Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes*

Devin G. Pope
The Wharton School
University of Pennsylvania

Maurice E. Schweitzer
The Wharton School
University of Pennsylvania

This Draft: June, 2009

Abstract

Although experimental studies have documented systematic decision errors, many leading scholars believe that experience, competition, and large stakes will reliably extinguish biases. We test for the presence of a fundamental bias, loss aversion, in a high-stakes context: professional golfers' performance on the PGA TOUR. Golf provides a natural setting to test for loss aversion because golfers are rewarded for the total number of strokes they take during a tournament, yet each individual hole has a salient reference point, par. We analyze over 1.6 million putts using precise laser measurements and find evidence that even the best golfers - including Tiger Woods - show evidence of loss aversion. On average, this bias costs the best golfers over $\$ 1.2$ million in tournament winnings per year.

[^0]A substantial literature has identified systematic ways in which individuals violate standard economic assumptions (see Camerer, Loewenstein and Rabin, 2003). This literature includes both laboratory and field studies (for reviews, see Camerer, 1998; Camerer, Loewenstein and Rabin, 2003; DellaVigna, 2008).

In spite of the extant literature documenting behavioral biases, many scholars remain skeptical of the claim that biases persist in markets (e.g., List, 2003; Levitt and List, 2008; Hart, 2005). Critics of the decision bias literature believe that biases are likely to be extinguished by competition, large stakes, and experience. For example, in a study of sports card and memorabilia traders, List (2003) found that experienced agents did not exhibit the reference-dependent preferences that inexperienced agents did. Drawing on these findings, List (2003) argues that experience can extinguish bias.

Levitt and List (2008) summarize their concern with the bias literature: "Perhaps the greatest challenge facing behavioral economics is demonstrating its applicability in the real world. In nearly every instance, the strongest empirical evidence in favor of behavioral anomalies emerges from the lab. Yet, there are many reasons to suspect that these laboratory findings might fail to generalize to real markets."

In this paper, we examine field evidence of loss aversion, a fundamental bias and a key component of Prospect Theory (Kahneman and Tversky, 1979). We consider a market with high stakes and experienced agents: The PGA TOUR. The PGA TOUR brings professional golfers together to play in a series of tournaments each year. In each tournament, golfers attempt to minimize the total number of shots they take across 72 holes. We focus our attention on putts, the final shots players take to complete a hole. We compare putts golfers attempted for par (the typical number of shots professional golfers take to complete a hole) to putts golfers attempted for scores different form par, such as birdie (one shot less than par). Our sample includes 1,613,234 putts with laser measurements of initial and final ball placement (x, y, z coordinates). This is an ideal setting to test for loss aversion. Though golfers should only care about their overall tournament score, when golfers attempt putts they may be influenced by the salient, but normatively irrelevant, reference point of par.

In contrast to the normative account, we find that golfers are significantly influenced by the reference point of par. When golfers are "under par" (e.g., shoot a "birdie" putt that would earn them a score one stroke under par or shoot an "eagle" putt that would earn them a score two strokes under par) they are significantly less accurate than when they attempt otherwise similar putts for par or are "over par" (e.g., shoot a "bogie" putt that would earn them a score one stroke over par or shoot a "double bogie" putt that would earn them a score two strokes over par). Though we analyze each of these types of putts, most of the putts in our data involve birdie and par putts, and we summarize our results with respect to these putts. For example, on average, golfers make their birdie putts 2-3 percentage points less often than they make comparable par putts. This finding is consistent with loss aversion; players invest more focus when putting for par to avoid encoding a loss.

We consider and rule out several competing explanations for this finding. First, prior to hitting a par putt, players may have learned something about the green (by having already attempted a birdie putt). Second, birdie putts may start from a more precarious position on the green than par putts due to a longer approach shot. Third, player or tournament-specific differences may bias our results. Using detailed data, we are able to rule out competing explanations with control methods and matching estimators. For example, we can match par and birdie putts attempted within 1 inch of each other on the exact same hole in the same tournament. We are also able to rule out other psychological explanations. For example, we consider whether or not players become more nervous or overconfident when they shoot birdie putts relative to par putts.

Our finding, that golfers are less accurate when attempting birdie putts than par putts, is moderated by tournament round. The accuracy gap between par and birdie putts is largest in the $1^{\text {st }}$ round of the tournament (first 18 holes) and is less than half as large in the $4^{\text {th }}$ round of the tournament (last 18 holes). This finding demonstrates that the accuracy gap between par and birdie putts is neither automatic nor immutable. Consistent with our loss aversion account, early in the tournament, the reference point of par is
likely to be very salient; later in the tournament, alternative reference points, such as the scores of competitors, are likely to become salient.

We also find evidence to support an additional prediction of Prospect Theory: a risk shift. Prospect Theory predicts that economic agents will be more risk averse in the gain domain than they are in the loss domain. If professional golfers use par as a reference point, they should be more cautious when putting for birdie (in the gain domain for a specific hole) than when putting for par. Specifically, conditional on missing a putt, we find that golfers hit birdie putts less hard than they hit par putts and are more likely to leave birdie putts short of the hole than par putts. In graphical analysis, we demonstrate that players sacrifice success when putting for birdie to avoid difficult follow-up putts. This pattern of results is consistent with Prospect Theory and decreases expected profits.

Recent theoretical work has conceptualized expectations as reference points (Koszegi and Rabin, 2006). Little prior work, however, has directly tested this theory (see Crawford and Meng (2008) for an exception). In our data, we test for endogenous reference points by considering performance on holes in which players should expect to score either higher or lower than par. Our findings provide evidence consistent with Koszegi and Rabin's (2006) prediction and suggest that expectations influence reference point adoption.

In short, our findings demonstrate that loss aversion persists in a market setting with intense competition, large stakes, and very experienced agents. Although the very best golfers are slightly less biased than their peers, even the best golfers-including Tiger Woods-exhibit loss aversion. This is a costly mistake. If any one of the top 20 golfers in 2008 was able to overcome this bias, his expected annual tournament earnings would have increased by $\$ 1.2$ million dollars (a 22% increase).

We organize the paper in the following way: In Section 1, we provide background information about loss aversion and professional golf. In Section 2, we develop a conceptual framework to understand how loss aversion influences golf performance. In Section 3, we describe the data and present our empirical
strategy. We report our results and rule-out competing explanations in Section 4, and we conclude with a discussion of our findings and their broader implications in Section 5.

1. Background on Loss Aversion and Golf

1.1 Prospect Theory and Loss Aversion.

Rather than make consistent decisions over final wealth states, Kahneman and Tversky (1979) postulate that economic agents evaluate decisions in isolation with respect to a salient reference point. In Prospect Theory, Kahneman and Tversky (1979) propose a reference-dependent theory of choice in which economic agents value gains differently than they value losses in two key ways. First, economic agents value losses more than they value commensurate gains (loss aversion); the "value function" is kinked at the reference point with a steeper gradient for losses than for gains. Second, economic agents are risk seeking in losses and risk averse in gains (risk shift); the utility function is convex in the loss domain and concave in the gain domain.

This model of reference dependent preferences has profound implications. If individuals segregate related decisions, they may choose different outcomes. For example, loss aversion and the risk shift may cause an individual to reject a series of small gambles with positive expected return, but accept the aggregated gamble. Bernartzi and Thaler (1995) studied this problem in the domain of retirement saving. Bernartzi and Thaler (1995) found that people who evaluated their portfolios frequently (and made a series of related decisions) made different hypothetical choices than did people who evaluated their portfolio infrequently. Read, Lowenstein, and Rabin (1999) studied the issue of segregating decisions explicitly and coined the term "narrow bracketing" to describe how individuals segregate or bracket related decisions.

Loss aversion has been documented in many laboratory settings (e.g., Thaler, Tversky, Kahneman, and Schwartz, 1997; Gneezy and Potters, 1997) and in several field settings (see Genesove and Mayer, 2001; Camerer, Babcock, Lowenstein, and Thaler, 1997; Fehr and Goette, 2007; Odean, 1998, and Mas, 2008).

Some scholars, however, have found evidence to suggest that experience and large stakes may eliminate decision errors (List, 2003, 2004).

Our paper makes an important contribution to the literature by documenting loss aversion in a competitive field setting, with large stakes, and very experienced agents. Our paper is also relatively unique in that we have an unusually large amount of statistical power and a well-defined reference point. In addition, we are able to directly test for evidence of small-scale risk aversion and whether or not reference points change based upon expectations (Koszegi and Rabin, 2006).

1.2 Professional Golf

We analyze decisions made by professional golfers playing in the PGA TOUR. ${ }^{1}$ The PGA TOUR is a collection of tournaments (40-50 each year) in which professional golfers (approximately 150 per tournament) compete. In each tournament, golfers play 18 holes of golf on each of four consecutive days (four "rounds"). After the second round, golfers with a score that places them in the bottom third are eliminated from the tournament. All of the remaining players compete in the final two rounds and share the total purse for the tournament (in 2008 the average purse for each tournament was approximately $\$ 5$ million). The distribution of payments is highly convex; for example, the winner typically earns 18% of the purse.

