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Abstract 33 

Long-term memory is often considered easily corruptible, imprecise and inaccurate, especially in 34 

comparison to working memory. However, most research used to support these findings relies on 35 

weak long-term memories: those where people have had only one brief exposure to an item. Here 36 

we investigated the fidelity of visual long-term memory in more naturalistic setting, with 37 

repeated exposures, and ask how it compares to visual working memory fidelity. Using 38 

psychophysical methods designed to precisely measure the fidelity of visual memory, we 39 

demonstrate that long-term memory for the color of frequently seen objects is as accurate as 40 

working memory for the color of a single item seen 1 second ago. In particular, we show that 41 

repetition greatly improves long-term memory, including the ability to discriminate an item from 42 

a very similar item ('fidelity'), in both a lab setting (Exps. 1-3) and a naturalistic setting (brand 43 

logos, Exp. 4). Overall our results demonstrate the impressive nature of visual long-term memory 44 

fidelity, which we find is even higher fidelity than previously indicated in situations involving 45 

repetitions. Furthermore, our results suggest that there is no distinction between the fidelity of 46 

visual working memory and visual long-term memory, but instead both memory systems are 47 

capable of storing similar incredibly high fidelity memories under the right circumstances. Our 48 

results also provide further evidence that there is no fundamental distinction between the 49 

‘precision’ of memory and the ‘likelihood of retrieving a memory’, instead suggesting a single 50 

continuous measure of memory strength best accounts for working and long-term memory. 51 

 52 
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Public Significance Statement 54 

Visual working memory appears to be based on persistence of perceptual representations in 55 

visual cortex. By contrast, visual long-term memory depends critically on semantically 56 

meaningful stimuli and is organized by categories and concepts. Does this mean visual long-term 57 

memory is fundamentally incapable of storing as precise perceptual information as visual 58 

working memory? In the current work, we show that after being shown multiple repetitions of 59 

the same item, visual long-term memory can represent incredibly precise visual details. In fact, 60 

after just 8 repetitions, visual long-term memory can be as precise as our very best visual 61 

working memories. This provides evidence that there is not a fundamental distinction between 62 

the fidelity of visual working memory and visual long-term memory. 63 

 64 

Keywords: visual long-term memory; visual working memory; repetition; memory fidelity; 65 

memory capacity  66 
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Humans have remarkable visual long-term memory abilities, capable of storing thousands of 67 

items (Standing, Conezio & Hyber, 1970) with high fidelity (Brady, Konkle, Alvarez & Oliva, 68 

2008). However, while long-term memory can be highly accurate, many researchers have found 69 

that it is less accurate than working memory  (with claims made in terms of “precision”: 70 

Biderman et al. 2019; or only “likelihood of retrieval”: Brady, Konkle, Gill, Oliva, & Alvarez, 71 

2013) and less robustness to noise (Schurgin & Flombaum, 2018a). For example, Schurgin and 72 

Flombaum (2018a) show that adding additional noise to an object image when testing it has 73 

almost no effect on working memory but substantially impacts long-term memory, even with 74 

identical encoding and test situations. In the current work, we ask (1) whether working memory 75 

is truly capable of storing higher fidelity memories than visual long-term memory; (2) whether 76 

long-term memories become higher fidelity after repetitions or have an intrinsic limit on the 77 

amount of visual detail they can contain; (3) whether multiple distinct processes (e.g., precision 78 

errors vs. guesses) are present in working memory and long-term memory, or whether a single 79 

process best explains the data; (4) and, ultimately address the question of whether working 80 

memory and long-term memory share a representational format or are qualitatively distinct. 81 

 82 

Is visual long-term memory less “precise” than working memory? 83 

It may not seem surprising that after a long delay, memory is weaker and correspondingly 'long-84 

term' memories may be less strong and less precise than working memory. This could be true for 85 

a variety of reasons: for example, the mere passage of time may particularly impact memory for 86 

detail but leave gist unaffected (e.g., Brainerd & Reyna, 2005; Sadeh et al. 2016), or interference 87 

may leave categorical knowledge of what we have seen but impair memory for the specific 88 

details of individual objects (e.g., Koutstaal & Schacter, 1997; Maxcey & Woodman, 2014). In 89 

fact, some researchers argue not only that the two systems tend to differ, but that the visual 90 

working memory system is fundamentally different from visual long-term memory system in its 91 

ability to represent detailed information (perhaps because working memory necessarily precedes 92 

long-term memory, e.g., Biderman et al. 2019). 93 

The idea that working memory is inherently more perceptual than long-term memory is 94 

consistent with classic work from the verbal domain showing that working memory interference 95 

is based on perceptual similarity but long-term memory interference is based on semantic 96 

similarity (Baddeley, 1966). However, in the domain of visual memory, this claim is also partly 97 
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motivated by the nature of active storage in visual working memory: sensory recruitment models 98 

argue that visual working memory arises from persisting perceptual representations in visual 99 

cortex (Serences, 2016; Serences, Ester, Vogel, & Awh, 2009; Harrison & Tong, 2009). By their 100 

nature, low-level visual representation like this are capable of maintaining significant visual 101 

detail. By contrast, long-term memory must necessarily involve consolidated memory 102 

representations, likely accessed via medial temporal lobe retrieval structures and so inherently 103 

less 'visual' than the case of visual working memory. In fact, many models of the hippocampus 104 

and other medial temporal lobe structures argue that a central design feature of this memory 105 

system is 'pattern separation' and 'pattern completion' -- designed to group all approximately 106 

similar items together into a unified memory representation, and maximize the distinctiveness of 107 

this memory from other, similar objects (Yassa & Stark, 2011).  108 

In the case of visual long-term memory, the semantic nature of memory is well known, 109 

and broadly consistent with the idea that visual long-term memory may be less perceptual and 110 

more semantic than visual working memory. For example, it is known that interference between 111 

items in visual long-term memory is based on semantic similarities rather than perceptual 112 

overlap (Konkle et al. 2010), and that items interfere with each other within a category-based 113 

structure in visual memory (e.g., Maxcey, Glenn, & Stansberry, 2018). Understanding the 114 

meaning of a stimulus is also critical to successful encoding into visual long-term memory, as 115 

items that are understood are better remembered than identical visual stimuli that are not 116 

understood by participants (e.g., Wiseman & Neisser, 1974; Brady, Alvarez & Störmer, 2019). 117 

Thus, there are many reasons to suspect that there could be a fundamental difference between 118 

working memory and long-term memory in the degree of perceptual detail that can be stored and 119 

the tendency to rely on conceptual structure rather than perceptual information.  120 

