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Abstract. No. In a number of papers Green and Wald argue that the standard

FLRW model approximates our Universe extremely well on all scales, except close

to strong field astrophysical objects. In particular, they argue that the effect of

inhomogeneities on average properties of the Universe (backreaction) is irrelevant. We

show that this latter claim is not valid. Specifically, we demonstrate, referring to

their recent review paper, that (i) their two–dimensional example used to illustrate

the fitting problem differs from the actual problem in important respects, and it

assumes what is to be proven; (ii) the proof of the trace–free property of backreaction

is unphysical and the theorem about it fails to be a mathematically general statement;

(iii) the scheme that underlies the trace–free theorem does not involve averaging and

therefore does not capture crucial non–local effects; (iv) their arguments are to a

large extent coordinate–dependent, and (v) many of their criticisms of backreaction

frameworks do not apply to the published definitions of these frameworks. It is

http://arxiv.org/abs/1505.07800v2
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therefore incorrect to infer that Green and Wald have proven a general result that

addresses the essential physical questions of backreaction in cosmology.

PACS numbers: 04.20.-q, 04.20.-Cv, 95.30.-k, 95.36.+x, 98.80.-Jk

1. General context

Backreaction, i.e., the effect of inhomogeneities in matter and geometry on average

cosmic evolution, has been studied in the cosmology community from various

perspectives (see the reviews [1–8] and references therein). A series of influential papers

by Green and Wald [9–12] have led many to believe that these effects are irrelevant or

highly constrained. Those papers are an interesting contribution to the research field

of backreaction effects in relativistic cosmology, but in this paper we demonstrate that

the strong claims advanced by Green and Wald about the irrelevance of backreaction

are unproven.

In an earlier paper, Ishibashi and Wald [13] claimed that backreaction effects

are negligibly small on all scales, except “in the immediate vicinity” of strong

field astrophysical objects. This statement was based on the smallness of metric

perturbations, despite the presence of large density perturbations [14, 15]. This

conclusion evolved in subsequent papers [9–12], where it was stated that backreaction

effects can in principle be large (due to the fact that derivatives of metric perturbations

are large [16]), but they can in fact only contribute a radiation–like trace–free term to

the effective stress–energy tensor. In this paper we will give evidence that backreaction

effects can be significant and show that they need not be trace–free.

We organize this paper in line with the presentation of arguments in the recent

Green and Wald overview [12], and refer by the abbreviation GW to the statements

made therein. In section 2 we consider the heuristic example of modelling a polyhedron

with a sphere discussed by Green and Wald in [12]. We argue that this two–dimensional

example misses essential features of backreaction. In section 3 we discuss the claim by

Green and Wald that the contribution of backreaction to the effective stress–energy

tensor is trace–free, and note that a non–trace–free part of backreaction is well–

established; here we also comment on problems with the weak–limit procedure and

its problematic relation to spatial averaging. In section 4 we discuss some relevant

examples. In section 5 we comment on some misinterpretations related to scalar

averaging, and in section 6 we put the discussion by Green and Wald of the relation

to observations into perspective. We conclude in section 7. Appendices are devoted to

technical aspects.

2. An example of a fitting problem

We start with the heuristic example in GW [12]. They state that this solves a fitting

problem. The fitting problem is raised and explained in Refs. [17–19] and expressed

in [20] as “How do we determine what is the best FLRW background model for the real
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lumpy universe?”. In GW’s section 4.3 they argue for a parameter fitting approach in

which it is a priori assumed that the best cosmological model is an FLRW model with

no backreaction. By making a similar assumption in their introduction they conclude

“Thus, the ‘fitting problem’ is trivially solved”. From our perspective, it has not been

satisfactorily answered, in that GW have a priori excluded the possibility that the best

FLRW model might be one with backreaction corrections. (The real Universe might

even be best modelled by some other geometry altogether).

2.1. Sphereland or Flatland?

The GW example is of the physical spherical surface of a “ball bearing” with all its “tiny

defects”, and an a priori assumed fit by the standard round geometry of the two–sphere.

As a model of the actual surface they take a polyhedral sphere (S2, gpol) and consider

how it is approximated by the (model) metric of a standard round sphere (S2, gcan)

(“can” for “canonical”). The analogy they wish to draw is of an approximately FLRW

metric such that the difference of the real and model metrics obeys the assumptions

in their section 2. We discuss these assumptions and their consequences at length in

subsection 3.4 and in Appendix B.

Green and Wald assume (S2, gpol) to be a convex polyhedron. However, convexity

is not an intrinsic characteristic of (S2, gpol). It comes about only when we consider

(S2, gpol) embedded into Euclidean space. The assumption of convexity involves extrinsic

curvature, whereas the fitting problem is concerned with intrinsic curvature (as it must

be in the cosmological setting).

Green and Wald discuss intrinsic aspects, by referring to E. Abbott’s Flatland

[21]. They argue that when two–dimensional observers in ‘Sphereland’ “use triangles

that are large compared with the distance between vertices, they obtain results that

are reasonably consistent with spherical geometry. Nevertheless, even when looking

at phenomena on large scales, the observers find some disturbing anomalies when

attempting to model Sphereland by a perfect sphere” and conclude that “As a result of

these observations, the observers might be tempted to conclude that the perfect sphere

model provides a reasonably good description of Sphereland on large scales—although

with some significant deviations—but an extremely poor description of Sphereland

on small scales. However, the actual situation, of course, is that the metric, gab, of

Sphereland is everywhere extremely close to the metric, g
(0)
ab , of a perfect sphere.”

The analogy is that cosmological observers may be similarly misled into thinking

an FLRW model (without backreaction) was a poor description. This was made very

clear in the recent note [22] responding to the first draft of the present paper.

As quoted above, Green and Wald consider the Spherelanders performing geodesy

with larger and larger triangles, thus exploring the (global aspects of the) intrinsic

geometry of (S2, gpol). By this means Spherelanders might, as GW suggest, reach the

apparently obvious conclusion that gpol is indeed approximated by the round metric

gcan, with some small–scale anomalies. However, the measurements of the geometry
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of triangles proposed by GW do not measure the metric, they measure curvature

(integrated over the interiors of the triangles). Knowing the curvature and a finite

number of its derivatives does locally specify a metric uniquely, but at the present time

we do not know a way to use this information to determine a best–fit approximate

metric: we discuss these points in subsection 5.4.

More relevantly, it is the “significant deviations” on small scales that are the

important feature. Let us consider the steel ball example in more detail. The metric of

each two–cell in the polyhedron (S2, gpol) is not curved, but flat. Green and Wald recall

that the ball’s (Gaussian) curvature is represented by a Dirac measure with support at

the vertices of (S2, gpol), and geometrically represented by vertex deficit angles measuring

excess or defect with respect to the 2π vertex angles of a flat geometry. The latter

implies, however, that the geometry of (S2, gpol) is almost–everywhere flat with curvature

defects supported at the vertices: the relevant background metric of (S2, gpol) is thus

not a spherical metric, as intuition and Figure 2 in GW’s paper might suggest, but a

flat metric (with conical singularities representing curvature).

To illustrate what knowing the curvature, as the Spherelanders might, means in

the present setting, note that we may have positive curvatures as well as negative

curvatures “sprinkled” over the vertices of (S2, gpol). The crucial point is that the

“sprinkling” cannot be random: the amount of overall positive and overall negative

curvature over the vertices must comply with the Gauss–Bonnet theorem applied to

(S2, gpol) [23], [24], [25]; the integrated Gaussian curvature must sum up to 4π, the

Euler number χ(S2) = 2. Thus, any two–surface which is topologically a sphere will

have the same curvature, on average, as a round sphere. Only by measuring over the

whole surface would Spherelanders find the correct total curvature, and anyway they

would arrive at the same result (assuming the same topology) regardless of whether or

not the coordinate components1 of the metric were close, either in pointwise value, or

in some other suitable norm, to those of the round sphere.

2.2. The consequences for the fitting and backreaction problems

To emphasize the point, we may easily construct a large (let it be convex) polyhedral

surface (S2, gpol), (using a dual metrical triangulation), where thousands of vertices are

flat and just a few carry some (tiny) deficit angles. For the Sphereland inhabitants

it would be very hard—perhaps impossible—to conclude that they actually live on a

two–sphere. By probing rather large portions of their ambient space (analogous, say, to

the observable Universe considered as part of an even larger spacetime) they would be

more likely to conclude, potentially with an arbitrarily high degree of precision, that the

geometry they live in is flat (there is no way they could intrinsically detect the edge–

bending between the flat regions). Thus, guided by common sense and by such empirical

evidence, they would probably consider as irrelevant to their cosmological modelling the

local defects associated with a few deficit angles in an ocean of flatness. However, it is

1 We pick up the issue of the use of coordinate components in comparisons in subsection 5.4.
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these local defects that determine the round sphere best–fit background, because it is the

Euler number that determines the global properties of a two–dimensional surface. This

is the only datum which would allow Spherelanders to draw GW’s desired conclusions

on the best–fitting metric in this analogy, and it is thus the curvature defects that

constitute the only relevant property.

We remark that in the mathematical literature this issue has been treated in

much greater depth than GW provide, giving more detailed presentations of polyhedral

manifolds and of the resulting approximation techniques, as indicated in Appendix A.

The steel ball analogy cannot say much about backreaction effects, especially on

their evolution, since the topological constraint makes any two–dimensional example

trivial. Because of the Gauss–Bonnet theorem, there is a conservation law for

the integrated intrinsic curvature in two dimensions [8, 26], just as there is such a

conservation law in the standard FLRW cosmological model in 3 + 1 dimensions. As

a consequence, if one imagined the two–dimensional polyhedral model as representing

the spatial surfaces in a three-dimensional spacetime, the curvature evolution would be

decoupled from backreaction.

Generally, backreaction effects may become strong when inhomogeneities

dynamically couple to the averaged intrinsic curvature (which does not, in general, admit

a conservation law in three dimensions [27]). This averaged curvature–backreaction

coupling only arises in more than two dimensions (for details on the coupling of

inhomogeneities to curvature and conservation laws, see [1]).

2.3. Conclusion

We have argued that the fitting problem cannot be solved by declaring, dictated by

common sense, that the best–fitting metric is gcan with localized defects. Considering

curvature fluctuations as being unconstrained and assuming that they average out to

zero is tautological since this assumes that curvature defects globally contribute nothing

and, thus, assumes that the geometry (S2, gcan) is the best–fitting geometry without

actually characterizing the explicit map between (S2, gpol) and (S2, gcan) (for discussion

of such a map see Appendix A). Moreover, the geometry the Spherelanders experience

in their surroundings (the physical geometry) is the almost–everywhere flat gpol, not the

everywhere round gcan. In particular, the measured physical curvature defects are with

respect to (S2, gpol) and not with respect to (S2, gcan).

From this brief analysis we see why Green and Wald obtain a highly constrained

result for the possible backreaction in the steel ball model.

3. Is backreaction necessarily trace–free ?

No. There are many papers using standard perturbation theory and exact solutions

of the Einstein equations that conclude that the backreaction has a trace part (see the

reviews cited in the introduction and the references therein). But Green and Wald claim
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that within a “completely general framework” [12] the backreaction is trace–free.

In this section we discuss the trace component in backreaction and show that GW’s

theorems are unrelated to actual backreaction. Before doing so we look at the situation

in the Newtonian limit.

3.1. Traces of backreaction in Newtonian cosmology

The term backreaction, as it is usually understood in Newtonian or relativistic cosmology,

may be generally defined as deviation of spatial average properties of an inhomogeneous

universe model from the values predicted by a homogeneous–isotropic universe model.

In Newtonian cosmology the average expansion rate is affected by the non–local term [28]

QD :=
2

3

(〈
θ2
〉
D − 〈θ〉2D

)
− 2

〈
σ2
〉
D + 2

〈
ω2

〉
D , (1)

where θ, σ and ω are the rate of expansion, shear and vorticity for a given velocity

model, respectively, and the brackets denote volume averaging on a spatial domain D,

an averaging that is well–defined even for tensors in Newtonian theory. The magnitude

of this term has been estimated in [29] (and follow–up papers) using well–known models

for large–scale structure that are in good agreement with N−body simulations down to

scales where the dust approximation breaks down.

Interpreted in the context of a FLRW fitting model, backreaction leads to an

effective stress–energy tensor that has the form of a perfect fluid with the components

(see, e.g. [30], Subsection 3.2):

̺eff : = 〈̺〉D +
1

8πGa2D

∫ t

ti

QD
d

dt′
a2D(t

′) dt′ ;

peff : = − 1

24πGa2D

∫ t

ti

QD
d

dt′
a2D(t

′) dt′ − 1

12πG
QD , (2)

where aD is the volume scale factor, defined such that the volume of the averaging

domain is proportional to a3D [31]. The local stress–energy tensor satisfies the weak

energy condition, since ̺ ≥ 0 (implying ̺+ p ≥ 0 as we only consider dust, with p = 0).

However, the effective stress–energy tensor does not necessarily satisfy these conditions,

and neither does its backreaction part2. Also, the trace is not in general zero. Both of

these features are in contradiction with GW’s claims, specifically their Theorems 1 and

2 [9,12], considered in the Newtonian limit. We shall come back to the energy conditions

in subsection 5.2.

Note that the magnitude of backreaction depends on the scale of averaging. In

particular, already in Newtonian cosmology it is significant on intermediate scales, below

the cosmological homogeneity scale3, but well above the scales of “black holes or neutron

2 This latter condition would artificially select the class of models for which ̺eff − 〈̺〉D ≥ 0 and

̺eff − 〈̺〉D + peff ≥ 0 hold.
3 E.g., in a domain with a radius of 100Mpc today and initially one–σ fluctuations, the density

parameters deviate from their homogeneous values of an Einstein–de Sitter background by 15% [29];

for estimates in relativistic cosmology including a background with cosmological constant see [32]).
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stars”, excluded by Green and Wald4.

3.2. Traces of backreaction in relativistic cosmology

Since the trace part of backreaction cannot turn on just in the Newtonian limit,

backreaction cannot be trace–free in general in GR either without violation of at least

one of the theory’s principles. This remark makes the existence of trace parts clear, since

the calculation in the Newtonian framework is unambiguous. Green andWald emphasize

in their abstract that “Newtonian cosmologies provide excellent approximations to

cosmological solutions to the Einstein equations (with dust and a cosmological constant)

on all scales.” If that is the case, then—especially in view of their “dictionary” [10]—a

claim of trace–free backreaction cannot be correct.

