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Abstract 
The merit order stack is used to tackle a wide variety of problems involving electricity dispatch.  The 
simplification it relies on is to neglect dynamic issues such as the cost of starting stations.  This leads 
the merit order stack to give a poor representation of the hourly pattern of prices and under-estimate 
the optimal level of investment in both peaking and inflexible baseload generators, and thus their run-

times by up to 30%. 
 

We describe a simple method for incorporating start-up costs using a single equation derived from 
the load curve and station costs.  The technique is demonstrated on the British electricity system in 
2010 to test its performance against actual outturn, and in a 2020 scenario with increased wind 
capacity where it is compared to a dynamic unit-commitment scheduler.  Our modification yields a 
better representation of electricity prices, and reduces the errors in capacity investment by a factor of 
two. 
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1 Introduction 

We present a new heuristic that adds start-up costs to the merit order stack model of generation 
investment and operation decisions.  Start-up costs can have a noticeable impact on electricity 
wholesale prices, and change the relationship between each unit’s operating hours and total costs.  
Ignoring them means that a merit order stack optimization is likely to choose a plant mix that would 
be sub-optimal, had these starts been properly taken into account.  We compare results from the 
traditional merit order stack approach with those from our heuristic, benchmarking them against 
historic output and price data, and the optimal capacity mix determined by a dynamic dispatch model 
that includes start-up costs and minimum load constraints.  We show that the errors from the stack 
approach can be important, and that our heuristic improves the representation of prices by a factor of 
1.6 (comparing to historic data), and reduces deviation from the optimal capacity mix by half 
(comparing to results from a more complex unit commitment model). 
 

The need to decarbonize the power sector poses technical and economic challenges that need to be 
modelled in an appropriate manner.  Many low-carbon generators are inflexible or intermittent, and 
the remaining stations will need to change their operating regimes [1].  Energy storage may mitigate 
this, but detailed technical modelling of generators and the grid is required to assess the true costs 
and benefits, and the best way to deploy storage devices [2].  The optimal capacity mix for generation 
is likely to change [3], and modelling is needed to explore this. 
 

Investment decisions in power stations should not be assessed against a single scenario, however, but 
should consider a range of possible futures – for fuel prices, demand and the output of intermittent 
generators.  This requires a model that can be solved rapidly while still producing sufficiently accurate 
results for each scenario, and thus a simplified approach.  Our heuristic is simple enough for repeated 
simulation and more accurate than the traditional approach.  Each user will have to make their own 
decision on whether it is accurate enough for them, depending on the use to which their model 
results are put. 
 

We test our heuristic against the two more traditional approaches (simple merit order stack and full 
dynamic dispatch) with a model of the 2020 GB electricity system.  This is characterized by having 30 
GW of installed wind capacity (more than half the winter peak demand, and 1.5 times the system 
minimum demand), with relatively little interconnection or flexible hydro capacity.  Using these 
models, we demonstrate how operating constraints change the dispatch of different stations, and the 
extent to which this would change the optimal plant mix. 
 

The next section summarizes the strengths and weaknesses of the merit order stack and previous 
efforts to incorporate dynamic constraints into the approach.  Sections 3 and 4 introduce our heuristic 
approach to start-up costs and to hydro scheduling, and the dynamic unit commitment model that 
we test it against.  The two scenarios used to validate the heuristic are given in Section 5, and the 
main results in Section 6.  The paper ends with brief conclusions on the performance and applicability 
of this technique. 
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2 Background 

The merit order stack is a common approach to the problem of minimizing the sum of generators’ 
investment and operating costs.  It is equivalent to a linear program in which each station’s operating 
costs are strictly proportional to its output and the only constraint is that output levels are less than 
that station’s available capacity in each hour [4, 5].  Stations with low variable costs will always be 
dispatched at full capacity before any stations with higher variable costs are called upon, and so each 
station’s output and operating hours will be approximately proportional to each other. 
 

The station’s total costs over the year are thus a linear function of its total output, often plotted as a 
screening curve which relates costs to operating hours per year.  The number of operating hours for 
which two plant types would have equal costs can easily be calculated as the intersection of their 
screening curves.  The optimal capacity mix is one for which every station is running for a number of 
hours over which it has lower total costs than any alternative.   
 

The price of electricity can be obtained as the variable cost of the marginal unit.  When the system is 
short of capacity, a rationing price may be used to reduce demand, either derived from the prices 
paid to large customers for load management or using the Value of Lost Load.  The price of electricity 
can be very sensitive to number of outages reducing available capacity, and the relative simplicity of 
the merit order stack means that [6] could run an hour-by-hour model of California during its 
electricity crisis 100 times with different random outages to capture the non-linear nature of this 
relationship.  
 

Simple models can bring useful insights when a problem is first approached; [7] assesses the benefits 
of introducing real-time electricity pricing in California, calculating the reduction in overall capacity 
and the change in wholesale price patterns that this would bring about.  Other papers have used 
similar models to study the impact of the large-scale introduction of renewable generators on 
investment in conventional plants [8, 9, 10].   
 

