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Abstract: Inertial measurement units (IMUs) can be used to monitor running biomechanics in real-
world settings, but IMUs are often used within a laboratory. The purpose of this scoping review
was to describe how IMUs are used to record running biomechanics in both laboratory and real-
world conditions. We included peer-reviewed journal articles that used IMUs to assess gait quality
during running. We extracted data on running conditions (indoor/outdoor, surface, speed, and
distance), device type and location, metrics, participants, and purpose and study design. A total of
231 studies were included. Most (72%) studies were conducted indoors; and in 67% of all studies, the
analyzed distance was only one step or stride or <200 m. The most common device type and location
combination was a triaxial accelerometer on the shank (18% of device and location combinations).
The most common analyzed metric was vertical/axial magnitude, which was reported in 64% of all
studies. Most studies (56%) included recreational runners. For the past 20 years, studies using IMUs
to record running biomechanics have mainly been conducted indoors, on a treadmill, at prescribed
speeds, and over small distances. We suggest that future studies should move out of the lab to less
controlled and more real-world environments.

Keywords: biomechanics; wearable devices; injury; running conditions

1. Introduction

Wearable technology has been adopted among sports science researchers and prac-
titioners to capture movement in the conditions in which sports take place [1]. Inertial
measurement units (IMUs) are a type of wearable technology that can be used to mea-
sure running biomechanics [2]. The use of IMUs for real-world monitoring of running
biomechanics may provide insights that are different from observations in controlled con-
ditions [3–5]. Historically, the space and computational costs of onboard data storage and
processing have created challenges for long-term monitoring of running biomechanics [2].
However, as device capabilities and approaches to big data have improved, the large
amounts of data produced by IMUs have changed from a liability to an opportunity for
real-world running biomechanical analyses.

While several editorials and commentaries have indicated the capability of IMUs to
study running biomechanical gait patterns out of the laboratory and recommend that inves-
tigators do so [2–4,6,7], these suggestions were not based on systematic evidence. Therefore,
we do not know how many studies are using IMUs to record running biomechanics and in
which settings. In 2018, a systematic review identified only 14 studies that used wearables
for running gait analysis for distances greater than 200 m [8]. As the use of wearables is a
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trending topic in the field of running biomechanics, we expect the number of studies that
analyze running gait using IMUs in real-world settings to dramatically increase.

Thus, the purpose of this review is to systematically identify the scope of how IMUs are
used to record running biomechanics in all settings. Our primary focus is on the conditions
(i.e., location, surface, speed, and distance) in which IMUs capture running quality. Our
secondary objectives were to identify the devices and sensors used, the calculated metrics
and analyses from the IMU signals, the characteristics of the participants in the studies,
and the study details such as the purpose and study design. By identifying the scope of
IMU-based running biomechanical studies, we aim to mark the progress made and the
steps that remain for analyzing running gait in real-world settings.

2. Materials and Methods
2.1. Registration

The review protocol was registered through the Open Science Framework on 24 August 2020
(https://osf.io/gsmvj/?view_only=cc97d0034c5341bca4ac181878770ec7, accessed on
16 February 2022).

2.2. Eligibility Criteria

This review was designed to capture all journal articles that used IMUs to assess
gait quality during running, published in English since 2001. Exclusion criteria were: not
original research article (e.g., review papers, conference proceedings, and dissertations);
the study did not involve human subjects; the study did not involve running; running
quality was analyzed as part of another athletic task (e.g., change of direction and playing
a team sport); only spatiotemporal variables were analyzed (e.g., speed, cadence, and step
length); there was no use of IMUs; the sole purpose of the study was the use of IMUs for
any purpose other than gait analysis; the study primarily focused on development of new
technology or methods rather than gait analysis; and running was only with the use of
robotic orthoses, exoskeletons, or virtual reality environments.

2.3. Search Strategy

The search was executed in the scientific databases CINAHL, Embase, HealthSTAR,
MEDLINE, PsycINFO, PubMed, SPORTDiscus and Web of Science. Databases were
searched for articles related to IMUs and running using the following terms and logic:
(Wearable Electronic Devices/OR Accelerometry/OR wearable* OR inertial sensor* OR
inertial measurement unit* OR imu OR imus OR gyroscope* OR magnetometer* OR ac-
celeromet*) AND (Running/OR running OR jogging), where/indicates a MESH term
and * indicates the search term can have any ending. The final search was conducted on
24 April 2021.

2.4. Study Selection

One author (LCB) searched each database, combined the resulting records from each
database, and performed initial screening for duplicates, format, and language. The records
that passed initial screening were uploaded to an online review management platform
(Covidence, Melbourne, Australia). Two authors (LCB and AMR) screened the title and
abstract of all records for eligibility, with one author (CAC) serving as the tiebreaker. One
author (LCB) obtained and uploaded the full text of the records that passed the title and
abstract screening. The full-text review was conducted by two authors (LCB and AMR),
and the reason for exclusion was indicated for articles deemed ineligible. In the case where
multiple exclusion criteria were relevant, the criterion highest in the list above was chosen.
One author (CAC) served as the tiebreaker for conflicts on whether an article should be
included or excluded as well as conflicts on the selected reason for exclusion.

https://osf.io/gsmvj/?view_only=cc97d0034c5341bca4ac181878770ec7
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2.5. Data Extraction

Each included study was assigned to an author (LCB, AMR, and CAC) who extracted
data related to the study, participants, conditions, device(s), and analysis.

2.5.1. Conditions
Location

Categorized as: indoor, outdoor, or indoor and outdoor.

Running Surface

Categorized as: track, pavement or sidewalk, grass (includes real or artificial), trail
(includes gravel), treadmill, floor or platform, or not controlled.

Speed

Categorized as: exact (minimum speed of 1.67 m/s except for incremental runs
that started with walking but ended with running; recorded in units of m/s), relative—
calculated (based on a race time or a specific test [e.g., VO2max and heart rate]), relative—
subjective (self-selected or based on participant interpretation [e.g., maximal, slow, and
moderate]), and not controlled (races or training runs).

Full Distance or Duration

For each surface, the complete distance or duration was calculated by multiplying the
distance or duration by the number of trials and number of days and reported using units
from the study. Exceptions for using the reported units for the full distance or duration
include more than 180 s (converted to minutes) and more than 5000 m (converted to km).

Analyzed Distance

For each surface, the amount of IMU data analyzed was categorized as: single step
or stride per trial for one or more trials, consecutive steps for less than 200 m per trial for
one or more trials, consecutive steps over 200 m to 1000 m per trial for one or more trials,
consecutive steps over more than 1000 m for one trial, consecutive steps over more than
1000 m for multiple trials. A trial was a repeated run on the same or different course, or
a repeated or different segment run on the same or different days. If not provided, the
analyzed distance was calculated from the reported speed. If only the number of steps or
insufficient information was reported for determining the analyzed distance, equivalences
between 200 m, 60 s, and 150 steps/min were used—200 m in 60 s corresponds with a speed
of 3.33 m/s, which is a common intermediate running speed [9,10], and 150 steps/min
is on the low end of preferred running cadence [11–14], representing a low threshold of
number of steps that equates to 200 m.

2.5.2. Device(s)
Brand and Model

As reported.

Device Location(s)

Categorized as: foot (any portion of foot or shoe), shank (includes tibia/shin, calf,
ankle), thigh, lower back (includes pelvis, lumbar spine), upper back (includes thoracic,
cervical spine), chest, arm (includes wrist), head. If multiple devices were placed on the
same location (e.g., both feet), the location was only recorded once.

Sensors

The number of axes were recorded for each type of sensor: Accelerometer, gyro-
scope, magnetometer.
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2.5.3. Analysis
Statistical Approach

Categorized as: descriptive, inferential, or machine learning. Descriptive was only
used when it was the only type of analysis performed. Machine learning was included
only when it was used as part of the statistical approach and not to generate metrics (e.g.,
estimated ground reaction forces from accelerations using an artificial neural network).

Metrics

Categorized as: vertical/axial magnitude (e.g., peak and RMS), anterior–posterior
magnitude (e.g., peak and RMS), medial–lateral magnitude (e.g., peak, RMS), resultant
magnitude (e.g., peak and RMS), axis ratio (e.g., axis RMS/resultant RMS), variability—
any axis (e.g., SD and CV), loading rate, power, PlayerLoad, shock attenuation—time
domain, shock attenuation—frequency domain, frequency content, spectral power or
spectral energy, stiffness, joint angles or ROM, joint angular velocity, segment rotation,
segment rotation velocity, COM displacement (e.g., bounce, oscillation, and trajectory),
COM change in velocity (e.g., braking), symmetry or regularity (based on autocorrelation of
signal), stability (e.g., Lyapunov exponent), or entropy. Due to the large number of studies
investigating shock absorption using an accelerometer placed on the tibia, when the axis
for tibial acceleration magnitude was not specified, it was assumed to be vertical. For other
situations where the axis of acceleration magnitude was not reported, it was assumed to be
the resultant.

2.5.4. Participants
Sex

Females, males, or females and males.

Type

Non-runner (includes sedentary, adults, recreational team sport athletes), recreational
runner (described as a runner; includes runners with defined weekly mileage, well-trained
runners), and competitive runner (competes at a high level; includes elite, member of a
collegiate or higher sports team).

Injury Status

Injured or uninjured.

Age

The central tendency and variability of age were recorded across all participant types.
If the study only reported age for each participant group, the overall mean age was
calculated.

2.5.5. Study Details
Country

Based on ethics approval, or if not reported, the first author’s first affiliation.

Study Design

Randomized controlled trial, quasi-experimental, case study, case series, case control,
prospective cohort, retrospective cohort, or cross-sectional.