General Relativity adds the new feature that this backreaction term (represented by

extrinsic curvature invariants here) is coupled to the averaged scalar curvature 〈R〉D [31],

1

a6D

(
QDa

6
D
)
˙+

1

a2D

(
〈R〉D a2D

)
˙= 0 . (3)

This coupling is important for backreaction in relativistic cosmology, as it can also affect

the global geometrical properties. This latter is impossible in Newtonian cosmology and

it is also suppressed in quasi–Newtonian relativistic perturbation theory with periodic

boundary conditions due to the fact that a conservation law for the intrinsic curvature

holds.

3.3. The idea of Green and Wald and its realisation

Green and Wald assume that the actual metric has the structure:

gab = gab(0) + γab , (4)

where g(0) (denoted by g(0) in GW) is a background metric assumed to provide the

averaged background modelling the Universe (the indices are spacetime indices). Green

and Wald stress that in most of their computations g(0) can be any given background

metric.

Carrying out computations in such a general framework (and in particular trying to

interpret them geometrically) is a daunting, if not impossible, task. We are not aware

of any similar analysis in Riemannian geometry (where things are definitively easier

than in the Lorentzian case). Hence, Green and Wald tackle a less ambitious task by

considering a perturbative formalism where the symmetric tensor γ, representing the

deviations from the background, is small. However, they do not assume that the first

4 We note that there are two cases in Newtonian cosmology in which this backreaction term vanishes,

both being the result of the flat geometry in Newtonian theory: first, it vanishes for spherically

symmetric solutions (the content of Newton’s “theorem of the iron spheres”) [29] and, second, for scales

where commonly periodic boundary conditions (a 3−torus topology) are imposed on the deviations off

a homogeneous solution (a topological constraint as in the steel ball model) [28]. Thus, backreaction

vanishes globally, but not in the interior of this simulation box where it is significant on smaller scales.

However, if we additionally perform a statistical average over many realisations (not considered by

GW), this term vanishes in the statistical average due to the global constraint [29].
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derivatives of γ are small and even allow second derivatives of γ to be unboundedly

large, to deal with very large fluctuations in curvature around the g(0) background.

We point out already here, with detailed explanations in Appendix B, that the

assumption in Equation (4) together with the non–perturbative implications for the

metric derivatives outlined above, inherits similar problems to those we explained for

the steel ball analogy. Their statement that “In summary, the geometry of Sphereland is

described by a metric of the form qab(0)+sab, where qab(0) is the metric of a perfect sphere

and |sab| ≪ |qab(0)|, but first derivatives of sab are not small, and second derivatives of sab
may be enormous. In an exactly similar manner, the spacetime metric of our Universe

takes the form gab = gab(0) + γab, where gab(0) has the FLRW symmetry ...” [12] is

problematic. Modelling the perturbation γab with the same underlying rationale as that

for the perturbation sab of the steel ball example implies that the potentially unbounded

second derivatives of the metric may give rise to curvature distributional defects in the

weak–limit, cf. Appendix B, that cannot be dismissed, since they are as crucial as the

curvature defects in the steel ball example.

The scheme adopted by GW adds a stress–energy tensor to a scheme developed by

Burnett [33] for vacuum spacetimes, which replaces the averaging operation in Isaacson’s

approach [34, 35] by a weak–limit procedure. (Burnett [33] finds a trace–free effective

stress–energy tensor by applying a weak–limit scheme to gravitational waves, which

are physically trace–free. He also discussed a non–vanishing stress–energy–tensor, but

for the case of electromagnetic radiation, which is again physically trace–free.) For

another calculation of backreaction in the weak–limit of gravitational waves emitted

from a Schwarzschild black hole see Ref. [36]. We shall demonstrate that the weak–limit

operation does not implement a true averaging procedure, and that the assumptions

made by GW are too restrictive to allow for backreaction.

3.4. The weak–limit scheme

Green and Wald’s weak–limit scheme is technically realised, as in the familiar

perturbation formalism for GR, by assuming that there is a class of coordinate systems

{xa} and a one–parameter family of Lorentzian metrics (0, 1] ∋ λ 7−→ g(λ), such that

we can locally write the metric components gab(λ) as

(0, 1] ∋ λ 7−→ gab(λ) = gab(0) + γab(λ) . (5)

These metric components are further required to satisfy the following assumptions: (cf.

(i)–(iv) of GW):

(i) For all λ ∈ (0, 1] one assumes that the Einstein equations hold,

Gab(g(λ)) + Λ gab(λ) = 8π Tab(λ) , (6)

where Tab(λ) is a one–parameter family of stress–energy tensors that locally satisfy the

weak energy condition.
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(ii) There exists a smooth positive function C1(x) on (M, g(0)) such that we may write5

|γab(x, λ)| ≤ λC1(x) . (7)

This is the usual way of controlling the perturbing tensor γ in standard perturbation

theory, implying that, as λ ց 0, g(λ) approaches g(0).

(iii) There exists a smooth positive function C2(x) on (M, g(0)) such that we may write

|∇cγab(x, λ)| ≤ C2(x) , (8)

where ∇ denotes the covariant derivative w.r.t. (M, g(0)). This requirement does not

imply that the first derivatives of γ are small and they do not necessarily become small

as λ ց 0.

(iv) Finally, they assume that there exists a smooth tensor field µabcdef(x) on (M, g(0))

representing the weak–limit of the product of first covariant derivatives ∇γ(λ)∇γ(λ) as

λ ց 0, i.e.,

w–lim
λց0

|∇aγcd(x, λ)∇bγef(x, λ)| = µabcdef (x) . (9)

Here, the weak–limit is intended in a strict weak sense, i.e., requiring that the functions

µabcdef are locally summable (see GW, Eqs. (5) and (6)). (It should be noted that this

is more restrictive than the usual distributional interpretation of the weak–limit, where

µabcdef could be represented by a singular distribution. We examine this issue in depth

in Appendix B). This condition forces good behaviour of the potentially problematic

quadratic product ∇γ(λ)∇γ(λ) as λ ց 0.

The condition (iv) is not motivated by any transparent and natural physical

argument: as it stands we do not consider (iv) to be a robust hypothesis underlying

backreaction analysis. Even for the high–frequency limit regime of gravitational waves

there are physically transparent alternative approaches to this that do not need to

assume condition (iv), see [37], Ch. III, paragraph 12 and Ch. XI, (this reference is also

interesting for the issue of gauge dependence, discussed further below), and also [38–40]

and references therein.

3.5. Green and Wald’s one–parameter family of metrics and metric flows

A delicate issue with GW’s perturbation approach is the validity of assumption (iv)

together with assumption (i) that the Einstein equations are required to be satisfied

along the curve of metrics, for all λ except in the limit λ ց 0. Thus, backreaction is

supposed to turn on just in the limit (see subsection 3.7 for details). This situation will

turn out to be problematic.

We first point out an issue that arises in taking due care of the subtleties generated

by the potentially unbounded second derivatives of the metric fluctuations. There may

be particular spacetimes for which their procedure can be carried out, but typically

one would get distributional curvature tensors under the GW hypotheses in the limit

5 Green and Wald use a fixed λ–independent Riemannian metric for computing norms of the tensor

field involved and of their covariant derivatives, cf. Equations (5) and (6) of GW.
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where λ ց 0, which makes their effective stress tensor tab(0), cf. subsection 3.7, just

a formal expression, not containing functions but distributions, which are not easily

interpreted from the geometrical and physical point of view. In particular the trace–

free conditions would generally be false. Even it were possible to get rid of any non–

regular distributional part, as GW implicitly assume, their approach strongly relies

on a very delicate non–uniform boundedness (in λ) hypothesis on |∇c∇dγab(x, λ)| (see
the discussion surrounding Eq. (B.19)). This feature is imported from Burnett’s high–

frequency limit in gravitational wave theory, and it is precisely this non–uniformity that

generates a backreaction only in the λ ց 0 limit. However, whereas in gravitational

wave theory a non–uniform high–frequency limit is not a surprising feature of oscillating

phenomena, in cosmology it does not correspond to the physical situation. In the

real Universe, the matter distribution does not oscillate on arbitrarily small scales, but

there is a hierarchy of finite averaging length scales that are physically defined by the

gravitational systems we want to average. It is important to stress that if we remove

this specific non–uniformity requirement from the GW formalism, for example instead

requiring the second derivatives of γ to be uniformly bounded in λ, then the effective

stress–energy tensor tab(0) vanishes. We give the proof in Appendix B. Moreover, in

a real averaging procedure, backreaction terms must already be present for non–zero λ.

We shall explain this remark in the following two subsections.

We also note that known and well–controlled metric flows as investigated in the

mathematical literature on cosmological backreaction are generally not required to

satisfy the Einstein equations during metric deformations. Metric flows are typically

(weakly) parabolic and, hence, in general they do not commute with the Einstein

evolution which is (weakly) hyperbolic with elliptic constraints; ‘weakly’ here refers

to the fact that these flows must comply with the appropriate form of equivariance

under the action of the diffeomorphism group (see Ref. [41]). Geometric flows are often

gradient flows (with respect to some Hilbertian positive definite inner product), whereas

the Einstein evolution is Hamiltonian. In particular, in a cosmological setting, rescaling

flows (such as the Ricci–Hamilton–Perelman flow) work in a 3D hypersurface, rescaling

the metric in the direction of the spatial Ricci tensor (see Ref. [42]), which a priori is

unrelated to the Einstein flow that deforms the initial data set along the (symplectically

conjugated) linearization of the Einstein constraints in the direction of the lapse and

shift. In other words, the former relate to flows in space and the latter to time evolution.

3.6. Averaging without averaging?

While Green and Wald aimed at formulating the weak–limit formalism in a

mathematically “completely general” manner, they noted that “it would be extremely

difficult to formulate mathematically precise criteria for the validity of applying our

formalism to a given spacetime”. They argued that they simply “resort to plausibility

arguments to obtain [their] conclusions” regarding the applicability of the formalism

to the real Universe [9]. They then argued that it is plausible that the weak–limit

corresponds to spacetime averages over local regions, provided that the size of the regions
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corresponds to the homogeneity scale, which is much smaller than the curvature scale

of the background universe. However, arguments about limits that may be plausible for

smooth functions do not immediately translate to singular distributions.

Formally, GW are not averaging the fluctuations represented by the tensor γ. They

consider the weak–limit in a singular perturbation scheme for GR around a FLRW

spacetime (or whatever geometry g(0) represents). In their words (GW): “The notion

of ‘weak–limit’, which appears in assumption (iv), corresponds roughly to taking a local

spacetime average, and then taking the limit as λ ց 0”. This is not averaging in the

sense used in discussing backreaction. The weak–limit of a sequence of smooth functions

is typically a (singular) distribution. An example (on a compact Riemannian manifold)

is provided by the heat kernel: K(x, y; t), t > 0. This is C∞ for all t > 0, so smooth that

its convolution against nasty functions tames all their defects. Nonetheless the weak–

limit of K(x, y; t), as t ց 0, is a singular distribution, the Dirac measure δy supported

at the point y. The operation might correspond to averaging if the compactly supported

function that GW used to define the weak–limit had a form of translation symmetry

built in (say, φ(x− y) in Rn, or if we consider a large symmetry group, as in FLRW), so

that one is actually regularising (the distribution) via a convolution product, not just a

generic weak–limit.

Green and Wald consider a singular perturbation theory around FLRW, not

averaging or taking convolutions. This strategy is quite common in quantum field

theory (QFT) where one needs to tame the spectrum of fluctuations of a quantum field

around a given background configuration and describe how these fluctuations may dress

the bare background6.

Dismissing the potential distributional nature of curvature fluctuations in such a

setting is akin to the situation we encountered in the steel ball example. The analogy

is (i) here the background metric (M, g(0)) plays the role of the almost–everywhere flat

background metric in the steel ball model; and (ii) the distributional part plays the role

of the physical curvature fluctuations described by the conical vertices in the steel ball

model. As in that case, there is no reason why they should disappear when performing

a real averaging procedure. (In the two–dimensional steel ball model the Gauss–Bonnet

theorem implies that they cannot disappear.)

Clearly, there is nothing wrong in addressing the backreaction issue by studying a

singular perturbation scheme around FLRW as GW do. It is a potentially useful idea.

After all, in relativistic cosmology, unlike the averaging of scalars (which we will come

to below), the averaging of tensors is not yet well–established, at least in a rigorous

sense. The real point is to understand what you can get out of such an approach, how

it is technically realised, and how it can be physically interpreted.

We finally remark that, even if not gauge invariant, a singular limit may be given

physical sense locally, e.g., where Newtonian spacetime is obtained as a singular limit

of a sequence of Einstein spacetimes (defined by appropriate initial data expressing the

6 For the difference between dressed and bare backgrounds in cosmology see Ref. [43].
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Newtonian situation so that it can only be defined near the limit) [44].

3.7. Backreaction from no backreaction?

Even if one were to extend the GW perturbation scheme to rigorously calculate the

trace from the distributional curvature using the procedure outlined in Appendix B,

there is still another issue: Green and Wald assume the Einstein equations to hold for

all λ, except for λ = 0. This is shown in their assumption (i), recall Equation (6):

Gab(g(λ)) + Λ gab(λ) = 8π Tab(λ) ; λ ∈ (0, 1] ,

and in their terminology for the limit (GW, Equation (1)):

Gab(g(0)) + Λ gab(0) = 8π (Tab(0) + tab(0)) .

Green and Wald refer to the averaging and fitting problems as they were raised in

Ellis [17] and Ellis and Stoeger [18] (GW’s Figure 1 is reproduced from [17]). Those

references emphasise that averaging or smoothing the inhomogeneous metric and taking

derivatives (and their products) are in general non–commuting operations, which implies

that, in general, the Einstein equations do not hold at any smoothing level 7. In other

words, although the actual model obeys the Einstein equations, there need not be a one–

parameter family of solutions approaching the background that also obey the Einstein

equations. This issue lies at the basis of backreaction, and the first–principle argument

of [17] can be realised, e.g., with the scalar averaging formalism discussed in Section 5,

or (directly related to a smoothing procedure) with Ricci flow techniques [46].