 121 

The role of memory strength in both systems: set size and repetition 122 

However, several important factors are often overlooked when researchers directly compare the 123 

precision of representations in these memory systems. One is that working memory is often 124 

asked to hold more than just one item in mind simultaneously – for example, to compare two 125 

items, we may hold both in mind at once  – and because of its limited capacity, this comes with a 126 

major cost. In fact, even holding in mind two items rather than one in working memory makes 127 

memory for each item far less accurate and precise (e.g., Wilken & Ma, 2004; Zhang & Luck, 128 
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2008). Thus, while working memory could be capable of holding more precise estimates of a 129 

single item than long-term memory is, with reasonable working memory loads consisting of a 130 

few items, it remains possible that working memory represents information with less fidelity than 131 

long-term memory. 132 

Another factor that is often overlooked in comparisons between these two systems is that 133 

while working memory is necessarily limited to maintaining information that was just present, 134 

long-term memory can integrate across many separate episodes. Indeed, in many ways the 135 

principle function of long-term memory is to integrate information over time, both to extract 136 

categories and other general principles (e.g., Schapiro et al. 2014) as well as to learn about 137 

particular objects and how they vary (e.g., Rust & Stocker, 2010). While working memory is 138 

designed to work with objects that were just present or that are still present -- and so the object 139 

that is the source of the information is straightforward to determine -- long-term memory must 140 

connect across large time windows without spatiotemporal cues to what objects are the 'same' as 141 

ones that have been previously seen (Schurgin & Flombaum, 2018b). This raises the question of 142 

how precise long-term memory can really be: When we have seen a given item many times, is 143 

long-term memory at a disadvantage relative to working memory in making detailed 144 

discriminations? How accurately can people access existing memory and integrate additional 145 

information about an item into these existing long-term memories?  146 

 147 

Repetition, spacing and the testing effect 148 

It is well known that long-term memory improves with repetition (e.g., Hintzman, 1976, 2010; 149 

Schugin & Flombaum, 2018b), with a large literature demonstrating this for a variety of 150 

materials (e.g., pictures: Hintzman & Rogers, 1973; words: Cepeda, Pashler, Vul, Wixted, & 151 

Rohrer, 2006), and many influential studies asking about how best to space these repetitions to 152 

maximize the improvement in memory (e.g., Cepeda et al. 2006). However, less work has asked 153 

about the fidelity of memory (i.e., beyond simply asking whether an item is or is not 154 

remembered) and how it is impacted by repetition. Models of memory differ on the extent to 155 

which repetition is assumed to independently generate new traces vs. truly integrate new 156 

information into higher fidelity memory traces (e.g., Raaijmakers, 2003), and many classic 157 

models of memory presume that additional repetition simply increases the probability of retrieval 158 

for an item, but does not impact its representational nature (Bower, 1961); for example, arguing 159 
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new experiences lay down new memory traces rather than integrating with past traces 160 

(Hintzman, 1976; Moscovitch et al. 2006; see Kahana, 2020 for a review). Thus, this question is 161 

of considerable interest both practically and theoretically.  162 

Work using continuous report measures has provided some mixed evidence on this issue. 163 

For example, Sutterer and Awh (2016) asked participants to recreate the color of studied object 164 

after a delay using a circular color wheel. For some objects, they gave people retrieval practice. 165 

Based on the fit of “mixture models” to their data, which attempt to separate errors into two 166 

putatively distinct sources (“the precision of remembered items”, and “the proportion of items 167 

retrieved successfully”), they argued that retrieval practice seems not to enhance the precision of 168 

visual memory (Sutterer and Awh 2016). This is surprising because retrieval practice is among 169 

some of the most robust ways to improve memory for items in most situations (e.g., Roediger & 170 

Butler, 2011). Thus, this could be taken as evidence that repeated memory traces are not in fact 171 

integrated into high fidelity memory traces. However, while Sutterer and Awh (2016) found no 172 

effect on “precision”, they did find an effect of retrieval practice on the other parameter that the 173 

model they fit distinguishes – the proportion of items that were retrieved at all (the opposite of 174 

‘guess rate’). Importantly, in several other instances it has been found that with higher power, 175 

putative changes in “only” ‘proportion of items retrieved, but not item precision, are in fact 176 

changes in both (e.g., Zhang & Luck, 2009 vs. Rademaker et al. 2018 in the case of delay). Thus, 177 

this work leaves open the possibility that memory fidelity – the accuracy of the memory in terms 178 

of the exact color being reproduced -- does in fact improve with repetition and testing practice, 179 

not only the ability to access the memory. 180 

 181 

Dissociating “precision” from “likelihood of items being retrieved at all” 182 

The majority of existing work asking about the fidelity of visual long-term memory and visual 183 

working memory has used methods that attempt to dissociate memory “precision” from the 184 

‘”likelihood of retrieval” (e.g., in long-term memory: Sutterer & Awh, 2016; Brady et al. 2013; 185 

Biderman et al. 2019). However, as noted above, recent work has often empirically found that 186 

these two parameters are rarely, if ever, dissociable (that is, higher-power tends to reveal both 187 

change, not just one: Rademaker et al. 2018; Biderman et al. 2019). Furthermore, we have 188 

recently argued is in fact not even theoretically possible to dissociate ‘likelihood of retrieval’ 189 

from ‘precision’ in visual memory (Schurgin, Wixted & Brady, 2018). Instead, both of these 190 
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putatively-distinct parameters seem to tap into single process – characterized by a unitary 191 

concept of underlying memory strength, rather than two dissociable psychological constructs (of 192 

‘precision’ and ‘guessing’).  193 

Work claiming a dissociation of these two parameters arose because, when asked to 194 

exactly reproduce a color or other aspect of a stimulus from memory, participants often have a 195 

substantial number of large errors (a “fat tail” in the error distribution). This is often taken as 196 

evidence for a distinct “guessing” or “memory failure” state, the prevalence of which can be 197 

estimated via a “mixture model” fit to the data (Zhang & Luck, 2008). However, Schurgin et al. 198 

(2018) have recently shown that, counterintuitively, a single process seems to best explain these 199 

error distributions –the “fat tail” of errors is just a natural consequence of offering participants 200 

many lures that are all maximally dissimilar from a target, not evidence of a distinct “guessing” 201 

state (see also Bays, 2014, 2015). The model Schurgin et al. propose is relatively straightforward 202 

(see interactive primer at https://bradylab.ucsd.edu/tcc/): if you encode a color (e.g., red), 203 

familiarity spreads to other, similar colors (e.g., pink also feels familiar), but not very much to 204 

less similar colors (no familiarity spreading to yellow, blue or green). Then, these familiarity 205 

signals are corrupted by noise. In this model, memories differ only in their signal-to-noise ratio 206 

(d’). The “fat tail” of errors arise because there is almost no spreading of familiarity to any of the 207 

colors far from the encoded color (e.g., far from red). Thus, when d’ is low, and thus the noise is 208 

high, yellow, blue or green are all equally likely to be the most familiar (due to noise), creating a 209 

long, flat tail in the error distribution.   210 

This model (TCC, for Target Confusability Competition) argues that for a given stimulus 211 

– for example, a particular color space – there is always a fixed relationship between the so-212 

called “likelihood of retrieval” and “precision” that arise from mixture models, because these 213 

both tap the same unitary process, not distinct psychological states. In addition, this model 214 

provides a theoretical motivation for believing that repetition of items – which should improve 215 

the signal-to-noise ratio (d’) – should not only reduce the likelihood of large errors, but should 216 

also improve the “fidelity” of the memory. That is, this model predicts that changing memory 217 

strength must, by necessity, not only make people better at easy discriminations (was it red or 218 

blue?) but also must improve the fidelity of the memory, improving performance at difficult 219 

discriminations (was it light red or dark red?) and continuous report as well.  220 

 221 



 

 