Purpose

Equipment intervention, training intervention, validity or reliability of metric(s), com-
pare metrics, compare groups, identify changes due to fatigue, identify changes between
sessions, identify changes between conditions, associate with injury or associate with
performance. Some studies had multiple purposes.
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2.6. Quality Assessment

A formal quality assessment was not part of this scoping review. However, we
evaluated the amount of information reported (adequate or lacking) and the relevance to
running and IMUs (appropriate or not appropriate) for each set of data extracted (study,
participants, conditions, device(s), and analysis) of each study.

3. Results
3.1. Study Selection

A total of 16,023 records were identified across all databases (Figure 1) and 7336 records
were excluded during title and abstract screening. Of the 402 full-text articles that were
assessed, 171 were excluded and 231 studies met all eligibility criteria and were included.
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3.2. Data Extraction

The complete data extracted for each included study are reported as an appendix. The
conditions, devices, analysis, participants, and study details are summarized here with key
details provided in Tables 1–6.
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Table 1. Study characteristics where the analyzed distance is one step/stride.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[15] Aubol, et al. 2020 Indoor Floor 3.0 m/s 30 m Rec. 19 (10 F, 9 M) Mean: 31; SD: 6 VT, Res.

[16] Blackah, et al. 2013 Indoor Treadmill 3.83 m/s 2 min Rec. 9 (0 F, 9 M) Mean: 19; SD: 1 VT, Shock-time,
Shock-frequency

[17] Boyer and Nigg 2006 Indoor Floor 3 m/s 320 m Non 5 (0 F, 5 M) Mean: 24.6; SD: 2.5 VT, Shock-frequency

[18] Chadefaux, et al. 2019 Indoor Floor 3.1 m/s 175 m Rec. 10 (0 F, 10 M) Mean: 21; SD: 3 VT, AP, ML, Res.,
Freq.

[19] Clansey, et al. 2012 Indoor Floor 4.5 m/s 270 m Rec. 21 (0 F, 21 M) Mean: 36.2; SD: 12.5 VT, Loading Rate
[20] Crowell and Davis 2011 Indoor Floor 3.7 m/s 230 m Rec. 10 (6 F, 4 M) Mean: 26; SD: 7 VT, Loading Rate
[21] Edwards, et al. 2019 Indoor Floor 3.3., 5.0, and 6.7 m/s ≥450 m Comp. 10 (0 F, 10 M) Mean: 21; SD: 2 VT

[22] Gil-Rey, et al. 2021 Indoor Track incremental from
1.69 m/s ≥40 min Non 82 (82 F, 0 M) Mean: 59.1; SD: 5.4 VT, AP, ML

[23] Hagen, et al. 2009 Indoor Floor 3.3 m/s NR Rec. 20 (0 F, 20 M) Mean: 32; SD: 10 VT
[24] Havens, et al. 2018 Indoor Floor self-selected 90 m Non 14 (7 F, 7 M) Mean: 29; SD: 12 VT
[25] Higgins, et al. 2021 Indoor Floor self-selected 368 m Non 30 (15 F, 15 M) Mean: 23.0; SD: 4.5 VT, Res.
[26] Lam, et al. 2018 Indoor Floor 3.0 and 6.0 m/s 230 m Comp. 18 (0 F, 18 M) Mean: 25.0; SD: 2.3 VT
[27] Laughton, et al. 2003 Indoor Floor 3.7 m/s ≥57 m Rec. 15 (NS) Mean: 22.46; SD: 4 VT
[28] Mavor, et al. 2020 Indoor Floor self-selected 30 m Non 18 (9 F, 9 M) Mean: 23.7; SD: 3.44 Joint ROM

[29] Meinert, et al. 2016 Indoor Floor 2.9 m/s 30 m Rec. 20 (0 F, 20 M) Mean: 22.7; SD: 2.9
VT, Res.,

Shock-frequency,
Spectral Energy

Indoor Treadmill 2.9 m/s 10 s

[30] Mercer, et al. 2005 Indoor Floor comfortable, faster,
slower 800 m Non 6 (NS) Mean: 26; SD: 4.0 VT, Shock-time

[31] Milner, et al. 2020 Indoor Floor 3.0 m/s ≥30 m Rec. 19 (10 F, 9 M) Mean: 31; SD: 6 VT, AP, ML, Res., Seg.
Rot.

[32] Milner, et al. 2006 Indoor Floor 3.7 m/s 115 m Rec. 40 (40 F, 0 M) Mean: 26; SD: 9 VT
[33] Nedergaard, et al. 2018 Indoor Floor 2, 3, 4, and 5 m/s ≥64 m Non 20 (0 F, 20 M) Mean: 22; SD: 4 Res.
[34] Ogon, et al. 2001 Indoor Floor slow 144 m Non 12 (5 F, 7 M) Mean: 32.9; SD: 7.9 Loading Rate

[35] Rowlands, et al. 2012 Indoor Floor self-selected 320 m Non 10 (5 F, 5 M) Mean: 29.4; SD: 7.3 VT, Res., Loading
Rate

[36] Sayer, et al. 2020 Indoor Floor 2.8–3.2 m/s NR Non 64 (64 F, 0 M) Mean: 13.7; SD: 2.3 VT, AP

[37] Sinclair and
Dillon 2016 Indoor Floor 4 m/s 110 m Rec. 12 (0 F, 12 M) Mean: 23.59; SD: 2 VT, Loading Rate

[38] Sinclair and Sant 2017 Indoor Floor 4 m/s NR Non 13 (0 F, 13 M) Mean: 27.81; SD: 7.02 VT, Loading Rate
[39] Sinclair, et al. 2016 Indoor Floor 4 m/s NR Rec. 12 (0 F, 12 M) Mean: 23.11; SD: 5.01 VT, Loading Rate
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Table 1. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[40] Sinclair, et al. 2015 Indoor Floor 4 m/s 110 m Rec. 12 (12 F, 0 M) Mean: 21.45; SD: 2.98 VT, Loading Rate
[41] Sinclair, et al. 2017 Indoor Grass 4 m/s NR Comp. 12 (0 F, 12 M) Mean: 22.47; SD: 1.13 VT
[42] Thompson, et al. 2016 Indoor Floor self-selected 450 m Rec. 10 (5 F, 5 M) Mean: 26; SD: 7.3 Res.

[43] Trama, et al. 2019 Indoor Track 2.22, 2.92, 3.61, and
4.31 m/s ≥60 m Rec. 20 (0 F, 20 M) Mean: 23.9; SD: 2.1 VT, Shock-frequency,

Freq., Spectral Energy

[44] Van den Berghe,
et al. 2019 Indoor Floor 2.55, 3.20, and

5.10 m/s 768 m Rec. 13 (NS) NR VT, Res.

[45] Wundersitz, et al. 2013 Indoor Floor maximal 50 m Non 17 (5 F, 12 M) Mean: 21; SD: 2 VT, Res.

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.

Table 2. Study characteristics where the analyzed distance is <200 m.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[46] Adams, et al. 2016 Indoor Treadmill comfortable 2 min Rec. 20 (8 F, 12 M) Mean: 30.0; SD: 7.0 COM Disp.
[47] Adams, et al. 2018 Indoor Treadmill comfortable 90 s Rec. 20 (NS) NR COM Disp.

[48] Argunsah Bayram,
et al. 2021 Indoor Treadmill preferred 15 min Non 24 (10 F, 14 M) Mean: 22.2; SD: 0.9 Joint ROM, COM

Disp., Sym. or Reg.
[49] Armitage, et al. 2021 Indoor Floor sprint 21 m Non 16 (0 F, 16 M) Mean: 17; SD: 1 Res.

Indoor Treadmill 3.0 m/s 1 min
[50] Backes, et al. 2020 Indoor Treadmill 2.78 and 3.33 m/s 2 min Rec. 39 (6 F, 33 M) Mean: 41.8; SD: 9.8 COM Disp.

[51] Bailey and Harle 2015 Indoor Treadmill 2.3, 2.7, 3.0, and
3.4 m/s 6 min Rec. 3 (1 F, 2 M) NR Res., Seg. Rot.

Outdoor Grass steady state 100 m
Outdoor Pavement steady state 100 m
Outdoor Track steady state 100 m
Outdoor Trail steady state 100 m
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[52] Barnes, et al. 2021 Outdoor Grass 2.1, 2.9, and
4.4 m/s 140 m Comp. 29 (0 F, 29 M) Mean: 25.2; SD: 3.5 PlayerLoad

[53] Bastiaansen, et al. 2020 NR NR maximal sprint 90 m Non 5 (0 F, 5 M) Mean: 22.5; SD: 2.1 Joint ROM, Joint ω
[54] Benson, et al. 2018 Indoor Treadmill preferred 2 min Rec. 44 (18 F, 26 M) Mean: 13.9; SD: 12.3 VT, AP, ML, Res.
[55] Bergamini, et al. 2012 Outdoor Track sprint 180 m Comp. 5 (2 F, 3 M) NR Res., Joint ω

Rec. 6 (2 F, 4 M)
[56] Boey, et al. 2017 NR Pavement 3.06 m/s 90 m Rec. 23 (11 F, 12 M) Mean: 23.3; SD: 3.0 VT

NR Track 3.06 m/s 90 m Non 12 (6 F, 6 M)
NR Trail 3.06 m/s 90 m

[57] Boyer and Nigg 2007 Indoor Track 4.8 m/s NR Non 13 (NS) NR VT, Freq.

[58] Boyer and Nigg 2004 Indoor Floor 2.0, 3.0, 4.0, and
5.5 m/s 960 m Non 10 (0 F, 10 M) Mean: 25; SE: 4.2 VT, Freq.

