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Abstract

Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations, as well as a possible
therapeutic intervention. However, the lack of conclusive evidence on whether tACS is able to effectively affect cortical
activity continues to limit its application. The present study aims to address this issue by exploiting the well-known
inhibitory alpha rhythm in the posterior parietal cortex during visual perception and attention orientation. Four groups of
healthy volunteers were tested with a Gabor patch detection and discrimination task. All participants were tested at the
baseline and selective frequencies of tACS, including Sham, 6 Hz, 10 Hz, and 25 Hz. Stimulation at 6 Hz and 10 Hz over the
occipito-parietal area impaired performance in the detection task compared to the baseline. The lack of a retinotopically
organised effect and marginal frequency-specificity modulation in the detection task force us to be cautious about the
effectiveness of tACS in modulating brain oscillations. Therefore, the present study does not provide significant evidence for
tACS reliably inducing direct modulations of brain oscillations that can influence performance in a visual task.
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Introduction

In the last decade, there has been a gathering consensus on the

functional role of brain oscillations in a variety of cognitive

functions and their importance for understanding brain processing

[1,2]. Evidence has been reported that most cognitive processes

rely on the synchronous activity of large ensembles of functionally

linked firing neurons, which occur in distinct frequency bands

according to the extension of the network architecture [3,4,5,6].

Recent years have seen the emergence of the exciting possibility of

inducing the controlled entrainment of brain rhythms through the

use of non-invasive brain stimulation techniques, such as repetitive

transcranial magnetic stimulation (rTMS) and transcranial alter-

nating current stimulation (tACS) [7,8,9]. In comparison to the

classical rhythmic sensory stimulation protocols (e.g., visual

flicker), the use of these methodologies offers the advantage of

directly stimulating cortical targets and bypassing primary sensory

structures and areas of the input pathways (sub-cortically and

cortically). The possibility of externally manipulating brain

oscillations allows inferences about the causal role of brain

frequencies in cognition and also holds promise for therapeutic

purposes. Indeed, abnormalities in neuronal synchronisation have

been reported in many brain disorders, such as schizophrenia,

epilepsy, autism, Alzheimer’s and Parkinson’s diseases [10,11].

The opportunity to exogenously modulate these mechanisms

could pave the way for new rehabilitative applications [9].

Strong evidence of the ability of rTMS to induce frequency

entrainment has been recently reported. Thut and colleagues [12]

showed that rTMS over the posterior parietal cortex causes a local

entrainment of the preferred frequency of the underlying

generator (i.e., alpha), as revealed by a combination of TMS–

EEG recordings. Furthermore, other rTMS studies (designed on a

priori EEG knowledge of strict relationships between particular

frequency bands and cognitive functions) have showed topograph-

ic- and frequency-specific effects of rTMS on the behavioural

performances of participants [13,14,15,16].

Even if the method remains controversial, the possibility of

directly entraining oscillations in the brain has also been suggested

for tACS [17,18,19,20,21,22]. Recently rediscovered in the survey

of cognitive neuroscience, tACS involves applying weak alternat-

ing electrical currents to the head via two electrodes, which are

usually both located on the scalp. Kanai and colleagues [17],

delivered tACS over the occipital cortex, which induced visual

experiences (i.e., phosphenes) that were ascribed to the direct

interaction between tACS and the on-going oscillations of the

primary visual cortex. In particular, beta frequency stimulation

was more effective in inducing phosphenes in an illuminated

room, whereas alpha frequency stimulation was more effective in

darkness. Researchers have argued, however, that tACS-induced

phosphenes may actually be the result of activation of the retina

[23] instead of the primary visual cortex. Indeed, electrical current

could reach the orbital area and retina via volume conduction of

the scalp irrespective of electrode configurations on the head [24].

Evidence consistent with this interpretation was already reported

in the last century, when Brindley [25] observed that the intensity

needed to elicit phosphenes increased with the distance from the

eye and that they cannot be elicited after pressure blinding. What

deserves attention, however, is not merely concern about the

retinal versus cortical origin of tACS-induced phosphenes, but the
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possibility of tACS directly stimulating the cortex (but see [26]).