Miner, Schurgin, Brady: Repetition and long-term memory fidelity 

 

8 

 

The current work 222 

Thus, in the current work we sought to address how repetition affects visual long-term memory 223 

fidelity. When an item is seen repeatedly, how accurately do people combine the information 224 

from each exposure? Does their ability to make subtle perceptual discriminations about the 225 

object markedly improve with repetition, or visual long-term memory inherently semantic, and 226 

non-visual in nature (e.g., Konkle et al. 2010) in a way that prevents high fidelity visual 227 

memories? Does memory fidelity change in the way predicted by single process models of 228 

feature memory (e.g., Schurgin et al. 2018) or are there strong dissociations between “precision” 229 

and “likelihood of retrieval” (Biderman et al. 2019)? 230 

We addressed these questions using psychophysical methods (in particular, continuous 231 

color report), for both newly learned objects with repeated exposure (Experiment 1-3) and 232 

existing memory for frequently seen objects in everyday life (brand logos, Experiment 4). In 233 

Experiments 1-3 we directly assessed visual long-term memory fidelity for real-world objects in 234 

a laboratory setting common to previous studies (Biderman et al. 2019; Brady et al. 2013) but 235 

with repeated exposure. In Experiment 4, we used a novel response method where participants 236 

selected the color of a previously seen object, not from a color wheel, but from a 2D slice of 237 

color space. This allowed us to assess the fidelity of participants color memory for items that do 238 

not fall on a single color wheel (i.e. colors used in brand logos).  239 

In all four experiments, we found evidence that participants ability to make very subtle 240 

discriminations about the exact color of an object improved a huge amount with additional 241 

exposure. In particular, for objects that had been repeatedly seen, participants could accurately 242 

reproduce their color as well as they could reproduce the color of a single object held in working 243 

memory for just 1 second. In addition, we found that in the tasks using a color wheel, where 244 

working memory and long-term memory could be compared directly and where the single 245 

process (e.g., TCC) vs. two states (e.g., mixture models) views could be assessed, the two 246 

systems had identical error distributions across a wide range of different memory strength 247 

conditions – with no dissociations between the supposedly distinct parameters of “precision” and 248 

“likelihood of retrieval”. Together, these results show that our visual working memory and long-249 

term memory systems do not intrinsically differ in their fidelity; instead, memory strength 250 

changes in both systems affect the tendency to make large errors and the precision of small errors 251 

in the same way, as would be expected under a single process model of memory (e.g., Schurgin 252 
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et al. 2018). Furthermore, our results show that long-term memory can be just as high fidelity as 253 

our best working memories after repeated exposure, and even standard long-term memory 254 

paradigms produce memories with higher fidelity than set-size six working memory.  255 

 256 

Experiment 1: The fidelity of visual long-term memory with repeated study 257 

 258 

Method 259 

The design, methods, dependent measures and exclusion criteria for this study were 260 

preregistered. See: http://aspredicted.org/blind.php?x=3nq63u for details.  261 

Participants: Thirty students were recruited from the University of California, San 262 

Diego’s undergraduate subject pool, and received class credit for their participation. All subjects 263 

gave informed consent, and the study was approved by the University of California, San Diego 264 

Institutional Review Board. The sample size was selected a priori (see preregistration) and was 265 

considerably larger than the sample sizes used in past literature on this question (e.g., N=5 266 

through N=24; Brady et al. 2013; Biderman et al. 2018). Our main measure of interest was how 267 

long-term memory performance benefitted from repetition, e.g., whether LTM performance was 268 

improved with 8 repetitions compared to 1. Given the large number of within-participant trials, 269 

we expected a large standardized effect size, in line with the difference between working 270 

memory and long-term memory performance in previous work, which was very large (all dz > 3, 271 

Biderman et al. 2018, ‘guess’ parameter).  Our sample of 30 participants gave us power to detect 272 

an effect 1/3rd this size (dz=1.0) in comparing 8 vs. 1 repetitions with >99% power at alpha=0.05.  273 

Stimuli: 540 object images were selected from a previously published set of stimuli 274 

(Brady et al., 2013). These images were of objects in a single arbitrary color (e.g., each object 275 

would be recognizable in any color). When presented, each object was colored randomly by 276 

rotating the hue of the object on a color wheel, ranging from 0 to 360 degrees. This allowed us to 277 

use continuous color report methods to investigate the effect of repetition. Such methods have 278 

previously been used to study both working memory for simple shapes, as well as for working 279 

and long-term memory of arbitrarily colored object images (Brady et al., 2013; Brady & Alvarez, 280 

2011; Wilken & Ma, 2004; Zhang & Luck, 2008). 281 

 282 

http://aspredicted.org/blind.php?x=3nq63u


 

 

Miner, Schurgin, Brady: Repetition and long-term memory fidelity 

 

10 

 

 283 

Figure 1. Experiment 1 Methods. (A) Methods of visual working memory task. Participants saw 284 

either 1 or 3 objects for 1 second and had to remember their colors. After a 1 second delay, they 285 

used a response wheel to change the color of the object until it matched their memory. (B) 286 

Methods of visual long-term memory task. Participants studied 42 images, consisting of some 287 

objects seen only once, some repeated twice, and some repeated 8 times. After a delay and a 288 

distracting task, participants reported the color of each of these objects using a response wheel.  289 

 290 

Procedure: Participants were asked to remember the precise color of objects and report 291 

this color using a color wheel. We compared memory performance in working memory (at set 292 

size 1 and 3) and long-term memory (for objects repeated 1, 2 or 8 times). Our primary measure 293 

of interest was how memory performance was affected by repetition and to what extent long-294 

term memory performance for well-studied items was comparable to working memory 295 

performance. 296 

Overall, participants completed two 1.5-hour experiment sessions with the delay between 297 

sessions no more than seven days. In each session, participants completed both a working 298 

memory and long-term memory task. These tasks were blocked on each day, with the order 299 

counterbalanced across participants and sessions, although the conditions within the working 300 

memory task (set size 1, 3) and within the long-term memory task (1 repetition, 2 repetitions, 8 301 

repetitions) were interleaved. 302 
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On each trial of the working memory condition, either one or three objects were 303 

presented simultaneously for 1 second in a circle around fixation (see Figure 1). Participants 304 

were instructed to remember the color of all the presented objects and avoid verbal encoding. 305 

After a 1 second delay, participants then reported the color of a randomly chosen object. The 306 

probed object appeared in greyscale in the same location it was encoded in, and participants had 307 

to match its color to their memory by rotating a response wheel that changed the color of the 308 

object. During each session, participants completed 45 trials at each set size, randomly 309 

intermixed, for a total of 90 working memory trials. Thus, across both sessions participants 310 

completed a total of 180 working memory trials total, 90 trials at each set size.  311 