[59] Brayne, et al. 2018 Indoor Treadmill 2.5, 3.5, and
4.5 m/s 120 s Rec. 13 (0 F, 13 M) Mean: 30; SD: 7 VT

[60] Buchheit, et al. 2015 Indoor Treadmill 2.78, 4.72, and
6.67 m/s 450 s Non 1 (0 F, 1 M) Exact: 36; NA Stiffness

[61] Butler, et al. 2003 Indoor Floor 3.4 m/s 375 m Rec. 15 (NS) NR; Range: 18–45 VT
[62] Camelio, et al. 2020 Indoor Treadmill preferred 36 min Rec. 17 (9 F, 8 M) Mean: 27; SD: 7 VT
[63] Carrier, et al. 2020 Indoor Treadmill self-selected 6 min Rec. 17 (8 F, 9 M) Mean: 28.1; SD: 7.38 COM Disp.

[64] Castillo and
Lieberman 2018 Indoor Treadmill 3.0 m/s 2 min Non 27 (13 F, 14 M) NR; Range: 18–45

Shock-frequency,
Spectral Energy, Joint

ROM, Joint ω
[65] Chen, et al. 2021 Indoor Treadmill 2.5 m/s 3 min Non 24 (0 F, 24 M) NR Spectral Energy
[66] Cheung, et al. 2018 Indoor Treadmill typical 12 min Rec. 16 (5 F, 11 M) Mean: 28.3; SD: 6.2 VT, Loading Rate
[67] Cheung, et al. 2019 Indoor Treadmill 2.78 m/s 10 min Rec. 14 (7 F, 7 M) Mean: 26.4; SD: 11.2 VT, Loading Rate
[68] Ching, et al. 2018 Indoor Treadmill self-selected 20 min Rec. 16 (9 F, 7 M) Mean: 25.1; SD: 7.9 VT, Loading Rate

[69] Chu and Caldwell 2004 Indoor Treadmill 4.17 m/s ≥75 s Rec. 10 (0 F, 10 M) Mean: 26; SD: 6 VT, Shock-frequency,
Spectral Energy

[70] Clark, et al. 2010 Indoor Treadmill 2.78 m/s 12 min Non 36 (36 F, 0 M) Mean: 30.3; SD: 5.8 VT, AP, ML

[71] Creaby and
Frattenovich Smith 2016 Indoor Treadmill 3 m/s 50 min Rec. 22 (0 F, 22 M) Mean: 25.4; SD: 6.2 VT

[72] Crowell, et al. 2010 Indoor Treadmill self-selected 25 min Rec. 5 (5 F, 0 M) Mean: 26; SD: 2 VT, Loading Rate

[73] Day, et al. 2021 Indoor Treadmill 3.8, 4.1, 4.9, and
5.4 m/s NR Comp. 30 (21 F, 9 M) NR VT, Spectral Energy

[74] De la Fuente, et al. 2019 Indoor Treadmill typical 10 min Rec. 20 (0 F, 20 M) Mean: 30.5; SD: 9.3 VT, Res., Freq.
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[75] Deflandre, et al. 2018 Indoor Treadmill 2.22 and 4.44 m/s 6 min Rec. 20 (0 F, 20 M) Mean: 26; SD: 9.5
Stiffness, Joint ROM,
COM Disp., Sym. or

Reg.

Outdoor Grass 2.22, 2.78, and 3.33
m/s 720 m Non 10 (0 F, 10 M)

[76] DeJong and Hertel 2020 Indoor Treadmill 2.68 and 3.6 m/s 180 s Comp. 20 (12 F, 8 M) Mean: 20; SD: 2 Joint ROM

[77] Derrick, et al. 2002 Indoor Treadmill 3.2 km pace run to
exhaustion Rec. 10 (NS) Mean: 25.8; SD: 7.0

VT, Shock-time,
Shock-frequency,

Spectral Energy, Joint
ω, Seg. Rot.

[78] Dufek, et al. 2009 Indoor Treadmill preferred, 10%
slower 102 s Rec. 14 (7 F, 7 M) Mean: 24.9; SD: 4 VT, Shock-time

[79] Eggers, et al. 2018 Indoor Track 3.33 m/s 400 m Non 17 (7 F, 10 M) NR; Range: 18–40 VT, Stiffness, COM
Disp.

[80]
Encarnación-

Martínez,
et al.

2020 Indoor Treadmill 3.89 m/s 4 min Rec. 17 (0 F, 17 M) Mean: 28.7; SD: 8.3 VT, Shock-frequency,
Spectral Energy

[81]
Encarnación-

Martínez,
et al.

2018 Outdoor Grass 3.33 and 4.00 m/s 480 m Non 12 (0 F, 12 M) Mean: 24.3; SD: 3.7 VT, Shock-time

[82]
Encarnación-

Martínez,
et al.

2021 Indoor Treadmill 2.78 m/s 10 min Non 30 (10 F, 20 M) Mean: 26.3; SD: 7.0 VT

[83] Friesenbichler, et al. 2011 Outdoor NR 10 km pace run to
exhaustion Rec. 10 (7 F, 3 M) Mean: 31.7; SD: 7.3 VT, AP, ML, Freq.,

Spectral Energy
[84] Fu, et al. 2015 Indoor Treadmill 3.33 m/s 6 min Rec. 13 (0 F, 13 M) Mean: 23.7; SD: 1.2 VT

Outdoor Grass 3.33 m/s 90 m
Outdoor Pavement 3.33 m/s 90 m
Outdoor Track 3.33 m/s 90 m

[85] Gantz and Derrick 2018 Indoor Treadmill self-selected ≥6 min Rec. 16 (7 F, 9 M) Mean: 22.9; SD: 3.3 VT, Shock-frequency,
Spectral Energy

[86] Garcia, et al. 2021 Outdoor Pavement self-selected 200 m Rec. 15 (12 F, 3 M) Mean: 27.7; SD: 9.1 VT, AP, ML, Res.,
Shock-time

Outdoor Trail self-selected 400 m

[87] García-Pérez, et al. 2014 Indoor Treadmill 4 m/s 800 m Rec. 20 (9 F, 11 M) Mean: 34; SD: 8 VT, Loading Rate,
Shock-time
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

Outdoor Track 4 m/s 800 m
[88] Giandolini, et al. 2014 Indoor Treadmill 3.89 and 4.44 m/s 8 min Rec. 48 (18 F, 30 M) Mean: 38.4; SD: 6.7 VT

Outdoor Trail 2.78 and 3.33 m/s 6 min
[89] Giandolini, et al. 2013 Indoor Treadmill self-selected 60 min Non 30 (8 F, 22 M) Mean: 18.3; SD: 4.5 VT

[90] Glassbrook, et al. 2020 Indoor Treadmill 60%–100% of
maximal 435 s Non 16 (6 F, 10 M) Mean: 24.5; SD: 4.5 Res.

[91] Gullstrand, et al. 2009 Indoor Treadmill
2.78, 3.33, 3.89,
4.44, 5.00, 5.56,
and 6.11 m/s

≥210 s Rec. 13 (0 F, 13 M) Mean: 22.7; NR COM Disp.

[92] Hardin and Hamill 2002 Indoor Treadmill 3.4 m/s 30 min Rec. 24 (0 F, 24 M) NR VT
[93] Iosa, et al. 2014 Indoor Floor self-selected 10 m Non 25 (NS) Mean: 15.3; SD: 3.9 VT, AP, ML, Stability

[94] Iosa, et al. 2013 Indoor Floor self-selected 10 m Non 40 (16 F, 24 M) Mean: 5.5; SD: 2.5 VT, AP, ML, Res.,
Freq.

[95] Johnson, et al. 2020 Indoor Treadmill 90% marathon
pace 30 s Rec. 192 (87 F, 105

M) Mean: 44.9; SD: 10.8 VT, Res.

Outdoor Pavement not controlled 42.2 km
[96] Johnson, et al. 2021 Indoor Treadmill self-selected 16 s Rec. 18 (8 F, 10 M) Mean: 33; SD: 11 AP, ML

[97] Johnson, et al. 2020 Indoor Treadmill self-selected 32 s Rec. 18 (8 F, 10 M) Mean: 33; SD: 11 VT, Res., Loading
Rate

[98] Kawabata, et al. 2013 Indoor Treadmill slow, preferred,
fast 18 min Non 13 (0 F, 13 M) Mean: 23.3; SD: 0.6 VT, AP, ML

Outdoor Track slow, preferred,
fast 4800 m

[99]
Kenneally-
Dabrowski,

et al.
2018 Indoor Track maximal sprint 120 m Comp. 13 (0 F, 13 M) Mean: 23.8; SD: 2.4 VT

[100] Khassetarash, et al. 2015 Indoor Treadmill 4 m/s
run to

exhaustion
(10 km max)

Comp. 8 (0 F, 8 M) Mean: 26; SD: 3.6 Shock-frequency

[101] Kobsar, et al. 2014 Indoor Treadmill self-selected 135 s Rec. 42 (42 F, 0 M) Mean: 33; SD: 6
VT, AP, ML, Res.,

Freq., Axis Ratio, Sym.
or Reg.

[102] Koldenhoven and
Hertel 2018 Indoor Treadmill comfortable 1.5 miles Rec. 12 (6 F, 6 M) Mean: 23.1; SD: 5.5 Seg. Rot., Seg. Rot.