The controversy is not new. Lippold and Redfearn [27] observed

that, to obtain ‘‘psychological effects at imperceptible current

strengths’’, the current flow needed to enter the orbital fissure. In

addition, Smitt and Wegener [28] and Hayes [29] recorded

intracerebral voltage measurements in human cadavers and alive

monkeys, respectively, and found evidence for a general diffusion

of current through the brain. Widespread changes in neuronal

activities of cortical and subcortical regions after electrical

stimulation have recently been reported with modern neuroimag-

ing techniques [30,31]. Therefore, if tACS is effective for cortical

stimulation, its effects appear to be generalised to all of the brain,

instead of localised to a single cortical area.

Even if controversial, investigating the ability of tACS to induce

direct cortical modulations of the natural brain oscillations

remains an important issue because transcranial electric stimula-

tion (tES) offers some advantages over TMS in terms of safety.

Additionally, tES has a better translation in the clinical setting

because the method is more feasible [32,33]. To this end, the

current study was designed to exploit the well-established relation

between posterior alpha-oscillations (8–14 Hz) and visual atten-

tion/perception [15,34,35,36,37]. A role in regulating the

incoming information at early stages of processing has been

assigned to the posterior alpha rhythm through the functional

inhibition of task-irrelevant regions [38,39,40]. Specifically,

posterior alpha power before stimulus presentation is inversely

related to the quality of perception [15,41,42,43,44] and

retinotopically organised in accordance with the focus of attention

[34,45,46].

Based on this evidence, we decided to apply tACS at the alpha

frequency (10 Hz) over the right or left occipito-parietal areas

while participants performed a visual detection and discrimination

task with targets appearing in one of the two visual fields with the

same probability. A low (6 Hz) and a high (25 Hz) tACS frequency

were used as control conditions (in addition to sham stimulation) to

rule out possible unspecific effects of current stimulation. The

hypothesis was straightforward. If tACS was able to induce a local

entrainment of the alpha rhythm, the entrainment would mimic

the natural brain rhythms of inhibition, leading to a decline of

target perception in the visual field contralateral to the alpha-

stimulated hemisphere. This rationale was the same as used by

Romei and colleagues [15] in testing the possibility of entraining

specific local frequencies with rTMS.

Materials and Methods

Participants
All participants were right handed according to the Edinburgh

handedness inventory test [47], had normal or corrected-to-

normal visual acuities and showed no risk factors for tACS

application, as assessed through safety questionnaires. Each

participant recruited for the study completed a preliminary

behavioural session. Those who demonstrated ceiling (accuracy

at ceiling of the second contrast) or floor effects (flat accuracy

function through contrasts) were excluded. As a result, 96 healthy

volunteers participated in the entire experiment. They were

randomly assigned to one of four groups of stimulation, each one

composed of 24 participants: sham (12 females; mean age = 22

years; SD = 2.3), 6 Hz (12 females; mean age = 21 years;

SD = 2.4), 10 Hz (12 females; mean age = 22 years; SD = 3.2)

and 25 Hz (12 females; mean age = 22 years; SD = 2.1). In each

group, half of the participants received tACS over the right

hemisphere and the other half over the left hemisphere. All the

participants were naı̈ve to tACS effects and did not know to which

stimulation group they were assigned. The experimental method

had the approval of the Ethics Committee of the IRCCS Centro

San Giovanni di Dio Fatebenefratelli, Brescia, Italy. Written

informed consent was obtained from each participant.

Stimuli
Target stimuli were low-contrast Gabor patches (sinusoidal

gratings of 0.94 cpd enveloped by a Gaussian) tilted 22 degrees to

the left or right with a diameter of 3.39 degrees of visual angle.

The stimuli had five different contrast levels, ranging from 0.034 to

0.052 (Michelson contrast). In a pilot experiment, we tested an

additional group of twelve participants with a similar task, using

the method of constant stimuli with seven contrast levels. In the

main experiment, the central contrast was adjusted at the

threshold level estimated in the pilot. Thus, two of the remaining

contrasts were sub-threshold, and the other two were supra-

threshold. We also implemented catch trials at 0.0 (Michelson

contrast) to estimate the false alarm rate.

Stimuli were displayed on a Hanns.G LED monitor with a

screen resolution of 192061080 pixels. The presentation was

controlled by the Psychtoolbox package from Matlab (Math-

Works, Natick, MA) [48,49]. The mean luminance of the display

was 55.9 cd/m2. Gamma correction was applied. The screen was

at a distance of 56 cm from the participants.