As a field develops, increasingly complex models and solution techniques are proposed.  These might 
focus on the interaction between generation and transmission [11, 12] or combine generation 
investment with stochastic scheduling and dynamic operating constraints [13, 14, 15].  A long-term 
investment equilibrium and a short-term dispatch that takes account of operational constraints are 
combined in [3] to calculate the marginal value of wind and solar power at different penetration levels 
for a scenario of California in 2030.  Similarly, [2] calculates the value and optimal capacity of 
electricity storage for the UK in a low carbon 2030 scenario, using a simultaneous optimization of 
investment and operation decisions, subject to plant- and network-level constraints. The disadvantage 
of these more complex models is that their computational requirements make them poorly suited for 
large-scale repeated simulations.   
 

The time required to run a full dispatch model on a year of data makes it less suitable for many 
applications, including those involving stochasticity or multi-decadal optimizations.  One solution is to 
use the dispatch model on a representative sample of days; for example, [16] shows how clustering 
techniques can be used to create these. 
 

Another strand of research aims to find techniques for representing operational constraints in a 
simplified manner, allowing faster computation without losing the key features of the problem [17, 
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18].  One approach is to cluster similar units together rather than treating them individually, thus 
reducing the number of integer variables in the unit commitment problem [19, 20]. Another option is 
to keep the merit order stack approach but to add heuristics that approximate important features.  
[21] considers the amount of up- and down-regulation capacity that is required in each hour as a 
function of the level of wind generation, after setting capacity levels on the basis of a screening curve 
analysis.  [22] compares a full unit commitment model and the simplified approach of economic 
dispatch subject only to ramping constraints and find that both give similar results, while the 
simplified model solves substantially faster.  A more pessimistic view is taken in [23], which makes a 
similar comparison when modelling three different regions; ERCOT in the US, Finland and Ireland.  
Errors come from ignoring start costs, (typically) over-estimating the number of starts made and 
miscalculating energy costs because the simpler model will identify the wrong mix of operating plants.  
The authors suggest that better methods are needed.  
 

One method of incorporating start costs is proposed in [24], using a two-stage process.  The hour-by-

hour demand profile is used to calculate the annual output and the number of starts required for the 
generating unit at each loading point (the position a plant occupies within the stack, measured in 
GW).  A nuclear unit with low variable costs will be at a low loading point and will have no starts, 
running continuously through the year.  An open cycle gas turbine will be at a high loading point with 
few operating hours and a high ratio of starts to output.  The heuristic avoids stations shutting down 
for short periods so long as the rest of the fleet is able to reduce their output sufficiently without 
forcing any units below their minimum stable generation levels.  The second stage of the model then 
calculates the cost that each kind of candidate plant would have, were it to match the generation 
profile calculated for a given loading point, and then selects the cheapest.  
 

The aim of this paper is to propose a simpler method of modelling start-up costs that does not 
require a full unit commitment model or a multi-stage algorithm, such as [24].  Our reasoning for this 
is to save on the time required to both implement and then solve these more complex models, whilst 
improving the accuracy of results from the existing approach. 
 

3 Extending the Merit Order Stack 

As our basis, we use a merit order stack model with price responsive demand, as described in [7, 25, 
26].  Plants are dispatched in order of increasing variable cost, and the price of electricity is either set 
to the variable cost of the marginal generator, or to the level that would reduce demand to the point 
where it could be supplied by the economically available capacity.  An arbitrary number of stacks can 
be used so that availability, fuel and carbon prices can be varied by season or month.  We extend this 
model in three ways: 

 The cost of plant starts is factored into the price of electricity using a single equation, altering 
the profitability of plants and thus the optimum capacity to invest in. 

 Hydro is scheduled using a peak-shaving algorithm that is split into multiple tranches to better 
replicate historic output patterns; and 

 Each technology can be given a must-run output requirement, below which the fleet output 
cannot fall. 

 

The must-run constraint is applied to nuclear stations, which in the UK do not operate below 90% 
capacity (except during outages).  To avoid breaching this constraint (when demand net of wind is 
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low) wind power was spilled and the market price was set to –£50/MWh, the foregone subsidy which 
wind stations require as compensation.  This increases the total cost for nuclear as more wind must be 
forced to spill.  We do not model the must-run constraints that prevent mid-merit stations shutting 
down overnight; this is done by [24] but adds complexity to their model.  We show below that our 
simpler approach gives adequate estimates of many key variables.  Future research should address 
the improved accuracy that would result from more sophisticated modelling of mid-merit shutdown 
decisions.  
 

The model with these extensions is implemented in Microsoft Excel 2010, and is available to download 
from http://hdl.handle.net/10044/1/12715. 
 

3.1 Scheduling Hydro 

The traditional approach to scheduling hydro in a merit-order stack model is to pre-treat the demand 
data with a peak-shaving algorithm, as used in [27] to model California.   This finds the loading point 
(the demand in GW) above which hydro stations begin operating so as to produce the desired energy 
output over a given time-frame.  For pumped storage, this level is chosen each day on the 
assumption that reservoirs are replenished fully each night.  Pumping consumption can be allocated 
using the reverse logic: finding the loading point below which water should be pumped.  Run of river 
hydro will usually have a minimum flow constraint, and the relevant capacity (and energy) is allocated 
to every hour.  The flow constraints and water availability will vary over the year, and we schedule over 
three-month periods based on historic rainfall trends.  When hydro is scheduled to run, net demand is 
reduced towards the loading point by as much as the hydro capacity allows. 
 