Velocity

[103] Le Bris, et al. 2006 NR Track maximal aerobic run to
exhaustion Comp. 6 (0 F, 6 M) Mean: 21.6; SD: 4 Res., Freq., Spectral

Energy, Sym. or Reg.
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[104] Leduc, et al. 2020 Outdoor NR 5.00 m/s 240 m Comp. 17 (0 F, 17 M) Mean: 21.0; SD: 1.3 VT, AP, ML, Res.,
PlayerLoad

[105] Lee, et al. 2010 Indoor Treadmill
self-selected,

0.28 m/s above
and below

15 min Comp. 10 (4 F, 6 M) Mean: 30; SD: 8 VT

[106] Lee, et al. 2015 Indoor Treadmill 2.0 and 3.5 m/s 30 s Non 15 (0 F, 15 M) Mean: 26.9; SD: 3.1 VT, AP, ML, Res., Seg.
Rot. Velocity

[107] Lin, et al. 2014 Indoor Treadmill 1.67, 2.22, 2.50,
and 3.33 m/s 4 min Comp. 10 (0 F, 10 M) Mean: 50.30; SD: 9.40 VT, AP, ML

Outdoor Not
Controlled not controlled 12 hours

[108] Lindsay, et al. 2016 Indoor Treadmill 2.22, 2.78, and
3.33 m/s 8.5 min Non 15 (4 F, 11 M) Mean: 23.7; SD: 4.7 VT, AP, ML, Res.

[109] Lindsay, et al. 2014 Indoor Treadmill 2.22, 2.78, and
3.33 m/s 180 s Non 18 (0 F, 18 M) Mean: 24.0; SD: 4.2 VT, AP, ML, Res.

[110] Lucas-Cuevas, et al. 2017 Indoor Treadmill 2.22, 2.78, and
3.33 m/s 6 min Rec. 30 (0 F, 30 M) Mean: 27.3; SD: 6.4

VT, Shock-time,
Shock-frequency,

Freq., Spectral Energy

[111] Lucas-Cuevas, et al. 2016 Indoor Treadmill 60% maximal
aerobic 3 min Rec. 22 (NS) Mean: 28.4; SD: 5.8 VT, Loading Rate,

Shock-time

[112] Lucas-Cuevas, et al. 2017 Indoor Treadmill 3.33 m/s 16 min Rec. 38 (18 F, 20 M) Mean: 29.8; SD: 5.3 VT, Loading Rate,
Shock-time

[113] Macadam, et al. 2019 Indoor Track maximal sprint 160 m Comp. 1 (0 F, 1 M) Exact: 32; NA Seg. Rot., Seg. Rot.
Velocity

[114] Macadam, et al. 2020 NR NR sprint 200 m Comp. 15 (0 F, 15 M) Mean: 21.0; SD: 2.5 Seg. Rot., Seg. Rot.
Velocity

[115] Macadam, et al. 2020 Indoor Treadmill maximal sprint 80 s Non 14 (NS) Mean: 24.9; SD: 4.2 Seg. Rot., Seg. Rot.
Velocity

[116] Macdermid, et al. 2017 Indoor Treadmill 2.61 m/s 9 min Rec. 8 (NS) Mean: 25; SD: 12 Res., Loading Rate
[117] Mangubat, et al. 2018 Indoor Treadmill preferred 90 s Rec. 13 (5 F, 8 M) Mean: 27.1; SD: 5.1 VT

[118] Masci, et al. 2013 Indoor Floor maximal 15 m Non 54 (NS) Mean: 5; SD: 3 VT, AP, ML, Res.,
Stiffness

[119] McGregor, et al. 2009 Indoor Treadmill incremental from
0.56 m/s

run to
exhaustion Comp. 7 (0 F, 7 M) Mean: 21.4; SD: 1.7;

Range: 19–24
VT, AP, ML, Res.,

Entropy
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[120] Mercer and Chona 2015 Indoor Treadmill
100%, 110%, 120%,

and 130% of
preferred

16 min Non 10 (6 F, 4 M) Mean: 21.4; SD: 2.0 VT

[121] Mercer, et al. 2002 Indoor Treadmill
50%, 60%, 70%,
80%, 90%, and

100% of maximal
120 s Non 8 (0 F, 8 M) Mean: 25; SD: 4.6 VT, Shock-frequency

[122] Mercer, et al. 2003 Indoor Treadmill 3.8 m/s 140 s Rec. 10 (0 F, 10 M) Mean: 24; SD: 5.8 Shock-frequency,
Spectral Energy

[123] Mercer, et al. 2010 Indoor Floor preferred 200 m Non 18 (7 F, 11 M) Mean: 10.3; SD: 1 VT, Shock-time

Indoor Treadmill preferred, 0.5 m/s
faster and slower 6 min

[124] Mercer, et al. 2003 Indoor Treadmill 3.1 and 3.8 m/s 40 s Non 10 (0 F, 10 M) Mean: 24; SD: 6 VT, Shock-frequency,
Spectral Energy

[125] Meyer, et al. 2015 Indoor Floor 1.67 and 2.78 m/s 140 m Non 13 (3 F, 10 M) Mean: 10.1; SD: 3.0;
Range: 5–16 VT

[126] Meyer, et al. 2018 Indoor Track 3.5 m/s 900 m Non 36 (18 F, 18 M) Mean: 25.4; SD: 3.5 VT, AP, ML,
Variability-any axis

Indoor Treadmill 3.0 m/s 1 min
Outdoor Grass 3.0 m/s 1 min
Outdoor Pavement 3.0 m/s 1 min

[127] Mitschke, et al. 2017 Indoor Track 2.5 and 3.5 m/s 450 m Rec. 24 (NS) Mean: 24.7; SD: 4.1 Seg. Rot. Velocity

[128] Mitschke, et al. 2017 Indoor Track 3.5 m/s 450 m Rec. 21 (0 F, 21 M) Mean: 28.9; SD: 10.8 VT, Seg. Rot., Seg.
Rot. Velocity

[129] Mitschke, et al. 2018 Indoor Track self-selected 225 m Rec. 21 (0 F, 21 M) Mean: 24.4; SD: 4.2 VT, Seg. Rot.

[130] Montgomery, et al. 2016 Indoor Floor natural jog,
natural run 40 m Non 15 (NS) Mean: 24.2; SD: 3.8 VT, Loading Rate

Indoor Treadmill natural jog,
natural run 1 min

[131] Moran, et al. 2017 Indoor Treadmill 75% of maximum
HR 37 min Rec. 15 (6 F, 9 M) Mean: 20.4; SD: 2.4 VT

[132] Morrow, et al. 2014 Indoor Floor slow, normal, fast ≥504 m Non 11 (8 F, 3 M) Mean: 33.4; SD: 10.5 VT, AP, ML
[133] Neugebauer, et al. 2012 Indoor Floor consistent 540 m Non 35 (20 F, 15 M) Mean: 11.6; SD: 0.7 Res.
[134] Nüesch, et al. 2017 Indoor Treadmill self-selected 6 min Rec. 20 (12 F, 8 M) Mean: 27.4; SD: 8.3 Joint ROM

[135] O’Connor and
Hamill 2002 Indoor Treadmill 3.8 m/s 4 min Non 12 (0 F, 12 M) Mean: 27.6; SD: 5.3 VT
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Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[136] Provot, et al. 2017 Indoor Treadmill
2.22, 2.78, 3.33,
3.89, 4.44, and

5.00 m/s
7 min Non 1 (0 F, 1 M) Exact: 33; NA Res., Spectral Energy

[137] Provot, et al. 2019 Indoor Treadmill

2.22, 2.50, 2.78,
3.06, 3.33, 3.61,
3.89, 4.44, and

5.00 m/s

9 min Rec. 18 (8 F, 10 M) Mean: 31.4; SD: 8.9 Res., Freq., Spectral
Energy, Stiffness

[138] Rabuffetti, et al. 2019 Indoor Treadmill 1.8 and 2.2 m/s 140 s Non 25 (11 F, 14 M) Mean: 26.5; SD: 4.5;
Range: 20–40 Sym. or Reg.

[139] Raper, et al. 2018 Indoor Track slow, medium,
fast 50 m Comp. 10 (6 F, 4 M) Mean: 26.90; SD: 4.03 VT

[140] Reenalda, et al. 2019 Outdoor Track 10 km pace 20 min Rec. 10 (0 F, 10 M) Mean: 31; SD: 5 VT, Shock-time, Joint
ROM

[141] Schütte, et al. 2015 Indoor Treadmill 3.2 km pace run to
exhaustion Rec. 20 (8 F, 12 M) Mean: 21.05; SD: 2.14

VT, AP, ML, Axis
Ratio, Sym. or Reg.,

Entropy

[142] Schütte, et al. 2016 Outdoor Pavement self-selected 180 m Rec. 28 (14 F, 14 M) Mean: 22.62; SD: 3.07
VT, AP, Freq., Axis
Ratio, Sym. or Reg.,

Entropy
Outdoor Track self-selected 180 m
Outdoor Trail self-selected 180 m

[143] Schütte, et al. 2018 Indoor Treadmill incremental from
2.22 or 2.50 m/s

run to
exhaustion Rec. 30 (14 F, 16 M) Mean: 21.75; SD: 1.40

VT, AP, ML, Axis
Ratio, Sym. or Reg.,

Entropy

[144] Setuain, et al. 2017 Indoor Floor maximal sprint 60 m Comp. 1 (0 F, 1 M) Exact: 19; NA VT, AP, Res., COM
Disp., COM ∆v

[145] Setuain, et al. 2018 Indoor Floor maximal sprint 80 m Rec. 16 (8 F, 8 M) Mean: 28.8; SD: 5.35 AP, Res., COM ∆v,
Power

[146] Sheerin, et al. 2018 Indoor Treadmill 2.7, 3.0, 3.3, and
3.7 m/s 8 min Rec. 14 (0 F, 14 M) Mean: 33.6; SD: 11.6 Res.

[147] Sheerin, et al. 2018 Indoor Treadmill 2.7, 3.0, 3.3, and
3.7 m/s 8 min Rec. 85 (20 F, 65 M) Mean: 39.51; SD: 8.92 Res.