Procedure
The task is schematically displayed in figure 1. Participants were

instructed to maintain fixation on a central cross. After a variable

interval (450–750 ms) following a warning signal (i.e., the fixation

cross became larger for 50 ms), a target appeared for 30 ms inside

one of two placeholders (squares of 3.39 degrees) positioned at 66

degrees eccentricity of the visual angle along the horizontal

meridian relative to the central fixation cross (0.5 degrees). Two

consecutive responses were required. The first response (R1-

detection) was a yes/no stimulus detection task, in which the

participants were asked to report whether they believed stimuli

were present. The words ‘‘yes’’ and ‘‘no’’ were presented

horizontally, 4.5 degrees below the central fixation cross, and

participants were instructed to press one of the two corresponding

response buttons on the keyboard (i.e., C or N) with their right or

left index fingers. The respective positions of yes – no responses

were balanced across participants. In the second response (R2-

discrimination), participants were forced to decide between two

orientation alternatives (622 degrees). They were specifically

asked to perform the orientation discrimination task in all trials,

even when they did not believe a stimulus was previously present.

All participants pressed the right response button (N) with their

right index finger for clockwise orientation (+22 degrees) and the

left response button (C) with their left index finger for counter-

clockwise orientation (222 degrees). For every response, a fixed

time limit of 1500 ms was given. However, accuracy was

emphasised over speed. After an intertrial interval of 1500 ms,

the next trial began.

All participants performed short training sessions to familiarise

themselves with the task (16 trials) and then a baseline session,

followed by a tACS session. In the baseline session, participants

simply performed the behavioural task, while in the tACS session,

they performed the same task concurrently with tACS application.

Even if a learning effect occurred across sessions, a fixed order of

the sessions was maintained to avoid any possible tACS carry-over

effects in the blocks without stimulation. Both sessions consisted of

144 trials, including 12 targets in the left and right visual fields for

each of the 5 contrast levels and 24 catch trials. Every session was

divided into three blocks; each block had a mean duration of

tACS and Brain Oscillations
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approximately 5 minutes interleaved with short breaks. Trials at

different contrast levels within each block were presented in a

randomised order. The entire experiment lasted approximately

75 minutes including the montage of tACS electrodes and breaks.

Transcranial electrical stimulation - tACS
tACS was continuously delivered for the entire duration (5 min)

of each block of the tACS session by a battery-driven current

stimulator (neuroConn GmbH, Ilmenau, Germany) through

conductive-rubber electrodes placed in sponges. A small target

electrode (16 cm2) was placed (according to the participant group)

over the left or right occipito-parietal areas (PO7 or PO8), as

determined by the International 10–20 EEG system. The

reference electrode was positioned over the vertex CZ and was

larger than the occipito-parietal electrode (35 cm2) to reduce

current density and limit stimulation effects under its surface [50].

The electrode’s position was based on the montages in previous

studies of the visual cortex [17,51] and studies reporting tES effects

in the hemifield contralateral to the stimulation side [52,53]. A

sinusoidal electrical current waveform with no DC offset was

delivered at a particular frequency to each group (i.e., 6 Hz,

10 Hz or 25 Hz). The intensity was 1 mA (peak-to-peak) to avoid

the perception of flickering lights usually reported with higher

stimulation intensities [17,20]. In the sham stimulation group, a

10 Hz tACS was turned off 10 s after the beginning. All the

stimulation parameters (max current density = 0.063 mA/cm2;

duration = 5 minutes63 blocks; max total charge = 0.056 C/cm2)

were maintained below the safety limits [54]. At the end of the

experiment, all participants completed questionnaires [55] to

evaluate possible discomforts induced by tACS and influences on

their performances.

Data Analysis
The behavioural measure of interest was accuracy (i.e.,

proportion of correct responses) as a result of the instructions

emphasising perceptual aspects of the task. Arcsine-transformed

accuracy [56] was determined separately for the first (R1) and

second (R2) responses for each contrast level and stimulation

group. Specifically, the computation of the R2 Accuracy

(discrimination task) was independent of whether participants

had or had not observed the Gabor patch in the first instance.