Putting this argument formally and adopting GW’s notation, an averaging

operation, however it is defined (and here specialized to a one–parameter family of

metrics), leads to effective terms, symbolically put into the tensor τab
8:

Gab(g(λ)) + Λ gab(λ) = 8π (Tab(λ) + τab(λ)) ; λ ∈ (0, 1) . (10)

Green and Wald correctly quote the starting point of Ellis’ argument [17] that the

Einstein equations are assumed to hold in the unaveraged case (λ = 1), but they then

assume that the Einstein equations also hold for λ < 1 down to the limit, where suddenly

the backreaction term tab turns on
9.

7 See [45] for a summary and examples of non–commuting operations.
8 This term is interpreted as an effective stress–energy tensor, although it arises from smoothing the

geometrical side.
9 In their recent note in response to the draft of this paper [22] Green and Wald claim that “backreaction

in our [GW’s] formalism does not suddenly ‘turn on’ at λ = 0”. This is in disagreement with the

requirement that the Einstein equations are assumed to hold for all λ 6= 0 and the fact explained in

the previous subsection that no averaging is involved. The statement that “... the dynamics of gab(0)

accurately describes the (large scale) dynamics of gab(λ) for sufficiently small λ” does not take into

account the lack of continuity of the mapping gab(λ) 7→ Gab(λ), as we explain in Appendix B. Moreover,

the claim that “for λ > 0, backreaction terms are present, and are described to leading order by the

second order Einstein tensor” is not to do with backreaction arising from averaging, but the difference

Gab(λ)−Gab(0) (see Eqs. (9)–(12) in [9]). If such terms were backreaction terms, then in gravitational

perturbation theory every term of order higher than 0 should be considered as a backreaction term for

the assumed background.
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In the framework of the weak–limit scheme, starting from (10), the calculation of

the weak–limit gives:

Gab(g(0)) + Λ g(0) = 8π

(
Tab(0) + tab(0) + w–lim

λց0
[τab(λ)]

)
, (11)

where the last term is the weak–limit of the λ−dependent backreaction term, which is

absent in GW’s calculation. We will give an argument in subsection 4.2 and a proof in

Appendix B that the effective stress–energy tensor tab(0), the trace–free “backreaction

term” of GW, is expected to vanish for a uniform convergence to the background metric.

We now illustrate the above issues in terms of examples.

4. Examples using the GW framework

Green and Wald provide an example of a family of vacuum spacetimes in [11] (section 3),

discussed in subsection 4.2 below. In this and our other examples we require, as before,

gab(x, λ) to be a solution to the Einstein equations for all λ > 0 (GW’s assumption (i)),

and, as λ ց 0, we require convergence of gab(x, λ) to a background metric gab(x, 0).

We refer the reader also to Appendix C, where we comment on the example provided

by Szybka et al. [47] and on another example by GW that they provided in [11]

(section 4), both of which aim at including matter inhomogeneities. We are not aware

of any example satisfying the GW conditions that does satisfactorily include matter

inhomogeneities.

We first start with a classical example given by Geroch to demonstrate the

coordinate–dependence of the limit of a one–parameter family of metrics.

4.1. Coordinate–dependence of the GW framework: Geroch’s example

It was emphasized by Geroch [48] that, if we restrict our attention to metrics

parametrised by some λ only, then the limit is not uniquely defined.

Geroch considers the family of parametrised Schwarzschild metrics:

ds2 =

(
1− 2

λ3r

)
dt2 −

(
1− 2

λ3r

)−1

dr2 − r2(dθ2 + sin2 θdφ2) , (12)

where λ = m−1/3. In this form there is no limit as λ ց 0. Consider, however, the

coordinate transformation: r̃ = λr, t̃ = λ−1t, ρ̃ = λ−1θ. Then, our family of metrics

takes the form:

ds2 =

(
λ2 − 2

r̃

)
dt̃2 −

(
λ2 − 2

r̃

)−1

dr̃2 − r̃2(dρ̃2 + λ−2 sin2(λρ̃)dφ2) , (13)

and the limit exists – it is the Kasner metric with Kasner exponents −1/3, 2/3, 2/3:

ds2 = −2

r̃
dt̃2 +

r̃

2
dr̃2 − r̃2(dρ̃2 + ρ̃2dφ2) . (14)

However, applying a different coordinate transformation, x = r + λ0λ
−4, ρ = λ0λ

−4θ

(for an arbitrary constant λ0) to our original metric (12) and taking the limit λ ց 0

yields the flat Minkowski metric.
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Geroch’s discussion illustrates that the outcome of the weak–limit procedure

depends on the choice of coordinates. Moreover, it can be argued that instead of fixing

the background metric, it should emerge from a coordinate–independent averaging or

rescaling procedure. We finally remark that the characterization by curvature invariants

can be used to clarify Geroch’s example and avoid the coordinate dependence of his

methods (see Ref. [49]). Such ideas could work whenever there is some identifiable way

of taking a weak–limit of the set of curvature invariants.

The issue of gauge dependence has been addressed in Ref. [3]. A related discussion

can be found in [50]. In this latter paper it is demonstrated that even the spacetime

integrals of 4D scalars are in general gauge–dependent if the domain of integration

is fixed. The domain should rather be defined intrinsically: the behaviour of the

domain under gauge transformations should compensate the effects of the same gauge

transformations applied to the integrated object and, thus, the domain must be

coordinate– and λ–dependent (the latter requirement comes from the parametrisation

of the metric and its volume element). Given such an x– and λ–dependent domain, it

would no longer be allowed to exchange the limits and the integration operators as is

done by GW in the case of first derivatives of metric deviations. This will then imply a

non–commutativity of the two operations and would give rise to backreaction terms (for

the consequences of non–commutativity see Ref. [31] for the Einstein flow, Ref. [46] for

three–dimensional metric flows, and Ref. [45] for a general discussion). Then, the weak–

limit operator would match the authors’ expectations of first performing an average and

then taking a limit. This λ−dependence has also been emphasized in a recent paper by

Kopeikin and Petrov [51].

We move now to another issue. As pointed out by Szybka [47], one of the

key ingredients of the GW formalism is Burnett’s restriction that any λ–dependent

coordinate transformation must be reduced to the identity when λ ց 0. This is essential

and shows that the procedure cannot work for arbitrary λ−dependent coordinate

transformations and is therefore not covariant. The Geroch coordinate transformations

would be excluded with this condition. However, even if we take such “allowed”

coordinate transformations we have a path dependence in the weak–limit procedure

as discussed in the next subsection.

4.2. Path–dependence of the weak–limit procedure

In Ref. [11] Green and Wald look at a subclass of vacuum Gowdy metrics on a torus

with metric

ds2 = e(τ−α)/2
(
−e−2τdτ 2 + dϑ2

)
+ e−τ

(
ePdσ2 + e−Pdδ2

)
, (15)
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which depends on the function P (τ, ϑ). A one–parameter family of metrics parametrised

by a discrete parameter N10 is chosen as follows:

PN =
A√
N
J0(Ne−τ ) sin(Nϑ) , (16)

so that, like λ sin(x/λ), for larger and larger N (corresponding to smaller and smaller

λ) it oscillates with shorter and shorter wavelength and smaller and smaller amplitude;

the limit N → ∞ corresponds to λ ց 0.

The weak–limit gives a non–zero result only for functions such as f(x) = x sin(1/x)

(as in example (4.2) of [11]), which have a singular limit as they oscillate ever more

finely without limit as x → 0. Any non–zero result depends essentially on taking the

infinite limit of those oscillations as the homogeneous model is approached; it will be

zero if they cease at any value of λ, no matter how small. This is what is called in [3]

an ultra–local limit: the oscillations must not even stop at atomic scales.

But the path chosen to link gab(x,N = 1) to gab(x, 0) is arbitrary: there is no reason

why the specific path of Eq. (16) is preferred over others. One might equally well choose

PN =
A

N
J0(Ne−τ ) sin(Nϑ) or PN =

A

N2
J0(Ne−τ ) sin(Nϑ) (17)

for example; these are both solutions of the field equations, and these paths will give

tab(0) = 0. The physical entity is the endpoint gab(x,N = 1); the intervening family is

arbitrary, as is the parameter choice.

The result obtained from Eq. (16) only has physical meaning if it gives the same

answer for different such parametrisations. This procedure does not.

One could try

PN =
A

f(N)
J0(Ne−τ ) sin(Nϑ) , (18)

and see for what f(N) one gets tab(0) 6= 0 as well as the amplitude A/f(N) going to

zero. It is non–zero only for very special choices of f(N).

We repeat that the problem is the ultra–local requirement that perturbations in

the envisaged family continue down to indefinitely small wavelengths without limit;

otherwise one gets a zero answer. For very small distances in realistic cosmological

modelling the solutions should behave like (A/N) rather than like (A/N) sin(Nϑ)

(equivalent to using f(x) = x for very small scales as x → 0 rather than x sin(1/x)).

Then, the quantity tab(0) will be zero. Thus, Equations (2.7) and (2.8) of [11] are true

in realistic situations only because tab(0) = 0.

The pathological nature of the limit is emphasized by the fact that in the example

given, for each N < ∞, the metric is a solution of the vacuum field equations, but

the limiting metric (3.11) of [11] is not a solution. The backreaction term turns on in a

delta–function way, in the exact limit only. Genuine backreaction effects should not have

a delta function discontinuity of this sort: the backreaction term should be non–zero for

10 The restriction to integer N is related to a topological assumption, but the solutions are still solutions

if N is replaced by a continuous parameter 1/λ, although they cannot then be 3D spatially toroidal.
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every metric where λ ≥ 0 in any realistic sequence approaching the background, as we

have already pointed out. In the real Universe, inhomogeneities have a finite amplitude

and length scale, which should correspond to some λ = λ0 > 0. One could use a Taylor

series to estimate the effect at λ = λ0 from the data at λ = 0, but that will not work

for this singular family of perturbations.

These examples demonstrate that tab(0) should vanish for a realistic sequence of

cosmological perturbations, which should be cut off at a finite wave–length before the

amplitude goes to zero, inter alia because the Sun exists; real perturbations do not

continue to zero wavelength. Indeed, as we show in Appendix B, the quantity tab(0) is

only non–vanishing if we impose further restrictions beyond the conditions imposed by

GW and, especially, if we require non–uniform convergence so that this term only arises

in the singular limit (see the discussion surrounding Eq. (B.19)). It is worth noting

that any uniformly convergent limit of a family of spacetimes will inherit some of the

properties of the family. These properties are called hereditary [48]. A set of vacuum

solutions with a non–vacuum limit would not respect Geroch’s hereditary properties for

limits, reflecting the points made above about the GW scheme being singular.

4.3. An example by Korzyński

We will not list here the many investigations of models and exact solutions illustrating

or quantifying backreaction effects. These works may be found in the reviews mentioned

in the introduction. We will only point out one recent work by Korzyński on nonlinear

effects from multi–scale structure [52] because it closely follows the arguments of GW,

it precisely illustrates why their arguments do not apply, and it quantifies the GR

inhomogeneity effect with the help of an exact nested structure model.

Korzyński shows that it is possible for small local deviations to produce a large

global effect. The procedure is closely related to the idea of metric smoothing by

removing density ripples. His result is not a counter–example to the claimed results

of GW, because, as he states, his model violates GW’s assumption (ii), according to

which perturbations should be small not just locally, but with reference to a single

global background. In Korzyński’s example, the smoothing procedure picks up effects

from all intermediate scales, arising as a cumulative effect, and relies on the “depth” of

structure, i.e., on the ratio between the homogeneity scale and the scale of the smallest

ripples (recall from subsection 4.2 that no lower cut–off exists for the inhomogeneities

in the GW formalism). Korzyński’s example thus illustrates the non–local nature of

backreaction. In line with this he also has shown in Ref. [53] that backreaction in

a system of many compact sources can be large even if the metric is close to FLRW

almost everywhere. The important issue there is the clustering properties of matter.
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5. Objections to the scalar averaging approach

The scalar averaging approach [31,54,55] referred to here is a realisation of the thoughts

advanced in Refs. [17, 18] (for other approaches, see Refs. [46, 56–59]). In this section

we address some misinterpretations of the scalar averaging framework that appear in

Section 3 of [12].

There are three points that must be considered: (i) the difference between spacetime

notions versus a cosmological 3 + 1 approach, (ii) the difference between the scalar

averaging framework and metrical approaches to backreaction, and (iii) the importance

of coordinate–independent arguments.

Green and Wald also comment (in footnote 6 of [12]) that this approach has the

difficulty that the system of averaged equations is not closed. This (which we believe is

the only relevant issue in Section 3 of [12]) has to be emphasized: even if one included

a further evolution equation for the backreaction variable, as GW suggest, the system

of averaged equations would not be closed, unless a dynamical equation of state is

assumed or derived [60]11. This issue has been spelled out at various places, e.g.,

it was already noted in the original paper [31]. A closure of the system would be

equivalent to saying that by shrinking the domain of averaging to arbitrarily small

domains the equations would provide a general local solution of Einstein’s equations.

Rather, these are conditions on averages similar to, e.g., the tensor virial theorem of

Chandrasekhar and Lee [62] that also provides a balance relation between averaged

variables by including fluctuations12.

We start with a common misunderstanding that also appears in [12].

5.1. Can there be average acceleration with local deceleration everywhere?

Yes, because backreaction is non–local.

Green and Wald state, and this opinion is shared by others since it seems plausible,

that: “... One can give an example of this sort [13] wherein the ‘backreaction’ is so large

that one obtains acceleration of the representative FLRW universe, even though each of

the [disjoint] 13 components of the actual Universe is decelerating”. (Our emphasis).