In golf, players begin by placing a ball on a wooden tee and hitting (or "driving") the ball towards a hole. The players typically end each hole by putting, attempting a short shot on the well-manicured patch of

[^1]grass (the "green") near the hole. Each player's score is the sum total of their strokes, or hits, across all 72 holes in the tournament. ${ }^{2}$ The player with the lowest score wins the tournament.

For historical reasons, each hole is assigned a value or "par." On PGA TOUR courses, each hole has a par value equal to 3,4 , or 5 . The par value represents the number of strokes that professional golfers often require to finish a hole, and both common golfer parlance and score cards represent performance on each hole with respect to par. Golfers who complete a hole one or two strokes under par have shot a "birdie" or "eagle," respectively. Golfers who complete a hole equal to par have shot par. Golfers who complete a hole one or two strokes over par have shot a "bogie" or "double bogie," respectively. On scorecards, golfers draw a circle for holes they shot under par and a square for holes they shot over par. Although it is only performance across the 72 holes that matters, we postulate that par for individual holes will serve as a salient reference point and influence performance.

2. Conceptual Framework

We develop a simple conceptual framework to describe the influence that loss aversion may have on putting. When golfers attempt a putt, they can either make the putt, and earn a score of Δx, or miss the putt. For simplicity, we start by assuming that if a golfer misses their first putt, they make their following putt, and earn a score of $\Delta x-1$. In this framework, Δx represents the number of strokes (either positive or negative) from par.

We consider the probability of making a putt to be a function of effort, which is endogenously set by the golfer, and other observable putt characteristics. Specifically,
(1) $\quad \operatorname{Pr}($ make putt $)=f(e)+g(\mathbf{z})+\varepsilon$

[^2]where e represents the amount of effort exerted, \mathbf{z} represents a vector of other putt characteristics (e.g. putt distance) and ε is random noise. For simplification, we assume that that the functions $f(e)$ and $g(\mathbf{z})$ are separably additive. We also assume that $f^{\prime}(e) \geq 0$ and $f^{\prime \prime}(e) \leq 0$ indicating that additional effort weakly increases the probability of making a putt and that $f(e)$ is weakly concave.

In our formulation, we consider the possibility that golfers do not consistently deliver their maximum effort for each putt. Golfers may devote different amounts of effort to their putts throughout the tournament. This conceptualization is consistent with previous work, which has found that rather than playing consistently across every hole, golfers' performance varies according to the incentives they face (Brown, 2007; Ehrenberg \& Bognanno, 1990).

For each putt, golfers derive the following utility:

$$
\begin{equation*}
U=(f(e)+g(\mathbf{z})+\varepsilon) * V(\Delta x)+(1-f(e)-g(\mathbf{z})-\varepsilon) * V(\Delta x-1)-\operatorname{cost}(e) \tag{2}
\end{equation*}
$$

Each golfer's utility is equal to the values placed on making and missing the putt weighted by their probabilities and subtracting the cost of effort, which we assume to be strictly increasing (cost $\left.{ }^{\prime}(e)>0\right)$ and convex $\left(\operatorname{cost}^{\prime \prime}(e)<0\right)$.

Incorporating loss aversion (Kahneman \& Tversky, 1979), we represent the value function, $V(\cdot)$ as (3) $\quad V(\Delta x)= \begin{cases}\Delta x & \text { if } \Delta x \geq 0 \\ \lambda \Delta x & \text { if } \Delta x<0\end{cases}$
where $\lambda \geq 1$ is the degree of loss aversion. This value function is a simple version (without diminishing sensitivity in gains or losses) of the value function described in Prospect Theory and embeds the standard model $(\lambda=1)$. Figure 1 illustrates this value function within the domain of golf. As depicted in the figure, the difference in value between scoring a birdie and a par on a hole is smaller than the difference in value between scoring a par and a bogey. It is also worth noting that we define this value function with respect to each single hole. With this formulation, we implicitly assume that players are narrow bracketing within each hole.

Maximizing the utility function in Equation (2) yields the following first-order condition

$$
\begin{equation*}
\operatorname{cost}^{\prime}(e)=f^{\prime}(e)[V(\Delta x)-V(\Delta x-1)] \tag{4}
\end{equation*}
$$

Combining Equations (3) and (4) results in the following:

$$
\begin{cases}\frac{\operatorname{cost}^{\prime}(e)}{f^{\prime}(e)}=1 & \text { if } \Delta x \geq 1 \tag{5}\\ \frac{\operatorname{cost}^{\prime}(e)}{f^{\prime}(e)}=\lambda & \text { if } \Delta x<1\end{cases}
$$

These first-order conditions indicate that a golfer chooses an optimal level of effort, e^{*}, by setting the marginal cost of effort equal to the marginal benefit of effort when putting for birdie or eagle ($\Delta x \geq 1$). However, when putting for par, bogey, or double-bogey, the golfer chooses a higher optimal effort level, which equates the ratio of the marginal cost and benefit of effort to λ.

The first order conditions imply that players choose higher effort levels in the loss domain (e.g., putting for par, bogey, or double bogey) than they do in the gain domain (e.g., putting for birdie or eagle), and we combine this fact with Equation (1) to develop the following testable prediction.

Prediction 1: Controlling for putt characteristics, \mathbf{z}, putts attempted for par, bogey, and double bogey will be more accurate than putts attempted for birdie and eagle.

In Equation (3), we represent a simple, linear value function (Kahneman \& Tversky, 1979) that contains a loss aversion parameter. Equation (6) extends Equation (3) to represent a value function with both a loss aversion parameter and separate risk preference parameters for the gain and loss domains.

$$
V(\Delta x)= \begin{cases}\Delta x^{\alpha} & \text { if } \Delta x \geq 0 \tag{6}\\ -\lambda(-\Delta x)^{\beta} & \text { if } \Delta x<0\end{cases}
$$

In this value function, α and $\beta<1$ are parameters that allow for "diminishing sensitivity." Incremental gains in Δx above the reference point result in progressively smaller utility improvements. Conversely, incremental reductions in Δx below the reference point result in progressively smaller declines in utility. The curvature of these lines induces players to exert less effort for a putt that is much below or much above par.

With diminishing sensitivity (as represented in Equation (6)), new first order conditions support the following hypotheses.

Prediction 2: Controlling for putt characteristics, \mathbf{z}, the probability of making a birdie putt is greater than the probability of making an eagle putt. In addition, controlling for putt characteristics, \mathbf{z}, the probability of making a par putt is greater than the probability of making a bogey putt, and the probability of making a bogey putt is greater than the probability of making a double bogey putt.

In our conceptual framework, we assumed that if golfers miss their first putt, they will make their following putt. This is empirically common, but certainly not automatic. A golfer may miss both the initial and the second putts. We include this possibility to develop a prediction reflecting risk preferences. Compared to risk-seeking putts, risk-averse putts are less likely to drop in the hole, but are more likely to set-up easy-to-make, follow-on putts.

As a result of both the loss aversion and diminishing sensitivity components of Prospect Theory (Kahneman and Tversky, 1979), golfers in the domain of gains (golfers attempting eagle or bogie putts) will be more likely to choose risk averse putts than golfers in the domain of losses (golfers attempting par, bogie, or double bogie putts). This leads to our final prediction:

Prediction 3: Controlling for putt characteristics, \mathbf{z}, players will be more risk averse when putting for birdie and eagle than when putting for par, bogey, or double bogey.

In the results section, we discuss how we measure risk aversion in the context of golf in order to test Prediction 3.

3. Data and Empirical Strategy

To test our predictions, we need to control for putt characteristics, \mathbf{z}. This requires access to a rich dataset, which we obtained from the PGA TOUR. Since 2002, the PGA TOUR has employed approximately 250 workers to gather information each week. Of particular relevance to our investigation, the PGA TOUR mounts lasers around each hole of a course to measure every shot each player attempts. These laser measurements record with great precision (within less than one inch) the x, y, and z coordinates of the resting position of each ball after every shot. The PGA TOUR collected these data to provide information for print journalism, broadcasting, instant online updates, and basic statistics. These data, however, also enable us to test our predictions.

In our analyses, we include data from 204 tournaments completed between 2004 and 2008. We focus on putts and we restrict our dataset to putts attempted for eagle, birdie, par, bogey, or double bogey. ${ }^{3}$ Due to computational constraints, we restrict the data to players for whom we have at least 5,000 putts leaving us with $1,613,234$ putts attempted by 188 professional golfers. ${ }^{4}$ In Table 1, we report summary statistics. Most of the putts in our data were for either par (46.9% were) or birdie (40.1% were) attempts. As a result, a large portion of our identification will contrast par and birdie putts.

To test Predictions 1 and 2, we compare the probability of making putts with different values relative to par (e.g. bogie, par, birdie, or eagle) that are otherwise similar. Our main specifications take the following form.

$$
\begin{equation*}
\text { Make Putt }_{i j k}=\alpha_{j}+\delta_{k}+\boldsymbol{\beta}\left(\text { Value Relative to } \boldsymbol{P a r}_{i \boldsymbol{i j k}}\right)+\gamma \boldsymbol{Z}_{i \boldsymbol{i j k}}+\varepsilon_{i j k} \tag{7}
\end{equation*}
$$

The indicator Make Putt ${ }_{i j k}$ for each putt i , player j , and specific hole (in a given round and tournament) k is represented as a linear function with player and hole fixed effects, a vector of dummy variables indicating

[^3]the value relative to par (e.g. birdie), a vector of control variables (e.g. distance to the hole), and a random error term.