To verify whether and how R1 and R2 were affected by tACS

frequency, data were first subjected to a comprehensive mixed-

design ANOVA with the between-subject factors frequency (sham,

6 Hz, 10 Hz, 25 Hz) and stimulated hemisphere (left, right) and the

within-subject factors session (baseline, tACS), target hemifield

(ipsilateral, contralateral to the stimulated hemisphere) and contrast

level (five). Because the analyses revealed no significant difference

Figure 1. Schematic illustration of the temporal structure of a trial. A Gabor patch at different contrast levels appeared for 30 ms inside one
of two lateral placeholders after a variable interval (450–750 ms) from a warning signal (the fixation cross became larger for 50 ms). Participants had
to provide two consecutive responses: first, to report whether they believed the Gabor patch was present or not (detection) and then to select its
orientation (discrimination). For every response, a fixed interval of 1500 ms was available.
doi:10.1371/journal.pone.0056589.g001
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based on the stimulated hemisphere (left, right), this factor was not

further considered in the analyses.

To rule out possible differences between groups at the baseline,

accuracy during the tACS session was normalised by considering

accuracy during the baseline session (i.e., tACS-baseline accuracy).

Accordingly, R1 and R2 normalised accuracy data were submitted

to a mixed-design ANOVA testing frequency (sham, 10 Hz, 25 Hz,

6 Hz) as a between-subject factor and target hemifield (ipsilateral,

contralateral to the stimulated hemisphere) and contrast level (five) as

within-subject factors.

Although no speeded response was required, we also analysed

the mean reaction times (RTs) of the correct trials of R1 for each

contrast level and each frequency. Anticipations (i.e., pressing the

response button before the appearance of the target), omissions (no

response) and RTs shorter or longer than 62 standard deviations

of the mean of each participant were excluded from the analyses.

The same mixed-design ANOVA applied to accuracy was also

performed for the RTs. In all the analyses, the Greenhouse-

Geisser epsilon correction factor was applied, when appropriate, to

compensate for possible effects of non-sphericity in the measure-

ments. For multiple comparisons, the Fisher’s least significant

difference (LSD) test was performed [57].

Results

Most of the participants did not feel any discomfort during

tACS stimulation, as revealed by their spontaneous reports and

questionnaires completed at the end of the experiment. Itch and

pinch were the most commonly reported sensations (in 25% and

38% of the participants, respectively) with light to moderate

intensity. Importantly, there were no differences between the

experienced sensations and belief about tACS’s influence on the

performances across participants belonging to the four stimulation

groups, as shown by nonparametric Kruskal-Wallis rank sum tests

(all p’s.0.2).

R1 Accuracy
In accordance with expectations, participants’ accuracies in

detecting targets showed general improvements as the contrast

level increased [contrast level F(4,368) = 586.97, p,0.001]. R1

accuracy also improved in the tACS session in comparison to the

baseline session [session F(1,92) = 4.56, p = 0.035], reflecting a

general learning effect. This effect, however, differed between

groups, as revealed by the interaction frequency6session

[F(3,92) = 2.63, p = 0.055]. As illustrated in figure 2A, participants

who received sham or 25 Hz tACS improved their performance in

the second session in comparison to the first one (p = 0.017 and

p = 0.024, respectively), but this improvement was not present in

participants stimulated at 6 Hz and 10 Hz (p’s$0.59). This result

suggests that tACS applied at both 6 Hz and 10 Hz induced a

suppression of the learning due to multiple repetitions of the same

task; therefore, there was no performance improvement.

A significant difference, although narrow, between groups also

emerged when directly comparing the normalised accuracy of the

tACS sessions [frequency F(3,92) = 2.63, p = 0.055]. Groups stimu-

lated at both 6 Hz and 10 Hz showed worse performances

compared to the sham group (p = 0.03 and p = 0.046, respectively)

and the same trend in comparison to the 25 Hz group (p = 0.06

and p = 0.09, respectively), as shown in figure 2B.

Notably, differences between groups were always unaffected by

target position because the factor frequency never interacted with

the target hemifield, nor was there a significant effect due to the main

factor target hemifield (all p’s.0.1). This result indicates that the

tACS-induced suppression was not specific to the contralateral

side, but the suppression was generalised to both visual fields. The

factor frequency never interacted with the factor contrast level (all

p’s.0.2), suggesting that tACS-induced effects were unaffected by

the contrast values.

We also performed a mixed-design ANOVA with the between-

subject factors frequency (sham, 6 Hz, 10 Hz, 25 Hz) and stimulated

hemisphere (left, right) and the within-subject factors session (baseline,

tACS) on false alarm rate to catch trials, in order to exclude

changes in criterion. No significant effects were highlighted (all

p.0.17).