11 A second–order differential equation for the backreaction variable QD (as the relativistic counterpart

to Equation 1) can be derived (T Buchert, unpublished), and it depends on further variables such as

the intrinsic curvature backreaction appearing in metrical rescaling [46], implying the need to derive

further equations for these new variables. This situation is akin to the (infinite) moment hierarchies as

they appear, e.g., in kinetic theory. A recent paper addressing closure illustrates this issue [61].
12 The tensor virial theorem is closed by the virial conjecture of stationarity of the averaged inertial

tensor for an isolated system (a stationarity hypothesis can also be used in the scalar averaging

framework, see Ref. [63]). By construction, such balance relations cannot provide the local solutions.
13 Literally, GW state “disconnected” and refer to Section 3 of [13], which concerns “a model where

at time t the Universe consists of two disconnected(!) dust filled FLRW models. . . ”. Taken literally,

topologically disconnected FLRW universes are physically less relevant. Here, we discuss the more

relevant case of disjoint domains whose union constitutes the whole spatial section. This remark

applies to further citations from GW as in subsection 5.3.
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The physical effect under question has often been explained in the literature (see,

e.g., Refs. [64], [5], subsection 5.2): the fraction of the volume of faster expanding regions

grows more rapidly, so the average expansion rate rises. Formally, we see this by looking

at the Raychaudhuri equation that governs the local expansion rate of dust matter: only

a positive cosmological constant and vorticity can lead to an acceleration of the local

expansion rate θ (in the sense that the time–derivative of θ is positive). Putting the

cosmological term and the vorticity (which is active on small scales only) to zero, at

first sight it seems implausible that a collection of such decelerating fluid elements can

lead to acceleration of some patch of the Universe. Let us look at the difference between

the local and the volume–averaged Raychaudhuri equation for irrotational dust and

vanishing cosmological constant:

θ̇ = −4πG̺+ 2II− I2 ; 〈θ〉.D = −4πG 〈̺〉D + 2 〈II〉D − 〈I〉2D , (19)

where we defined the principal scalar invariants of the expansion tensor Θij , 2II :=

2/3θ2 − 2σ2 and I := θ; averaging is performed on a spatial domain D, and we have

used the commutation rule: 〈θ〉.D − 〈θ̇〉D = 〈θ2〉D − 〈θ〉2D = 〈(θ − 〈θ〉D)2〉D. Clearly, by

shrinking the averaging domain to a point, the two equations agree. However, evaluating

the local and averaged invariants,

2II− I2 = −1

3
θ2 − 2σ2 ;

2 〈II〉D − 〈I〉2D = −1

3
〈θ〉2D − 2 〈σ〉2D +

2

3

〈
(θ − 〈θ〉D)2

〉
D − 2

〈
(σ − 〈σ〉D)2

〉
D , (20)

gives rise to two additional, positive–definite fluctuation terms, where that for the

averaged expansion variance enters with a positive sign.

Thus, the time–derivative of an averaged expansion may be positive even if the

time–derivative of the expansion is negative at every point in D. This is, technically, a

consequence of the non–commutativity of averaging and time–evolution and, physically,

of the non–local nature of averaging that takes correlations into account. Applying this

fact to a model that is the union of disjoint FLRW submanifolds with spatial boundaries

implies that the difference in expansion rates of the respective sections is a positive–

definite expansion variance term (see references to such models in subsection 5.3).

5.2. Can energy conditions be violated for the average dynamics?

Again, the answer is yes. It is a possible consequence of what has been said above.

Green and Wald state a theorem that the effective energy momentum tensor tab(0) has

to obey the weak energy condition (see, e.g., Ref. [11], Eq. (2.8) in Theorem 2), where

it is written in the abstract that “the leading effect of small scale inhomogeneities on

large scale dynamics is to produce a trace–less effective stress–energy tensor that itself

satisfies the weak energy condition”. Green and Wald present in Ref. [11] (section 4) an

example for backreaction violating the weak energy condition (where they imply that

this must be a consequence of the violation of the local weak energy condition), and

where “the limiting metric has an effective stress–energy tensor which is not trace–less”.

We comment on this example in Appendix C.
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Green and Wald “emphasize the importance of imposing energy conditions on

matter in studies of backreaction”, but we emphasize that the effective stress–energy

tensor may, in general, violate energy conditions: the non–local fluctuation terms

discussed above may lead to violation of energy conditions upon averaging, although

locally they are satisfied.

This has also been stressed in the literature with regard to the mapping of

inhomogeneity effects to an effective scalar field that plays the role of a quintessence

field in standard models for dark energy (see, e.g., Refs. [1] and [30]). While it is known

that a fundamental scalar field (e.g., a quintessence field) must violate the weak energy

condition and other physical properties (e.g., Ref. [65]) to explain observational data, an

effective scalar field need not. Since, as we have shown in subsection 3.6, the framework

in which the problem is addressed by GW is local, the resulting effective stress–energy

tensor would then have to obey the local energy conditions only, and only in the limit

λ ց 0 (recall that there is no effective stress–energy tensor in the GW scheme for

λ ∈ (1, 0)), i.e., their Theorem 2 does not apply to an averaged stress–energy tensor.

Addressing the real averaging problem would not deliver a local expression. We remind

the reader that there is currently no agreed way to average tensors in GR.

Green and Wald’s theorem states that the effective stress–energy tensor emerging

from a weak–limit of spacetimes obeying the Einstein equations has to obey the weak

energy condition. Such a result would be fine but irrelevant for backreaction.

5.3. Confusion between the scalar averaging framework and metric approaches

Green and Wald question the framework where backreaction is discussed in terms

of spatial averages of scalar quantities. They assume that such a procedure assigns

an averaged FLRW metric to the averaging region, and the “main flaw with such

approaches” is that the metric thus obtained may be far from the real metric, even

when the latter is close to a FLRW metric, generating “entirely spurious” backreaction

terms [12].

However, this criticism is based on a fundamental misinterpretation of the scalar

averaging formalism [31,54]: it does not involve any notion of average metric (and does

not refer to geodesic deviations [22]); only averaged scalars are considered.

Explicitly, Green and Wald criticise the scalar averaging approach by considering

two disjoint14 dust FLRW universes in different stages of expansion. In Ref. [12] they

state “The Buchert prescription would represent this [disjoint] Universe as a single

FLRW Universe, which provides a bad approximation to the actual metric everywhere.”

And: “...the Buchert procedure with the above choice of hypersurface instructs us

to represent the Minkowski metric with an ‘averaged’ FLRW metric g(0) that is an

extremely poor approximation to gab on all scales.” Again, we emphasize that in the

scalar averaging framework there is no such “instruction” on a metric, apart from the

14 As stated above, we consider this property rather than the original term “disconnected”. We also

interpret “dust FLRW universe” to refer to a spatially bounded submanifold of a dust FLRW universe.
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spacetime split of the 4-metric (on which we comment below). As explained at the

beginning of this section, the formalism defines spatial average properties among scalar

variables that depend on second derivatives of the metric. The metric itself is not

specified.

We note that there are indeed investigations in the literature that study so–called

template metrics [57], [66], [67], [68], [69], that are intended to be compatible with

the exact average properties (although these are not the papers referred to by GW).

However, even these papers do not “represent this [disjoint] Universe as a single FLRW

Universe” (the metric which the standard model exactly assumes). On the contrary,

backreaction effects are often illustrated on the basis of models with two disjoint universe

sections and the main effect is identified as being the result of the differences in expansion

rates (see, e.g. [70], [71], [72], [68]).

The FLRW metric itself can be viewed as a global template metric. If we find that

the global average spatial curvature today is not zero, then the flat FLRW template will

constitute a poor approximation of the spatial sections, and small deviations thereof

will represent large deviations with respect to the physical background [73]. This is

exactly the problem that a template metric, even a single global template, is supposed

to correct for. Moreover, as we argued in the context of the steel ball model analogy

and the weak–limit framework: curvature inhomogeneities are not required to average

out on an assumed background, as GW a priori impose to be true.

Green and Wald also argue that the average expansion rate 〈θ〉D is not physically

meaningful, and that deviations of 〈θ〉D from the FLRW value due to large QD are

“entirely spurious”, and that “In realistic cosmological situations [...] the comoving

synchronous hypersurfaces of the Buchert construction will provide a poor choice for

approximating the hypersurfaces with nearly FLRW symmetry”. (Compare here our

discussion of the backreaction term QD as it is evaluated in Newtonian cosmology in

subsection 3.1.)

It is well–known that the average expansion rate depends on the choice of

hypersurface, and the issue has been discussed at length in the literature, where it

has been argued that the physically relevant averaging hypersurface is the one of

statistical homogeneity and isotropy, see e.g. [5, 7, 56, 64, 74–80]. It is irrelevant that

there are hypersurfaces that are not physically interesting, it only matters that averages

on some hypersurfaces give physically meaningful results and can be formulated in a

covariant way. (For discussion of covariance and gauge–invariance of scalar averaging,

see Refs. [50, 81, 82].) The average expansion rate evaluated on some hypersurface is a

useful quantity so far as it gives an approximate description of what is observed, which

is indeed the case for the hypersurface of statistical homogeneity and isotropy. However,

for realistic situations, the difference of averages taken on hypersurfaces of statistical

homogeneity and isotropy from averages taken on the hypersurface generated by the

fluid’s rest frame and measured by observers comoving with the matter component of

the Universe, well modelled by dust, is expected to be negligible [79], but this should still

be demonstrated in more detail. A nontrivial example is provided by the Swiss Cheese
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model of [83], where the average expansion rate describes the redshift (and to a lesser

extent the luminosity distance) well, even in a solution that is far from the FLRW case.

We emphasize that, in practice, observations of quantities such as the expansion rate

and density always involve spatial averages (or averages over null geodesics, which can

be related to spatial averages [79, 80, 83, 84]). Averaging is not a mathematical artifact,

it is a feature of real observations that has to be properly modelled.

5.4. Coordinate dependence of Green and Wald’s arguments: the comparison of metrics

The averaged metric may be a poor approximation to the g(0) of the GW formalism

(recall Eq. 4). Even though the averaging formalism does not refer to an explicit

metric, Green and Wald argue that this “poor approximation” is an issue. But it

is misleading to base an argument on the fact that the metric coefficient functions

are “far from” the values of a background metric. It may be demonstrated that

such an argument is coordinate dependent. Consider as an example a flat metric

and write it in different coordinates by introducing a diffeomorphism xa = fa(Xb)

such that the metric coefficients can be transformed to the Minkowski coefficients:

gabdX
a ⊗ dXb = δMcd f

c
|af

d
|bdX

a ⊗ dXb = δMcd dx
c ⊗ dxd (the last equality uses the inverse

of the transformation fa, and a vertical slash denoting a partial derivative with respect

to the local coordinates Xa). The values of the coefficients gab = δMcd f
c
|af

d
|b may be “far

from” the values of the Minkowski metric δMab , but in fact they are the same metric

arising from reparametrising a flat space.

We conclude that any comparison of metrics by just using metric coefficients is

unphysical, since it depends on the coordinates used. The question of “how far” one

metric is from another is a geometrical question that might perhaps be addressed

quantitatively through curvature invariants. Comparing two metrics in GR is quite

an involved task: we can employ Cartan scalars to test for isometry of metrics, see, e.g.,

[85,86], but, as Cartan showed, this may require up n(n+1)/2 covariant differentiations

of the Riemann tensor in n dimensions. (In four dimensional spacetimes, one only needs

at most seven derivatives [87].)

Such a test is justified by Theorem 9.1 of [85] which tells us that the geometry of

a sufficiently smooth manifold is locally uniquely determined by the curvature and its

derivatives to some finite order. But (a) the arguments by GW do not include comparing

derivatives and (b) we are not aware of any “almost” version of this theorem, i.e. a

statement that, if in some region the curvature of the metric g and its derivatives are

close, in a suitable topological space, e.g., some Sobolev space (cf. Appendix B), to those

of some metric g(0), then g is close to g(0) (again, in some suitable topological space).

Note in this context (compare subsections 4.1 and 4.2) that GW’s (and Burnett’s)

assumption (ii), cf. subsection 3.4, is in some coordinate components, so to be useful

here the missing theorem would have to include something about how the coordinates

are chosen to get a limit as GW want and the GW prescription would have to say more

about the derivatives of the curvature.

Another way to deal with the issue of closeness of metrics for spatial averaging might
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be an appropriate generalization of the methods used in [88] which allow identification

of the Schwarzschild metric given the data on any suitably smooth hypersurface.

Finally, we turn to the issue of whether there is any reason to think that the

standard cosmological model, which is based on work nearly a century old [89, 90]

(and unlike the standard particle physics model is the simplest conceivable cosmological

solution), might not be the best description of our Universe.

6. Models and observations

An implicit assumption of the FLRW model is that the dynamics and observations

of the inhomogeneous Universe can be modelled by the dynamics and evolution of a

spatially homogeneous and isotropic universe model. This procedure seemed to be

completely adequate for many decades; indeed, unanticipated discrepancies between

observations and the FLRW model such as the need for an accelerated homogeneous

universe model [91,92], compare here Ref. [93], are ascribed to a cosmological constant,

or more generally dark energy with a possible z–dependent equation of state. It is

often stated that we are in an era of “precision cosmology” and that all observations

are consistent with a “standard” cosmological model referred to as ΛCDM, which is an

FLRW model with a stress–energy content of several components (cold dark matter,

baryons, neutrinos, radiation, and a cosmological constant Λ) fitted to agree with

observations.

Another popular approach accounting for the apparent acceleration of the Universe

is to assume the Einstein equations are not a good description of the Universe on

cosmological scales and that “modified gravity” models are required to account for

the observations.

In this paper we remind the reader of another possibility. We assume that the

Einstein equations hold locally, but because of the inhomogeneous distributions of

matter and geometry the FLRW model fails to adequately describe the observations.

While the FLRW–ΛCDM model may indeed be an adequate fitting model for many

observations, future cosmological observations that are more accurate may provide

evidence that the FLRW–ΛCDM model is inadequate. It may be that some of the

many “tensions” between observations and the FLRW–ΛCDM model already constitute

such evidence: there are several different observational challenges to the FLRW–ΛCDM

model at the 3σ level [94–102], and some observational questions have been raised

about the identification of the comoving rest frame on 60–100h−1 Mpc scales—well

above those of strong–field astrophysical objects [103, 104]. These results contrast

with GW’s statement that the FLRW–ΛCDM model is in “excellent agreement with

all cosmological observations”. However, this paper is not intended as a discussion

of potential observational problems with (nor criticisms of) the standard model, but

instead it analyses Green and Wald’s theoretical claims.

We turn now to observational issues in dealing with the inhomogeneous Universe.
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6.1. Observational issues

It is important to take into account large metric derivatives and corresponding changes

of observational data interpretation. Green and Wald discuss this, underpinned by

the claim that Newtonian notions fully capture these changes with the help of their

dictionary, which is restricted to an assumed near–FLRW situation. We agree with

their statement “Moreover, the time evolution of the shear and convergence of a bundle

of geodesics depends on the Riemann curvature (i.e., second derivatives of the metric),

which can be very large”, but it is not clear that a “Newtonianly perturbed FLRW

model” can fully account for this. This should be regarded as an open question until

backed by concrete general calculations. The issue is whether the actual GR solution

or aspects of it can be constructed via a “dictionary” from a Newtonian solution (not

shown), not whether a quasi–Newtonian GR solution can be constructed via some rules

from a Newtonian solution.