Figure 1 demonstrates this algorithm in action: the first day has a short-lived peak with hours in which 
the full power capacity (measured in GW) of the pumped storage plants is used; the second day has a 
flatter peak and the full energy capacity (GWh) can be used without running at full power.  The 
pumping of water is seen overnight, raising the system minimum demand.  Run-of-river hydro begins 
to operate at the same loading point during both days, as the energy constraint is not applied to each 
day separately. 

 

Fig. 1: Demonstration of the heuristic for allocating hydro resource. 

 

In countries with little hydro capacity relative to demand, this algorithm assumes that the hydro fleet 
runs predominantly at either zero or full power, as demand is either below the loading point or above 
that level plus installed capacity.  Taking the example in Figure 1 (which is based on the current GB 
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system), demand rarely lies within the window of 35.5–36.9 GW where run-of-river hydro should 
operate, and so the capacity factor is either 1 or 0 in such a ratio as to achieve the desired annual 
average.  This occurs because simple peak shaving algorithms neglect the trade-off between 
operating in the energy and reserve markets.  In reality, British run of river hydro spends only 300 
hours a year operating above 80% of capacity, as it is more profitable to retain availability for 
balancing and reserve services. 
 

This flaw is demonstrated in Figure 2, which shows the historic output-duration curves for British 
hydro stations (faint blue lines) against output from the basic peak shaving algorithm (dotted lines). 
A solution is to split the hydro capacity into several tranches with different utilization rates.  These are 
then allocated separately and their output summed.  If statistics are available, this can be done on a 
per-plant basis, splitting each station into a must-run component to account for minimum flow 
constraints and a dispatchable portion.  Alternatively, if time-series data of national hydro output are 
available, this can be segmented using techniques such as k-means clustering, as shown by the thin 
solid line in Figure 2, which is fitted to the historical data. 
 

 

Fig. 2: Output-duration curves for British hydro in 2009–10, against the allocations made by the traditional 

application of the peak-shaving algorithm and the algorithm with multiple tranches fitted to the actual curve. 

 

3.2 Plant Start Decisions 

We incorporate start costs into the stack model by post-processing the price of electricity or the 
screening curves for each station, depending on the application.  We therefore take account of start 
costs when calculating market prices and the optimal capacity mix, but not when calculating the hour-
by-hour dispatch of stations.  To the best of our knowledge, we are the first to propose such a 
technique. 
 

As shown in Section 6.2, adding start costs has a noticeable effect on the accuracy of price 
simulations, validated against British data from 2009-10.  They also change the optimal capacity mix, 
bringing it closer to that from a dynamic unit commitment model for simulations of 2020.  We find 
that start costs do not have a large effect on our predictions for annual output from each plant type.  
There will be some periods in which a station is kept running at a reduced load in order to avoid 
starting again later, which increases its actual output compared to a stack model.  However, it could 
be expected that these are roughly balanced by periods in which the station has to reduce output in 
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order to allow another station (with higher variable costs) to avoid a start.  For applications 
concentrating on prices and annual profits, this simplification proves accurate enough. 
 

We take a simple approach to estimate the number of start-ups that each plant will undergo: we start 
by assuming that any time national load (net of wind and hydro) rises above a given value, Q, the 
plant that sits at loading point Q in the stack plant must start up.  Figure 3 demonstrates this, showing 
how many times plants at three loading points would start during a week.  In this example, the 
number of starts per year is highest for mid-merit plant which must run for around 3,000 or 5,500 
hours per year.  This uses Billinton and Allan’s method of modelling load transitions for the calculation 
of frequency duration indices [28]; the innovation here is to use these statistics to calculate plant 
starts. 
 

 

Fig. 3: Demonstrating a simple algorithm for calculating the number of start-ups for different levels of plant. 

 

The profile of start-ups against loading point will change if different countries are considered, and 
over time as the national level of demand changes.  We find that the relationship between the 
number of starts and the number of running hours is more consistent over time and between 
countries and use this in our heuristic, in contrast to [24].  The load duration curve can be used to 
map the loading point of a plant (in GW) to the number of hours that plant is required for, just as 
when constructing a screening curve. Figure 4 demonstrates this transformation, showing the 
similarity of the start-up profile for the GB system over the last 18 years, when demand has grown 
18% then fallen 9%.  The plant that is only required for one hour of the year (the 59th GW in 2012, or 
51st GW in 1994) need only start once to cover the very highest peak demand.  Similarly, all plants 
that can run for 8760 hours (the first 17–24 GW) do not have to start up (except for maintenance).  
Moving from these extremes to the mid-merit plants, which are required for 3,000–6,000 hours, the 
number of starts increases to approximately one per day. 
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Fig. 4: The estimated number of plant start-ups for the GB system from 1994–2011.  Thin lines show the 

estimations made from individual years’ net load curves, and the period average highlighted as the thick broken 
line.  The actual number of start-ups for individual plants during 2009-10 is shown as points (note the separate 

axis, which is scaled by a factor of 0.6). 

 

This simple algorithm neglects the fact that it can be cheaper to reduce the output of several plants 
than to shut down a single plant, and so it over-estimates the number of start-ups.  The actual 
behaviour of British stations during 2009–10 is shown in Figure 4 by the cloud of points.  The number 
of running hours and start-ups was calculated from unit-level data collected from Elexon [29].  These 
were adjusted for units with long outages to estimate full-year values.  For example, if a unit suffered 
a three month outage, its running hours and number of starts were multiplied by 1/0.75. 
 