[148] Shiang, et al. 2016 Indoor Treadmill 1.94, 2.78, and
3.61 m/s 6 min Non 6 (0 F, 6 M) Mean: 25.4; SD: 1.7 Seg. Rot.

[149] Simoni, et al. 2020 Indoor Treadmill self-selected 1 min Rec. 87 (28 F, 59 M) Mean: 41; SD: 10 VT, AP, ML



Sensors 2022, 22, 1722 14 of 38

Table 2. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[150] Stickford, et al. 2015 Indoor Treadmill 3.88, 4.47, and
5.00 m/s 12 min Comp. 16 (0 F, 16 M) Mean: 22.4; SD: 3 Stiffness, COM Disp.

[151] TenBroek, et al. 2014 Indoor Treadmill 3 m/s 90 min Rec. 10 (0 F, 10 M) NR; Range: 18–55 VT, Shock-frequency

[152] Tenforde, et al. 2020 Indoor Treadmill self-selected 3 min Rec. 169 (74 F, 95
M) Mean: 38.7; SD: 13.1 VT, Res.

[153] Thomas and Derrick 2003 Indoor Treadmill preferred 10 min Comp. 12 (6 F, 6 M) Mean: 20.9; SD: 2.3
VT, Shock-time,

Spectral Energy, Joint
ROM, Joint ω

[154] Tirosh, et al. 2019 Indoor Treadmill 20% above
walking 27 min Non 37 (NS) Mean: 9.2; SD: 1.3 VT

[155] Tirosh, et al. 2017 Indoor Treadmill 20% above
walking 2 min Non 24 (NS) Mean: 8.5; SD: 0.9 VT

[156] Tirosh, et al. 2020 Indoor Treadmill 20% above
walking 2 min Non 32 (15 F, 17 M) Mean: 9.26; SD: 1.18 VT, Shock-time

[157] van Werkhoven,
et al. 2019 Indoor Treadmill comfortable 3 min Non 12 (NS) NR; Range: 18–45 Joint ROM, Joint ω,

Seg. Rot.

[158] Walsh 2021 Indoor Treadmill 100% and 120% of
preferred 12 min Non 18 (9 F, 9 M) Mean: 29; SD: 6.5 Stability, Entropy

[159] Waite, et al. 2021 Outdoor Grass 80% of 1 mile pace 180 m Rec. 13 (5 F, 8 M) Mean: 20.07; SD: 0.95 VT
Outdoor Pavement 80% of 1 mile pace 360 m

[160] Winter, et al. 2016 Indoor Floor self-selected 8.2 km Rec. 10 (4 F, 6 M) Mean: 27.5; SD: 9.5 VT, AP, ML
[161] Wixted, et al. 2010 Outdoor Track race effort 1500 m Comp. 2 (NS) NR VT, AP, ML

[162] Wood and Kipp 2014 Indoor Treadmill comfortable fast
jog 25 min Rec. 9 (6 F, 3 M) Mean: 20; SD: 1.5 VT, AP, Res.

[163] Wundersitz, et al. 2015 Indoor Treadmill 3.3, 5.0, and
5.9 m/s 90 s Non 39 (11 F, 28 M) Mean: 24.2; SD: 2.5 Res.

[164] Zhang, et al. 2019 Indoor Treadmill 90%, 100%, and
110% of preferred 9 min Rec. 13 (3 F, 10 M) Mean: 41.1; SD: 6.9 VT

[165] Zhang, et al. 2016 Indoor Treadmill preferred, 15%
faster and slower 18 min Non 10 (2 F, 8 M) Mean: 23.6; SD: 3.8 VT

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.



Sensors 2022, 22, 1722 15 of 38

Table 3. Study characteristics where the analyzed distance is 200–1000 m.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[166] Aubry, et al. 2018 Indoor Treadmill 3.06–5.00 m/s 6 min Comp. 11 (0 F, 11 M) Mean: 33.4; SD: 6.6 COM Disp., Power
Outdoor Track 3.06–5.00 m/s 12 min Rec. 13 (0 F, 13 M)

[167] Austin, et al. 2018 Indoor Treadmill 85–89% VO2max 8 min Comp. 17 (8 F, 9 M) Mean: 20.6; SD: 2.3 Power

[168] Barrett, et al. 2014 Indoor Treadmill incremental from
1.94 m/s

2 runs to
exhaustion Comp. 44 (NS) Mean: 22; SD: 3 PlayerLoad

[5] Benson, et al. 2020 Indoor Treadmill preferred 5 min Rec. 69 (31 F, 38 M) Mean: 33.7; SD: 11.5 VT, AP, ML, Res.,
Sym. or Reg.

Outdoor Pavement preferred 600 m

[169] De Brabandere, et al. 2018 Indoor Treadmill incremental from
2.5 m/s to 4.58 m/s

run to
exhaustion Rec. 28 (16 F, 12 M) Mean: 21.8; SD: 1.3 VT, AP, ML

[170] Cher, et al. 2017 Indoor Treadmill slow, medium, fast 60 min Non 12 (4 F, 8 M) Mean: 29.4; SD: 6.8 VT, AP, ML, Res.

[171] Clansey, et al. 2016 Indoor Treadmill
95% of onset of

blood lactate
accumulation

40 min Rec. 13 (0 F, 13 M) Mean: 35.1; SD: 10.2 VT, Shock-frequency

[172] Clermont, et al. 2019 Indoor Treadmill preferred 5 min Rec. 41 (16 F, 25 M) Mean: 32.5; SD: 12.7 VT, AP, ML, Res.,
Sym. or Reg.

[173] Clermont, et al. 2020 Indoor Track self-selected 21 min Rec. 17 (10 F, 7 M) Mean: 39.8; SD: 9.6 VT, AP, ML, Res.,
Sym. or Reg.

Outdoor Track not controlled 6 km
[174] Deriaz, et al. 2010 Indoor Treadmill comfortable 15 min Rec. 65 (0 F, 65 M) Mean: 36.0; SD: 6.8 VT

Non 16 (0 F, 16 M)

[175] Enders, et al. 2014 Indoor Treadmill 3.5 m/s 20 min Rec. 12 (0 F, 12 M) Mean: 25.56; SD: 2.88 VT, Shock-frequency,
Freq., Spectral Energy

[176] Garcia-Byrne, et al. 2020 Indoor Floor 2.22 m/s 400 m Comp. 36 (0 F, 36 M) Mean: 25; SD: 3 PlayerLoad

[177] Giandolini, et al. 2016 Outdoor Pavement self-selected 6.5 km Rec. 23 (0 F, 23 M) Mean: 39; SD: 11
VT, ML, Res.,
Shock-time,

Shock-frequency
Outdoor Trail self-selected 6.5 km

[178] Giandolini, et al. 2017 Outdoor Pavement self-selected 6.5 km Rec. 23 (0 F, 23 M) Mean: 39; SD: 11 VT
Outdoor Trail self-selected 6.5 km

[179] Horvais, et al. 2019 Indoor Treadmill 3.9 m/s 14 min Rec. 10 (0 F, 10 M) Mean: 27.3; SD: 5.4 VT, AP, Res., Spectral
Energy

[180] Hughes, et al. 2019 Indoor Treadmill 3.89 and 5.00 m/s 9 min Comp. 16 (NS) Mean: 17.36; SD: 1.25 VT

[181] Koska, et al. 2018 Indoor Treadmill 2.78, 3.33, and
4.17 m/s 9 min Rec. 51 (15 F, 36 M) Mean: 33.9; SD: 8.2 Seg. Rot., Seg. Rot.

Velocity
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Table 3. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[182] Melo, et al. 2020 Indoor Treadmill 10 km pace 20 km Rec. 13 (5 F, 8 M) Mean: 36; SD: 4 COM Disp.
[183] Moltó, et al. 2020 Indoor Treadmill typical 3 min Rec. 38 (16 F, 22 M) Mean: 26.7; SD: 7.7 Seg. Rot.
[184] Morio, et al. 2016 Indoor Treadmill 3.06 m/s 12 min Rec. 8 (0 F, 8 M) Mean: 26; SD: 2 VT, AP, ML

[185] Murray, et al. 2017 Indoor Treadmill

incremental to
reach [La]b

concentration of
4 mmol/L

run to
exhaustion Comp. 6 (0 F, 6 M) Mean: 15.6; SD: 1.2 VT, AP, ML, Entropy

[186] Navalta, et al. 2019 Outdoor Trail self-selected 10 min Non 20 (8 F, 12 M) Mean: 22.2; SD: 5.8 Stiffness, COM Disp.,
Power

[187] Olin and Gutierrez 2013 Indoor Treadmill comfortable 21 min Rec. 18 (12 F, 6 M) Mean: 31.2; SD: 7.9 VT

[188] Perrotin, et al. 2021 Outdoor Pavement not controlled 1 km Rec. 30 (3 F, 27 M) Mean: 36.4; SD: 8 Stiffness, COM Disp.,
Power

[189] Provot, et al. 2016 Indoor Treadmill 3.33 m/s 40 min Rec. 1 (0 F, 1 M) Exact: 22; NA Res., Freq., Spectral
Energy, Stiffness

[190] Reenalda, et al. 2016 Outdoor Pavement not controlled 42.2 km Rec. 3 (0 F, 3 M) Mean: 38.7; SD: 8.2;
Range: 31–50

VT, Joint ROM, COM
Disp.

[191] Seeley, et al. 2020 Indoor Treadmill 2.68, 3.13, and
3.58 m/s 12 min Non 31 (14 F, 17 M) Mean: 23; SD: 3 VT, AP, ML, Res.