Our controls in Equation (7) enable us to compare otherwise similar putts. For example, we compare birdie and par putts attempted from the same distance to the hole. It is important, however, to note why variation in shot values exists after controlling for distance and other factors. For example, par and birdie putts may be attempted from the same distance on a particular hole. The differences in shot value reflect the accuracy and distance with which prior shots were hit on that hole (e.g. a well-hit versus a badly-hit tee shot). After controlling for player and hole fixed effects, we argue that these prior-to-the-putt differences are based on idiosyncratic factors that are unrelated to the putt itself. ${ }^{5}$

4. Results

4.1 Main Effects

Predictably, distance is a key determinant of putt success. As we plot in Figure 2, the probability of making par and birdie putts declines with distance to the hole. More interestingly, we document a consistent difference between par and birdie putt success. For a given distance, golfers are approximately 2-4 percentage points more likely to make par putts than they are to make birdie putts.

Consistent with Figure 2 and supporting Prediction 1, we report results from Logit regression analyses in Table 2 that demonstrate that birdie and eagle putts are less accurate than par, bogey, and double bogey putts. Controlling for distance (Table 2, Column 1) putts attempted for birdie or eagle are 2.1 percentage points less likely to be made than putts attempted for par, bogey, or double bogey. This value is statistically significant and has a high degree of precision $(t=35.7)$.

[^4]In this regression and across all of our regressions, we include a $7^{\text {th }}$-order polynomial for distance to the hole. Goodness-of-fit tests suggest that a $7^{\text {th }}$-order polynomial is necessary and sufficient to control for this important variable.

In Column (2) of Table 2, we report results from a Logit regression that includes indicator variables for each putt type (e.g. putt for birdie, eagle, bogey, and double bogey). Par serves as the omitted category. Results from this regression suggest that eagle putts are the least likely to be made, followed by birdie putts. These findings are consistent with our second prediction and suggest diminishing sensitivity. Bogey putts are more likely to be made than par putts, and double bogey putts are slightly less likely to be made than par putts. The coefficient for double bogey putts is consistent with diminishing sensitivity, but the coefficient for bogey putts is not. We revisit this result in the robustness section.

4.2 Alternative Classical Explanations

Though our findings are consistent with loss aversion, we consider a number of alternative explanations. In our next set of analyses, we use a Linear Probability Model rather than the more computational intensive Logit Model, because we include a large number of fixed effects. In our most detailed specification, we include more than 300,000 fixed effects.

To provide a point of comparison, in Column (1) in Table 3 we report a simple specification including different putt types and the $7^{\text {th }}$-order distance polynomial. Reflecting differences between OLS and Logit, the estimates in this regression are slightly larger than those in Table 2. Still, the basic findings remain.

Differences in player ability. We first consider player fixed effects. Some players may be good drivers (hitting long shots from the tee to the green) but bad putters, and others may be bad drivers but good putters. If this were true, player differences could account for our finding that birdie putts are less accurate than par putts. To address this question, we include player fixed effects and we report results from this
regression in Column (2) of Table 3. We find no significant change in our findings. Still, we include player fixed effects in all future specifications.

Learning. Alternatively, players may learn about the condition of the green from earlier putts. After putting once, golfers may learn important information about the slope or conditions on the green.

Compared to birdie putts, par putts are more likely to be the second putt attempted by a golfer on the green.
As a result, par putts may be more accurate than birdie putts, because golfers have learned important information. In fact, it is possible that players may learn important information from watching their partners putt on the green.

To control for learning effects, we include separate dummy variables for the number of putts already attempted on the green by the player and the player's partner. ${ }^{6}$ The results from this specification suggest that learning is important. As we report in Column (3) of Table 3, golfers are significantly more likely to make the second and third putts on the green than they are to make otherwise similar first putts on the green. ${ }^{7}$

By including controls for prior putts on the green, the point estimates for birdie and eagle putts are reduced by 20 to 30%. However, the remaining differences attributed to birdie or eagle putts relative to par putts remains highly significant. In all future specifications, we include these controls.

Differences across holes. We next consider fixed effects for specific holes. It is possible, for example, that holes with easy fairways have difficult greens and that holes with difficult fairways have easy greens. If this were true, birdie putts may be more common than par putts on holes with difficult greens.

[^5]To account for this possibility, we include fixed effects for each of the 14,576 different holes (for a given round and tournament). ${ }^{8}$ We report results from this regression in Column (4) of Table 3. By including these fixed effects, our results actually become stronger suggesting that holes with easy fairways may also have easy greens.

Position on the green. Although we account for distance, it is possible that birdie putts start from a more precarious position on the green than equally-distanced par putts. For example, approach shots to the green may be shorter for par putts than they are for birdie putts, and as a result, players putting for par may be able to avoid difficult spots on the green (e.g., sections of the green with awkward slopes).

The level of detail in our dataset enables us to address this concern. We use the x, y, z coordinates to control for putts taken from different positions on the green. To do this, we first divide the area around each hole in each round in each tournament into four quadrants or "pie pieces." We characterize each putt attempt by quadrant, and we report regression results with dummy variable controls for each quadrant-hole-round-tournament in Column (5) of Table 3. These fixed effects control for location-specific differences.

We conduct even more precise analyses with finer divisions of the space around the hole. In Column (6) of Table 3, we report regression results that include controls for eight "pie pieces" (from dividing the green around each hole into eight sections).

In Column (7) of Table 3, we report regression results that include controls for sixteen sections that not only cut the green into eight pie pieces, but also include a concentric circle of radius 137 inches (the mean putt distance in the data).

From these analyses, we find certain areas of each green are harder to putt from than other areas. By including location-specific effects, we gain predictive power; the R-squared in the regressions rise from . 603 (with no location-specific effects) to .658 (16 location-specific effects per hole). ${ }^{9}$

[^6]More importantly, we find only small declines in point estimates as we control for location-specific effects. Location-specific differences influence overall accuracy, but they cannot account for the differences we observe across putt types.

Position in the tournament. We next control for each golfer's standing in the tournament. When golfers attempt birdie or par putts, they may exert different amounts of effort depending upon their standing in the tournament. For example, it is possible that golfers may be more likely to attempt birdie putts when they are far behind and are exerting less effort.

To account for the possibility that player scores influence our finding, we control for each golfer's score in the tournament when attempting each putt. We include dummy variables that represent a combination of the hole that a golfer is on and his overall tournament score if he makes the putt. ${ }^{10}$ For example, imagine that one golfer attempts a par putt on the $2^{\text {nd }}$ hole of the first round of a tournament and a second golfer attempts a birdie putt on the same $2^{\text {nd }}$ hole. Imagine further, that the first golfer attempting the par putt has a score of -1 from the first hole (indicating that he shot a birdie on the $1^{\text {st }}$ hole), and the second golfer attempting the birdie putt has a score of 0 going from the first hole (indicating that he shot a par on the $1^{\text {st }}$ hole). These two golfers would both have a fixed effect indicating that if they made their current putts, they would both earn a score of -1 (after two holes). This example illustrates how these fixed effects partition each putt into a bucket of putts that, if made, will place the golfers in the same scoring position in the tournament.

We report results from this analysis in Column (8) in Table 3. We find that our main result is not affected by these additional controls. Even accounting for golfers' score, golfers make birdie putts 3.0 percentage points less often than otherwise similar par putts.

[^7]Matching model. In addition to conducting parametric analyses with control variables, we conduct non-parametric analyses to test alternative explanations that might account for our findings. Though we lose some statistical power with this approach, we are able to compare par and birdie putts in novel ways.

First, we consider a matching model to compare par and birdie putts taken from the same spot on a particular hole, in a particular round, in a particular tournament. We begin by creating a list of every par putt in our dataset. We then use a matching algorithm to identify the birdie putt on the same hole-roundtournament with the shortest linear distance from each par putt. For some holes, there are no birdie putts attempted from a position near a par putt. However, on many holes a birdie and a par putt were attempted from nearly the exact same x, y, and z coordinate.

We report results from our matched par-birdie analyses in Table 4. In Column (1), we report results from the 1,363 pairs of par and birdie putts that were attempted within one inch of each other. Consistent with our thesis and our parametric results, from the same position on the green golfers made their par putts significantly more often than they made their birdie putts (88.1% of the time versus 83.4% of the time, $\mathrm{p}<.001$).

In Columns (2)-(8) we report results from pairs of par and birdie putts that were attempted within two, three, four, five, eight, twelve, and twenty four inches of each other. With larger distances, we increase the number of matched pairs, but of course, these matches are less precise. Across these analyses, we find that golfers made their par putts between 1.5% and 3.1% more often than they made their birdie putts.

The effect sizes of these results are smaller than some of the effect sizes we reported in the parametric analyses (e.g. 3.7\% in Column (1) of Table 3). However, this difference stems from the nature of the putts in our matched sample. Most of the putts in our matched sample are putts very close to the hole (the average putt length for putts in Columns (1)-(8) in Table 4 is only 35-50 inches). Golfers almost always make very short putts, and the difference between the probability of making par and birdie putts for very short putts is small. Thus, while the effect sizes may seem slightly smaller, they actually are not.