The long-term memory task was blocked. In each session, participants completed 15 312 

blocks, for a total of 30 blocks across sessions. In each block, participants were shown 42 313 

images, one after another, for 1 second each with a 1 second interstimulus interval. These 42 314 

images were comprised of 6 objects shown only once, 6 objects repeated twice and 3 objects 315 

repeated eight times each; images of each object were randomly interleaved in the 42 studied 316 

images. Participants were instructed to only remember the color of all the presented objects 317 

without using verbal labels, to try to minimize any usage of verbal strategies; importantly 318 

previous work by Brady et al. (2013) found nearly no effect of a verbal interference task on this 319 

memory task.  320 

A critical aspect of our task was to ensure that participants are not actively storing 321 

information in working memory when we are attempting to probe the contents of visual long-322 

term memory. Thus, after the object images were presented, participants completed two trials of 323 

a change detection task, to ensure participants weren’t actively maintaining colors in visual 324 

working memory for the recently encoded items. In the task, adapted from Brady and 325 

Tenenbaum (2013), participants were shown a pattern of black and white squares for 750 ms, 326 

followed by a 1,000 ms blank period, and then either an identical or changed version of the 327 

original display. The test display was shown on screen until participants made a response, 328 

indicating if the test was “same” or “different” from the previous display (see Brady & 329 

Tenenbaum, 2013, for more information on this task). This filled delay period should disrupt any 330 

attempt by participants to actively maintain the colors of studied objects in working memory.  331 

After the change detection task, we assessed long-term memory performance. 332 

Participants were asked to report the color of each of the object images that they had previously 333 
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seen, using the color wheel as in the visual working memory task. An object was cued by being 334 

shown in grayscale (at the center of the screen), and then participants had to spin the response 335 

wheel to match its color to their memory.  In total, during each session participants encoded and 336 

were tested on 90 objects that they saw only once; 90 objects they saw repeated twice; and 45 337 

objected repeated eight times. Thus, across both sessions, participants encoded and were tested 338 

on 180 objects presented once, 180 presented twice and 90 presented eight times.  339 

         Participants were able to complete the experiment at their own pace, without any time 340 

constraints or penalties. Participants took on average 1hr 15 minutes for each session. They were 341 

instructed to be as accurate as possible.  342 

Data analysis. Participants reported the color of each object image using a color wheel, 343 

and therefore the angular difference from the correct answer to the participant’s selected answer 344 

on the color wheel is our measure of accuracy. On a given trial this error can range from 0° 345 

degrees, a perfect memory, to ±180°, a very poor memory. To summarize these errors across 346 

trials and estimate overall memory performance, we calculated the deviation of each response in 347 

each condition. Then, given a set of responses, we need to compute an overall measure of 348 

performance. To do this we relied on the circular standard deviation, which is a descriptive 349 

statistic that measures how dispersed participants responses are. This is similar to other 350 

descriptive statistics used in the literature (e.g., Bays et al. 2009 report a variant of this; as do van 351 

den Berg, Yoo & Ma, 2017 and others, see Ma, 2018).  352 

We use the circular standard deviation in particular as a descriptive statistic of errors 353 

because despite being straightforward and non-parametric, it is closely related to model-based 354 

measures of performance like d′ from the single-process Target Confusability Competition 355 

model (Schurgin, Wixed & Brady, 2018).  356 

We did not rely primarily on the mixture model technique of Zhang and Luck (2008) 357 

because this technique does not appear to isolate different properties of memory (see 358 

Introduction and Appendix Section 1); however, our preregistered exclusion criteria did rely 359 

upon these mixture model parameters, and we used them for this purpose; they are reported in 360 

the Appendix (Section 2).  361 

Our data are well captured by the Target Confusability Competition (TCC) model of 362 

Schurgin et al. (2018), providing evidence for this model’s generality to long-term memory. 363 

These fits are described in the Appendix (Section 1). However, for simplicity – and in line with 364 
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recommendations for papers not directly about model comparisons (Ma, 2018) -- we report the 365 

circular standard deviation as our main measure. 366 

 Calculation of chance. If participants had 0 information and simply picked colors at 367 

random, their maximum error would be 180 degrees, and their minimum error would be 0 368 

degrees, with a mean of 90 degrees. However, the circular standard deviation of their errors is 369 

not the same as their mean error. Thus, to contextualize the circular standard deviations we 370 

observe, we calculated chance performance for this metric: To do so, we simply generated 371 

10,000 samples of errors uniformly between -180 and 180, and then calculated the circular 372 

standard deviation of this data. This gives us an upper bound on circular standard deviation, 373 

indicating what is expected from pure guessing. This is plotted in the Figure 3 as the dashed line. 374 

Exclusion. Following our preregistered exclusion criteria resulted in the exclusion of 6 375 

out of 30 participants. All of these participants were estimated to have a ‘guess rate’ (Zhang & 376 

Luck, 2008) greater than 0.70 in at least one condition. Including these participants did not 377 

change the overall pattern of results.  378 

 379 

 380 
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 381 

Figure 2. Error histograms by condition (collapsed across participants for visualization 382 

purposes), showing the proportion of each error amount in each condition. 0° error on the 383 

reproduction task is perfect memory, and 180° error means participants selected a color on the 384 

opposite side of the color wheel. In both working memory and long-term memory, these 385 

histograms have the same shape, with many errors near 0 and then a long tail of responses to all 386 

the colors that are approximately equally dissimilar to the target. As more items are added in 387 

working memory, performance degrades (more large errors); as items repeat more in long-term 388 

memory, performance improves (fewer large errors).  389 

 390 

Results 391 

 392 

Figure 2 shows error by condition in working and long-term memory, and Figure 3 shows the 393 

summary of these errors in terms of circular standard deviation. Overall, we found the expected 394 

set size effect in working memory, with performance reliably better for set size 1 than set size 3 395 

(t(23)=12.1, p<0.0001, dz=2.5). In addition, there was a significant main effect of repetition, with 396 

long-term memory performance improving with repetition (F(2,46)=277.4, p<0.0001,η²=0.92). 397 
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By 8 repetitions, long-term memory performance was comparable to working memory 398 

performance: the circular standard deviation was 28.4 in the 8 repetition case, and 31.2 in the 3 399 

item WM case (difference: -2.8, SEM of difference: 2.1), not reliably different (t(23)=1.35, 400 

p=0.19, dz=0.27). The same results hold when fitting the TCC model to the data (Appendix 1).  401 

Thus, this experiment shows that long-term memory fidelity significantly improves with 402 

repetition, even when judged using a psychophysical measurement of exactly what is 403 

remembered, and where you must discriminate the remembered item from extremely similar 404 

colors. In this situation, long-term memory performance even overlapped with performance in a 405 

relatively easy working memory situation: the 8 repetition condition was similar in terms of error 406 

to a set size 3 working memory condition.  407 

 408 

 409 

Figure 3. (A) Results of Experiment 1 in terms of circular standard deviation; each point 410 

represents the mean standard deviation across participants, with error bars +/- 1 SEM. As 411 

participants were repeatedly exposed to items in long-term memory, memory performance 412 

improved. With 8 repetitions in long-term memory, performance was as good as for 3 items that 413 

had been seen only 1 second ago (working memory task).  (B) Results from the across-subject 414 

manipulation in Experiment 2 replicate the within-subject manipulation of Experiment 1. (C) 415 

Experiment 3 compared performance for a single 8 sec. exposure in long-term memory to 8 416 

separate 1 sec. exposures, equating total viewing time and asking how memory fidelity is 417 

affected. We found participants perform much better with 8 repetitions than a single 8 sec. 418 

exposure. 419 

 420 

 421 
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Experiment 2A and 2B: Across-subject replications of Exp. 1 422 