Scaling the predicted number of starts by 0.6 aligns the estimations from historic load curves (the lines 
in Figure 4) with the frontier of actual plant starts (the uppermost points). Some units sit below this 
frontier, starting up fewer times than is predicted by the rescaled algorithm.  This is due to the 
diversity of operators’ behaviour: some plants may preferentially be part-loaded so that they 
contribute to spinning reserve, or to reduce the mechanical wear incurred by thermal cycling.  It could 
be argued that the efficiency penalty from part loading will still incur a cost of similar magnitude to 
shutting and restarting.   
 

Our simulations show that this method provides a better approximation than ignoring starts 
completely.  A more sophisticated algorithm that accounts for operator’s decision making processes 
(such as Batlle and Rodilla’s algorithm [24]) could be used in place of our simple load curve analysis to 
gain better results, albeit with higher data and computational requirements. 
 

This curve of starts versus running hours can be reduced to an analytic form as in (1): 
 

 NSh  =  n f  sin ( h π
8760

)α
 (1) 

 

The number of starts (NS) for a given number of running hours (h = [1,8760]) equals the peak number 
of starts (n) found from the historic load data, multiplied by a scale factor (f), which reduces this peak 
to realistic levels.  This is multiplied by the sine of the fraction of the year spent running, raised to a 
dimensionless power (α) which controls the duty cycle of the curve.  The parameters n and α are 
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determined by performing a non-linear least-squares fit of the profile of start-ups (Figure 4) to a half-
period of a sine wave. 
 

Another approximation to the profile of start-ups is a harmonic series of sine waves.  Between 7 and 
11 harmonics are required for different countries to give a better fit than the two-parameter sine-

power law proposed in Equation 2, and so this is adopted for simplicity.  A further option is to use a 
lookup function to capture all the detail of Figure 4, albeit at the expense of model runtime. 
 

By considering the number of starts against the number of hours per year the plant must run, we 
enable this method to be translated easily to systems other than the UK.  Other systems, such as those 
in the US, France or Germany also show a consistent pattern within a country over time, but there are 
marked differences between countries due to the different extents of electric heating and pumped 
hydro storage employed.  Based on gross load curves, before hydro output has been allocated to 
individual hours, stations in hydro-rich regions undergo fewer start-ups (lower n), with a flatter profile 
against operating hours (lower α).  Table I gives representative values for the parameters of Eq. 1 
derived from load curve data from several countries [30].  Scale factors are derived for the British and 
US systems from analysis of individual power station outputs [29, 31]; these cannot be calculated for 
the other countries as plant-level data are not available. 
 

System n α Years f Years 

Great Britain 357 0.689 94–13 0.60 09–10 

ERCOT 301 0.685 04–13 0.68 08–12 

New England 376 0.687 80–13 0.53 08–12 

PJM-E 359 0.804 99–13 0.62 08–12 

Japan  (TEPCO) 384 0.729 08–13 n/a  

Germany 343 0.578 07–13 n/a  

France 261 0.521 96–13 n/a  

Norway 183 0.472 07–13 n/a  

Table I: Start-up parameters estimated from load data. 

 

3.2.1 Impact of Start-ups on Generating Cost 
The total annual cost of start-ups can be calculated for each station type at each loading point by 
multiplying the number of starts per year by the cost per start (given later in Table II).  The modified 
screening curves can be represented analytically as in (2): 
 

 TCg,h  =  FCg + VCg h + cg NSh (2) 
 

As with traditional screening curves: the total cost (TC) in £/kW-year for generator type g with h 
running hours per year equals the fixed costs (FC) plus variable costs (VC) times the number of hours 
run (h).  Our modification adds the normalized cost of starting the generator (cg) in £/kW given later in 
Table II, multiplied by the expected number of starts for that loading point (NSh). 
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The total cost is used to calculate annual profits for each station type.  As plant starts raise the cost of 
generation differently across the generator types and loading points, they alter the optimal mix of 
capacity. 
 

3.2.2 Impact of Start-ups on Electricity Prices 

The adjustment we make to hourly electricity prices differs from this in two ways.  Firstly, the annual 
cost of starting the marginal generator type in each hour is divided by the number of running hours 
per year (h) to give the marginal cost of start-ups in £/MWh produced by that plant type.  Another 
way to think of this is that we divide the cost per start by the average number of hours the plant is 
expected to run before stopping (h / NSh).  This is the similar to the algorithms used to set prices in 
the British Electricity Pool in the 1990s and in the current Single Electricity Market in Ireland [32, 33]. 
Secondly, start-ups do not solely act to increase electricity prices.  At local demand minima, prices are 
depressed if an increase in demand could avoid a plant having to shut down, and therefore start-up 
again.  For example, the British Pool had separate pricing rules for so-called ‘Table B’ periods when 
demand was locally low.  The increase in price is therefore calculated relative to the cost for the 
median running time experienced by all plants, as in (3). 
 

 PSh  =  cg (NSh
h

 ‒  (NS
h

)̃) (3) 

 

The price from start-ups for a given number of running hours (PSh) that is added to electricity prices 
(in £/MWh) is equal to the cost of starting the marginal type of generator (cg) normalized by its 
capacity (£/MW), multiplied by the difference between the number of starts per hour for the given 
loading point and the median number of starts per hour across all loading points. 
 