Green and Wald argue that a mapping of solutions of Newtonian cosmological

equations with periodic boundary conditions and certain properties to GR solutions

given in Ref. [10] “should yield an extremely accurate general relativistic description of

our Universe, and, in particular, it provides the leading order backreaction effects at

large scales produced by small scale inhomogeneities”. However, there are two different

issues. One is whether certain Newtonian solutions are the limit of some GR solutions;

the other is whether the GR solution that describes the real Universe is at all times

close to a corresponding Newtonian solution15 (see also Ref. [105]).

Ref. [10] addresses the former question, but it is the latter issue that is relevant

for providing an accurate GR description of our Universe and evaluating backreaction.

Even if a particular GR solution starts from initial conditions close to a Newtonian

solution, this does not imply that the GR solution would remain close to the Newtonian

solution. As a simple example, in Newtonian gravity an isolated two–body system with

an elliptic orbit is a stable configuration, whereas in GR the orbit will decay, and the

system will be driven far from the Newtonian solution16. The difference in the evolution

of the orbit is related to the difference between the Weyl tensor and the corresponding

quantity in Newtonian theory, the Newtonian tidal tensor. A general GR solution (even

if the matter is dust) does not correspond to any Newtonian solution. This is related to

the fact that in Newtonian theory the tidal tensor, corresponding to the electric part of

the Weyl tensor, does not have an evolution equation, and the tensor corresponding to

15 If this were the case, backreaction would be small on the global scale, because in Newtonian theory

its effect reduces to a boundary term [28], unlike in GR [31].
16 The global stability properties of a FLRW background have been investigated in–depth by a

dynamical system analysis in the space of physical backgrounds using scaling assumptions (i.e.

backgrounds that emerge from the average of the inhomogeneous universe model) [106] (see also [107]

for the class of LTB models). It has been found that the FLRW background is globally gravitationally

unstable in two sectors, one corresponding to inhomogeneity effects mimicking dark energy behaviour

on large scales, the other corresponding to inhomogeneity effects mimicking dark matter behaviour on

small scales. In contrast to these instabilities the Newtonian inhomogeneities average out on the chosen

background model by construction and this latter is stable [28].
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the magnetic part of the Weyl tensor is zero. In GR, both are in general non–zero and

have evolution equations, see Refs. [78,108–119] for discussion. In [10] the arbitrariness

of the tidal tensor is fixed by the assumption of periodic boundary conditions. As the

Newtonian equations are elliptic and do not have a well–defined initial value problem, the

boundary conditions are essential [28]. This is quite different from GR, where there is a

well–defined initial value problem. Changing the evolution of the boundary at distances

much larger than the GR particle horizon would not impact the GR solutions, but

can completely change the Newtonian solutions. A lack of backreaction in GR cannot

be established by starting from the assumption that the Universe is well–described by

Newtonian theory.

A common argument against backreaction, sometimes ascribed to [120] and

repeated by GW is that “by flux conservation, the average of the apparent luminosity

of sources (including multiple images) must match the FLRW value to a high degree of

accuracy”. However, if the area element is different from FLRW, then the luminosity

distance will also be different. Green and Wald assert that it “is a simple fact” [22] that

if two metrics are perturbatively close, then the average apparent luminosity of sources

is a close match. Actually, this is incorrect. A counterexample is provided by Enqvist et

al. [121] in which, while perturbations (and their first derivatives) around an Einstein–

de Sitter background remain small, the luminosity distance can even match that of a

ΛCDM model with ΩΛ = 0.7. It is also straightforward to construct exact spherically

symmetric counterexamples to the flux claim, such as the one in Ref. [122] (see also

Refs. [123,124]). This issue has been discussed in Section 2.1.2 of Ref. [71] and Section

4 of Ref. [83]. Even on large scales statistical isotropy and homogeneity is not enough

to reduce the luminosity distance to its FLRW value, as shown in Ref. [83]. Indeed,

the violation of the FLRW relationship between the expansion rate and the luminosity

distance can be used as a test of the importance of inhomogeneities [79,80,83,125–127].

6.2. The (quint)essence of the backreaction approach

As Green and Wald stress, second derivatives of the metric (i.e. spacetime curvature)

have to be large in realistic models of the Universe. Averaging or smoothing these

derivatives leads to an effective stress–energy tensor that is in general not trace–free, as

we have demonstrated. Hence, this furnishes an argument for the potential importance

of backreaction.

The Einstein equations dictate inhomogeneous curvature for inhomogeneous

sources. A physical cosmology has to capture both inhomogeneities in the sources and

inhomogeneities in the geometry. Idealising the latter by assuming a homogeneous

FLRW metric globally, leads to a missing geometrical piece on the left–hand side of

the Einstein equations that shows up as missing sources on the right–hand side of the

Einstein equations in the standard model. “Backreaction” takes the inhomogeneities

in geometry into account and so provides a more realistic average description of the

left–hand side of the Einstein equations.
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From first principles, any realistic cosmological model emerging from a 3 + 1

spacetime split should evolve spatial curvature for evolving sources, even if the spatial

curvature is set to zero at some initial time. The oversimplified standard model keeps

curvature at this non–generic value, while backreaction models evolve curvature, even

if it is set to zero at some initial time [31].

We have to distinguish average properties and fluctuations. Fluctuations may

remain small on large scales, but that is not the issue: the issue is the background

about which these fluctuations are small, and this is what is addressed by backreaction

models. Metrical deviations from an (unknown) average metric may be small, but it is

an assumption that this average metric is dynamically equivalent to a homogeneous (and

flat) FLRW solution. In other words, small metric perturbations do not imply small

distortions of a flat geometry. In 1916, Einstein already clarified this and explained that

the perturbations could equally well be small deviations from a large–scale curved space.

(Einstein, however, reached this conclusion with calculations on which we comment,

below his quote, from a modern perspective.) This can be considered a variant of the

steel ball model of GW. In Einstein’s words [128]:

But it is conceivable that our Universe differs only slightly from a Euclidean

one, and this notion seems all the more probable, since calculations show that

the metrics of surrounding space is influenced only to an exceedingly small

extent by masses even of the magnitude of our sun. We might imagine that,

as regards geometry, our Universe behaves analogously to a surface which is

irregularly curved in its individual parts, but which nowhere departs appreciably

from a plane: something like the rippled surface of a lake. Such a Universe

might fittingly be called a quasi-Euclidean Universe. As regards its space it

would be infinite. But calculation shows that in a quasi–Euclidean Universe the

average density of matter would necessarily be nil. Thus such a Universe could

not be inhabited by matter everywhere; it would present to us that unsatisfactory

picture... If we are to have in the Universe an average density of matter which

differs from zero, however small may be that difference, then the Universe

cannot be quasi–Euclidean. On the contrary, the results of calculation indicate

that, if matter be distributed uniformly, the Universe would necessarily be

spherical (or elliptical). Since in reality the detailed distribution of matter is not

uniform, the real Universe will deviate in individual parts from the spherical,

i.e. the Universe will be quasi–spherical. But it will be necessarily finite.

Einstein emphasized that the small deviations require a more careful description of

the global spatial curvature. (Einstein mentions a positively curved background, but it

could as well be negatively curved.) We argue that the deviations should be studied with

respect to a background that is defined by the actual average distribution (the physical

background), as it is done in other physical disciplines that investigate fluctuation

theories, e.g., in solid state physics, not by a priori assumption.

In a modern perspective, but only in Newtonian cosmology, we can represent the
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Universe through a finite flat 3–torus model with Newtonian inhomogeneities on a

factored out relativistic FLRW model, cf. [28]. In Newtonian cosmology the a priori

assumption of a background that is equivalent with the average distribution can be

realised: the spatially averaged model can be assumed to be an FLRW model on

the imposed scale of the 3–torus due to the globally vanishing backreaction, which

assures that the inhomogeneities average out to zero, cf. [28]; in general relativity such

a construction is not possible, and the average model in general does not comply with

an FLRW model [27]: the physical background will not coincide with an assumed fixed

background, since it is determined through the dynamics of inhomogeneities.

Discussions restricting the regime of applicability to regions “far from black holes

or neutron stars” overlook the fact that on cosmological scales the curvature can be tiny

but still dominant over the source contributions. Even in homogeneous cosmology, the

Einstein cosmos [89] provides an example of a curvature–dominated model, its curvature

radius being smaller than the Schwarzschild radius if the former is greater than about

3.3 Gpc (assuming a mean density of the present estimate of the total baryonic plus dark

matter densities and the observed value of the Hubble constant). In other words, this

example shows that if the curvature is cosmologically significant small metric deviations

from a flat metric would run into contradictions.

More generally, even if fields are weak then an important consideration is the

calibration of the asymptotic rulers and clocks of the close to spatially flat metric

around bound structures relative to a generally non–FLRW cosmological average.

Since no systems are truly isolated, this may generally require a notion of “finite

infinity” [17,129–131] to replace the exactly asymptotically flat geometry to which many

definitions of gravitational mass are tied. The problems of averaging and coarse–graining

may therefore be intimately related to fundamental unsolved problems concerning

gravitational mass–energy [6].

Finally, in this paper we focussed on backreaction effects in general relativity, as

this is also the framework addressed by Green and Wald in their papers. However, there

could be more degeneracies relating observations with theoretical predictions: we did

not touch upon issues related to different theoretical frameworks such as the possibility

of a non–symmetric connection, the role of torsion, non–metrical theories or, generally,

modified gravitational theories that contain general relativity as a low–energy limit.

A general assessment of backreaction effects would also incorporate studies of possible

deviations from classical general relativity.

7. Conclusion

There is no proof that backreaction of inhomogeneities is irrelevant for the dynamics

and observables of our Universe.

The most detailed study claiming to show that backreaction is irrelevant is in a series

of papers by Green and Wald [9–12] and a precursor paper by Ishibashi and Wald [13],

so we have examined those papers in detail (in particular the review in Ref. [12]). We

have pointed out several issues that lead us to conclude that these do not provide a
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proof that backreaction is irrelevant. In particular, we have demonstrated that the

claimed trace–free nature of backreaction is unphysical and is not relevant within the

backreaction framework. We have also shown that the GW framework does not address

the actual question of backreaction since i) it is not concerned with averaging; ii) it does

not include terms that should be present in a consistent treatment (especially, the trace

parts); iii) its relation to the cosmological situation is unclear; iv) the example steel ball

analogy is not concerned with the fitting problem; v) the ultra–local limit procedure

does not take into account that backreaction is a non–local effect and vi) the criticisms

misrepresent existing work on backreaction.

While the GW framework is not applicable to studying backreaction, it is possible

that further developments of their framework may provide useful mathematical results.

Remark on Green and Wald’s note in response to this paper

Shortly after this paper was submitted, Green and Wald responded with a note [22] in

which they redefined the word “backreaction” to refer to the specific setting they address

in their formalism, labelling other approaches—which constitute most of the papers in

the literature—as “pseudo–backreaction”. They further clarified that their formalism

was “never intended or claimed to apply” to such approaches17, and, in particular, that

their results “do not apply to the Buchert formalism” or to “LTB models” modeling

large voids [22]. Regardless of terminology, the physical question of interest is whether

inhomogeneities have a significant effect on the evolution of averaged variables that

correspond to observable quantities. We have explicitly demonstrated that the definition

of backreaction assumed by Green and Wald is too narrow to address this question.
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Appendix A. On the intrinsic realisation of the steel ball analogy

In order to address the analogy given by GW, we have to investigate a well–defined

intrinsic geometrical mapping between (S2, gpol) and (S2, gcan). Even if we restrict

ourselves to the two–dimensional case, as GW did—and we emphasized that this case is

physically irrelevant for the purpose of investigating backreaction—we can exploit the

Thurston–Rodin–Sullivan ǫ–approximation to the Riemann mapping theorem [132–137]

(associated with the circle packings techniques developed by W. Thurston). This is not

a perturbation argument, but rather a deformation argument in the space of (metric)

geometries over S2. A more direct and easier variant of this would be the Poincaré–Koebe

uniformisation theorem directly formulated for two–dimensional polyhedral metrics (the

existence of this version of the standard uniformisation technique is a consequence of

the fact that conical singularities are not seen by the conformal structure of surfaces,

and this has been nicely developed by many authors [23–25]). Both are mathematically

well–defined and constructive procedures. They provide an explicit mapping (typically a

conformal transformation) between (S2, gpol) and (S2, gcan). These mapping techniques

are currently applied in the modelling of two–dimensional discrete structures in fields

ranging from image analysis to biology and medicine. In particular, both approaches

would map (S2, gpol) to a well–defined (S2, gcan) without any conical defects whatsoever.

We would further like to correct the statement by Green and Wald that the metric

of the polyhedron fails to be smooth also at the edges. The metric of (S2, gpol) is

perfectly smooth at the edges. The bending we envisage at the edges, suggesting a lack of

smoothness there, is an artifact of the embedding in Euclidean space (E3, δ). It is related

to the (discretized) second fundamental form (the extrinsic curvature) of (S2, gpol), and

if we take it into account, then we need to consider the (discretized version) of the

Gauss–Codazzi constraint describing the compatibility conditions between the intrinsic

and extrinsic geometry of the embedding (S2, gpol) →֒ (E3, δ), see, e.g., Refs. [138,139].

Appendix B. The nature of the weak–limit in the GW approach

This is a technical appendix where we discuss the mathematical and geometrical

underpinning of Green and Wald’s approach. There are subtle assumptions and

hypotheses underlying their claimed results that are unclear and not explicitly stated.

Even when these hypotheses are spelled out clearly they are not always adequately

implemented, eventually leading to insufficiently justified conclusions. As a typical and

important example, let us take the assumptions (ii)–(iv), according to which [9, 12]

the components of the tensor fields γab(x, λ) and of ∇cγab(x, λ) are locally in L1, and

bounded by smooth functions λC1(x) and C2(x), respectively, see Eqs. (7) and (8).

As often emphasized in [9, 12], no restrictions are placed upon second derivatives of

γab, with the effect that [12] “... second derivatives (i.e., the curvature) of gab may

have unbounded fluctuations relative to gab(0).” Nonetheless computations in [12] are

performed as if the spacetime metrics considered are smooth, as is confirmed in the

recent explanatory note [22]. Unfortunately, given the above hypotheses, one cannot
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safely carry out computations by declaring that second derivatives of the perturbing

tensor γ may be unboundedly large, and then treat them as ordinary smooth functions.