R2 Accuracy
When participants were asked to discriminate the orientation of

the target (i.e., R2), their performances were not affected by the

tACS frequency (see figure 3). Indeed, the main factor frequency

never reached significance in the comparison between single

sessions or in the analysis of normalised accuracy (all p’s.0.27). As

expected, R2 accuracy also improved as the contrast level

increased [contrast level F(4,368) = 379.77, p,0.001], and the

performance of all groups showed a significant enhancement in

the tACS sessions with respect to the baseline sessions [session

F(1,92) = 14.733, p,0.001], particularly at the three highest

contrast levels [session6contrast level F(4,368) = 3.16, p = 0.02].

Figure 2. Results relative to the detection response (R1) in
terms of accuracy. (A) Accuracy (proportion of correct responses) of
every tACS frequency (Sham, 6 Hz, 10 Hz and 25 Hz) is shown during
the baseline session (in black) and tACS session (in grey). (B) Normalised
accuracy of every tACS frequency is shown as the difference between
the % of correct responses during the tACS session and % of correct
responses during the baseline session. Vertical bars correspond to the
standard error of the mean. * indicates p,0.05.
doi:10.1371/journal.pone.0056589.g002
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Reaction Times
Because accuracy was emphasised over speeded responses,

reaction times were expected to be uninformative, which was

confirmed by the ANOVAs not revealing any significant effect of

the factor frequency (all p’s.0.3).

Discussion

The aim of the present study was to test the ability of tACS to

induce a direct oscillatory entrainment in the stimulated target

area. Based on the inhibitory effects of the alpha rhythm

[15,38,39,40], we expected a suppression of target perception in

the visual field opposite of the alpha-stimulated hemisphere. In our

experiment, participants stimulated at 10 Hz showed worse

performances in comparison to subjects receiving no stimulation

(sham group) or high frequency stimulation (25 Hz group),

partially confirming expectations. However, these effects were

not retinotopically specific or frequency-specific, essential condi-

tions that support a local alpha entrainment. Indeed, a general

decrease of visual perception was observed over both visual fields,

independently of the stimulation site (ipsilateral vs. contralateral),

and this result was found in the groups stimulated at both 6 Hz

and 10 Hz.

The spreading of the effect across hemispheres could be

ascribed to the poor spatial resolution of tES, and methodological

accounts have to be considered. When using rectangular-pad

electrode configurations, focality is considered to be limited, and

the induced effects might also be able to modulate cortical areas

adjacent to the target site [50,58,59,60]. Even if we properly used

an electrode with reduced size for the stimulation of the occipito-

parietal areas and a larger reference electrode to improve spatial

focality, as suggested by Nitsche and colleagues [50] (but see [61]),

we could not eliminate this possibility. The use of a cephalic

reference electrode is another factor implicated in spatial focality

because the relative position of both electrodes is determinant for

the induced current profile in the brain [62]. However, we placed

the reference electrode over the vertex, as is conventional in most

previous studies on visual perception [17,51]. In addition, the

stimulation intensity adopted in this study (1 mA) could have been

too low to reach the cortical target and induce a clear focal effect.

However, we had to consider the possibility of inducing

phosphenes by increasing the stimulation intensity, as reported

by previous studies [17,20]. The occurrence of tACS effects over

both visual fields could also be ascribed to the duration of the

stimulation: in each block participants received tACS for five

consecutive minutes. During this period of time, current could

have first directly reached the target area and then spread to the

contralateral hemisphere through cortico-thalamic and/or cortico-

cortical connections. Evidence for a similar mechanism has

already been reported in the motor domain, where electrical

stimulation was able to directly alter the excitability of the

stimulated region, and indirectly, the excitability of the homolo-

gous region of the opposite hemisphere [63]. However, in this

case, we would have expected the opposite effect over the

homologous areas, enhancement performance in the visual field

ipsilateral to the stimulation site, which is consistent with the push–

pull effect previously reported regarding the posterior alpha

rhythm [15,64].

Frequency-specificity was only marginally confirmed. In the

present study, precise hypotheses were formulated according to

knowledge relative to the active inhibitory role of the posterior

alpha rhythm during on-going visual processing [38,39,40].