This adjustment to prices assumes that generators are able to roll start-up costs into their energy bids, 
raising them above marginal cost.  While this is at odds with a pure locational marginal pricing (LMP) 
system, we find that this heuristic works well for the current British market.  It may not do so in other 
contexts. 
 

4 Unit Commitment Capacity Optimiser (UCCO) 
We compare our heuristic approach to the results from a generic, mixed-integer optimized dispatch 
model written in the GAMS language and controlled by a web interface.  This model consists of 
standard equations, and is similar to those demonstrated in [2] and [3].  The model is formulated in 
the GAMS language, and is available to download from: http://hdl.handle.net/10044/1/12715. 
  
The model consists of several classes of power stations that are dispatched to meet a set of time-

varying demands so as to minimize the cost of generation.  Demand rationing is achieved by inserting 
several tranches of demand that can be shed in response to high prices, which can be interpreted as a 
stepped demand curve, in contrast to the linear demand curve used in [7, 25].  In this setting, 
minimizing cost is equivalent to maximizing welfare, and it is a standard result in economics that this 
should be equivalent to the outcome that a perfectly competitive market would produce. 
 

http://hdl.handle.net/10044/1/12715
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The model can optimize a fleet of 20 plant types over 8,760 hours of demand in around 20 minutes 
on a standard workstation (3 GHz, 4 GB RAM).  Monte Carlo trials and multi-dimensional sensitivity 
studies can be conducted using the web interface, but can require a significant amount of computer 
time (e.g., 1,000 trials take a fortnight to solve). 
 

Once plant characteristics, demand data and economic information are supplied, the model optimizes 
the scheduling and output of plants subject to the following constraints: 

 Demand, plus a reserve margin, must be served by the operating plants; failure to do so incurs 
penalties due to curtailing supply (spilling wind) or demand, charged at the value of lost load 
(VOLL); 

 Price sensitive demand is modelled with several tranches of consumers (usually large industrial 
users) that are able to reduce load in return for a scarcity price (between generators’ marginal 
costs and VOLL); 

 Plants have a minimum stable output below which they must shut down.  Restarting the plant 
incurs a cost and time penalty; 

 Plants have reduced efficiency when operating part loaded. 
 Hydro and pumped storage are scheduled within the economic dispatch, subject to availability 

constraints due to water levels. 
 

The model finds the short-run equilibrium – how to best operate a given set of plants so as to 
minimize the total cost of generation.  The long-run equilibrium – the capacity of plants that would be 
best to build – is found when the profits of each type of plant are closest to zero, and so there is no 
incentive for new capacity to open or for existing capacity to retire. 
 

The model is first solved as an integer problem to calculate the primary solution (giving plant 
schedules and outputs).  The marginal cost of electricity is then found by fixing the number of units 
online and then relaxing the integer constraints on other variables to solve as a linear program. 
   
GAMS is not capable of performing nested optimizations (a model within a model), so the web 
interface is used to iteratively search for the long-run equilibrium: testing a set of plants, refining 
levels of capacity based on their profits and re-testing until convergence is achieved.  The plant with 
profits furthest from zero (after depreciation, a return on capital and all variable costs, including starts) 
has its capacity adjusted: upwards if it is making excess profit, downwards if it is making a loss.  The 
process stops when all plants are receiving exactly the right revenues to cover their costs.  Non-

convexities in the generator cost function mean that a single long-run equilibrium may not exist.  We 
find this method always reaches an equilibrium, but do not guarantee it is the global rather than a 
local optimum. 
 

5 Scenarios for Validation 

We use two scenarios based on the British electricity system to validate the hydro scheduling and 
start-up heuristics.  First we run a historic scenario from 2009–10 to compare price formation against 
historic outturn.  We then consider the system in 2020, when dynamic plant constraints have greater 
impact due to the increased capacity of intermittent wind.  In this case, the optimal mix of thermal 
capacity chosen by the stack model is validated against that from the more complex unit commitment 
model. 
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Modelling these scenarios requires five sets of data: the capacities, technical limitations and costs of 
each station type, plus time series of demand and output from wind farms.  
 

5.1 Historic Scenario: GB in 2009–10 

Half-hourly demand data was taken from National Grid [30].  From this we subtracted the output from 
must-run CHP, interconnectors and wind [29], to give the net demand that dispatchable generators 
had to meet.  For our first test, we also subtracted the output from hydro stations (1 GW of flow hydro 
and 2.4 GW of pumped storage) to give the actual demand that thermal stations met.  Hydro output 
was added back to demand (and pumping consumption subtracted) for our second test, so that 
errors introduced by hydro allocation and the start-up heuristic could be separated from one another. 
Plant capacity and availability was fixed to historic levels based on Elexon data [29].  Nine types of 
station were modelled, as shown in Table II. 
 

 

Installed 
Capacity 
in 2010 
(GW) 

Annualised 
Capital Cost 
(£/kW-year) 

No-load 
Cost 
(£/h) 

Cold 
Start 
Time 

(hours) 

Start-up 
Cost 

(£/MW) 

Net 
Efficiency 

(LHV) 

Total 
Fixed Cost 

(£/kW-

year) 

Total 
Variable 

Cost 
(£/MWh) 

Nuclear 8.9 401 320 96 4,000 35.1% 470 8 

Coal 

(3 subgroups) 
26.0 207 620 4 200 

33.5% 
36.5% 
39.5% 

240 
47 
51 
56 

CCGT 

(3 subgroups) 
25.3 85 4,900 2 50 

50.5% 
53.0% 
55.5% 

103 
54 
57 
59 

OCGT 0.7 58 130 0.1 10 32.3% 72 99 

Oil 2.6 146 360 0.1 10 33.8% 188 141 

Table II: Technical and economic parameters for UK power stations. 