In fact, (ii)–(iv) imply that the GW effective stress–energy tensor tab(0) cannot

be defined in terms of the tensor field µ alone, (cf. (9)): it may have components

that in general make sense only as non–regular distributions. Furthermore, as we shall

demonstrate below, under (ii)–(iv) there is a very delicate regularity issue in taking a

weak–limit, with the consequence that one cannot prove that the trace of tab(0) vanishes

without further hypotheses additional to those in (ii)–(iv). In this sense, GW’s Theorem

1 (the vanishing of the trace of the effective stress–energy tensor), is the counterpart of

the observations we made for the steel ball analogy: as in the analysis of the steel ball

model, curvature fluctuations matter; their treatment requires an accurate analysis.

In order not to have unstated assumptions and unclear formal computations, we

address the mathematical analysis of GW’s approach stepwise. To avoid the pitfalls

of doing analysis with potentially unbounded quantities (here the second derivatives of

the perturbation γ), we start by providing a Sobolev space analysis of the regularity

issues associated with GW’s assumptions (ii)–(iv). We use Sobolev spaces to get to

the point as quickly as possible and to pinpoint the origin of the problem lurking in the

background. Those not familiar with Sobolev space technology may skip this part of the

analysis, if they are willing to accept the fact that taking weak–derivatives and weak–

limits requires some caution when differentiating or integrating by parts. In successive

steps we address the technical limitations of GW’s approach, which give rise to the stated

difficulties in correctly defining their effective stress–energy tensor tab(0). Many of these

difficulties arise because of subtle issues in the adoption of the Burnett formalism, [33]

on which they heavily rely.

Step (i): To begin, we introduce, as do Green and Wald, a positive definite metric

e := eabdx
a ⊗ dxb on the manifold M with respect to which we can take local norms

of tensors in defining the relevant functional spaces. In particular, for an open set

U ⊂ M we denote by Lp
loc(U), 1 ≤ p ≤ ∞, the space of Borel measurable functions

f defined on U which are p–summable, i.e., ||f ||Lp(K) :=
∫
K

|f(x)|p dµe(x) < ∞ for

every compact set K ⊂ U , where dµe denotes the Riemannian measure associated

with the metric e. For p = ∞, we denote by L∞
loc(U) the Banach space consisting of

the essentially bounded functions on U , endowed with the essential supremum norm

||f ||∞ := inf {C ∈ R : f ≤ C almost everywhere in U}. We also introduce the class

of functions in Lp
loc(U) whose weak first derivatives, (see below for definitions), are

also Lp
loc(U)–functions. These are the Sobolev spaces W 1,p

loc (U) 1 ≤ p ≤ ∞, often used

in geometric analysis and mathematical general relativity. Their definition naturally

extends to the appropriate spaces of tensor fields. For further details see, e.g., Refs.

[37, 140–142].

It is also appropriate to recall the definitions of distributional and weak derivatives.

Entering into such mathematical detail may appear pedantic. However, the different

properties of these two derivatives play a subtle, but fundamental, role in what

follows. As usual, let C∞
0 (M) be the space of smooth compactly supported functions
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on M . If we denote by Tf the regular distribution associated with f ∈ L1
loc(U), i.e.,

Tf (φ) :=
∫
M

f(x)φ(x) dµe(x), for φ ∈ C∞
0 (M), then Tf always admits a distributional

derivative ∇Tf , defined according to ∇Tf(φ) := −Tf (∇φ), viz..

∇Tf(φ) := −
∫

M

f(x)∇φ(x) dµe(x) , ∀φ ∈ C∞
0 (M) . (B.1)

If f is continuously differentiable, we can integrate by parts on the right–hand side,

∇Tf(φ) := −
∫

M

f(x)∇φ(x) dµe(x) =

∫

M

∇f(x)φ(x) dµe(x) = T∇f (φ) , (B.2)

which provides the usual, often abused, rationale in manipulating distributional

derivatives. Higher–order distributional derivatives are defined in a similar way. In

nonlinear problems, like the one we are discussing here, it is more useful and sometimes

indeed necessary to consider, rather than the distributional derivative, the more

restrictive concept of weak derivative. Let f ∈ L1
loc(U) be a locally integrable function

on the open set U ⊆ M and let Tf be the corresponding regular distribution. If there

exists a locally integrable function F ∈ L1
loc(U) such that ∇Tf := TF , viz.∫

M

f(x)∇φ(x) dµe(x) = −
∫

M

F (x)φ(x) dµe(x) , ∀φ ∈ C∞
0 (M) , (B.3)

then we say that F is the weak derivative of f , and write F = ∇ f . Weak derivatives

emphasize local summability, whereas distributional derivatives put the accent on

differentiability. The two notions agree for smooth functions, and often the notion

of weak derivative is tacitly traded for the definition of derivative in the sense of

distributions. But the two have quite different properties. In particular, the weak

derivative may not exist: two well–known examples are the Heaviside step function and

the Cantor function. Neither admits a weak derivative whereas they both do have a

distributional derivative: the Dirac measure supported at the origin, and the Lebesgue-

Stieltjes measure supported on the Cantor set, respectively. Both of these distributions

are non–regular distributions, i.e., they cannot be associated with a locally summable

function. Note also that the existence of a weak derivative is not equivalent to the

existence of a pointwise derivative almost everywhere.

Given these technical issues one may ask why we should not simply interpret GW’s

formalism in the distributional sense, as suggested by their use of the weak topology

(i.e., weak–limits and integration by parts), and confirmed by their recent explanatory

note [22]. To illustrate why not, we will present a simple example to show that there is a

price to pay if one goes distributional without due care, in particular when interpreting

weak–limits as a form of averaging. The example in question is related to the vanishing

of the weak–limit w–limλ→0 ∇a∇bγce(λ), a basic result which has many implications in

GW’s approach.

For simplicity, let us work on R, and consider the function (playing the role of GW’s

metric perturbation γab(x, λ))

γ(x, η) :=
η2√
4πη

e− x2

4η = η2 pη(x, η; 0) , (B.4)
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where p(x, η; 0) is the heat kernel in R with source at x = 0, and where η ∈ (0, 1] (i.e.,

we are taking λ := η2). One has

d

dx
γ(x, η) = − x

2

η√
4πη

e− x2

4η ;
d2

dx2
γ(x, η) =

(
x2

4
− η

2

)
1√
4πη

e− x2

4η . (B.5)

Clearly, for all η > 0, we have smooth functions, i.e., γ(x, η), d
dx

γ(x, η), and d2

dx2 γ(x, η)

are C∞(R). Moreover, 0 < γ(x, η) ≤ η2 (4π η)− 1/2, and 0 < | d
dx

γ(x, η)| ≤
η (4π η)− 1/2 |x|

2
, hence γ(x, η) tends to zero as η ց 0, uniformly in x, while d

dx
γ(x, η) → 0

pointwise. Finally, since limηց0 pη(x, η; 0) is not locally summable, d2

dx2 γ(x, η) tends

to zero in the sense of distributions. Explicitly, let T(x2/4−η/2) and Tp(x,η; 0) be the

regular distributions associated, for any fixed η ∈ (0, 1], with the smooth functions

(x
2

4
− η

2
) and p(x, η; 0). Since, for any φ ∈ C∞

0 (R), (x
2

4
− η

2
)φ ∈ C∞

0 (R), and

limηց0

∫
x2φ(x) p(x, η; 0) dx = (x2φ(x))|x=0 = 0 (by the known properties of the

heat kernel p(x, η; 0)), we can write

lim
ηց0

T(x2/4−η/2) Tp(x,η; 0) =
x2

4
δ0 = 0 , (B.6)

where δ0 is the Dirac measure supported at x = 0. This shows that using distributions

is a far cry from what we would naturally consider, i.e., the vanishing of (d2/dx2)γ

resulting from a suitable average of a locally summable function over the region of

interest18. The above example clearly shows that, rather than an average, a direct

distributional approach may give rise to measure concentration phenomena (associated

here with the heat kernel measure 1√
4πη

e−x2/4η dx concentrating, as η ց 0, the zero

weak–limit of (d2/dx2)γ at the origin x = 0).

One may argue that, in contrast to the pathological example (B.4), the oscillating

to death function γ(x, η) = η sin(x/η), 0 < η ≤ 1, often quoted in [12], is a simple

example modeling the assumptions (ii)–(iv), with a nicer behaviour. In this case we

have dγ(x,η)
dx

= cos(x/η), and d2γ(x,η)
dx2 = − 1

η
sin(x/η). Since

∫ a

−a
sin(x/η) dx is uniformly

bounded, one immediately gets limηց0 Td2γ(x,η)/dx2 = 0 as a regular distribution.

Moreover, one easily computes

lim
ηց0

Tγ(x,η) Td2γ(x,η)/dx2 = − 1

2
, (B.7)

which, while indeed providing an elementary realization of GW’s assumption (iv),

also shows that modeling γab(x, λ) and its derivatives (hence gab(x, λ)) as regular

distributions—complying with (ii)–(iv)—is quite problematic: there can be a lack

of continuity in the relevant geometric operators19. In particular, the mapping that

associates to the metric gab(x, λ) its Riemannian curvatures, say the Riemann tensor

gab(x, λ) 7−→ Rd
abc(x, λ), cannot be a continuous map between the appropriate space of

18 In Green and Wald’s papers it is often suggested that the weak–limit “corresponds roughly to taking

a local spacetime average”. In particular, the concluding paragraph of [12] strongly emphasizes this

aspect.
19 The relation (B.7) is a standard example proving that multiplication is not a continuous operation

in distribution space. When computing curvatures for gab(x, λ) we need to use the product

Tγ(x,η) Td2γ(x,η)/dx2 .
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tensor fields, if the weak–limit and derivatives are interpreted distributionally without

due care. For these reasons it is more exact to use weak rather than distributional

derivatives. Even in this case distributions may nonetheless arise, as we shall see in

the computation of the Einstein tensor for low regularity metric perturbations such as

those occurring in GW’s case. However, our calculation will be done in a controlled way

from the point of view of geometrical analysis, allowing us to pinpoint the origin of the

potential problems in the formalism.

Green and Wald’s assumptions (ii)–(iv) imply that each metric tensor g(λ) along

the curve of metrics (5), is a low regularity (perturbation of a) Lorentzian metric.

The minimum assumptions needed to define the Riemann tensor (and all attendant

curvatures) along (5), and at the some time comply with GW’s assumptions (ii)–(iv),

are to assume that on the smooth background provided by (M, g(0)) the components

of the tensor field γab(λ) are essentially bounded and, together with their derivative,

are locally square summable. Indeed, these are the minimal technical requirements

needed to safely carry out most of the formal computations in Green and Wald’s papers.

Explicitly, we require that around the generic point in (M, g(0)) there exists a local

coordinate neighbourhood (U, xa), U ⊂ M , where we can write

gab(λ) = gab(0) + γab(λ) , λ ∈ (0, 1] , (B.8)

and where the components of the perturbation tensor field γ are such that

γab(λ, x) ∈ W 1,2
loc (U) ∩ L∞

loc(U) , (B.9)

for all λ ∈ (0, 1]. Here, according to the notation introduced above, W 1,2
loc (U) is the

(local) Sobolev space of sections which together with their first derivative are square

summable (in U), and L∞
loc(U) denotes sections which are essentially summable in

U , (the relevant Sobolev norms on (M, g(0)) being defined in (U, xa) [37, 140, 141]).

Note that GW also impose the smallness of γab(λ, x) as λ ց 0, by assuming that

|γab(λ)| ≤ λC1(x) for some smooth positive function C1(x) on M . In our setting this

is just a smallness constraint on the local components of γ and does not imply the

smallness of the W 1,2
loc (U)–norm of γ, in line with the GW formalism.

It is convenient to take (M, g(0)) to be a generic background metric (similar to the

case of the almost–everywhere flat metric in the steel ball analogy). This is in line with

the remarks in GW that their computations hold for generic background metrics. By

so doing we can better appreciate the differences arising from assuming FLRW as the

background.

The Sobolev space assumption above provides a local control on γ and its first

derivatives that is consistent with the simpler GW hypotheses (ii)–(iv), but at the

same time allows us a more precise analytical control on the geometrical tensor fields we

need to use. To wit, since the set W 1,2
loc (U) ∩ L∞

loc(U) is an algebra under pointwise

multiplication [141], we can define all algebraic manipulations20 of g(λ) and γ(λ).

20 We can define all algebraic manipulations in the algebra associated with the product of the equivalence

classes of functions defined almost everywhere.
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Moreover, ∇γ(λ) and the Christoffel symbols Γc
ab(λ) of g(λ) are in L2

loc(U). More

precisely, from the standard formula relating the Christoffel symbols of the two metrics

(M, g(0)) and (M, g(λ)) we have

Γa
bc(λ) = Γa

bc(g(0)) − 1

2
∇kg

ij(λ)
(
gbi(λ)gcj(λ)g

ak(λ)− gbi(λ)δ
k
c δ

a
j − gci(λ)δ

k
b δ

a
j

)
, (B.10)

and we can symbolically write, in terms of the functional class,

Γa
bc(λ) ∈ C∞(U) + L2

loc(U) , (B.11)

where C∞(U) here and in the following formulas refers to the smooth part of the relevant

quantity under discussion, associated with the background (M, g(0))21, (assumed to be

smooth).