[192] Shih, et al. 2014 Indoor Treadmill 70% of maximal 30 min Rec. 15 (NS) Mean: 24.5; SD: 1.7 Joint ROM, Joint ω
[193] Tirosh, et al. 2019 Indoor Floor 20% above walking 1 km Non 10 (NS) Mean: 10.7; SD: 1.27 VT

Outdoor Grass 3.33, 3.89, 4.44, and
5.00 m/s 12 min

Outdoor Pavement 3.33, 3.89, 4.44, and
5.00 m/s 12 min

Outdoor Track 3.33, 3.89, 4.44, and
5.00 m/s 12 min

Outdoor Track 4.78 m/s 6 km

[194] Ueberschar, et al. 2019 Indoor Treadmill incremental from
1.67 m/s

run to
exhaustion Rec. 15 (0 F, 15 M) Mean: 30; SD: 7 VT, Res.

[195] Van den Berghe,
et al. 2021 Indoor Track 3.2 m/s 20 min Rec. 10 (NS) Mean: 33; SD: 9;

Range: 24–49 VT

[196] van der Bie and
Krose 2015 Indoor Treadmill ventilatory

threshold
run to

exhaustion Non 18 (14 F, 4 M) Mean: 23; SD: 3
VT, AP, ML,

Variability-any axis,
Entropy
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Table 3. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[9] Watari, et al. 2016 Indoor Treadmill 2.7, 3.0, 3.3, 3.6,
and 3.9 m/s 5 min Rec. 22 (8 F, 14 M) Mean: 28.2; SD: 10.1 COM Disp.

[197] Weich, et al. 2019 Indoor Track 95% anaerobic
threshold 5000 m Rec. 25 (NS) Mean: 26.64; SD: 6.86 VT, AP, ML

Non 9 (NS)

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.

Table 4. Study characteristics where the analyzed distance is >1000 m over a single run.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[198] Bigelow, et al. 2013 Indoor Track self-selected 4 miles Rec. 12 (NS) Mean: 32.8; SD: 9.8 VT, ML
Indoor Treadmill self-selected 4 miles

[199] Brahms, et al. 2020 Indoor Track 5 km pace run to exhaustion Comp. 16 (NS) Mean: 24; SD: 3.9 Res.
Rec. 16 (NS)

Indoor Treadmill incremental
from 2.5 m/s run to exhaustion

Outdoor Track 2.78 m/s 9 min

Outdoor Track incremental
from 2.5 m/s run to exhaustion

[200] Clermont, et al. 2019 Outdoor Not Controlled not
controlled 42.2 km Rec. 27 (15 F, 12 M) Mean: 45.1; SD: 11.5

Joint ROM, Seg.
Rot., COM Disp.,

COM ∆v

[201] DeJong and Hertel 2020 Outdoor Pavement not
controlled 6–21.1 km Comp. 5 (4 F, 1 M) Mean: 30.2; SD: 3.3 VT, AP, Joint ω

Outdoor Trail not
controlled 5 km

[202] Giandolini, et al. 2015 Outdoor Trail not
controlled 45 km Comp. 1 (0 F, 1 M) Exact: 26; NA VT, AP, Res., Freq.
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Table 4. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[203] Gómez-Carmona,
et al. 2020 Indoor Treadmill

incremental
from

2.22 m/s
run to exhaustion Rec. 20 (0 F, 20 M) Mean: 27.32; SD:

6.65 PlayerLoad

Outdoor Track
incremental

from
2.22 m/s

run to exhaustion

[204] Hoenig, et al. 2019 NR Track maximal 5000 m Rec. 30 (0 F, 30 M) Mean: 27; SD: 6.0 Stability

[205] Provot, et al. 2019 Indoor Treadmill 3.75 m/s run to exhaustion Rec. 10 (5 F, 5 M) Mean: 38.0; SD: 11.6
VT, AP, ML, Res.,

Freq., Spectral
Energy, Stiffness

[206] Rojas-Valverde, et al. 2019 Outdoor Trail not
controlled 35.27 km Rec. 20 (0 F, 20 M) Mean: 38.95; SD:

9.99
Res., Entropy,
PlayerLoad

[207] Rojas-Valverde, et al. 2020 Outdoor Not Controlled not
controlled 36 km Rec. 18 (NS) Mean: 38.78; SD:

10.38 Res.

[208] Schütte, et al. 2018 Outdoor Track 3.2 km pace 3200 m Rec. 16 (6 F, 10 M) Mean: 20.23; SD:
0.78

VT,
Shock-frequency,
Spectral Energy,

Axis Ratio, Sym. or
Reg., Entropy

Rec. 14 (6 F, 8 M)
[209] Ueberschar, et al. 2019 Outdoor Trail 3.17 m/s 10 km Non 10 (NS) Mean: 10.7; SD: 1.27 VT

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.

Table 5. Study characteristics where the analyzed distance is >1000 m over multiple runs.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[210] Ahamed, et al. 2019 Outdoor Not
Controlled not controlled 29 km Rec. 11 (10 F, 1 M) Mean: 44.1; SD: 9.1 Joint ROM, Seg. Rot., COM

Disp., COM ∆v

[211] Ahamed, et al. 2018 Outdoor Pavement not controlled ≥24 km Rec. 6 (5 F, 1 M) Mean: 44.4; NR Seg. Rot., COM Disp.,
COM ∆v
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Table 5. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[212] Ahamed, et al. 2019 Outdoor Not
Controlled not controlled 7 runs Rec. 35 (25 F, 10 M) Mean: 49.7; SD: 9.6 Joint ROM, Seg. Rot., COM

Disp., COM ∆v

[213] Benson, et al. 2019 Outdoor Not
Controlled not controlled 10 runs Rec. 12 (9 F, 3 M) Mean: 48.5; SD: 12.0 Joint ROM, Seg. Rot., COM

Disp., COM ∆v
[214] Carton-Llorente, et al. 2021 Indoor Treadmill submaximal 120 min Rec. 22 (0 F, 22 M) Mean: 34; SD: 7.5 Power

[215] Cerezuela-Espejo,
et al. 2020 Indoor Treadmill 2.78 m/s 24 min Rec. 12 (0 F, 12 M) Mean: 25.7; SD: 7.9 Power

[216] Colapietro, et al. 2020 Outdoor Track slow, fast 3200 m Rec. 18 (10 F, 8 M) Mean: 22.7; SD: 4.7 VT, AP, Joint ROM, Joint ω
[217] Gregory, et al. 2019 Outdoor Track hard 1600 m Non 12 (6 F, 6 M) Mean: 22.0; SD: 1.9 VT, AP, Joint ROM, Joint ω
[218] Hollander, et al. 2021 Indoor Treadmill 70% VO2max 105 min Non 41 (20 F, 21 M) Mean: 25.2; SD: 3.1 Stability

[219] Hollis, et al. 2019 Outdoor Grass moderate,
hard 3200 m Rec. 15 (8 F, 7 M) Mean: 20; SD: 3.1 VT, AP, Joint ROM, Joint ω

Outdoor Track moderate,
hard 3200 m

[220] Kiernan, et al. 2018 Outdoor Not
Controlled not controlled

60 day
training
period

Comp. 9 (0 F, 9 M) Mean: 18.7; SD: 1.0 VT

[221] Koldenhoven, et al. 2020 Outdoor Not
Controlled not controlled 3 runs Rec. 16 (8 F, 8 M) Mean: 23.5; SD: 5 AP, Res., Seg. Rot., Seg. Rot.

Velocity

[116] Macdermid, et al. 2017 Indoor Treadmill 2.83 m/s 30 min Comp. 6 (NS) Mean: 29.8; SD: 13.0 Loading Rate, Shock-time,
COM Disp.

[222] McGregor, et al. 2009 Indoor Treadmill incremental
from 0.56 m/s

2 runs to
exhaustion Comp. 7 (0 F, 7 M) Mean: 26.5; SD: 5.7 VT, AP, ML, Res.

Non 7 (NS)
[223] Nüesch, et al. 2019 Indoor Treadmill self-selected 15 min Rec. 19 (11 F, 8 M) Mean: 27.7; SD: 8.6 Joint ROM
[224] Olcina, et al. 2019 NR Track maximal 24 min Comp. 10 (2 F, 8 M) Mean: 25.7; SD: 8.9 COM Disp.

Outdoor Trail not controlled 4.1 km
[225] Rochat, et al. 2019 Outdoor Trail not controlled 15 km Rec. 9 (0 F, 9 M) Mean: 37.8; SD: 7 VT, COM Disp.

[226] Ruder, et al. 2019 Outdoor Pavement not controlled 42.2 km Rec. 222 (103 F, 119
M) Mean: 44.1; SD: 10.8 VT

[227] Ryan, et al. 2021 Outdoor Not
Controlled not controlled 10–12 runs Rec. 12 (0 F, 12 M) NR; Range: 14–18 Res.

[228] Strohrmann, et al. 2012 Indoor Treadmill 85% of
maximal 45 min Rec. 21 (NS) NR Res., Joint ω, Seg. Rot.,

COM Disp.

Outdoor Track 85% of
maximal 45 min
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Table 5. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[209] Ueberschar, et al. 2019 Outdoor Pavement 3.64 and 6.67
m/s 10.7 km Comp. 2 (0 F, 2 M) Mean: 17.6; SD: 1.13 VT

[229] Van den Berghe, et al. 2020 Indoor Track 3.2 m/s 24.5 min Rec. 10 (5 F, 5 M) Mean: 33; SD: 9 VT

[230] Vanwanseele, et al. 2020 Indoor Treadmill 2.22, 3.33, and
4.44 m/s 3 min Rec. 68 (NS) Mean: 29.5; SD: 8.1 VT, AP, ML

Outdoor Not
Controlled not controlled

3 month
training
period

[231] Willis, et al. 2019 Indoor Treadmill 2.50, 2.78, 3.61,
and 4.17 m/s 10 min Comp. 12 (NS) Mean: 33.6; SD: 4.3 Stiffness

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.