 

Coal and CCGT stations were split into three tranches in a fixed 25:50:25 ratio of capacity, with the 
range of efficiencies shown.  These efficiencies were taken from environmental performance reports 
from the major operators and DUKES [34], and represented the mean ± one standard deviation. 
 

Thermal plants operate with an availability of 80–90% (summer/winter) based on historic 
performance.  Nuclear availability was 5% lower than this all year round.  Wind output is modelled 
explicitly using a profile of resource availability, while hydro output was constrained by water 
availability, giving annual load factors of 42% and 15% for run-of-river and pumped hydro 
respectively. 
 

Historic fuel and carbon prices for each quarter were taken from government statistics [35], and were 
implemented using eight separate stacks solving the two-year problem.  We attempted to simulate 
historic output and prices.  These were validated against actual wholesale prices for 2009–10 (the 
Market Index Price) obtained from Elexon [29]. 
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5.2 Future Scenario: GB in the 2020s 

Our demand time-series for 2020 was based on several years of National Grid data, from 1994–2011 
[30].  We scaled each year’s annual demand to 318 TWh, which is the level projected for the 2020s 
[26].  Historic demands were adjusted by the ratio of 318 TWh to their annual weather-corrected 
demand (as opposed to actual demand), so that we preserve hour-to-hour and year-to-year variation 
due to weather while removing fluctuations due to the level of economic activity. 
 

The simulated wind output was subtracted from this demand, giving 18 years of load net of wind.  In 
the stack models, these were combined into a single 8,760-hour load curve so that a range of 
weather-years were accounted for.  In the UCCO model, all 18 years of data (157,752 hours) were 
used in full, with each year solved in parallel. 
 

  The optimal capacity mix depends on construction as well as operating costs.  We derived plant 
costs from three studies specific to the UK and two internationally [26], aggregating their 2020 
projections of annualized capital investment cost (defined as the annual rent required to cover 
overnight capital cost plus interest over the lifetime of the plant), fixed and variable operating costs, 
and thermal efficiencies.  Fuel costs were based on the UK government’s central scenario for 2020 
[36]: £7.94 for coal, £37.07 for oil, and £23.37 for gas (per MWh of fuel).  Carbon emissions are priced 
at £30 per tonne, which is the floor price established for 2020 under the UK carbon price support 
scheme [37]. 
 

No-load costs are derived from the intercept of total fuel cost against plant output, and represent the 
penalty of decreasing part-load efficiency.  Based on data from US generators [31, 38], we assume 
that plant efficiency scales linearly with output, falling 6% from full to minimum output (for coal, 
OCGT and oil) or 16% (for CCGT and nuclear).  
 

Start-up costs are derived from the cost of fuel required to heat the generator to temperature plus 
the cost of the carbon emitted.  The wear and tear caused by start-ups is not factored in; however, 
this could increase the start-up cost significantly [39].  Shut-downs are considered to incur zero cost. 
For this set of simulations we searched for the so-called “greenfield” solution; the long-run 
equilibrium capacity mix, assuming that there was no existing plant. 
  

5.3 Wind Resource Data 

The hourly output from the British fleet of wind farms was simulated using the Virtual Wind Farm 
model described in [40] and [41].  This takes hourly wind speed data from NASA, interpolates them to 
the location and height of the turbines at each individual wind farm, and then converts to power 
outputs using the power curve for the model of turbine installed at that farm (which varies between 
manufacturers and specific design features). 
 

Figure 5 shows how this process validates against historic metered output data from the GB wind 
fleet, taken from Elexon [29].  The R² between simulation and reported output is over 0.95, and the 
root mean square error is 233 MW, implying that half-hourly output can be simulated with an 
accuracy of ±4.5%. 
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Fig. 5: Validation of the simulated wind farm output patterns from the Virtual Wind Farm model,  

showing a six-month sample from the transmission-connected GB wind fleet (46 of the largest farms)  

and the correlation over the two-year period 2012–13. 

 

This model was used to simulate the output patterns from the fleet of wind farms that could be 
expected to be operating in 2020.  We considered farms that are either operating, under construction 
or have obtained planning permission, giving 730 farms totalling 26 GW of capacity, to match 
National Grid’s ‘Gone Green’ scenario [42] and projections by RenewableUK [43].  This gave a different 
pattern of demand from scaling up historic outputs due to the move towards more offshore farms in 
the North Sea.  Our simulation was based on weather data from 1994–2011.  This was the same 
period as our demand data, to preserve the correlation between weather and both demand and wind 
output.   
The resulting wind fleet had an average capacity factor of 24.4% onshore, in line with historic averages 
[34, 44], and 34.7% offshore, which is two percentage points higher than historic experience, due to 
the anticipated move to larger turbines further from shore. 
 