We illustrate this in two ways. First, Figure 3 replicates Figure 2 by illustrating the probability of putt success from different distances, but only uses data from the matched par and birdie putts in Column (8) of Table 4. Due to the smaller sample size, we round the distance of the par and birdie putts to the nearest tens digit in order to eliminate excessive noise. The pattern of results depicted in Figure 3 is very similar to the pattern of results depicted in Figure 2 with the complete dataset.

Second, we describe the similarity between our matching estimates and our parametric results in Appendix Table 1. In this Table, we use only the matched pairs in Column (8) of Table 4 in a regression model that includes the specifications we use in Tables 2 and 3. In Column (1), we report results using the matched sample in a Logit regression. The Logit estimation allows the birdie coefficient to vary with distance, and we expect results from the matched sample to be nearly identical to the results we obtain with the entire sample. In fact, we find that the birdie coefficient from the matched sample (-.023) is slightly larger than the coefficient from the entire sample (-.020). Columns (2)-(5) in the Appendix Table replicate Columns (1)-(4) in Table 3 using OLS. The average distance of the putts in the matched sample is smaller, and as a result the effect sizes are slightly smaller, but the same pattern emerges. Previous putts on the green matter, but birdie putts are consistently less accurate than par putts even when we account for player fixed effects and hole fixed effects.

Overall, the results from the matching estimation suggest that our findings are robust to nonparametric controls of distance and green location.

4.3 Alternative Psychological Explanations

We next consider alternative psychological explanations that might account for our findings. In particular, we consider overconfidence and nervousness.

Overconfidence. After hitting a well-placed shot, golfers may become overconfident or cocky in a way that harms their performance on their next shot. By construction, birdie putts are more likely to follow well-
hit drives than par putts. Therefore, overconfidence may account for our finding that golfers exhibit negative autocorrelation (after hitting a good shot, their next shot is likely to be bad).

We test this account by searching for negative autocorrelation in performance. Using methods similar to those used by Cotton and Price (2006), we compare performance across holes. Consistent with Cotton and Price's (2006) results, rather than finding negative autocorrelation, we find positive autocorrelation; when golfers score one stroke less on a hole relative to average performance on a hole, they are likely to score $.004(\mathrm{p}<.01)$ fewer strokes than average performance on the next hole. ${ }^{11}$ That is, absent a story of loss aversion, our best evidence suggests positive autocorrelation across shots; overconfidence or cockiness cannot account for our findings. Furthermore, a model of overconfidence cannot account for the set of ancillary results we report later in the paper.

Nervousness. The second psychological account that we consider is nervousness. If golfers value making a birdie putt more than they value making a par putt, they might get nervous and "choke" when putting for birdie. Although this nervousness account still requires that golfers narrowly bracket (and focus on their performance on each individual hole), the underlying psychological mechanism is different from loss aversion.

There are, however, a few problems with this nervousness account. First, although amateur golfers may infrequently take birdie putts, professional golfers attempt nearly as many birdie putts as they do par putts. Alternatively, golfers may get nervous when taking a birdie putt because a successful birdie putt may advance a golfer into a better position in the tournament. However, in Column (8) of Table 3, we show that golfers' scores do not influence our results. Even when both successful birdie and par putts would place golfers in a similar position, golfers are still more likely to make par putts than birdie putts.

Taken together, we find that nervousness is very unlikely to account for the difference we observe between the accuracy of golfers' par and birdie putts. The nervousness account is also inconsistent with

[^8]three aspects of our ancillary results. First, as we demonstrate in the following section, players hit their birdie putts shorter than they hit their par putts. Second, we demonstrate that even the best golfers including Tiger Woods exhibit this bias in early rounds of tournaments. Third, the difference between par and birdie putts diminishes across rounds. Nervousness cannot explain these findings, and for some of our findings nervousness actually makes the opposite prediction.

Finally, though perhaps least persuasive, we offer anecdotal evidence. Consistent with our thesis, and contradicting the nervousness account, several golfers have stated that they value par putts more than they value birdie putts. For example, after playing a round in 2007, Tiger Woods explained, "Any time you make big par putts, I think it's more important to make those than birdie putts. You don't ever want to drop a shot. The psychological difference between dropping a shot and making a birdie, I just think it's bigger to make a par putt."

4.4 Differences Across Rounds

The difference in accuracy between par and birdie putts is remarkably robust across a range of parameters including players, position on the green, and players' scores. However, we find that the difference in accuracy between par and birdie putts diminishes considerably, but does not disappear, across rounds.

As we report in Table 5 in Columns (1) - (4), the difference in accuracy between par and birdie putts diminishes monotonically from 4.0% in Round 1 to 2.1% in Round 4 ($\mathrm{p}<.001$). We find a similar pattern for the discrepancy between the accuracy of par and eagle putts.

Of course, a selection effect could contribute to the round effect that we observe. A third of players do not advance to Rounds 3 and 4, and if these players exhibit bias in Rounds 1 and 2, the differences we observe in early and later rounds could reflect differences in the population rather than an effect of round.

To address this concern, we conduct the same analyses but only include participants who completed all four rounds of the tournament. The round effect remains. As before, the par-birdie discrepancy in accuracy diminishes by half between the first and the fourth Round.

The finding that the round of play moderates our effect is interesting for two reasons. First, this finding demonstrates that the discrepancy in accuracy between birdie and par putts is not automatic, and argues against alternative accounts. For example, none of the following alternative explanations can account for why the discrepancy would diminish across rounds: birdie putts are more difficult than par putts because they start from a more precarious position on the green, birdie putts are more difficult than par putts because they follow a longer approach shot, or birdie putts are more difficult than par putts because players learn more information prior to taking a par shot.

Second, the finding that the round of play moderates our effect is interesting because it is consistent with our reference point story. In the first round, the reference point of par is likely to be very salient for golfers. By the fourth round, however, other salient reference points are likely to be more accessible such as the scores of other golfers. These competing reference points are likely to diminish the influence of par on performance. In fact, some golfers colloquially refer to Round 3 of PGA tournaments (typically Saturday) as "moving day." After a third of the players have been cut, golfers may shift their focus to their peer's performance as they try to change their rank or "move."

4.5 Differences in Risk Aversion

According to Prospect Theory, economic agents are risk averse in the domain of gains and risk seeking in the domain of losses. If golfers narrowly bracket on individual holes and adopt par as their reference point, we would expect golfers to be more risk averse when hitting birdie and eagle putts than they are when they hit par, bogie, and double bogie putts.

When putting, golfers balance two objectives. One objective is to hit the ball into the hole. The second objective is to limit the difficulty of a follow-on shot should they miss their putt. On average, conditional on missing the putt, golfers hit the ball 15-25 inches past the hole. Risk averse putts are putts that are hit short. Risk averse putts sacrifice the likelihood of hitting the ball into the hole to limit the difficulty of a follow-on shot. Within our framework, we expect birdie and eagle putts to be hit less hard than par, bogie, and double bogie putts.

Consistent with our thesis, conditional on missing the putt, golfers hit birdie and eagle putts significantly less hard than they hit par, bogie, and double bogie putts. We report results from OLS regressions in Table 6 in Columns (1) and (2). These regressions include missed putts and predict the probability of leaving a putt short of the hole as a function of the type of putt attempted. Eagle putts, on average, are hit 1.17 inches less hard than equally-distanced par putts, and birdie putts are hit .29 inches less hard than par putts. Surprisingly, bogey and double bogey putts are also hit softer than par putts, although there are very few missed bogey and double bogey putts. In this analysis, the standard errors of these estimates are very large.

In Table 6 in Column (2), we also report the probability that the ball will be hit short of the hole. Consistent with our thesis, eagle and birdie putts are both significantly more likely to be hit short of the hole than par putts. In Table 6 in Columns (3) and (4), we provide similar results to those we report in Columns (1) and (2), but we restrict the sample to putts longer than 270 inches (the average putt distance for missed putts). These estimates, which are larger than those found in Columns (1) and (2), suggest that the effects are strongest for long putts. ${ }^{12}$

In Figure 4, we depict where missed par and birdie putts stop on the green with respect to the hole. We normalize each putt as if it were lined-up with the hole from the left side of the x -axis. We divide the green around the hole into a series of 12 inch $\times 12$ inch boxes. We then ran separate OLS regressions for each

[^9]box. The dependent variable was a binary outcome equal to one if the missed putt stopped in the box. The numbers represented in each box are the coefficient of birdie putts from these regressions. Positive numbers indicate that birdie putts are more likely to stop in the box than par putts. Negative numbers indicate that par putts are more likely to stop in the box than birdie putts.

In Figure 4, the positive numbers in front of the hole illustrate that birdie putts are more likely to stop in front of the hole, and that par putts are more likely to stop behind the hole. We report similar analysis in Figure 4, Panel B. In this figure, we restrict the sample to missed putts attempted from more than 270 inches (the average missed putt). As before, this figure demonstrates that birdie putts are hit less hard than par putts.

Is risk aversion helpful? Birdie putts are hit less hard than par putts. Though birdie putts are less likely than par putts to land in the hole, softer hits make the follow-on shots after missed birdie putts easier than follow-on shots after missed par putts.