Since ∇γ(λ) ∈ L2
loc(U), it follows that ∇γ(λ)∇γ(λ) is in L1

loc(U), i.e., it is locally

summable for all λ ∈ (0, 1] and hence there exists the weak–limit tensor µabcdf defined

by (9) as a regular distribution locally represented by a (tensor–valued) continuous

function. In general, this is not a smooth tensor field, as assumed in (iv). However,

the smoothness requirement is not really relevant to the GW argument since the terms

causing trouble are the second derivatives of γ. Indeed, from the (formal) local definition

of the Riemann tensor components in (U, xa),

Rd
abc(λ) := ∂aΓ

d
bc(λ)− ∂bΓ

d
ac(λ) + Γm

bc(λ)Γ
d
am(λ) − Γm

ac(λ)Γ
d
bm(λ) , (B.12)

it follows that the terms ∂aΓ
d
bc − ∂bΓ

d
ac in Rd

abc(λ), containing the second derivatives of

γ, can be given sense only as elements of the distributional space W − 1,2
loc (U) (roughly

speaking, the topological dual of W 1,2
loc (U)), whereas the quadratic terms containing the

first derivatives of γ, i.e. Γm
bcΓ

d
am − Γm

acΓ
d
bm are, as introduced above, in L1

loc(U). Clearly,

since (M, g(0)) is assumed smooth, in the second–order linear part of the Riemann

tensor, ∂aΓ
d
bc − ∂bΓ

d
ac, there is a smooth part (cf. B.11), and we can write

Rd
abc(λ) ∈ W−1,2

loc (U) + L1
loc(U) + C∞(U) . (B.13)

Since contraction is an algebraic operation, the same situation holds also for the Ricci

tensor, and we have

Rac(λ) := Rd
adc(λ) ∈ W−1,2

loc (U) + L1
loc(U) + C∞(U) . (B.14)

The situation for the scalar curvature is subtler: in order to contract the Ricci tensor we

need to trace the distribution–valued tensor components Rac(λ) with the components

gab(λ) of the inverse metric, (which are in W 1,2
loc (U) ∩ L∞

loc(U)). For the components of

the Einstein tensor we have

Gab(λ) ∈ W −1,2
loc (U) + C∞(U) , for λ ∈ (0, 1] . (B.15)

Step (ii): Clearly, what makes the components Gab(λ) of the Einstein tensor potentially

described by singular distributions is the presence of the ∇∇γ(λ) terms. Since we are

dealing with a family of metrics λ −→ g(λ), λ ∈ (0, 1], it may well happen that

21 For a similar treatment of low regularity metrics in Riemannian geometry, see [143].
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the distributional part of Gab(λ) vanishes in the limit λ ց 0 as a consequence of

the GW hypotheses (ii)–(iv). Even if this is the case, in order to give substance to

GW’s formalism, we must carefully check that this vanishing weak–limit is supported

on a set of significant measure and not associated with a delta–like measure or with

a discontinuous dependence on the averaging scale (see the example (B.4)–(B.7)). In

fact, Green and Wald claim that with the weak–limit operation many of these second

derivative terms over the smooth background (M, g(0)) vanish in the limit λ ց 0.

In particular, they assume in [9] that the terms gik(0)∇a∇bγef(λ) weakly vanish in

the λ ց 0 limit. Explicitly, by referring to the terms containing two derivatives of

hab(λ), they state22 just before formula (13) in [9] “These terms can be classified into

the following types: (a) terms linear in hab(λ), corresponding to the linearized Einstein

operator acting on hab(λ); (b) terms quadratic in hab(λ), corresponding to the second–

order Einstein operator acting on hab(λ); and (c) terms cubic and higher–order in hab(λ).

The weak–limit of terms of type (a) vanish by the type of argument leading to (3)....”.

Actually, in claiming that the terms of type (a) vanish by the type of argument leading

to (3), they implicitly extend Burnett’s argument [33] (as exploited in Eq. (3) of [9]

for first derivatives of γab) to second derivatives, an extension that under their stated

hypotheses is not guaranteed.

Explicitly, and regardless of the potential distributional nature of the Einstein

tensor discussed above, the problem in GW’s approach lies in analysing the weak–limit

of their equation (12) in Ref. [9]. This is the core of their work, but unfortunately, the

analysis there is performed with some hidden assumptions. Given the importance of this

point, let us describe it in detail. What GW exploit in proving the vanishing of the weak–

limit of terms of type (a) is the direct application of case (b) of “Burnett’s Theorem”

by identifying Burnett’s tensor field α(λ) with ∇γab(λ), (cf. Ref. [33], pp.95–96, and in

particular the top of p.92 where Burnett claims that “∇Cc
ab(λ) −→ 0 weakly”). Green

and Wald implicitly assume that, for any compactly supported test tensor field density

fabce, one can write

w–lim
λց0

∇a∇bγce(λ) = lim
λց0

∫
fabce∇a∇bγce = −lim

λց0

∫
∇af

abce∇bγce = 0 , (B.16)

where the first step is integration by parts of the term ∇a∇bγce(λ), and where in the

second step one exploits the weak convergence to 0 of ∇bγce(λ).

This would be fine, if we interpreted (B.16) in the distributional sense and exploit

the continuity of the distributional derivative. However, as shown above, this may

generate a vanishing weak–limit associated with concentration phenomena or exhibiting

a discontinuous dependence on the averaging scale. To avoid this we need to require

that in the limit λ ց 0, the tensor components ∇a∇bγce(λ) are represented by functions

which are at least locally summable. But this strict weak derivative representation is

also problematic, since it is not a priori allowed under the general assumptions on γce(λ)

adopted by GW, in particular if ∇a∇bγce(λ) can be unboundedly large. This indicates

22 Note: hab(λ) of [9] is γab(λ) here and in [12].
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that local summability may also be a very delicate issue in GW’s formalism and cannot

be taken for granted. In particular, in order to define the quantities ∇a∇bγce(λ) in the

weak sense and give meaning to (B.16) without nonregular distributions coming in, we

have to assume, according to the very definition (B.3) of the weak derivative, that for

every λ ∈ (0, 1] there is an array of functions Fabce(λ) = (F1(λ), . . . , Fn(λ)), each of

which is in L1
loc, such that
∫

Fabce(λ) f
abce = −

∫
∇bγce(λ)∇a f

abce , (B.17)

for all compactly supported test tensor densities fabce. These Fabce(λ) are the weak

derivatives of ∇bγce(λ), namely we can symbolically write Fabce(λ) := “∇a∇bγce(λ)”.

In the GW framework there are further constraints in addition to local summability

that Fabce(λ) must then comply with. Since

w–lim
λց0

∇bγce(λ) = 0 , (B.18)

the weak characterisation (B.17) of ∇a∇bγce(λ) and the GW assumptions (ii), (iii),

(iv) necessarily require that the locally summable functions Fabce(λ) must have a

vanishing weak–limit as λ ց 0. Moreover, we have to artificially require that this

weak convergence to zero of ∇a∇bγce(λ) is not uniform in λ, i.e., we must require that

∇a∇bγce(λ) are not uniformly bounded as λ varies. This latter constraint is necessary

in order to have that

w–lim
λց0

γcd(λ)∇a∇bγef(λ) = −µabcdef , (B.19)

(cf. Eq. (13) in Ref. [9]). It is easy to see that, if the weak convergence of ∇a∇bγce(λ)

to zero were uniform, then the weak–limit (B.19) would be 0.

This non–uniformity, (more or less tacitly assumed in GW’s (ii), (iii), (iv)), is

again an argument that GW [9] take from Burnett (cf. the displayed equation on top

of page 92 of Ref. [33]). In Burnett’s words “Does (gde(λ) − gde(0))∇mCc
ab(λ) −→ 0

weakly as λ −→ 0? Not in general! Although gde(λ) − gde(0) −→ 0 uniformly and

∇mCc
ab(λ) −→ 0 weakly, ∇mCc

ab(λ) need not be uniformly bounded. In fact, if gab(λ)

also satisfies condition (iv), then (gde(λ)− gde(0))∇mCc
ab(λ) converges weakly to some

expression in µmnabcd. ...”.

Whereas this lack of uniformity makes sense in the high–frequency limit in

gravitational wave theory—simply because non–uniformity is almost intrinsic to wave

propagation in the high–frequency regime (typically modelled after the behaviour of

the function λ sin (x/λ))—it seems unlikely to be justified in cosmological backreaction

where there are finite averaging scales defined by the gravitational system considered:

what does “high–frequency” mean in this setting? Is this ultra–local limit sensible in

cosmology?

In a realistic cosmological averaging procedure, we may allow very high density

contrasts δρ/ρ ≫ 1, (hence very large∇a∇bγce(λ)), but we have to control the averaging

scale over which this oscillating contrast is relevant and hence assume a uniform

boundedness hypothesis on ∇a∇bγce(λ). Otherwise, if we want to have potentially
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unboundedly large ∇a∇bγce(λ) while at the same time avoiding the distribution–valued

curvature that, as we have seen, naturally develops under such hypotheses, we do need,

as in GW’s formalism, a rather artificial fine–tuning between the non–uniformity of the

upper bound of |∇a∇bγce(λ)| and the relevant weak–limits as λ ց 0. This is not a minor

technical point, since it is this non–uniformity in bounding the size of ∇a∇bγce(λ) which

is responsible for the sudden activation (at λ = 0) of the trace–less backreaction in GW.

If we make ∇a∇bγce(λ) uniformly bounded as λ ց 0, then there is no µabcdef to play

with.

Summing up, we have to require (as a necessary and sufficient condition for (B.16) to

hold and produce GW’s results) that, (extending the GW enumeration of assumptions

(i), (ii), (iii), (iv)):

(v) For every given λ ∈ (0, 1], there is a sequence {∇bγ
(n)
ce (λ)}n∈N of functions

∇bγ
(n)
ce (λ) ∈ C∞(U) such that, as n −→ ∞, ∇bγ

(n)
ce (λ) −→ ∇bγce(λ) in L1

loc(U), and

(vi) ∇a∇bγ
(n)
ce (λ) −→ Fabce(λ) ,

(vii) ∇a∇bγ
(n)
ce (λ)|λց0 −→ 0 , (B.20)

again in L1
loc(U). (These requirements simply follow from the standard characterization

of weak derivatives as limits of sequences of derivatives of smooth functions.) Moreover,

(viii) The sequence ∇d∇bγ
(n)
ce (λ) ∈ C∞(U) ∩ L1

loc(U) must not be uniformly bounded

(as a function of λ) as λ ց 0. If such a sequence exists, then we can identify the (weak)

derivative ∇a∇bγ
(n)
ce (λ) of ∇bγce(λ) with Fabce(λ) and this weak derivative will have the

property w–lim∇a∇bγ
(n)
ce (λ) = 0, required by the GW formalism.

These remarks show that w–lim∇a∇bγce(λ) = 0 is not a consequence of the

GW hypotheses (ii), (iii), (iv) but a strong a priori assumption that resembles GW’s

interpretation of the steel ball example (where they a priori kill the angular defects in

the limit). To reach the conclusion that ∇a∇bγce(λ) weakly vanishes as λ ց 0, and

produces non–trivial results we must add to the GW assumptions (ii)–(iv) the further

hypotheses (v)–(viii) described above, some of which lack physical justification.

All in all, we cannot conclude, with any reasonable level of geometrical and physical

rigour, that the weak–limit of the (linear) terms g(0)∇∇γ(λ), present in Gab(λ),

vanishes as λ ց 0. A minimum requirement for this to happen is a much stronger and

unphysical control (ii)–(viii) on the curve of metrics λ 7−→ g(λ) than that associated

with GW’s assumptions (ii)–(iv). In particular, we wish to emphasize that the (implicit)

non–uniformity of GW’s weak “averaging” is highly formal in a cosmological setting.

GW’s formalism depends on this assumption in an essential way.

We conclude: replacing the non–uniform boundedness of ∇∇ γ(λ), as λ ց 0, with

a more natural boundedness assumption, GW’s formalism becomes empty, insofar as,

by removing the non–uniform boundedness (in λ) requirement on ∇∇γ(λ) as λ ց 0,

the a priori assumptions (i)–(iv) made by Green and Wald can only be self–consistent

if the tensor field µabcdef(0) vanishes identically.
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Appendix C. Comments on examples for backreaction that aim at

including matter inhomogeneities

Example by Szybka et al.

Let us consider Szybka et al.’s [47] example in relation to GW’s claim that backreaction

is trace–free. The example is based on the Wainwright–Marshman metric:

ds2 = t2men
(
−dt2 + dz2

)
+ t1/2

[
dx2 +

(
t+ w2

)
dy2 + 2w dxdy

]
, (C.1)

where t > 0, −∞ < x, y, z, < +∞, m is a free parameter, n and w are functions of a

single variable u := t− z, and the field equation

dn/du = (dw/du)2 (C.2)

helps to simplify the Einstein tensor. The stress–energy tensor is that of a perfect fluid

with equation of state

̺ = p =
1

8π
(m+ 3/16)t−2(m+1)e−n , (C.3)

so the weak energy condition holds form ≥ −3/16. Szybka et al. [47] set w := λ sin(u/λ)

which gives n = 1
2

(
u+ 1

2
λ sin(2u/λ)

)
. In the limit: limλց0w = 0 and limλց0 n = 1

2
u,

hence (C.2) no longer holds for the background.

The Ricci scalar of the metric gab(λ) is R(λ) = −1
8
(16m+ 3) t−2(m+1)e−n(λ), where

for the background metric gab(0), n should be substituted by limλց0 n. This can be

used as follows to show that, although the derivatives of metric deviations and quadratic

products thereof in this example are singular in the limit as λ goes to zero, the Ricci

scalar and the stress–energy tensor are not and thus cannot produce backreaction from

inhomogeneities. First, let us subtract the Einstein equations for λ > 0,

Rab(g(λ))−
1

2
gab(λ)R(g(λ)) = 8πTab(λ) , (C.4)

from the background dynamical equation; for λ = 0 (using the notation tab(0), cf.

Sect. 3.7), we have:

Rab(g(0))−
1

2
gab(0)R(g(0)) = 8π (Tab(0) + tab(0)) . (C.5)

We take the w–lim of the difference (C.5)–(C.4) (recall that tab(0) remains unaffected

by the weak–limit operator):

tab(0) = w–lim
λց0

(Rab(g(0))− Rab(g(λ))) , (C.6)

because w–lim (R(g(0))− R(g(λ))) = 0 , w–lim (gab(0)R(g(0))− gab(λ)R(g(λ))) = 0,

and w–lim (Tab(0)− Tab(λ)) = 0.

Introducing the trace–free Ricci tensor Sab = Rab − 1
4
gabR, we get:

tab(0) = w–lim
λց0

(Sab(g(0))− Sab(g(λ))) , (C.7)

since again w–limλց0 (gab(0)R(g(0))− gab(λ)R(g(λ))) = 0. From this we see that

the backreaction term tab entirely emerges from the trace–less λ–dependent curvature
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(Sab(g(λ))). The Ricci scalar and the stress–energy tensor, where the density

inhomogeneities are encoded, cancel out. Since the Wainwright–Marshman spacetimes

are interpreted as cosmological models with gravitational waves, we can attribute all

the backreaction present in this example to gravitational radiation, not to density

inhomogeneities.