6 Results 

6.1 Historic Comparison: GB in 2010 

In the first stage of validation our stack model was calibrated to the GB system in 2009–10 and its 
results compared to historic output and price data.  The model was configured to run with and 
without start costs, and with hydro outputs from actual outturn, the allocation from 30 tranches and 
from one tranche; so that the impact of each heuristic could be analysed separately. 
 

6.1.1 Impact on Energy Output 
With careful calibration of historic fuel prices and efficiencies, the stack model is able to predict the 
annual output of each station type very closely.  The simulated capacity factors during 2009/10 were 
all within ±0.9% of historic levels: nuclear (78%), CCGT (70%), coal (44%) and OCGT (0.8%). 
 

As explained in Section 3.2, the start-up heuristic does not affect dispatch and so had no impact on 
station outputs.  The different methods of allocating hydro also had relatively little effect, altering 
capacity factors by only 0.3% at most.  This is due to GB having relatively little hydro capacity (3.5 GW 
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in a 70 GW system), and the unbiased nature of the errors introduced by the allocation methods.  Our 
proposed method of allocating multiple blocks gave an RMS error of ±301 MW from actual output, 
which is a 1.8-fold improvement over the simpler method of allocating one block (±550 MW). 
 

When considering the hourly output by station type, the correlation between simulated and historic 
data yields R² values of 0.96 for CCGT and 0.93 for coal.  OCGT output shows no correlation, as the 
exact hours in which peaking plants are used are poorly correlated.  A model which emphasizes speed 
and simplicity cannot be appropriate for all applications, and this is apparently one of them.  
  

6.2 Impact on Electricity Prices 

We compare our simulated prices to the so-called Market Index Price (MIP), an average of the day-

ahead and on-the-day prices which is less volatile than a real-time, or purely balancing price.  The 
simple stack under-estimates annual average wholesale electricity prices by around 6%.  The start 
heuristic adds £1.94/MWh, or 5.2% to the time-weighted wholesale price, bringing prices to within 
0.9% of historic averages: £39.14/MWh (time-weighted) and £41.20/MWh (energy weighted). 
 

Figure 6 shows the relationship between demand and price from the models.  The simple stack shows 
the traditional stepped curve, with long horizontal segments when CCGT, coal and OCGT are 
marginal.  The start heuristic introduces a slope to this curve because it allocates the cost of a start-up 
equally across all the hours that a station is generating.  As demand increases, there are fewer hours 
to spread the cost of these starts over, and so prices gradually rise.  This better replicates the historic 
price-demand relationship, shown as the solid black line in Figure 6. 
 

 

Fig. 6: Wholesale electricity prices produced by the simple and modified  

merit order stacks for the GB system in 2010, compared to historic. 

 

The start heuristic depresses summer minimum prices by up to £8/MWh and adds up to £40/MWh to 
peak prices.  For 90% of the year the change lies in the range of –£6 to +£16/MWh.  This improves 
the correlation between simulated and historic prices, increasing the R² from 0.24 without to 0.39 with 
starts. 
 

The R2 value is improved but is still rather low, which may be expected from a simple deterministic 
model fed with high-level non-confidential data.  A large spread is seen in historic prices: e.g., the 
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price at 30 GW can be the same as at 55 GW.  In reality, fuel prices and efficiencies are not uniform 
across all stations, different costs are incurred for cold and hot starts, and unplanned outages can 
significantly influence prices. 
 

6.3 Future Comparison: GB in 2020 

In our second stage of validation the stack and unit commitment (UCCO) models were used to find 
the optimal thermal capacity mix for Britain in the 2020s.  Two variants of the stack model were 
considered: the simple stack with no additional heuristics, and the modified stack with start-up costs 
and a 90% must-run constraint for the nuclear fleet. 
 

6.3.1 Impact on Optimal Capacity Mix 

The means by which start costs alter the optimal grid mix is demonstrated in Figure 7.  The cost line 
for coal plants rises substantially in the mid-merit region as they cost 6 times more than other stations 
to start per kW of capacity.  Similarly, the change to the OCGT cost curve is imperceptible due to its 
negligible start cost.  [24] presents similar curves, plotted against loading point rather than operating 
hours.  After correcting for this our curves are similar, except for there being no reduction in cost at 
high loading hours.  The cost saving that baseload plants achieve by part-loading to avoid shutdown 
is factored into the screening curves in [24], whereas we make the simplification of accounting for it 
by post-processing prices.  Nuclear costs show a different pattern, rising as utilization falls due to the 
cost of constraining wind in order to avoid extremely expensive shutdowns. 
 

 

Fig. 7: Screening curves for four types of power station, showing the impact of start-ups on total annual cost.  

Dotted lines show the original cost curves, solid lines show the added impact of start-up costs.  Vertical dashed 

lines indicate how the transitions between marginal stations (and thus the optimal running hours for each 

station type) shift when start-up costs are included. 

 

The effect of these station-specific alterations is to move the transition points that give the optimal 
running hours for each type, and thus the optimal capacity.  The vertical lines in Figure 7 show the 
transitions from OCGT to CCGT to nuclear being the cheapest station, which are moved inwards as 
the increase in cost for CCGT is larger than for the other two stations.  This effect would be stronger if 
coal featured as one of the cheapest generators, but the assumed fuel and carbon prices prevent this.  
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Figure 8 shows the long-run equilibrium capacity mix chosen by each variant of the models.  The mix 
chosen by the UCCO is taken to be the ‘correct’ answer as it fully accounts for dynamic plant 
constraints.  The stacks produce similar results to the UCCO, deviating by at most 20%. 
 