Table 6. Study characteristics where the analyzed distance is not reported.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[232] Bielik 2019 Outdoor Track 2.78, 3.33, and
4.17 m/s 15 min Rec. 73 (24 F, 49 M) Mean: 29.2; SD:

4.1 COM Disp.

Outdoor Treadmill incremental
from 0.28 m/s

run to
exhaustion

[233] Bielik and
Clementis 2017 Indoor Treadmill incremental

from 2.22 m/s
run to

exhaustion Comp. 30 (NS) NR COM Disp.

Rec. 24 (NS)

[234] Butler, et al. 2007 Indoor Treadmill self-selected 2 runs Rec. 24 (NS) Mean: 21.4; SD:
3.1 VT

[235] Cooper, et al. 2009 Indoor Treadmill
incremental

from 0.45 m/s
to 2.24 m/s

5 min Non 7 (2 F, 5 M) Mean: 30; SD: 6 Joint ROM
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Table 6. Cont.

Ref. Author Year Location Surface Speed Distance/
Duration Type Number (Sex) Overall Age Metric(s)

[236] de Fontenay,
et al. 2020 Indoor Treadmill self-selected NR Non 32 (13 F, 19 M) Mean: 27.0; SD:

5.5

AP, Loading Rate,
Joint ROM, COM

Disp.

[237] Dufek, et al. 2008 Indoor Treadmill self-selected 90 s Rec. 31 (31 F, 0 M) Mean: 26.7; SD:
3.8 VT, Shock-time

[238] Garrett, et al. 2019 NR NR 6.25 m/s 450 m Comp. 23 (0 F, 23 M) Mean: 22.4; SD:
3.6 PlayerLoad

[239] Gurchiek, et al. 2017 Indoor Floor sprint NR Non 15 (3 F, 12 M) Mean: 23.2; SD:
2.11 Seg. Rot.

[240] Sheerin, et al. 2020 Indoor Treadmill comfortable NR Rec. 18 (7 F, 11 M) Mean: 35.2; SD:
9.6 Res.

Outdoor Track comfortable 800 m

[241] Ueberschar,
et al. 2019 Indoor Treadmill incremental run to

exhaustion Comp. 53 (18 F, 35 M) Mean: 20.07; SD:
3.65 VT, Shock-time

[242] Zadeh, et al. 2020 Outdoor Not
Controlled not controlled

36 physical
training
sessions

Non 55 (16 F, 39 M) Mean: 20.8; SD:
3.32

VT, Res., Loading
Rate

Note: NR = not reported; Pavement = pavement or sidewalk; Floor = floor or platform; Rec. = recreational; Comp. = competitive; Non = non-runners; Disp. = displacement; ∆v = change
in velocity; Sym. or Reg. = symmetry or regularity; Res. = resultant magnitude; VT = vertical/axial magnitude; AP = anterior–posterior magnitude; ML = medial–lateral magnitude; Seg.
Rot. = segment rotation; Shock—time = shock attenuation—time domain; Shock—frequency = shock attenuation—frequency domain; Joint ROM = joint angles or range of motion; Joint
ω = joint angular velocity; Freq. = frequency content.
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3.2.1. Conditions

Across the 231 included studies, running gait was analyzed in 286 different conditions;
however, for 24 conditions, the analyzed distance, speed and/or location could not be
classified due to lack of information. The 262 running conditions that could be classified
consisted of 27 unique combinations of the specified categories for analyzed distance (one
step or stride, <200 m, 200–1000 m, >1000 m single trial, >1000 m multiple trials), speed
(exact, calculated, subjective, not controlled) and location (indoor, outdoor) (Figure 2).
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Figure 2. All conditions (262 across 231 studies) are grouped according to the analyzed distance,
speed, and location. The condition groups are ranked from most controlled (red, on the left) to least
controlled (green, on the right), and the width of each line corresponds to the percent of all conditions
within that group. The degree of control is based on the analyzed distance (one step/stride is more
controlled than >1000 m), speed (exact is more controlled than not controlled), and location (indoor is
more controlled than outdoor). The percent of all conditions for each category of analyzed distance
(shades of blue), speed (shades of purple), and location (shades of grey) is reported. In the bottom
panel, the percent of all conditions within each group are further separated by year the study was
published, with larger circles corresponding to a greater percent of all conditions. Note: 24 conditions
that could not be categorized due to lack of information are not included in this figure.
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The most common running condition was indoors at an exact speed with <200 m
analyzed, accounting for 21% of all 262 conditions. Indoor running at a subjective speed
with <200 m analyzed was the second most common condition at 20%. Indoor running
at an exact or subjective speed with one step or stride analyzed accounted for 12% of all
conditions. Overall, 72% of all conditions were indoors; and in 67% of all conditions, the
analyzed distance was one step or stride or <200 m. Most of those studies were published
between 2015 and 2021.

Studies with less controlled running conditions were primarily published after 2018.
A total of 17% of all conditions included runs of >1000 m in a single or multiple trials,
and speed was not controlled in races or training runs for 8% of all conditions. The
least controlled condition—outdoor running with speed not controlled for multiple trials
> 1000 m—accounted for 4% of all conditions.

The running conditions were grouped by surface and location (Figure 3). Overall, 49%
of all conditions were indoors on a treadmill, and an additional 16% were indoors on a
floor or platform. Outdoor pavement or sidewalk, trail, grass, and not controlled running
surfaces combined for 19% of all conditions.
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(indoor, outdoor).

3.2.2. Device(s)

There were 365 combinations of devices with specific sensor/axis composition and
device locations on the body (Figure 4). The most common combination was a triaxial
accelerometer on the shank (18% of all combinations) followed by a triaxial accelerometer
on the lower back (13%). Across all sensors with any number of axes, the top three device
locations were the shank, lower back and foot, accounting for 35%, 22% and 16% of all
combinations, respectively. Across any number of axes, 70% of all combinations used an
accelerometer only, and 22% of all combinations used all three sensors. A gyroscope was
the only sensor for 1% of all combinations and was placed on the foot or shank.

Some studies used multiple devices, bringing the total number of devices to 251. Most
devices (82%) were of research-grade. The remaining 18% of devices are commercially
available and designed for public use and include adidas Run Genie, Catapult, DorsaVi,
Garmin, Google Nexus, Lumo Run, Milestone Pod, Polar, RunScribe, Runteq Zoi, Stryd,
and Zephyr BioHarness. These devices were commonly worn on the shoe or lower or
upper back.
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ACC = accelerometer, GYRO = gyroscope, and MAG = magnetometer.
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3.2.3. Analysis

The reported metrics across all studies are shown in Figure 5. The most common
metric was accelerometer magnitude, with vertical/axial, anterior–posterior, medial–lateral
and resultant magnitude reported in 64%, 23%, 18% and 26% of all studies, respectively.
(Note: studies often reported multiple metrics, and therefore the sum of the percentages
is greater than 100%.) The acceleration quantity was also reported in metrics such as
loading rate, PlayerLoad, power and stiffness, with loading rate being the most common
(9% of all studies). Shock attenuation was reported in 7% of all studies using time domain
calculations and in 8% of all studies using frequency domain calculations. Signal frequency
content was reported in 7% of all studies and the spectral power or energy was reported in
9% of all studies. Signal consistency, represented by metrics such as variability, symmetry
or regularity, entropy, and stability, was reported in 5% or less of all studies, each. Segment
(including center of mass) or joint kinematics were reported in up to 12% of studies, with
measures of displacement more common than measures of velocity.

In terms of a statistical approach, 91% of all studies used inferential statistics, 2%
used machine learning, and 7% presented results descriptively. The most common metrics
reported in studies that used a machine learning statistical approach were vertical/axial
magnitude, anterior–posterior magnitude, and joint angles or range of motion.

3.2.4. Participants

Half of the studies included male and female participants, 35% included males only,
3% included females only, and the sex of participants was not specified in 12% of all studies.
Participants were uninjured in 99% of all studies. The mean participant age within a study
ranged from 5 to 59 years, with an average of 27 years across all studies.

Recreational runners, non-runners and competitive runners were participants in 56%,
30% and 17% of all studies, respectively. (Note: some studies included multiple participant
types, and therefore the sum of the percentages is greater than 100%.) The average number
of participants reported for each participant type and sex is shown in Figure 6. With
an average of 25 participants per study, recreational runners had the greatest number of
participants per study, followed by non-runners (n = 20) then competitive runners (n = 14).
This pattern was consistent when separated by males and females, and the average number
of male recreational and competitive runners was greater than the average number of
females in each group.
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3.2.5. Study Details

Studies were conducted in 27 different countries. The USA had the most studies (29%),
followed by Canada at 9%. In total, 39% of studies were conducted in 11 European countries.

One-quarter of the studies had interventions: 24% were quasi-experimental and 1%
were randomized controlled trials. Two-thirds of the interventions (17% of all studies)
were equipment-based and one-third (9% of all studies) involved training interventions.
The remaining 75% of studies were observational, and 95% of observational studies (71%
of all studies) used a cross-sectional study design. Prospective and retrospective cohorts
accounted for 2% and <1% of studies, respectively, and 2% of studies were case studies or
case control. The most common purpose (22% of studies) was to determine the validity or
reliability of metrics, and 16% of studies compared metrics. In 20% of studies, the purpose
was to identify changes in conditions not related to fatigue or different sessions. Differences
in gait due to group membership, fatigue and sessions were reported in 13%, 12% and 2%
of studies, respectively. Associations of gait metrics with performance and injury were
reported for less than 2% of studies, each. (Note: some studies had multiple purposes, and
therefore the sum of the percentages is greater than 100%).