Example by Green and Wald

Now we consider the example provided by GW in [11] (section 4). We recall GW’s

assumption (i) [9], i.e., that there exists a family of metrics gab(λ) and a smooth function

C1 such that:

• gab(1) represents the real Universe, while gab(0) is the background, averaged metric;

• Gab(g(λ)) = 8πTab(λ) for all λ > 0 and Tab(λ) obeys the weak energy condition;

and

• hab(λ) = |gab(0)− gab(λ)| < λC1 .

What does it imply for gab(λ) to be a solution of the Einstein equations? For λ = 1 this

is true by definition, since we assume that the real Universe is well–described by general

relativity. However, while we have a straightforward prescription of how to construct

Gab(g(λ)) for 1 > λ > 0, the situation with Tab(λ) is not so clear.

We can distinguish two reasonable approaches:

(i) we calculate Gab(g(λ)) and define Tab(λ) :=
1
8π
Gab(λ) (this is the option chosen by

Green and Wald); or

(ii) we calculate Tab for a given λ from its definition in terms of Lm, the non-

gravitational part of the Lagrangian density of the Einstein–Hilbert action for

matter, and its functional derivative, i.e.,

Tab := 2
δLm

δgab
+ gab Lm . (C.8)

To see that these two possibilities are, in general, different, let us consider Green and

Wald’s example for both of them. By assumption, there is an FLRW background metric

gab(0) and a conformally related family of metrics:

gab(λ) = Ω2(λ)gab(0) , where lnΩ(λ) = λA
(
sin

x

λ
+ sin

y

λ
+ sin

z

λ

)
. (C.9)

The Einstein tensor built out of gab(λ), i.e., Gab(g(λ)), is related to the FLRW Einstein

tensor Gab(g(0)) by a purely geometrical formula:

Gab(g(λ)) = Gab(g(0))−
(
2∇a∇b ln Ω− 2gab(0)g

cd(0)∇c∇d ln Ω

−2(∇a ln Ω)(∇b ln Ω)− gab(0)g
cd(0)(∇c ln Ω)(∇d ln Ω)

)
. (C.10)

Green and Wald show (see (4.4) in [11]) that the effective stress–energy tensor in the

weak–limit reads:

tab(0) =
1

8π
Gab(g(0))− Tab(0) =

1

8π
w–lim
λց0

(Gab(g(0))−Gab(g(λ))) , (C.11)
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and that the backreaction found by the GW prescription has a trace corresponding to

a P = −5
3
ρ fluid.

Now we have to choose in which way we define the stress–energy tensor for

0 < λ < 1.

On the one hand from (i) :

8πTab(λ) = Gab(g(λ)) , (C.12)

into which (C.10) has to be substituted, while on the other hand from (ii):

Tab(λ) = Ω−2Tab(0) . (C.13)

The reason for the transformation rule (C.13) is conformal invariance of the matter

action:

S(λ) =

∫
Lm(λ)

√
−g(λ)d4x =

∫
Lm(0)

√
−g(0)d4x = S(0) , (C.14)

where the Lagrangian densities transform according to

Lm(λ) = Ω−4Lm(0) , (C.15)

so that (C.8) gives

T ab(λ) =
2√

−g(λ)

δ

δgab(λ)

(√
−g(λ)Lm(λ)

)

= Ω−4 2√
−g(0)

∂gcd(0)

∂gab(λ)

δ

δgcd(0)

(√
−g(0)Lm(0)

)
; (C.16)

lowering of indices using gae(λ) and gbf(λ) gives (C.13) (see, e.g., [144]). In (C.14) and

(C.16), a non–subscripted g indicates the determinant of the metric.

To show that case (i) is in general incompatible with case (ii) we proceed as follows.

Let us assume that for λ = 1, the metric and stress–energy tensor represent the ‘real’

Universe or, as in the case presented, the toy universe model that we wish to average.

Define f := Ω(λ)Ω−1(λ = 1).

We have for case (i):

Gab(g(1)) = 8πTab(1) ; gab(1) = Ω2(λ = 1)gab(0) ; gab(λ) = Ω2(λ)gab(0) ,

which implies that

gab(λ) = Ω2(λ)Ω−2(λ = 1)gab(1) . (C.17)

Thus, gab(λ < 1) and gab(1) are conformally related via gab(λ) = f 2gab(1), since f is a

ratio of exponentials of smooth real–valued functions (see (C.9)), and thus smooth and

real–valued.

For case (ii):

Tab(λ) = f−2Tab(1) (C.18)

Gab(g(λ)) = Gab(g(1))−
(
2∇̃a∇̃b ln f − 2gab(1)g

cd(1)∇̃c∇̃d ln f−

2(∇̃a ln f)(∇̃b ln f)− gab(1)g
cd(1)(∇̃c ln f)(∇̃d ln f)

)
, (C.19)
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where the covariant derivative ∇̃ is compatible with the metric gab(1) and the geometrical

formula (C.19) is obtained directly from (C.10), and thus is also valid in case (ii).

Combining (C.18) and (C.19) and imposing the Einstein equations for λ > 0 we obtain:

8πTab(1) =
1

(1− f−2)

(
2∇̃a∇̃b ln f − 2gab(1)g

cd(1)∇̃c∇̃d ln f−

2(∇̃a ln f)(∇̃b ln f)− gab(1)g
cd(1)(∇̃c ln f)(∇̃d ln f)

)
, (C.20)

which is a contradiction since the left–hand side is fixed and the right–hand side depends

on λ (lengthy but easy calculations show that the dependence on λ does not cancel).

We conclude that, within the GW formalism (as their explicit example shows), it is

not in general possible to build a family of metric–dependent tensors using the method

(ii) that obeys the Einstein equations. This gives us a strong indication of the nature

of the Tab(λ) family obtained with method (i).

To see this explicitly let us look at GW’s choice (i): using the purely geometrical

relation (C.19) and the Einstein equations for λ > 0, we have23:

8πTab(λ) = 8πTab(1)−
(
2∇̃a∇̃b ln f − 2gab(1)g

cd(1)∇̃c∇̃d ln f−

2(∇̃a ln f)(∇̃b ln f)− gab(1)g
cd(1)(∇̃c ln f)(∇̃d ln f)

)
. (C.21)

Now we take the weak–limit of both sides.

The weak–limit of Tab(g(1)) is (where fab is a test tensor field):

w–lim
λց0

Tab(g(1)) =

∫
d4x

√
−g(0)Tab(g(1))f

ab , (C.22)

which we can naturally associate with an averaged stress–energy tensor usually denoted

〈Tab〉 and denoted Tab(0) by GW (according to GW: “we may interpret Tab(0) as

representing the matter stress–energy tensor averaged over small scale inhomogeneities”,

[9] p. 13). Since the weak–limit of the remaining terms on the right–hand side does

not disappear, we see that w–limTab(λ) 6= Tab(0). As a consequence, in a more realistic

case we should not expect Tab(0) to match the FLRW stress–energy tensor obtained by

averaging the density inhomogeneities. It seems that the Tab(λ) defined via the Einstein

field equations already contains a backreaction effect and thus a part of backreaction is

absorbed into the definition of Tab(0). In other words, forcing the existence of stress–

energy tensors that obey the Einstein equations makes the weak–limit of this family of

tensors distinct from the averaged stress–energy tensor.

In summary, we are not aware of an example of a metric family satisfying the GW

conditions that satisfactorily describes backreaction from matter inhomogeneities.

23 In the arXiv preprint version 1 of this paper we erroneously referred to Eq. (C.18), as has been

kindly pointed out in [22].
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[53] Korzyński M 2014 Class. Quant. Grav. 31 085002 (Preprint arXiv:1312.0494)

[54] Buchert T 2001 Gen.Rel.Grav. 33 1381 (Preprint arXiv:gr-qc/0102049)

[55] Buchert T 2000 On average properties of inhomogeneous cosmologies (JGRG Vol.9, Hiroshima

University, Japan, Y. Eriguchi et al. (eds), pp.306-321) (Preprint arXiv:gr-qc/0001056)

[56] Brown I A, Coley A A, Leigh H D and Joey L 2013 Phys. Rev. D 88 083523 (Preprint

arXiv:1308.5072)

[57] Paranjape A and Singh T P 2008 Gen. Rel. Grav. 40 139 (Preprint arXiv:astro-ph/0609481)

[58] Coley A A 2010 Class. Quant. Grav. 27 245017 (Preprint arXiv:0908.4281)

[59] Carfora M and Piotrkowska K 1995 Phys. Rev. D 52 4393 (Preprint arXiv:gr-qc/9502021)

[60] Buchert T 2005 Class. Quant. Grav. 22 L113 (Preprint arXiv:gr-qc/0507028)

[61] Kaspar P and Svitek O 2015 Gen. Rel. Grav. 47 4 (Preprint arXiv:1412.7208)

[62] Chandrasekhar S and Lee E S 1968 Mon. Not. R. Astr. Soc. 139 135

[63] Buchert T 2006 Class. Quant. Grav. 23 817 (Preprint arXiv:gr-qc/0509124)

[64] Räsänen S 2006 J. Cosmol. Astropart. Phys. 11 003 (Preprint arXiv:astro-ph/0607626)

[65] Barboza M, Nunes R C, Abreu C and Neto J A 2015 Is this the end of Dark Energy? (Preprint

arXiv:1501.03491)

[66] Larena J, Alimi J M, Buchert T, Kunz M and Corasaniti P S 2009 Phys. Rev. D 79 083011

(Preprint arXiv:0808.1161)

[67] Rosenthal E and Flanagan E E 2008 Cosmological backreaction and spatially averaged spatial

curvature (Preprint arXiv:0809.2107)

[68] Roukema B F, Ostrowski J J and Buchert T 2013 J. Cosmol. Astropart. Phys. 10 043 (Preprint

arXiv:1303.4444)

[69] Chiesa M, Maino D and Majerotto E 2014 J. Cosmol. Astropart. Phys. 12 049 (Preprint

arXiv:1405.7911)

[70] Wiltshire D L 2007 Phys. Rev. Lett. 99 251101 (Preprint arXiv:0709.0732)

[71] Räsänen S 2008 J. Cosmol. Astropart. Phys. 04 026 (Preprint arXiv:0801.2692)

[72] Wiegand A and Buchert T 2010 Phys. Rev. D 82 023523 (Preprint arXiv:1002.3912)

[73] Kolb E W, Marra V and Matarrese S 2010 Gen. Rel. Grav. 42 1399 (Preprint arXiv:0901.4566)

[74] Geshnizjani G and Brandenberger R H 2002 Phys. Rev. D 66 123507 (Preprint

arXiv:gr-qc/0204074)

[75] Räsänen S 2004 J. Cosmol. Astropart. Phys. 02 003 (Preprint arXiv:astro-ph/0311257)

[76] Kolb E W, Matarrese S, Notari A and Riotto A 2005 Phys. Rev. D 71 023524 (Preprint

arXiv:hep-ph/0409038)

http://arXiv.org/abs/arXiv:1006.1500
http://arXiv.org/abs/arXiv:gr-qc/0210045
http://arXiv.org/abs/arXiv:gr-qc/0506106
http://arXiv.org/abs/arXiv:gr-qc/0210037
http://arXiv.org/abs/arXiv:1306.1783
http://arXiv.org/abs/http://projecteuclid.org/euclid.cmp/1103841574
http://arXiv.org/abs/arXiv:gr-qc/9302005
http://arXiv.org/abs/arXiv:0901.1303
http://arXiv.org/abs/arXiv:1407.3846
http://arXiv.org/abs/arXiv:1412.3865
http://arXiv.org/abs/arXiv:1312.0494
http://arXiv.org/abs/arXiv:gr-qc/0102049
http://arXiv.org/abs/arXiv:gr-qc/0001056
http://arXiv.org/abs/arXiv:1308.5072
http://arXiv.org/abs/arXiv:astro-ph/0609481
http://arXiv.org/abs/arXiv:0908.4281
http://arXiv.org/abs/arXiv:gr-qc/9502021
http://arXiv.org/abs/arXiv:gr-qc/0507028
http://arXiv.org/abs/arXiv:1412.7208
http://arXiv.org/abs/arXiv:gr-qc/0509124
http://arXiv.org/abs/arXiv:astro-ph/0607626
http://arXiv.org/abs/arXiv:1501.03491
http://arXiv.org/abs/arXiv:0808.1161
http://arXiv.org/abs/arXiv:0809.2107
http://arXiv.org/abs/arXiv:1303.4444
http://arXiv.org/abs/arXiv:1405.7911
http://arXiv.org/abs/arXiv:0709.0732
http://arXiv.org/abs/arXiv:0801.2692
http://arXiv.org/abs/arXiv:1002.3912
http://arXiv.org/abs/arXiv:0901.4566
http://arXiv.org/abs/arXiv:gr-qc/0204074
http://arXiv.org/abs/arXiv:astro-ph/0311257
http://arXiv.org/abs/arXiv:hep-ph/0409038


No proof that backreaction is irrelevant 43

[77] Kolb E W, Matarrese S and Riotto A 2006 New J. Phys. 8 322 (Preprint arXiv:astro-ph/0506534)

[78] Räsänen S 2010 Phys. Rev. D 81 103512 (Preprint arXiv:1002.4779)

[79] Räsänen S 2010 J. Cosmol. Astropart. Phys. 03 018 (Preprint arXiv:0912.3370)

[80] Räsänen S 2009 J. Cosmol. Astropart. Phys. 02 011 (Preprint arXiv:0812.2872)

[81] Gasperini M, Marozzi G and Veneziano G 2010 J. Cosmol. Astropart. Phys. 02 009 (Preprint

arXiv:0912.3244)

[82] Smirnov J 2014 Gauge–Invariant average of Einstein Equations for finite volumes (Preprint

arXiv:1410.6480)

[83] Lavinto M, Räsänen S and Szybka S J 2013 J. Cosmol. Astropart. Phys. 12 051 (Preprint

arXiv:1308.6731)

[84] Bull P and Clifton T 2012 Phys. Rev. D 85 103512 (Preprint arXiv:1203.4479)

[85] Stephani H, Kramer D, MacCallum M, Hoenselaers C and Herlt E 2009 Exact Solutions of

Einstein’s Field Equations (Cambridge: Cambridge Univ. Press)

[86] Coley A A, Hervik S and Pelavas N 2009 Class. Quant. Grav. 26 025013 (Preprint

arXiv:0901.0791)

[87] Karlhede A 1980 Gen. Rel. Grav. 12 693

[88] Valiente Kroon J A 2005 Phys. Rev. D 72 084003

[89] Einstein A 1917 Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI 142–152
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