In Table 4 in Column (5), we report results predicting whether or not the follow-on shot landed in the hole conditional on missing the current putt. Results from this analysis indicate that the softer birdie putts do indeed improve the probability of making a follow-up shot. However, the size of this effect (. 2%) is overwhelmed by the decreased probability of making the initial putt. That is, the increased probability of making a follow-up shot by hitting a birdie putt softly does not come close to compensating for the loss of accuracy in hitting birdie putts.

This finding is consistent with other analyses, such as analyses estimating the total number of strokes required to finish the hole following a par or birdie putt. As before, missed birdie putts (that are hit less hard than par putts) improve the accuracy of follow-on putts, but these benefits are very slight compared to the harmful effects of hitting the initial putt less accurately.

4.6 Koszegi-Rabin Reference Points

In our conceptual framework and in our analyses, we have assumed that golfers making reference dependent choices adopt par as their point of reference. In recent theoretical work, Koszegi and Rabin (2006) suggest that rational expectations might serve as the point of reference for reference-dependent choices. A recent empirical study supports this idea. Crawford and Meng (2008) found that by allowing rational expectations to inform reference points for hours worked and income earned, they were able to fit a model of cabdrivers' labor supply decisions with greater accuracy (Camerer, Babcock, Lowenstein, and Thaler, 1997; Farber, 2005). ${ }^{13}$

Although par is likely to be a salient reference point, professional golfers may - consistent with Koszegi and Rabin (2006) - develop expectations for their performance that are different from par. For example, on an easy par-five hole an expert golfer may expect to complete the hole with four shots. In this case, four (rather than five) shots may serve as the reference point.

We consider a rational expectations approach for reference point adoption. In our next set of analyses, we use the average score on each hole by the entire field of golfers, rather than par, as the reference point. In Figure 5, we depict how this rational expectations approach changes our predictions. In Figure 5a, we illustrate how loss aversion influences putt accuracy if golfers adopt par as the reference point. In Figure 5b, we illustrate how loss aversion influences putt accuracy if golfers adopt the average score on each hole (our proxy for rational expectations) as the reference point. ${ }^{14} \mathrm{We}$ develop predictions for eagle, birdie, par, bogie, and double bogie putts, but we focus particular attention on the contrast between birdie and par putts.

[^10]If the average score on a hole is the same as par, our predictions in Figure 5 a and 5 b are the same. We expect golfers to be less likely to make birdie and eagle putts than par, bogie, and double bogie putts. In this case, we expect golfers to be more accurate hitting their par putts than their birdie putts.

If the average score on a hole is 1 over par (a difficult hole), then golfers who adopt rational expectations will expect their bogie putt to be the putt that finishes the hole. In this case, golfers will perceive par, birdie, and eagle putts to be in the "gain domain," and we expect golfers to be less accurate hitting these putts than otherwise similar bogie and double bogie putts. In this case, we expect par and birdie putts to be hit similarly.

Analogously, if the average score on a hole is 1 under par (an easy hole), then golfers who adopt rational expectations will expect their birdie putt to be the putt that finishes the hole. In this case, golfers will perceive only eagle putts to be in the gain domain, and we expect golfers to hit their eagle putts less accurately than otherwise similar birdie, par, bogie, and double bogie putts. In this case, we expect par and birdie putts to be hit similarly.

Our key prediction in testing the Koszegi and Rabin (2006) framework is the "V shape" pattern depicted in Figure 5b representing the relationship between the relative accuracy of par and birdie putts. When average scores on a hole are either 1 above or 1 below par, the expectations-as-reference-points model predicts that golfers will hit their par and birdie putts similarly. When average scores on a hole equal par, the expectations-as-reference-points model predicts that golfers will hit their par putts more accurately than they hit their birdie putts.

To test these predictions, we divided the data into quintiles according to the difficult of the hole relative to par. The first quintile includes holes with average scores much lower than par (very easy holes); the fifth quintile includes holes with average scores much higher than par (very difficult holes). The variation in hole difficulty, however, is limited. Compared to par, the average hole scores for the first and fifth quintiles are -
.30 and .33, respectively. In Table 7, we report the Logit regression estimates for each quintile, and we depict the relative accuracy coefficients in Figure 6. ${ }^{15}$

Consistent with the expectations-as-reference-points predictions informed by Koszegi and Rabin (2006), we find that the accuracy difference between par and birdie putts diminishes for difficult holes; the relative accuracy declines from 3.4% on moderately difficult holes (holes with average scores equal to par) to 2.3% for difficult holes (holes with average scores equal to 0.3 strokes more than par), $\mathrm{p}<.001$. However, the accuracy difference between par and birdie putts does not diminish for easy holes; the accuracy difference does not decline from moderately difficult holes (holes with average scores equal to par) to difficult holes (holes with average scores equal to -0.3 strokes less than par).

The expectations-as-reference-points model predicts that bogey putts will be hit as accurately as par putts on moderate and easy holes (holes with average scores equal to or lower than par), but more accurately than par putts on difficult holes (holes with average scores higher than par). Our results do not uniformly support these predictions, but we do find that bogey putts are hit relatively more accurately than par putts as hole difficulty increases.

The pattern of results we observe for eagle putts is not consistent with the expectations-as-referencepoints predictions. Eagle putts, however, only comprise 1.4% of the putts in our data, and within our quintile analyses, the standard errors of the estimates we report in Table 7 and Figure 6 are very large. For example, the coefficient for eagle putts in the fifth quintile, which is inconsistent with the expectations-as-reference-points prediction, is only marginally different from par (the expectations-as-reference-points prediction).

By accounting for endogenized reference points derived from rational expectations, we increase the predictive validity of our models. Taken together, our results offer some support for the expectations-as-reference-points predictions.

[^11]
4.7 Heterogeneity in Loss Aversion

We next consider heterogeneity across players. We consider individual differences and we explore the possibility that the most experienced golfers exhibit less loss aversion than other players.

For each golfer, we measure the accuracy difference between par and birdie putts. We measure this effect with the birdie coefficient produced by an OLS model that uses par as the baseline (see Table 3, Column 1).

On average, golfers make their birdie putts 3.7 percentage points less often than they make otherwise similar par putts. We find, however, substantial variation across players. We depict this variation in a histogram in Figure 7, and we find that the variation in loss aversion across players is significant (in a Chisquared test, $\mathrm{p}<.001$).

More interestingly, every point estimate for every player is negative. Every one of the 188 professional golfers in our sample exhibits bias by hitting birdie putts less accurately than they hit otherwise similar par putts.

Prior work has found that experience can eliminate judgment biases (e.g. List, 2003, 2004). With our data, we consider the possibility that expertise mitigates loss aversion. We measure expertise in two ways. First, we use each player's age as a proxy for experience, assuming that players gain additional experience each year. Second, we use the 2007 PGA rank for each golfer. ${ }^{16}$

We find no effects for age. In Figure 8a, we present a scatter plot of each golfer's year of birth and their relative accuracy coefficient for birdie. We find no significant correlation between age and relative accuracy $(\mathrm{p}=.50) .{ }^{17}$

[^12]We do find, however, that expertise measured by rank, diminishes the accuracy gap. In Figure 8b, we present a scatter plot of each golfer's rank and their birdie coefficient ($\mathrm{p}=.14$). We also conduct a regression predicting each golfer's relative accuracy coefficient for birdie using the \log PGA rank of each player. We find that player rank significantly predicted a decline in the relative accuracy coefficient ($\mathrm{p}=.03$).

Although expertise diminishes this bias, it does so only modestly. In fact, we find that even the best golfers exhibit significant bias. This is true even of Tiger Woods, who was ranked as the \#1 golfer in 2007. His birdie coefficient of -.036 was nearly equivalent to the average coefficient of the other PGA players in our sample of -.037.

4.8 Monetary Cost of Bias

To assess the economic cost of this bias, we consider how hitting birdie putts as accurately as otherwise similar par putts would change expected tournament winnings. On average, golfers who play all four rounds in our sample attempt 45.1 birdie putts in each tournament. Using our most conservative estimates, we calculate that if golfers hit each of their birdie putts as accurately as they hit otherwise similar par putts, their tournament score would improve by more than one stroke per tournament.

In professional golf, improving a score by one stroke is substantial. In Table 8, for each of the top 20 golfers in 2008, we list the number of 2008 tournaments in which they participated, their average score across these tournaments, and their tournament earnings for 2008. On average, the top 20 golfers earned nearly $\$ 4$ million in tournament earnings alone. ${ }^{18}$ For each player, we created a counterfactual and calculated the additional amount they would have earned had they improved their score by one stroke in each of the tournaments in which they participated (assuming that other players' scores remained unchanged). On average, these golfers would have earned an additional $\$ 1.1$ million (22.4%).

[^13]
5. Discussion and Conclusion

Our results demonstrate that loss aversion, a fundamental bias, continues to persist in a highly competitive market. We find that experienced agents systematically exhibit this bias and that it is not only pervasive, but costly.

In our study, we document loss aversion in professional golf. We analyze detailed data from the PGA TOUR, and we demonstrate that professional golfers hit birdie putts less accurately than they hit otherwise similar par putts. We consider a number of competing explanations including differences in position on the green, individual differences, and learning. We find that none of these explanations can account for the pattern of results we observe, and we demonstrate that even the very best golfers-including Tiger Woods—exhibit this bias.