Experiment 1 provided evidence that participants benefit from repetitions, and showed that under 423 

the particular circumstance of our task, 8 repetitions in long-term memory was sufficient to reach 424 

the same level of performance as a relatively normal working memory task (with 3 items) – 425 

suggesting that the two memory systems are at least partially overlapping in their ability to 426 

represent high fidelity color information. In that study, participants by necessity saw the same 427 

objects in multiple conditions -- that is, the same object might have appeared in one color in a 428 

working memory trial whereas it subsequently appeared in a different color in the long-term 429 

memory condition (and was kept constant in the long-term memory condition). Thus, in 430 

Experiment 2, we replicated the critical conditions aspects of Experiment 1 in across-subject 431 

conditions where objects did not repeat across conditions, to ensure this was not a significant 432 

factor.  433 

 434 

Method 435 

Experiment 2A: There were N=30 participants (6 excluded per preregistration criterion, final 436 

sample: 24). The stimuli, procedure and analysis strategy in Experiment 2A were very similar to 437 

those of Experiment 1, but included only a subset of conditions. In particular, in Experiment 2A 438 

participants had 3 conditions: (1) perform working memory for 1 item, (2) long-term memory 439 

with 1 repetition per item, or (3) long-term memory with 2 repetitions per item. The task was 440 

blocked such that participants performed 100 trials of the working memory task either before or 441 

after the long-term memory task; and during the long-term memory task, there were 5 blocks, 442 

each of 40 images (20 shown once, 10 shown twice in each block).  443 

 444 

Experiment 2B: There were N=31 participants (3 excluded per preregistration criterion, final 445 

sample: 28). As in Experiment 2A, the stimuli, procedure and analysis strategy in Experiment 2B 446 

were very similar to those of Experiment 1, but included only a subset of conditions. In 447 

particular, in Experiment 2A participants had only 2 conditions: (1) long-term memory with 1 448 

repetition per item, or (2) long-term memory with 8 repetitions per item. In both conditions, 449 

participants saw 24 objects per block. In some blocks participants saw 24 unique objects, 450 

whereas in others they saw only 3 objects, each presented 8 times.  451 

 452 
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Results 453 

Experiment 2A: We found similar results to Experiment 1 in terms of working memory for set 454 

size 1 (M: 16.4, SEM: 0.7), long-term memory for unrepeated items (M:46.0, SEM: 3.2) and 455 

long-term memory for items repeated twice (M: 37.2, SEM: 3.2). Performance at the long-term 456 

memory conditions were significantly worse than the working memory condition (1 repeat: 457 

t(23)=9.26, p<0.001, dz=1.89; 2 repeats: t(23)=6.42, p<0.001, dz=1.31). The benefit from 458 

repetition in long-term memory was also large (t(23)=4.24, p<0.001, dz=0.87). 459 

 460 

Experiment 2B: We found that the circular standard deviation was 52.6 (SEM: 1.8) for items 461 

seen once, and 18.0 (SEM: 1.5) for items seen 8 times, a significant difference (t(27)=-23.96, 462 

p<0.001, dz=4.53). In this context, with slightly fewer objects to remember and a blocked design, 463 

performance at 8 repetitions was considerably better than in Experiment 1 (t(50)=4.12, p<0.001, 464 

d=1.15); in fact, performance was better than the set size 3 working memory task from that 465 

experiment (M: 31.2, SEM: 1.6; t(50)=5.92, p<0.001, d=1.65) and numerically not quite as good 466 

as set size 1 working memory but comparable statistically (M: 15.8, SEM: 0.6; t(50)=1.26, 467 

p=0.21, d=0.35).  468 

 469 

Discussion 470 

Experiments 1 and 2 provide strong evidence that long-term memory fidelity significantly 471 

improves with repetition. Using a psychophysical measurement of exactly what is remembered, 472 

and where you must discriminate the remembered item from extremely similar colors, we found 473 

that in the conditions of our task, 8 repetitions of an item brings long-term memory performance 474 

to the same level as the best working memory performance (set size 1), with participants able to 475 

accurately reproduce the exact color they had seen extremely accurately. That is, 8 repetitions in 476 

the long-term memory condition of Experiment 2B allowed people to reproduce the exact color 477 

as accurately as they could in the very best working memory conditions of Experiment 1 (one 478 

item seen just 1 second ago). This provides evidence that participants do integrate information 479 

across repetitions in long-term memory to form higher fidelity memory traces, and provides 480 

initial evidence that working memory and long-term memory substantially overlap in the range 481 

of fidelity of reproduction that is possible using the two systems, even in situations with nearly 482 

maximally strong working memory representations. 483 
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Experiment 3: Is repetition better than simply extended encoding time? 484 

Experiments 1 and 2 show that long-term memory is improved dramatically with repetition. 485 

Experiment 3 asks whether repetition per se is important, or whether the effect of repetition in 486 

those experiments is simply to allow people more total time with each object. Thus, in 487 

Experiment 3 we contrast seeing an object and its color 8 times for 1 second each, vs. 1 time for 488 

8 seconds total. If repetition per se has a role in creating higher fidelity memories, than 489 

participants should be more accurate in the 8-repetition condition. If total time processing and 490 

encoding the objects is most relevant, the two conditions should be identical. And if participants 491 

benefit most from a single long exposure, which could potentially allow for deeper processing of 492 

the item and its color, then they should be best in the single long exposure condition.  493 

 494 

Methods 495 

The design, methods, dependent measures and exclusion criteria for this study were 496 

preregistered. See: https://aspredicted.org/blind.php?x=gc8sv2 for details.  497 

 498 

Participants: Thirty students were recruited from the University of California, San Diego’s 499 

undergraduate subject pool, and received class credit for their participation. All subjects gave 500 

informed consent, and the study was approved by the University of California, San Diego 501 

Institutional Review Board. 502 

Procedure: As in Experiment 1 and 2, participants were asked to remember the precise 503 

color of objects and report this color using a color wheel. In this experiment, we probed only 504 

long-term memory. We compared memory performance for objects repeated 8 times, shown for 505 

1 sec. each time, to those shown 1 time for 8 seconds.  506 

Each participant completed 24 blocks of study and test. In each block, participants 507 

studied 6-48 images, consisting of 6 objects shown either once or 8 times each (48 images). The 508 

studied color for each object was randomly chosen by rotating the object in color space, but 509 

repeated objects were always shown in the same color each repetition.  510 

After the study period in each block, participants had a filled delay interval designed to 511 

disrupt their ability to use visual working memory and ensure we were testing visual long-term 512 

memory. In particular, to ensure they could not hold the colors of these images actively in 513 

working memory, as in Experiment 1, during the delay participants completed two trials of a 514 

https://aspredicted.org/blind.php?x=gc8sv2
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change detection task. In the task, adapted from Brady and Tenenbaum (2013), participants were 515 

shown a pattern of black and white squares for 750ms, followed by a 1,000ms blank period, and 516 

then either an identical or changed version of the original display. The test display was shown on 517 

screen until participants made a response, indicating if the test was “same” or “different” from 518 

the previous display (see Brady & Tenenbaum, 2013, for more information on this task). 519 