3.3. Quality Assessment

There was an adequate amount of information provided for the conditions (92%
of studies), devices (91%), analysis (93%), participants (83%) and study details (100%).
Additionally, the relevance to running and IMUs was deemed appropriate for the conditions
(99% of studies), devices (100%), analysis (100%), participants (98%) and study details (99%).

4. Discussion

The primary purpose of this review was to systematically identify how IMUs are used
to record running biomechanics across real-world settings and describe the conditions
in which IMU data were collected. Identifying the characteristics of IMU-based running
biomechanical studies serves to mark the progress made and the steps that remain for
analyzing running gait in real-world settings.

4.1. Running Environments

Laboratory-based conditions are controlled and are often different from typical run-
ning conditions, as most runners complete their runs outdoors [243]. Additionally, loads
vary with each stride and a runner’s load capacity changes throughout a running ses-
sion [244], suggesting that assigning the same estimated load to each stride is not a suitable
approximation for the cumulative load in a running session. Therefore, it is important
to monitor running in actual real-world conditions, including over long distances. Yet,
despite the portability of IMUs [6,7], one of the main findings of this review is that running
biomechanics are mainly recorded with IMUs indoors, on a treadmill, at prescribed speeds,
and over small distances. Furthermore, the majority of studies that investigated running
in artificial environments have been published recently; there has not been a trend away
from laboratory-based conditions over time. It is unclear why researchers are using IMUs
to record running, but still have participants running in the laboratory, at controlled speeds,
on treadmills and/or over short distances. If the purpose of these devices is to capture
real-world running, we suggest that the research in this area should move out of the lab to
less controlled environments.

Several of the included studies compared running quality between surfaces, and the
findings underscore the need to observe runners in their actual running environment. More
unstable surfaces lead to less regularity and greater variability during running [5,142], and
the variance in outdoor data cannot be explained by indoor measures [31,95]. Moreover,
it is likely that not all metrics differ between the running conditions [245]. For example,
there was no difference in running power on a track compared to a treadmill [166]. Among
the four studies that compared tibial acceleration between treadmill and outdoor running,
the acceleration magnitude was either lower [241], greater [31,95], or not different [84,241]
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in outdoor conditions compared to on the treadmill, but in only one case did the outdoor
conditions represent an uncontrolled running environment [95]. We suggest that rather than
estimating what it is like to run outdoors, it would be helpful to use IMUs during actual
training runs, over longer distances and on surfaces that represent real-world running.

To our point, starting from 2015, some studies have followed athletes for uncontrolled
training runs or races [188,200–202,206,207,210–213,220,221,225–227,230]. A myriad of ex-
ternal factors, such as weather, traffic, and surface conditions, could influence how someone
runs and therefore, it is crucial to capture running patterns in the same settings that runners
actually run. Additionally, just as multiple trials are often used in a laboratory setting,
multiple runs are needed to establish running patterns in uncontrolled settings [213].

4.2. IMU Considerations

The ability to collect accurate and useful metrics from IMUs depends on the desired
metrics, the sensor specifications, device placement, running styles, and user capabilities [4].
IMUs intended for long term monitoring need to be user-friendly. The commercial devices
in the included studies were worn on the foot or upper or lower back. In contrast, the most
common position for devices among all included studies was on the shank, where tibial
acceleration in one or multiple axes was recorded. Tibial accelerations have been used in
the context of stress fractures as well as to gauge impact forces at the shank and how they
are distributed along the kinetic chain [32]. While devices designed for consumer use have
not been developed for placement on the shank, a research-grade device was used to record
tibial accelerations of nearly 200 runners during a marathon [95]. Future investigations of
impact forces in actual running conditions should consider devices and placement that can
be easily applied during long-term monitoring.

The metrics reported from accelerometer sensors, such as the magnitude of accel-
eration, loading rate and shock attenuation, are similar to metrics obtained from force
plates. When the gyroscope and/or magnetometer sensors in an IMU are used, the re-
ported metrics provide information on the kinematics, including segment and joint ro-
tations [28,48,51,53,55,76,102,106,113–115,127–129,134,140,144,145,148,157,181,183,186,188,
190,192,200,201,210–213,216,217,219,221,228,235]. While it is typical for IMUs to contain
multiple sensors, most included studies only used an accelerometer sensor, limiting the
reported metrics to those that resemble force plate metrics.

Many of the included studies were conducted in indoor settings because the purpose
of the study was to evaluate the validity and reliability of IMU-based metrics compared
to metrics from force plates or motion capture systems. Assessing strength of the validity
and reliability was not within the scope of this review; however, devices that demonstrate
adequate validity and reliability can be used in the field. Additionally, while metrics
reported from an IMU are often chosen to be similar to metrics from force plates and
motion capture systems, it is possible to report metrics specific to IMU signals (e.g., entropy,
regularity, and symmetry) that monitor movement quality [246].

4.3. Changing Running Biomechanics

It is expected that equipment or training interventions that lead to changes in running
biomechanics are needed to change injury rates. However, there is limited or conflicting
evidence on the relationship between modifications of running biomechanics and running
injuries [6,72,73]. It is also possible that lack of clarity on running injury risk factors is
related to evaluation of biomechanical metrics in a laboratory setting before and after an
intervention or injury observation, and not in the runner’s natural environment [2].

Short-term changes, observed within a laboratory session, may show how training
or equipment interventions can change running patterns [72,151]. Some studies use an
intervention that is more long term to allow for adaptation and assess movement patterns
at baseline and follow up to observe changes [20,154]. If biomechanics are only recorded in
a single session, or at baseline and follow up, it is possible to use laboratory equipment
(e.g., force plates and motion capture), but this does not reflect how runners run during
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real-world conditions. The benefit of IMUs is that movement patterns can be measured
during the intervention period in actual running settings to monitor changes over time. Yet
just two of the intervention studies from this review analyzed metrics from IMUs during
an intervention (i.e., not just pre- and post-intervention) that was greater than one session,
plus the intervention runs were conducted on a treadmill in both studies [154,218].

IMUs can also be used to observe changes in running patterns throughout a single run.
In studies investigating changes in running biomechanics due to fatigue, it is common to
have participants run to the point of exhaustion. Reaching a state of exhaustion as defined
in a study may occur in some training runs or races, but it is likely not a typical running
strategy for all runners. Thus, it is important to look at how running patterns change
during actual training runs. More prospective or retrospective studies are also needed that
look at how running patterns change over time, especially when those changes precede an
injury [4,8]. Only five of the included studies included injured runners [24,144,152,208,221].
Due to pain, running in an injured state is likely not representative of running prior to
injury. While some included studies involved runners that were previously injured and
others looked at runners that were eventually injured, the data on the running patterns
were only observed at a point when the runners were not injured. Regardless, IMUs can
facilitate continuous monitoring that will allow for observation of changes in running
patterns that lead to injury.

4.4. Participant Characteristics

Over 75% of runners use wearables, and most runners use wearable technology to
monitor spatiotemporal parameters, such as distance or speed [247–249]. Competitive
runners are more likely to use wearables to monitor running form or biomechanics than
recreational runners [249]. Even if runners are not personally using IMUs that monitor their
biomechanics, based on the results of survey studies, runners have a large appetite for using
and consuming data from wearable technology [247,249]. Yet the number of participants in
the included studies is low. Considering the popularity of running and runners’ attitudes
towards wearable technology, investigations of real-world running biomechanics should
be able to recruit large numbers of participants. A bigger pool of participants will enable
better comparisons across participant types and consider sex differences as injury rates
differ between sexes [250]. Based on race participation statistics, there are more female
than male runners [251]. However, consistent with previous findings that show females are
underrepresented in sport and exercise medicine research [252], we found that the running
and IMU literature is also heavily focused on male runners, with only 3% of studies being
female specific.

4.5. Limitations

There are some limitations to this review, based on the exclusion criteria. First, the
only type of wearable technology considered was IMUs. Limiting the search to only
IMUs excluded studies that only utilized GPS devices, which are very common among
runners [249]. Additional types of wearable technology that were not included in this
review are heart rate monitors, mobile phone apps that did not utilize the phone’s IMU
sensors, and pressure-sensing insoles. Second, studies were excluded if they only reported
spatiotemporal metrics. IMUs can be used to derive valid and reliable spatiotemporal stride
parameters that capture running quantity [253]; however, load magnitude and distribution
are also needed on a per stride basis to evaluate injury risk [244]. Finally, we excluded
studies that focused on the development of new technology or methods, which eliminated
some studies that reported novel machine learning algorithms. Whilst wearable technology
is a growing field, future advancements will hopefully improve our ability to monitor
real-world running.

There was no meta-analysis or formal quality assessment of each study as these are
not expected for a scoping review. Based on our subjective evaluation, nearly all studies
were appropriate to the topic of running and IMUs and contained adequate information for
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inclusion in this scoping review. Most likely, a more rigorous evaluation of study quality
would have revealed overall weak levels of evidence across this field of study. We leave it
to future systematic reviews and meta-analyses of specific outcomes and populations to
use objective protocols for evaluating study quality.

5. Conclusions

Despite the portability of IMUs, one of the main findings of this review is that running
biomechanics are mainly recorded with IMUs indoors, on a treadmill, at prescribed speeds,
and over small distances. While it is challenging to collect data in real-world conditions
due to the myriad of extrinsic factors such as weather, traffic, and surface conditions, our
results indicate the vast majority of studies do not capture running biomechanical data in
the same settings that runners actually run. Moreover, while it is typical for IMUs to contain
multiple sensors, most included studies only used data derived from the accelerometer
sensor and most studies involved placement of the IMU at the shank. Finally, the number
of participants in the included studies is low and our findings show that research is still
heavily focused on male runners, with only 3% of studies being female specific. Overall,
considering that the purpose of IMU devices is to capture real-world running, we suggest
that future research in this area should move out of the lab to less controlled and more
real-world environments.
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