Interestingly, the bias we observe is moderated by round. As the tournament progresses, the accuracy gap between par and birdie putts diminishes, but is not extinguished. This finding implies that the accuracy gap derives from a psychological rather than a mechanical process.

Our findings are consistent with Prospect Theory (Kahneman \& Tversky, 1979). Rather than broadly bracketing across the 72 holes in a tournament, players narrowly bracket and adopt the salient reference point of par within each hole. Although professional golfers should strive to hit each putt as accurately as possible, golfers hit birdie putts (in the domain of "gains") less accurately and less hard than they hit par putts (in the domain of "losses"). The decrement in accuracy for birdie putts is very costly, and risk averse play (e.g., leaving a ball short of the hole) is ill-suited to the convex rewards players earn for winning tournaments.

We also consider and find evidence to suggest that golfers use rational expectations to set reference points (Koszegi \& Rabin, 2006). We use average performance on holes to gauge hole difficulty, and consistent with Koszegi and Rabin (2006), we find that the accuracy gap between par and birdie putts
diminishes for very difficult holes and that the gap between par and bogey putts widens for very difficult holes.

Taken together, our findings demonstrate that behavioral biases such as loss aversion persist in competitive markets with experienced agents and large stakes.

REFERENCES

Bernartzi, S. and R. Thaler (1995). "Myopic Loss-Aversion and the Equity Premium Puzzle", Quarterly Journal of Economics, 110(1), 73-92.
Brown, J. (2007). "Quitters Never Win: The (Adverse) Incentive Effects of Competing with Superstars." Mimeo.
Camerer, C. (1998). Prospect Theory in the Wild: Evidence from the Field In D. Kahneman and A. Tversky (eds.), Choices, Values, and Frames.
Camerer, C., Lowenstein, G., and Rabin, M., (eds.) (2004). Advances in Behavioral Economics. Princeton University Press.
Camerer, C., Babcock, L., Lowenstein, G., and Thaler, R. (1997) "Labor Supply of New York City Cab Drivers: One Day At a Time", Quarterly Journal of Economics, 112(2), 407-441.
Cotton, C. and Price, J. "The Hot Hand, Competitive Experience, and Performance Differences by Gender", 2006, Working Paper.
Crawford, V. and J. Meng (2008) "New York City Cabdrivers' Labor Supply Revisited: ReferenceDependent Preferences with Rational-Expectations Targets for Hours and Income", Working Paper.
Doran, K. (2008) "Reference Points, Expectations, and Heterogeneous Daily Labor Supply", Working Paper.
Ehrenberg, R. and Bognanno, M. (1990) "Do Tournaments Have Incentive Effects?" Journal of Political Economy, 98(6), 1307-1324.

Farber, H. (2005). "Is Tomorrow Another Day? The Labor Supply of New York City Cab Drivers," Journal of Political Economy, 113.
Farber, H. (2008). "Reference-Dependent Preferences and Labor Supply: The Case of New York City Taxi Drivers." American Economic Review, 98(2): 1069-1082.
Fehr, E. and Goette, L. (2007) "Do Workers Work More if Wages are High? Evidence from a Randomized Field Experiment." American Economic Review, 97(1).
Forbes.com (2006). http://www.forbes.com/2006/09/15/cx aolarpslide.html?thisSpeed=35000
Genesove, D. and C. Mayer. (2001). "Loss Aversion and Seller Behavior: Evidence from the Housing Market," Quarterly Journal of Economics, 116(4), 1233-1260.
Gneezy, U., and J. Potters (1997). "An Experiment on Risk Taking and Evaluation Periods", Quarterly Journal of Economics, 112(2), 631-645.
Golf.com (2007). http://www.golf.com/golf/tours news/article/0,28136,1602656,00.html
Guryan, J., Kroft, K., and Notowidigdo, M. 2009, "Peer Effects in the Workplace: Evidence from Random Groupings in Professional Golf Tournaments," forthcoming American Economic Journal: Applied Economics.
Kahneman, D., and A. Tversky (1979). "Prospect Theory: An Analysis of Decisions under Risk", Econometrica, 47, 313-327.
Koszegi, B. and M. Rabin. 2006. "A Model of Reference-Dependent Preferences", Quarterly Journal of Economics, 121(4): 1133-1166.
Levitt, S. and List, J. (2008). Homo Economicus Evolves. Science, 319(5865), 909-910.
List, J. (2003). "Does Market Experience Eliminate Market Anomalies?," Quarterly Journal of Economics (2003), 118)1, 41-71.

List, J. (2004) "Neoclassical Theory Versus Prospect Theory: Evidence from the Marketplace," Econometrica, 72(2): 615-625.
Mas, A. 2008. "Pay, Reference Points, and Police Performance", Quarterly Journal of Economics, 121(3): 783821.

Odean, T. (1998). "Are Investors Reluctant to Realize Their Losses", Journal of Finance, 53(5): 1775-1798.
Read, D., Lowenstein, G., and Rabin, M. (1999). Choice Bracketing. Journal of Risk and Uncertainty, 19, 171-197.
Thaler, R. (1980). Towards a Positive Theory of Consumer Choice. Journal of Economic Behavior and Organization, 1, 39-60.
Thaler, R., Tversky, A., Kahneman, D., and A. Schwartz (1997). "The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test", Quarterly Journal of Economics, 112(2), 647-661.

Figure 1. Prospect Theory in the domain of golf with par as the reference point.

Figure 2. This figure depicts the fraction of successful par and birdie putts by distance to the hole (in inches). The sample includes putts attempted in the PGA TOUR between 2004 and 2008.

Figure 3. This figure depicts the fraction of successful par and birdie putts by distance to the hole (in inches). The sample includes par and birdie putts attempted in the PGA TOUR that were matched to each other (with 24 inches being the maximum distance between matched putts). All putt distances are rounded to the tens digit due to small sample sizes at each inch mark.

Figure 4. This figure provides a graphical illustrastion of where each missed putt (Figure 4a) and each missed putt greater than the average missed putt length (Figure 4b) came to a rest. Each putt is oriented so as to be taken from the left side of the x axis and the hole at the origin. We conducted a separate regression (with controls) for each 12 inch $x 12$ inch box with a dummy dependent variable indicating whether the missed putt came to rest in the box. The number in each box is the coefficient on a birdie putt indicator. Positive (negative) coefficients indicate that birdie putts are more (less) likely to come to rest in the box than par putts.

4a: All Missed Putts
Feet from Hole

-4	-3	-2	-1	1			1
0.000	0.000	0.000	0.000	-0.001	-0.001	0.000	0.000
-0.001	-0.001	0.000	-0.001	-0.001	-0.001	0.000	0.000
-0.001	0.000	0.001	0.002	0.001	-0.001	0.001	0.000
0.000	0.002	0.005	0.007	-0.006	-0.005	0.000	0.002
0.000	0.001	0.005	0.007	-0.002	-0.006	-0.004	0.000
0.000	0.000	0.001	0.002	0.003	0.002	0.000	0.000
0.000	0.000	-0.001	0.000	-0.001	-0.001	-0.001	0.000
0.000	0.000	-0.001	0.000	0.000	-0.001	0.000	0.000

4b: Missed Putts Taken from More Than 270 Inches

Feet from Hole

-4	-3		-2	0		1	1
0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000
0.000	0.002	0.002	0.001	0.001	-0.001	0.000	-0.002
0.001	0.003	0.004	0.003	-0.004	-0.002	0.000	-0.004
0.001	0.002	0.003	0.002	-0.001	-0.002	-0.005	-0.004
0.001	0.002	0.001	-0.001	0.001	0.000	-0.002	-0.002
0.001	0.000	0.000	0.001	0.000	-0.001	-0.002	-0.001
0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000

әон سодł ұәә」

Figure 5. This Figure illustrates the theoretical predictions for putt success for different shot values relative to par, assuming par as the reference point (5a) and assuming rational expectations equal to the empirical score on each hole (5b) as the reference point.
5a. Constant Reference Points

5b. Reference Points Based on Rational Expectations

Figure 6. This figure graphs the relative putt accuracy for birdie, eagle, and bogey compared to par for each of five quintiles characterized by the difficulty of the hole relative to par.

Figure 7. This histogram plots the relative accuracy of birdie putts compared to par putts (using our baseline specification (Column (1) of Table 3)) for each of the 188 golfers in the data.

Figure 8. We calculate the relative success of birdie to par putts for each golfer separately (using the specification identified in Column (1) of Table 3). We plot the coefficients of relative success of birdie to par putts for each golfer by each golfer's age (Panel A) by each golfer's 2007 PGA TOUR rank (Panel B).
8a. Birdie Coefficient and Year of Birth

8b. Birdie Coefficient and PGA Rank

Table 1. Summary Statistics

	Made Putts	Missed Putts		Full Sample
Fraction of Putts for Par	51.2	270.0		136.6
Fraction of Putts for Birdie	64.0	20.3		46.9
Fraction of Putts for Eagle	18.8	73.4		40.1
Fraction of Putts for Bogey	0.3	3.1		1.4
Fraction of Putts for Double Bogey	14.9	2.3		10.0
Observations	2.1	0.9	1.6	

Notes: This table provides summary statistics for putts taken in the PGA TOUR between 2004 and 2008.