Following this filled delay, they were then probed on the colors of the 6 unique objects 520 

using a continuous color wheel, as in Experiments 1 and 2. As in these experiments, we used the 521 

circular standard deviation as our main measure of performance. 522 

Exclusion. Data from one participant was lost due to technical error. Following our 523 

preregistered exclusion criteria resulted in the exclusion of 0 out of the remaining 29 524 

participants.  525 

 526 

Results and Discussion 527 

Although all items were seen for 8 seconds, long-term memory for items repeated 8 times for 1 528 

second each (M: 23.2, SEM: 2.1) was significantly better than long-term memory for unrepeated 529 

items shown for 8 seconds (M:37.5, SEM: 2.3; t(28)=8.02, p<0.001, dz=1.49). This effect was 530 

quite large: participants error was nearly halved with 8 separate 1 second exposures compared 531 

with a single 8 second exposure. Thus, repetition allows for stronger encoding than does a single 532 

presentation of the same amount of exposure.   533 

Thus, repetition is a particularly important tool for forming detailed visual long-term 534 

memories. This is consistent with the broadest goal of the visual long-term memory system: 535 

integrating information over time, both to extract categories and other general principles 536 

(Schapiro et al. 2014) as well as learning about particular objects and how they vary (Rust & 537 

Stocker, 2010). While working memory is designed to work with objects that were just present 538 

or that are still present, to function effectively, long-term memory must connect across large time 539 

windows without spatiotemporal cues to what objects are the 'same' as ones that have been 540 

previously seen (Schurgin & Flombaum, 2018b), and repetition and integration across 541 

subsequent presentations is a critical aspect of this. 542 

What processes are at work in explaining the repetition benefit? There are several non-543 

mutually exclusive possibilities. One possibility is that re-exposure to an item that has already 544 

been seen engages a distinct set of cognitive mechanisms compared to exposure to novel 545 
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information. For example, people may attempt to recognize it, engaging recognition-specific 546 

processes (e.g., Maxcey & Woodman, 2014) including reinstatement of the previous memory 547 

trace that allows the new information to be integrated with this previous trace (e.g., Xue, Dong, 548 

Chen, Lu, Mumford & Poldrack, 2010). In addition, repeated exposures may cause our memory 549 

system to encode slightly differential context each time, leading to more robust memories: 550 

classic models of repetition and spacing effects for verbal memory suggest that since memories 551 

are inherently contextual, having more varied context of encoding is likely to create more robust 552 

memories (e.g., Hintzman, 1974; although see Xue et al. 2010). Finally, it may that repetition 553 

allows for stronger encoding simply because people “get more” out of the initial part of any 554 

given presentation than the latter part of a presentation (e.g., there is some saturation of how 555 

much information is processed as objects remains on the screen; Huebner & Gegenfurtner, 556 

2010). If the majority of the processing of an item happens in the first few hundred milliseconds 557 

(e.g., Drugowitsch, Moreno-Bote, Churchland, Shadlen & Pouget, 2012), there will be 558 

significant diminishing returns to longer encoding times, but repetition will allow this initial 559 

processing to happen repeatedly, resulting in more total information extraction. 560 

 561 

Experiment 4: The fidelity of visual long-term memory for brand logos 562 

Can people ever remember items from long-term memory as precisely as they can remember 563 

their very best working memories (e.g., which we conceptualize as 1 item seen just a second 564 

ago)? Experiment 2 showed one situation where long-term memory for several items – when 565 

active maintenance was prevented – was as accurate as participants’ very best working 566 

memories. However, in that situation the delay time was by necessity short, and the items were 567 

very recently encoded and so possibly in a more activated state of long-term memory. Can fully 568 

consolidated long-term memories – those most likely to be stored in a non-perceptual format – 569 

ever be as accurate as our very best working memories?  570 

To test this, we assessed memory for the color of frequently seen objects - brand logos - 571 

as a naturalistic extension of Exp. 1-3. Brand logos are seen in everyday life, and even children 572 

show incredibly high recognition rates for logos (Fischer et al., 1991). They are relatively unique 573 

in that they are often made up of a single or very few colors, and that there is, at least to a greater 574 

extent than most objects, an objective answer to the color they are supposed to be (as opposed to 575 

say, the color of an apple or banana – for which there is no truly objective answer). In addition, 576 
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most logos have been encoded repeatedly over long durations of time (months and years), and, 577 

because we do not show the actual color of these logos to participants in the experiment, they 578 

thus provide a test of the fidelity of perceptual information in truly long-term, fully consolidated 579 

memory. 580 

 To test memory for the color of such logos, we collected a set of brand logos that were – 581 

based on pilot data – frequently encountered by our participant pool. We then asked participants 582 

to both rate their familiarity with these brands and their logos (without seeing them) and then 583 

exactly reproduce the color of the logo given only a grayscale version. We then asked 584 

participants their confidence in their reproduction.  585 

 Because the logos are not all taken from a single circular slice of a color wheel, we 586 

cannot directly fit models designed for such data to our data from this experiment (e.g., mixture 587 

models; Zhang & Luck, 2008; TCC: Schurgin et al. 2018). However, the insight that there is a 588 

single process that explains memory errors even in color wheel data and that simple descriptive 589 

statistics of this error therefore do a good job of capturing the relevant factors (i.e., circular 590 

standard deviation in Exp. 1-3) means this is not likely to be a significant hurdle to 591 

understanding memory in this situation; thus, just as we use the circular standard deviation in 592 

Exp. 1-3, we again focus on a simple descriptive statistic of memory error in this Experiment 593 

(root mean square error).  594 

 595 

Methods 596 

Participants: Thirty students were recruited from the University of California, San Diego’s 597 

undergraduate subject pool, and received class credit for their participation. All subjects gave 598 

informed consent and the study was approved by the University of California San Diego 599 

Institutional Review Board. The sample size was selected to match Experiment 1, as similar 600 

power is required to again compare the highest familiarity stimuli to the lowest in long-term 601 

memory, our main measure of interest. Our post-hoc power in Experiment 1 was even greater 602 

than our a priori power calculation took into account, suggesting a similar sample size would 603 

again be adequate. 604 

         Stimuli: The study consisted of three parts: a working memory color report task, which 605 

made use of 140 silhouettes of real-world objects whose color could be completely manipulated 606 

(from Sutterer & Awh, 2016; see Figure 2); a long-term memory color report task, using the 607 
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same stimuli; and a logo color report task. We could not use the object images of Brady et al. 608 

(2013) that were used in Experiment 1 because the luminance of these images cannot be 609 

manipulated without distorting them, only the hue.  610 

In the brand logo task, participants had to report the exact color of a given brand logo. 611 

Thus, to ensure the logos were well known and suitable for our subject population, brand logos 612 

were selected via a pilot survey in which UCSD undergraduate participants listed brands for 613 

which they could confidently recall a visual memory of the logo. From these responses, we 614 

selected brands that were (1) widely reported, and (2) whose most popular logo consisted of 615 

largely a single color (excluding black, white and gray). Ultimately, we selected 67 brands, and 616 

from their website found their logo and its’ dominant color (see stimulus set on OSF: 617 

https://doi.org/10.17605/OSF.IO/AQXPN).  618 

  Overall Structure of the Experiment: Participants completed three tasks in this 619 

experiment (logo memory, long-term memory for newly encoded objects, working memory). 620 