 

Fig. 8: Optimal capacity mixes calculated by each model. 

 

The simple stack deviates furthest, over-predicting CCGT capacity by 2.85 GW and under-predicting 
OCGT by 2.15 GW.  Adding a must-run constraint to nuclear plant had the expected effect of 
reducing the optimal capacity, as the additional cost of spilling wind (which was required when 
nuclear output could not be reduced any further) meant less nuclear capacity could compete with 
CCGT.  Incorporating the cost of start-ups reversed this effect, reducing CCGT competitiveness against 
both nuclear and OCGT. 
 

The modified stack therefore saw CCGT capacity squeezed at both ends because of its higher ratio of 
start-up cost to variable generation costs.  The deviation from the UCCO results was therefore 
reduced from 2.85 to 0.20 GW for CCGT and from 2.15 to 0.30 GW for OCGT.  The error in nuclear 
capacity was slightly increased, from 0.45 to 0.75 GW, which could be reduced by altering the must-
run proportion of nuclear capacity. 
 

The incorporation of start costs and must-run constraints reduced the RMS error in thermal capacity 
choices from ±2.1 to ± 0.5 GW in absolute terms, and from ±14% to ±3% relative to the installed 
capacity.   
 

6.3.2 Impact on Energy Output 
The constraints and modelling methods had more noticeable impacts on the levels of plant output, as 
plant run times were affected by their position within the stack (in addition to the changes in 
capacity).  Table III gives the energy outputs predicted by the three models, showing that our 
corrections improve the accuracy of the stack model approximately two-fold. 
 

The greatest deviations from the fully optimized result were at the extremities of the stack: the level of 
wind spilling at the bottom and the levels of OCGT output at the top.  In all cases, the amount of load 
shedding was very similar by design, as it was determined primarily by the total amount of physical 
capacity installed. 
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 UCCO Modified Stack Simple Stack 

Nuclear  192.7 TWh  198.6 (+3%)  177.5 (–8%) 

CCGT  86.4 TWh  81.4 (–6%)  102.6 (+19%) 

OCGT  5.0 TWh  4.4 (–11%)  3.6 (–28%) 

Wind spilling  –1.8 TWh  –2.0 (+15%)  –1.2 (–30%) 

Load shedding  –80 GWh  –79 (–1%)  –79 (–1%) 

Table III: Comparison of plant outputs for different modelling methods,  

highlighting the deviation from the fully optimized results. 

 

6.3.3 Impact on Electricity Prices 

The modifications to the stack have a similar impact on the distribution of electricity prices as in the 
historic comparison (Figure 6).  Prices are raised during periods of high demand and lowered during 
baseload periods over 4,000 running hours.  Figure 9 shows the price-duration curves resulting from 
the three model runs. 
 

 

Fig. 9: Price-duration curves from the three models for the 2020 scenario. 

 

The vertical segments of these curves indicate transitions between different generators being 
marginal (as labelled in the figure).  Differences in the position of these transitions can be seen 
between the UCCO and the simple stack model due to the stack’s error in both the capacity installed 
and its runtime.  These errors are reduced significantly when adding the modification for start-ups. 
  
The simple stack produces price-duration curves with long horizontal segments, as price is 
determined solely by incremental fuel costs.  The start-up modification imposes a downwards slope 
on these segments, for the reasons given in Section 6.1.2.  Within the range of 2,000–7,000 hours 
when CCGT is marginal, this heuristic appears to match the profile of start-costs and avoided shut-
down savings predicted by the UCCO model at least in magnitude, although the finer structure (with 
several grades of cost adjustment) is simplified. 
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7 Conclusions 

We propose and validate a new heuristic for incorporating start-up costs in the merit order stack, 
focusing on its ability to model electricity prices and the long-run equilibrium capacity mix.  This 
heuristic is designed for speed and simplicity: it has no adverse effect on computational efficiency, 
and requires as a minimum only the net load curve (demand minus renewable output), and data on 
plant start costs. 
 

By increasing peak electricity prices and reducing them during times of low demand, this heuristic 
improves the correlation with historic prices that can be obtained by a merit order stack by 60%.  By 
inflating the cost of mid-merit plants, start-up costs move the crossover points at which OCGT or 
nuclear plant become the lowest cost generator, increasing the shares of these plant in the long run 
equilibrium mix.  These changes are replicated in the price duration curve, enabling the modified stack 
model to approach the results of the fully optimized dispatch model. 
 

We also demonstrate a marginal improvement on the peak-shaving algorithm for allocating hydro 
output.  By splitting hydro capacity into multiple tranches with different utilizations, the historic 
distribution of output is better represented, but this is seen to have limited impact on results for the 
British electricity system due to the low levels of hydro installed.  
 

These heuristics are demonstrated within a simple cost-minimizing model that assumes a perfectly 
competitive market.  It would be possible to apply them to other situations where market power is 
exerted, using the start-up heuristic to generate improved cost data for supply function, Cournot or 
bi-level models [45].  
 

Whether the results from this simple technique are acceptably accurate depends on the specific 
application and user’s preferences.  However, even when considering scenarios with a challenging 
level of intermittent renewable generation, it seems that there is still merit in an improved merit order 
stack. 
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