Table 2. The Effect of Different Shot Values on Putt Success

	Dependent Variable Equals 1 if Putt was Made Logit Estimation	
	(1)	(2)
Putt for Birdie or Eagle	$\begin{gathered} \hline-.021^{* *} \\ (.001) \end{gathered}$	
Putt for Eagle		$\begin{gathered} -.025^{* *} \\ (.002) \end{gathered}$
Putt for Birdie		$\begin{gathered} -.020^{* *} \\ (.001) \end{gathered}$
Putt for Bogey		$\begin{aligned} & .009 * * \\ & (.001) \end{aligned}$
Putt for Double Bogey		$\begin{gathered} -.006^{* *} \\ (.002) \end{gathered}$
Putt Distance: 7th-Order Polynomial	X	X
Psuedo R-Squared	0.550	0.550
Observations	1,613,234	1,613,234

Notes. This table reports marginal effects and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) from a Logit regression. Column (1) compares putts taken for birdie and eagle relative to the omitted category - putts taken for par, bogey, and double bogey. Column (2) compares each shot value separately relative to the omitted catergory, par.

* p < .05; ** p < . 01

Table 3. The Effect of Different Shot Values on Putt Success - Robustness Checks

	Dependent Variable Equals 1 if Putt was Made OLS Estimation							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Putt for Eagle	-.041**	-.040**	-.031**	-.044**	-.042**	-.038**	-.040**	-.069**
	(.002)	(.002)	(.002)	(.002)	(.003)	(.003)	(.003)	(.003)
Putt for Birdie	-.037**	-.037**	-.027**	-.031**	-.029**	-.029**	-.029**	-.030**
	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)
Putt for Bogey	.004**	.004**	. 001	.004**	.003**	.003**	.003**	.006**
	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)	(.001)
Putt for Double Bogey	-.007**	-.006**	-.005*	-. 001	-. 002	-. 001	-. 002	. 002
	(.002)	(.002)	(.002)	(.002)	(.002)	(.002)	(.002)	(.002)
Putt Distance: 7th-Order Polynomial	x	x	x	x	x	x	x	x
Player Fixed Effects		X	X	X	X	X	X	X
Previous-Putts-on-Green Effects			X	x	X	X	x	X
Tournament-Round-Hole Effects				x				
4 Hole-Location Effects					x			
8 Hole-Location Effects						x		
16 Hole-Location Effects							x	
Score-on-Hole-if-Make-Putt Effects								X
R-Squared	0.597	0.598	0.598	0.603	0.614	0.632	0.658	0.687
Observations	1,613,234	1,613,234	1,613,234	1,613,234	1,613,234	1,613,234	1,613,234	1,613,234

Notes. This table reports estimates and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) using OLS. Increasingly precise controls are included in each column including: player fixed effects, dummy variables for the number of putts previously attempted on the green by the golfer and the other golfer in a player's group, fixed effects for each hole in a given round and tournament, fixed effects for 4,8 , and 16 location areas for each hole, and fixed effects for the score to be received if the putt is successful for every hole in a given round and tournament.

* p < . 05 ; ** p < . 01

Table 4. Estimates from Matching Par and Birdie Putts

	Maximum distance between matched par and birdie putts							
	< 1 inch	<2 inches	< 3 inches	< 4 inches	< 5 inches	<8 inches	<12 inches	<24 inches
Fraction of Matched								
Birdie Putts Made	0.834	0.883	0.897	0.902	0.901	0.891	0.875	0.828
	(.010)	(.005)	(.003)	(.002)	(.002)	(.001)	(.001)	(.001)
Fraction of Matched								
Par Putts Made	0.881	0.906	0.914	0.917	0.916	0.908	0.894	0.859
	(.009)	(.004)	(.003)	(.002)	(.002)	(.001)	(.001)	(.001)
Average Distance of								
Matched Birdie Putts	50.35	39.77	36.84	36.30	36.20	37.89	41.25	50.52
Average Distance of								
Matched Par Putts	50.36	39.77	36.79	36.22	36.09	37.62	40.66	48.56
Number of Pairs	1,363	4,616	9,861	16,606	24,487	52,322	91,763	197,132

Notes. For every par putt in the data, a birdie putt taken on the same hole, in the same round, in the same tournament is matched to the par putt if the distance between the par and birdie putt is less than the indicated amount in the table. We report distances from less than 1 inch to less than 24 inches in Columns (1) - (8). We report the fractions of matched par and birdie putts that were made along with standard errors. We also report the average distance of the matched par and birdie putts for each distance cutoff.

Table 5. The Effect of Different Shot Values on Putt Success - By Rounds

Notes. This table reports estimates and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) using OLS while controlling for several basline covariates. The coefficients are reported when cutting the data by round. Columns (1)-(4) indicate coefficients for rounds 1-4, respectively, when using all putts attempted in all rounds. Columns (5)-(8) indicate coefficients for rounds 1-4, respectively, when restricting the sample to putts taken by players that played all four rounds of the tournament. This data restriction adjusts for the sample attrition that takes place in golf tournaments after the second round.

* $p<.05$; ** $p<.01$

Table 6. The Effect of Different Shot Values on Risk Aversion

	Ordinary Least Squares				
	All Missed Putts		Missed Putts Longer Than 270 Inches		All Missed Putts
	Putt Length (1)	Left Short (2)	Putt Length (3)	Left Short (4)	Make Next Putt (5)
Putt for Eagle	-1.17**	.017**	-3.14**	.040**	. 001
	(.39)	(.004)	(.71)	(.007)	(.002)
Putt for Birdie	-.29**	.005**	-1.91**	.023**	.002**
	(.10)	(.001)	(.35)	(.004)	(.001)
Putt for Bogey	-.51*	. 009	-. 40	. 015	-. 001
	(.24)	(.003)**	(.95)	(.010)	(.002)
Putt for Double Bogey	-. 24	.013*	-. 95	. 009	-
	(.38)	(.005)	(1.20)	(.014)	-
Putt Distance: 7th-Order Polynomial	x	x	X	x	x
Player Fixed Effects	x	x	X	x	X
Previous-Putts-on-Green Effects	x	x	x	x	x
Tournament-Round-Hole Effects	X	X	X	X	x
R-Squared	0.968	0.173	0.968	0.140	0.101
Observations	629,470	629,470	260,339	260,339	623,868

Notes: This table reports estimates and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) using OLS. Columns (1) and (2) report the estimates of shot value on putt length and laying up short of the hole using all missed putts in the data. Columns (3) and (4) provide similar estimates but for putts attempted at a distance of more than 270 inches (the average distance of a missed putt). Column (5) reports the impact of shot value on the probability of making the next putt (conditional on missing the current putt).

* p < .05; ** p < . 01

Table 7. Testing for Changes in Reference Points

	Dependent Variable Equals 1 if Putt was Made				
	Logit Estimation				
	Hole Score Quintile 1 (1)	Hole Score Quintile 2 (2)	Hole Score Quintile 3 (3)	Hole Score Quintile 4 (4)	Hole Score Quintile 5 (5)
Putt for Eagle	$\begin{gathered} \hline-.052^{* *} \\ (.003) \end{gathered}$	$\begin{gathered} \hline-.068^{* *} \\ (.009) \end{gathered}$	$\begin{gathered} \hline-.058^{* *} \\ (.018) \end{gathered}$	$\begin{gathered} -.109 * * \\ (.037) \end{gathered}$	$\begin{aligned} & \hline-.128^{*} \\ & (.057) \end{aligned}$
Putt for Birdie	$\begin{gathered} -.034^{* *} \\ (.002) \end{gathered}$	$\begin{gathered} -.034^{* *} \\ (.002) \end{gathered}$	$\begin{gathered} -.031^{* *} \\ (.002) \end{gathered}$	$\begin{gathered} -.029^{* *} \\ (.001) \end{gathered}$	$\begin{gathered} -.023^{* *} \\ (.001) \end{gathered}$
Putt for Bogey	$\begin{gathered} -.016^{* *} \\ (.004) \end{gathered}$	$\begin{gathered} .003 \\ (.003) \end{gathered}$	$\begin{gathered} .010^{* *} \\ (.003 \end{gathered}$	$\begin{aligned} & .012^{* *} \\ & (.002) \end{aligned}$	$\begin{aligned} & .018^{* *} \\ & (.002) \end{aligned}$
Putt for Double Bogey	$\begin{aligned} & -.008 \\ & (.008) \end{aligned}$	$\begin{gathered} -.027^{* *} \\ (.006) \end{gathered}$	$\begin{gathered} .004 \\ (.006) \end{gathered}$	$\begin{aligned} & -.002 \\ & (.005) \end{aligned}$	$\begin{gathered} .003 \\ (.003) \end{gathered}$
Putt Distance: 7th-Orde Polynomial	X	X	X	X	X
Psuedo R-Squared	0.512	0.547	0.562	0.568	0.563
Observations	322,803	341,393	306,024	321,989	321,025

Notes. This table reports marginal effects and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) using Logit. We report Logit results by quintile according to the difficulty of the hole. For example, quintile one represents putts attempted on the easiest holes (players often scored better than par); quintile 5 represents putts attempted on the most difficult holes (players often scored worse than par).