Theta-frequency stimulation was added to the experimental

design as an additional control condition, and the stimulation

was expected to be ineffective [15]. Instead, participants receiving

tACS in the theta frequency showed performances comparable to

those of the alpha group. Although we did not intend to investigate

memory and learning, the sequential design of the study (with

fixed order of the baseline and tACS sessions) might explain the

involvement of the theta frequency. Theta band activity, indeed,

has been closely associated with memory and learning

[22,65,66,67,68,69], as well as synaptic plasticity [70,71]. There

is also evidence linking theta oscillations to other cognitive

functions, such as attention [72,73,74] and sensorimotor integra-

tion [75,76,77]. Because theta band oscillations reflect long-range

communication between distant brain areas [5], these oscillations

have been suggested to coordinate sensory and motor brain

regions when the task requires updating a motor plan on the basis

of incoming sensory information. To this regard, the task

performed in the present study could involve changes in theta

band activity, as participants were required to have two

subsequent responses according to the features of the target

stimulus. Functional involvement of the theta-band activity is

therefore plausible considering both learning effects and the

alternating responses. Most of the previous studies, however, found

a positive correlation between theta activity and task performance:

increase in theta band power was observed during the encoding

and retrieval of successfully remembered items [65,78] and when

the memory load was systematically increased [66,79]. Thus, after

Figure 3. Results relative to the discrimination response (R2) in
terms of accuracy. (A) Accuracy (proportion of correct responses) of
every tACS frequency (Sham, 6 Hz, 10 Hz and 25 Hz) is shown during
the baseline session (in black) and tACS session (in grey). (B) Normalised
accuracy of every tACS frequency is shown as the difference between
the % of correct responses during the tACS session and % of correct
responses during the baseline session. Vertical bars correspond to the
standard error of the mean. * indicates p,0.05.
doi:10.1371/journal.pone.0056589.g003
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a direct entrainment of theta by tACS, an improvement of the

visual performance should be expected, instead of a worsening of

target detection as in our data. Based on all of these consider-

ations, the lack of retinotopical specificity and frequency specificity

suggest that the present results may not be ascribed to the direct

entrainment of brain oscillations induced by tACS. However,

these data cannot prove that tACS is unable to manipulate EEG

oscillations, and this uncertainty represents a study limitation.

Another point that must be discussed is that all the tACS effects

observed in the present study were related to the detection, but not

to the discrimination response. The difficulty level was different

between the two tasks: detecting the luminance change induced by

the brief appearance of the target was easier than judging its

orientation. Therefore, because performance was at chance level

at the lowest contrast levels in the sham condition, the second

response might be less sensitive to slightly worse performance

induced by tACS. However, no tACS effect on the discrimination

response emerged when we focused the analysis on the three

highest contrast levels, in which performance was greater than the

chance level. We also analysed the discrimination responses

considering only those trials in which participants had correctly

detected the Gabor patch for R1 Accuracy, but no tACS effect was

observed. One could argue that tACS, as applied here according

to the chosen montage, actually stimulated the dorsal visual

stream, where the source of alpha activity was localised [12,80].

The dorsal visual stream is the projection conveying the signal by

the magnocellular system [81], which is particularly sensitive to

stimuli at low-contrast and low-spatial frequency, like those used in

the present study [82,83,84]. Electrical stimulation of the dorsal

stream could have impaired target detection because the dorsal

stream responds well to rapid changes in luminance contrast. On

the contrary, the fine discrimination of visual features, such as the

target orientation, is also under the control of the ventral visual

stream, which was not affected by the stimulation leaving the

discrimination task unchanged. Nevertheless, extensive literature

shows that the attention bias associated with the parietal alpha

modulation affects both detection [15,41,46] and discrimination

[34,45] tasks. Accordingly, an effective alpha entrainment over

parietal regions should have induced the same effect on both

responses.

A key point worth considering in the discussion of these results is

the stimulation timing relative to the phase of the on-going

oscillatory activity. Brain oscillations are not only characterised by

power and frequency but also by their instantaneous phase. There

is compelling evidence that phase dynamics reflect cyclic

fluctuations of neural excitability and play a relevant functional

role in cognitive processes [3,85,86,87,88]. Schyns and colleagues

[89] have recently demonstrated that phase codes considerably

more information than power during an emotion categorisation

task. Moreover, an increasing number of studies show that

processing of visual information is strongly dependent on the phase

of the spontaneous EEG oscillations, such that a stimulus

appearing at the optimal phase would be optimally registered

and perceived, while at the opposite phase, the stimulus might be

entirely missed [90,91,92,93]. Thus, studies aiming to modulate

participants’ behaviours through the induction of an exogenous

entrainment of brain rhythms should also take into consideration

the temporal dynamics of phase of the underling brain oscillations

and accordingly trigger tACS application. A similar approach has

been recently followed by Neuling and colleagues [94], who

applied oscillatory transcranial direct current stimulation at 10 Hz

while subjects were performing an auditory detection task.