Before the first task, participants completed three color perception trials in order to introduce our 621 

new color report method. To report colors, in all three tasks, we presented participants with a 622 

stimulus on the right side of the screen and a 2D slice of CIELAB space (with fixed L) on the left 623 

side of the screen. As participants moved their mouse around the slice of CIELAB space, the 624 

color of the relevant part of stimulus on the right side of the screen changed (for silhouettes, this 625 

was the entire silhouette; for brand logos, it was only the relevant colored part of the logo). This 626 

method allowed participants to report colors not just from a wheel but from an entire slice of 627 

color space. The luminance of this slice was always chosen to match the luminance of the correct 628 

color; that is, if the correct color was dark, this was a low luminance slice; if the correct color 629 

was bright, it was a high luminance slice.  630 

  Throughout the experiment, all colors were drawn from the set of colors of the logos. 631 

That is, if one of the logos was a particular green, this was the correct answer for that logo in the 632 

logo condition; the correct answer for one item in the long-term memory condition; and the 633 

correct color for one item in the working memory condition. This ensured that all conditions 634 

were comparable, as ultimately the exact same colors were the correct answers and the exact 635 

same slices of color space were offered as options in all cases. This is important because, for 636 

example, a color that happened to be in the “corner” of the CIE LAB slice will likely elicit a 637 

different error distribution than one that happened to be in the middle of the slice. Because of this 638 
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method of stimulus control, we had participants first complete the brand logo condition (so they 639 

would not be pre-exposed to the colors of the logos), then the long-term memory condition, and 640 

finally the working memory condition. This was to minimize any potential learning effects of the 641 

specific color spaces being used, and, since we were interested in how logo memory compared to 642 

working memory, this was the most conservative order (e.g., if any condition would benefit, it 643 

would not be logos, but working memory).  644 

Task Procedures: In the first experimental task, the brand logo task, there were 67 trials, 645 

one per logo. On each trial, participants were asked to rate their experience with a specific brand 646 

logo. Specifically, there were shown the name of the brand (in text; with no logo present), and 647 

asked how often they see that logo using a 1-6 scale (1 = Never, 6 = Everyday). After rating their 648 

experience with the brand, they then reported the color of the logo. Specifically, the logo 649 

appeared in grayscale on the right side of the screen and a fixed L slice of CIELAB color space 650 

appeared on the left side of the screen. Using their mouse to hover over the CIELAB color space 651 

changed the color of the relevant pixels of the logo on the screen (only those pixels in the color-652 

to-be-reported changed as the mouse moved). Once they had selected a color, participants were 653 

asked to rate how confident they were in their choice on a second 6-point scale (1 = Unsure, 6 = 654 

Sure).  655 

In the second part of the experiment, participants completed a long-term memory task for 656 

newly encoded. Participants were shown 66 object images (taken from Sutterer & Awh, 2016), 657 

one after the other for 1 second each with a 1 second interstimulus interval. They were instructed 658 

to remember the color of each object image to the best of their ability, without using verbal 659 

labels. After the object images were presented, participants completed two trials of a change 660 

detection task to ensure participants weren’t actively maintaining colors in visual working 661 

memory (see Experiment 1 for details). After the change detection task, participants were asked 662 

to report the color of each object image that they had seen during the study phase. The color of 663 

the object images in the long-term memory task were randomly matched to colors previously 664 

used in the brand logo task, such that the exact same colors and exact same slices of CIELAB 665 

color space were shown in both tasks. 666 

        In the third experimental condition, participants completed a visual working memory task. 667 

Participants were shown 1 colored object for one second, and after a one second delay were 668 

asked to report the color of the image on the slice of CIELAB color space. They completed 67 669 
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working memory trials. Once again, the colors of the object images in this task were randomly 670 

matched to specific colors used in both the logo and long-term memory trials of this experiment. 671 

  Data Analysis. In this task, the error on each trial is quantifiable as the 2D distance 672 

between the correct location on the slice of CIELAB space and the clicked location. As in 673 

Experiments 1-3, we use a descriptive statistic of all errors to capture how accurate participants 674 

memory is; in particular, we used the root mean squared error (RMSE). The error distribution is 675 

significantly skewed, and so to summarize this error for a given participant and condition we use 676 

the median RMSE (e.g., the median across all trials of a given condition for a given participant). 677 

We then use the mean and standard error of the mean across participants’ median’s to show the 678 

population distribution of medians, since the population distribution of medians is expected to be 679 

normally distributed, being itself an aggregate measure.  680 

 As noted in the introduction to this Experiment, previous work has largely relied upon 681 

circular color report, in which the angular difference between the correct answer and reported 682 

answer is taken as the measure of error. This reliance on circular report spaces arose because 683 

some models (in particular, mixture models; Zhang & Luck, 2008) claimed to be able to 684 

differentiate between different properties of memory using such reports (e.g., precision and 685 

likelihood of retrieval). However, as noted, it is now clear that even in circular report spaces, 686 

there is really only a single process and thus single parameter being measured (overall memory 687 

strength; see Schurgin, Wixted & Brady, 2018). Thus, we believe non-parametric memory error 688 

is sufficient to characterize memory both in circular space (Exp. 1-3) and in non-circular space 689 

(Exp. 4). However, one drawback of the non-circular space in the current experiment is that 690 

chance performance is difficult to characterize. That is, it is unlikely that if people know nothing, 691 

they would choose completely at random from the slice (they might avoid corners, for example); 692 

and we cannot shuffle responses across trials, since different trials showed different slices of 693 

color space. However, since many participants report “Never” having experience with some 694 

brand logos, these “1” out of 6 responses on the frequency of experience measure do provide 695 

some measure that approximates what chance performance would look like. In addition, a benefit 696 

of the 2D approach in the current experiment allows for much more variety in the set of colors 697 

shown and tested, allowing us to examine memory for logos and memory for a more realistic 698 

range of colors in the working memory and long-term memory conditions.  699 

           700 
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 701 

Figure 4.  Experiment 3. (A) Methods for the logo memory condition. Participants were given a 702 

2D slice of CIELAB color space, that was matched for the luminance level of the brand logo 703 

color. (B) Methods for the VWM and LTM conditions. Participants encoded an object silhouette 704 

randomly embedded in the same color as one of the logos, and then reported the color of the 705 

object at test by clicking the exact color in a 2D slice of CIELAB color space. (C) Error 706 

histograms across all three conditions, with the median error indicated by a solid black line (D) 707 

Error by condition. For brand logos, error was calculated as a function of participant’s self-708 

reported experience report with that logo (reported before their color memory was tested).  709 

 710 

Results 711 

Figure 4C and 4D show the results across the logo, working memory, and long-term memory 712 

conditions. Figure 4C shows the errors collapsed across all participants, showing the full 713 

distribution of errors in each condition. This distribution is skewed, with many responses near 0 714 

error and then a fat tail, as is the case in circular color report spaces (Zhang & Luck, 2008; 715 