* p < .05; ** p < . 01

Table 8. Understanding the Costs of Missing Birdie Putts

2008 Rank	Tournaments Played	Scoring Average (72 holes)	Tournament Earnings (2008)	Additional Earnings if Scored 1 Stroke Higher	\% Earnings Increase if Scored 1 Stroke Higher
1 Vijay Singh	23	69.6	\$6,601,094	\$1,607,978	19.6\%
2 Tiger Woods	6	67.7	\$5,775,000	\$410,000	6.6\%
3 Phil Mickelson	21	69.2	\$5,188,875	\$1,540,085	22.9\%
4 Sergio Garcia	19	69.1	\$4,858,224	\$1,921,854	28.3\%
5 Kenny Perry	26	69.8	\$4,663,794	\$1,025,583	18.0\%
6 Anthony Kim	22	69.3	\$4,656,265	\$1,484,849	24.2\%
7 Camilo Villegas	22	69.5	\$4,422,641	\$892,470	16.8\%
8 Padraig Harrington	15	69.3	\$4,313,551	\$766,246	15.1\%
9 Stewart Cink	23	70.0	\$3,979,301	\$1,146,823	22.4\%
10 Justin Leonard	25	69.8	\$3,943,542	\$526,778	11.8\%
11 Robert Allenby	28	69.7	\$3,606,700	\$2,345,916	39.4\%
12 Jim Furyk	26	69.7	\$3,455,714	\$2,400,554	41.0\%
13 Ryuji Imada	25	70.6	\$3,029,363	\$1,149,452	27.5\%
14 Mike Weir	26	70.1	\$3,020,135	\$1,326,064	30.5\%
15 Geoff Ogilvy	20	70.3	\$2,880,099	\$362,243	11.2\%
16 KJ Choi	21	70.3	\$2,683,442	\$533,848	16.6\%
17 Ben Curtis	22	70.0	\$2,615,798	\$768,811	22.7\%
18 Kevin Sutherland	26	70.1	\$2,581,311	\$1,633,176	38.8\%
19 Trevor Immelman	22	70.5	\$2,566,199	\$690,325	21.2\%
20 Ernie Els	16	69.9	\$2,537,290	\$388,455	13.3\%
Average	21.7	69.7	\$3,868,917	\$1,146,075	22.4\%

Notes: We obtained these data for the top 20 ranked golfers from golf.com. Along with their ranks, names, tournaments played, average score, and annual tournament earnings, the table provides the additional earnings each player would have earned had he increased his score by one stroke per tournament relative to the rest of the golfers.

Appendix Table 1. The Effect of Different Shot Values on Putt Success - Robustness

 Checks From Matched Sample| | Dependent Variable Equals 1 if Putt was Made | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Logit
 (1) | OLS | | | |
| | | (2) | (3) | (4) | (5) |
| Putt for Birdie | -.023** | -.029** | -.028** | -.017** | -.018** |
| | (.001) | (.001) | (.001) | (.002) | (.002) |
| Putt Distance: 7th-Order Polynomial | x | x | x | x | x |
| Player Fixed Effects | | | x | X | x |
| Previous-Putts-on-Green Effects | | | | x | X |
| Tournament-Round-Hole Effects | | | | | x |
| R-Squared | 0.430 | 0.421 | 0.422 | 0.423 | 0.461 |
| Observations | 282,795 | 282,795 | 282,795 | 282,795 | 282,795 |

Notes. This table reports estimates and robust standard errors for the differential success rate of putts of different shot values (par, birdie, etc.) using marginal effects from a Logit (Column (1)) and OLS (Columns (2)(5)). These results use only the par and birdie putts that were matched within 24 inches of each other using our matching algorithm. Increasingly precise controls are included in each column including: player fixed effects, dummy variables for the number of putts previously attempted on the green by the golfer and the other golfer in a player's group, and fixed effects for each hole in a given round and tournament.

* p < .05; ** p < . 01

[^0]: Contact Pope at dpope@,wharton.upenn.edu and Schweitzer at schweitz@,wharton.upenn.edu.
 *We thank Bob Batt for excellent research support and Mike Vitti at the PGA TOUR for help with data access. We also thank David Abrams, Nick Barberis, Gerard Cachon, Colin Camerer, Vincent Crawford, Stefano DellaVigna, Peter Fishman, Adam Galinsky, John Hershey, Daniel Kahneman, Bruce Kothmann, Kory Kroft, Howard Kunreuther, Rob Letzler, Steve Levitt, Arden Pope, Jaren Pope, Uri Simonsohn, Justin Sydnor, Richard Thaler, Jeremy Tobacman, Maisy Wong and seminar participants at Carnegie Mellon, the Federal Trade Commission, and The Wharton School for helpful comments and suggestions. All errors are our own.

[^1]: ${ }^{1}$ Golf has been used as the context of a several papers in economics including Ehrenberg and Bognanno (1990), Cotton and Price (2006), Brown (2007), and Guryan, Kroft, and Notowidigdo (2009).

[^2]: 2 This scoring method is called "stroke play" or "medal play" which is by far the most popular method of scoring in professional golf. However, other scoring systems such as "match play" do exist. Our data consists only of tournaments that were scored using stroke play.

[^3]: ${ }^{3} 2,235$ observations ($<.01 \%$ of data) were deleted due to odd data values (e.g. putts attempted more than 1,000 inches from the hole).
 ${ }^{4}$ Many players only played in one or two tournaments during our sample period. Since we are running regressions with player fixed effects (as well as hole fixed effects), each player adds to the computational difficulty. Using the entire sample results in regressions that will not run due to space constraints or take weeks to finish. By eliminating players who have few observations, we dramatically reduce the computational demands, while only eliminating a small fraction of the total observations.

[^4]: ${ }^{5}$ In our analyses, we consider the possibility that the quality of earlier shots may influence putt attempts. For example, a golfer may be "having a good day" and thus a good tee shot may be followed by a good putt. Importantly, it is worth noting that this type of positive autocorrelation between shots runs counter to the predictions we make. We consider this and other alternative accounts later in our analyses.

[^5]: ${ }^{6}$ Alternatively, one could restrict the sample of putts to those which are first putts attempted on the green. Performing this analysis yields a coefficient on the birdie dummy nearly identical to the coefficient when simply including dummy variables for the number of own and other shots already taken on the green.
 ${ }^{7}$ We attribute this effect to learning. However, an alternative psychological phenomenon may be driving this reduction. Golfers may have an aversion to taking three putts to finish a hole. If this were true, golfers may try very hard after missing a putt to avoid a three putt. Alternatively, golfers may update their reference point once they arrive on the green. This may cause golfers to work harder on a second putt since missing the second putt may be coded as a loss. We are unable to disentangle these accounts from learning about a green.

[^6]: ${ }^{8}$ Locations of the hole on each green are typically changed in every round during a tournament. For this reason, fixed effects for every hole in each round in a tournament must be included rather than just a fixed effect of each hole in a 4-round tournament ${ }^{9}$ Adjusted R-squared values increase by a more modest amount (.599 to .608).

[^7]: ${ }^{10}$ One might imagine other ways to try and control for a golfer's position in the tournament (e.g. strokes behind the current leader). The problem, however, with many of these alternatives is that golfers play at different times of the day and thus a golfer may have the best score at a particular moment in time, but it is simply because other golfers have not yet started the course.

[^8]: ${ }^{11}$ We find consistent results using different methods (e.g., with and without player-specific controls and alternative nonparametric methods that correct for problems that arise when using fixed effects and lagged dependent variables).

[^9]: ${ }^{12}$ For very short putts, putts less than 200 inches, we find no differences. Notably, the risk aversion account cannot explain the entire par-birdie accuracy gap.

[^10]: ${ }^{13}$ Farber (2008) and Doran (2008) study cabdriver labor supply and also make significant contributions to understanding reference point adaptation. Farber (2008) allows reference points to be different across people, but treats the income reference points as latent variables (as opposed to assigning reference points based on rational expectations). Doran (2008) finds that cabdrivers who display reference-dependent preferences did not change their hours worked following an exogenous permanent wage increase. This finding is supportive of a Koszegi-Rabin (2006) model of reference point adaptation.
 ${ }^{14}$ Figure 5 is based on predictions from Prospect Theory with no diminishing sensitivity. Depending on the degree of diminishing sensitivity, Figures 5a and 5b would both change in predictable ways. For example, diminishing sensitivity in the gain domain only (similar to what we find in our results) would cause the following changes to Figure 5b: The eagle line would shift downward and become concave to the origin to the left of 0 and convex to the origin to the right of 0 , the birdie line would become convex to

[^11]: ${ }^{15}$ For the regressions we report in Table 7, we use Logit rather than OLS, because Logit regression allows the shot value coefficients to vary with distance, and our coefficients are more accurate.

[^12]: ${ }^{16}$ The top 300 golfers are ranked. A total of 63 of the 188 players in our sample did not make the top 300 ranking for the 2007 PGA TOUR. We assigned these golfers the rank of 300 .
 ${ }^{17}$ Regressions in this section weight each observation in accordance with the standard error of the birdie coefficient for each golfer.

[^13]: ${ }^{18}$ For the top golfers, tournament earnings are likely to underestimate the total value they receive from doing well in golf. For example, due mainly to endorsements, Forbes (2006) declared Tiger Woods' net worth to be 500 million - far more than his approximately $\$ 83$ million in career tournament earnings as of the end of 2008.