Importantly, they presented the stimuli in specific phase bins

relative to the electrical stimulation and found specific behavioural

consequences dependent on the phase of the entrained oscillation.

In the present study, tACS was simply applied for five consecutive

minutes without a finer synchronisation with visual stimuli, and

this application could have minimised the results. Another

important aspect to take into account is the individual peaks of

oscillations in a particular frequency-band. We have observed that

alpha frequency shows a great inter-individual variability, and the

frequency also changes across life-span [95]. In our study, we did

not individually select the stimulation frequency; this point is a

limit of the study.

On the whole, combining all aspects discussed above with a

consistent interpretation of the ability of tACS to induce a direct

entrainment of cortical oscillations is quite difficult because our

data did not show conclusive proof or disclaimer of the point.

Perhaps the most parsimonious explanation could be found by

considering the possibility that the current flow spreads through

the retina. Even if tACS did not induce a conscious perception of

visual phosphenes in the present study, its action, which is

subthreshold by definition due to the low stimulation intensity,

could still affect the functioning of retinal cells. In this regard, we

consider that contrast detection starts from the retina while

orientation discrimination is a cortical process that occurs at the

level of the primary visual cortex (i.e., V1). Indeed, research has

established that different aspects of a visual scene are processed by

separate parallel pathways, which run from the ganglion cells of

the retina to the V1, passing through the lateral geniculate nucleus

[96,97]. The magnocellular and parvocellular cell systems differ

significantly in their anatomical and physiological properties [84].

In particular, they differ with respect to contrast gain: the former

systems are much more sensitive (8–10 times) to luminance

contrast than the latter [82]. Thus, the magnocellular system is

well suited to handle detection of rapid changes of low luminance

stimuli, and this system is already in the retina. The recognition of

stimuli orientation, instead, occurs in the V1 cortex, where the

information is carried by both the magnocellular and parvocellular

systems [96]. The results of the present experiment could be

explained if tACS at low frequencies (6 Hz and 10 Hz) was able to

selectively interfere with the magnocellular but not the parvocel-

lular cells of the retina. In this case, detection would be impaired,

while discrimination could be supported at the V1 level by the

parvocellular system. Studies on the primate retinal ganglion cells

showed that cells in the magnocellular system actually have

temporal-frequency response characteristics distinct from cells in

the parvocellular system [98,99] and they peak at approximately

10 Hz [100]. Although intriguing, this theory is only a speculative

explanation that needs to be investigated in further studies.

Another concern with tES in general (not only tACS) regards

the way in which current flows through the brain. While the effects

induced by electrical stimulation directly applied to the cortical

tissue are well established [101,102,103,104,105,106,107], the

same is not true when stimulation is applied transcranially over the

scalp. During any tES modality, the current that reaches the

cortex is strongly influenced by anatomical factors because of the

different electrical conductivities of the intermediate tissues, such

as the scalp, skull, cerebrospinal fluid and brain [59,108].

Moreover, because the impedance of the skull is higher relative

to that of the scalp, most of the current is shunted across the scalp

[60]. Evidence provided by imaging and modelling studies

[30,31,59,109] as well as clinical studies [110,111,112] suggests a

widespread modulation of multiple cortical and sub-cortical

regions, independently of their anatomical connections. Consid-

ering these aspects, the range of possible interpretations for the

data of the present study becomes wider and more elaborate.
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In conclusion, the present study does not provide decisive

evidence for tACS reliably inducing direct modulations of the

natural brain oscillations in a visual detection and discrimination

task. Although previous results appear to support this possibility

[18,21,22,26], data from this study lacks the retinotopical-

specificity and frequency-specificity necessary to conclusively

argue for the capability of tACS to modulate spontaneous brain

oscillations. On the whole, we urge caution and the need for

further investigation.
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