neither taken into account the spatial
autocorrelation that may exist in the data, because a com-
parison of smoothing techniques incorporating it did not
suggest that its inclusion would lead to different results,
given the high populated regions usually considered in
health service research studies. Nevertheless, the EB esti-
mate can easily be extended to account for spatial correla-
tion [20] and it provides estimates close to the full-Bayes
counterparts [28,37], so that we recommend SAVA studies
to go in this direction to be of benefit for the advances
produced in disease mapping studies. Another limitation
is related with the simulation study, where only two vari-
ation sources were used, the number of heterogeneous
areas above the overall level (10, 20 or 40) and the mag-
nitude of differences (RR = 1.6 or RR = 1.2), and two dif-
ferent procedure rates were considered. It may happen
that other settings with different number of regions, dif-
ferent rates, different population distributions or different
degrees of induced variability could have led to different
results.
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Despite the importance of our findings, some questions
remained unsolved. With the exception of the EQ, the
remaining statistics assessed in this work do not provide
information easily translated into action. Unfortunately,
while the EQ appears to be the most intuitive statistic, it is
also the worst one in terms of sensitivity and robustness.
It is, further, also difficult to build when considering areas
with no cases. As Coory and Gibberd note [38], we need
new measures for reporting the magnitude and impact of
small-area variation in rates. In the meantime, it is worth
drawing health services researchers' attention to the
importance of using adequate measures of its estimation.

Conclusion

For this reason, and in conclusion, we recommend: 1) to
use bootstrap techniques to obtain a joint picture of the
observed variability and that obtained under homogene-
ity, as they provide a complete and reliable measure of the
magnitude of variation; 2) to be careful with the interpre-
tation of some statistic estimates, particularly for the rate-
based statistics, as their performance differ even under
homogeneity depending on the procedure rate: and 3)
when variability of different procedures needs to be com-
pared, SCV and specially, EB statistic, are the most robust
measures, overcoming problems derived from differences
in procedures prevalence rates.
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