Schurgin, Wixted, & Brady, 2018).  716 

 Looking at performance across conditions for each participants (Figure 4D), we find, as 717 

expected, that working memory for one item was much more accurate than long-term memory 718 

for items that were seen only once (t(29)=7.3, p<0.0001, dz=1.3). We were primarily interested 719 

in how experience with the logos -- as a proxy for stimulus repetition -- affected color memory. 720 

Thus, we analyzed the logo data as a function of self-reported experience with the brands. We 721 
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found that as a participant’s self-reported experience with a brand and logo increased, errors in 722 

color estimation dramatically decreased, until it was similar to their error for one item seen one 723 

second ago (Fig. 4C; F(5,145)=38.4 p<0.0001, η²=0.55).  724 

The logos that participants were least experienced with (1/6; 16.2% of trials) – those they 725 

said they’d never seen; effectively a measure of chance performance – were, as expected, 726 

reported less accurately than the single-repetition long-term memory items (t(29)=2.2, p=0.04). 727 

The ones they were most experienced with (6/6; 17.1% of trials) were still, on average, quite 728 

close to working memory performance even for 1 item, although they were statistically reliably 729 

different than the 1 item working memory condition (t(29)=2.8, p=0.01). 730 

 731 

 732 

Figure 5. This matrix plots error (RMSE) as a function of reported experience with the brand 733 

before being shown any stimulus, and confidence in their color report after. Confidence in color 734 

report is strongly related to error (more confident responses had less error), but after taking into 735 

account confidence by plotting it separately, there much less of a relationship between reported 736 

experience and error. This demonstrates participants had an excellent sense of their own 737 

accuracy. 738 

 739 

 We can also examine memory as a function of self-reported confidence in addition to 740 

experience. While these two factors were correlated – people tended to have higher confidence in 741 

the color of logos they’d said they had more experience with – they were also somewhat 742 

dissociable, with a correlation of r=0.64 (SEM: 0.019) across subjects, corresponding to an  743 

R2=0.41. Figure 5 plots error as a function of both variables.  744 
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The contrast between Figure 4 – which shows that participants were overall much better 745 

when they had more experience with the logo – and Figure 5, where experience seems to play 746 

little role in error -- shows this people had an excellent sense of their own accuracy. That is, 747 

while people are more likely to report higher confidence when they have more experience, they 748 

are approximately equally accurate at a given confidence level regardless of their experience (the 749 

dominant structure of Figure 5 is vertical columns, not horizontal stripes).  This accurate 750 

awareness of their own memory strength means that the major determinant of error in Fig. 5 is 751 

confidence, rather than experience. This is consistent with a significant amount of work on 752 

“estimator variables” in eyewitness memory (e.g., Semmler, Dunn, Mickes, Wixted, 2018). For 753 

example, cross-race identifications tend to be less accurate than same-race identifications. 754 

However, the confidence-accuracy relationship is the same for both cross-race and same-race 755 

identifications: not only are participants less accurate, but they are also (appropriately) less 756 

confident in such identifications. Thus, high confidence reports tend to be equally accurate 757 

regardless of estimator variables. Our data support this same conclusion in the case of brand 758 

logos. 759 

How did confidence impact memory performance? For logos where people not only 760 

reported being extremely experienced with the brand (6/6) but also confident in the color of the 761 

logo (6/6), performance (12.3% of trials; median error=11.9) was as good as working memory 762 

for an item they had seen 1 second ago (median error=11.6), t(26)=0.31,p=0.76; with a Bayes 763 

Factor  giving 4.7 to 1 evidence in favor of the null hypothesis that these two were equivalent 764 

(default JZS Bayes Factor; Rouder, Speckman, Sun, Morey & Iverson, 2009).  765 

Overall, this demonstrates that increased repetition of a brand logo in a naturalistic setting 766 

leads to more accurate representations of that logo’s color in a participants long-term memory, 767 

with the logos people have the most experience with and the most confident memory for being 768 

indistinguishable from their memory for an item seen only 1 second before. This is true even 769 

given the possible sources of noise in our logo color report task: for example, some brands have 770 

changed the color of their logo over time, potentially causing confusions for participants (for 771 

example, see: https://www.signs.com/branded-in-memory/); others may have slight differences 772 

between the logo color on their website and their real-life signs due to color calibration issues. 773 

Nevertheless, despite these sources of noise, brand logo colors were remembered with extremely 774 

high fidelity.  775 
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General Discussion 776 

Across four experiments, we find that despite the fact that long-term memory is easily corrupted 
777 

(e.g., Loftus & Palmer, 1996), in the best case scenario where memory is strong and uncorrupted 778 

by subsequent interference, long-term memory can be incredibly precise -- a memory for 779 

something seen minutes, hours or days ago in the context of many other objects can be as precise 780 

as a memory for a single item seen 1 second ago, and accurately discriminated even from very 781 

similar colors. This provides strong evidence that participants integrate subsequent exposures 782 

into high fidelity memory traces.  783 

Memory for brand logos offers further credence to this claim, as items frequently seen in 784 

everyday life were remembered as precisely as the best working memories, despite not having 785 

been encountered for hours or days. Critically, this finding may have been obscured if no 786 

measure of experience had been collected, as precise logo reports were only observed for items 787 

participants reported experiencing regularly and for which they expressed high confidence. 788 

Along similar lines, in the study of eyewitness memory high confidence judgments have been 789 

shown to be incredibly accurate, contrary to claims that eyewitness memory is unreliable 790 

(Wixted & Wells, 2017). Thus, these results provide further evidence that memory strength 791 

judgments are critical to understanding the contents of memory. 792 

 793 

The fidelity of long-term memory 794 

Humans have remarkable visual long-term memory abilities, capable of storing thousands of 795 

items (Standing, Conezio & Hyber, 1970), and previous work has shown that people are 796 

extremely good at distinguishing even extremely similar items in visual long-term memory 797 

(Brady, Konkle, Alvarez & Oliva, 2008; Hollingworth, 2004, 2005). However, previous work on 798 

these lines has largely used meaningful distinctions between objects to test memory (e.g., a full 799 

vs. empty mug), preventing a quantitative understanding of memory fidelity.  800 

Recent work looking at visual long-term memory fidelity more quantitatively has often 801 

shown worse performance than working memory, both in terms of memory strength or likelihood 802 

of retrieval (Biderman et al. 2019; Brady, Konkle, Gill, Oliva, & Alvarez, 2013) and in terms of 803 

robustness to noise (Schurgin & Flombaum, 2018a). In some cases, this has been taken as 804 

evidence that visual long-term memory is intrinsically lower fidelity than visual working 805 

memory (e.g., Biderman et al. 2019), consistent with ideas about neural (e.g., Serences, 2016) 806 
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and cognitive representation differences between the two systems (Baddeley, 1966) which argue 807 

that working memory is inherently more perceptual than long-term memory. However, in the 808 

current work, we show that with sufficient repetition, visual long-term memory can be incredibly 809 

precise -- people can accurately reproduce nearly the exact color of items they have seen 810 

multiple times. This provides evidence that visual long-term memory can be incredibly high 811 

fidelity. Thus, despite long-term memory being structured by semantic similarity (e.g., Konkle et 812 

al. 2010; Collins & Loftus, 1975), and seemingly relying on an inherently less perceptual neural 813 

mechanism of storage (e.g., Serences, 2016), we find that visual long-term memory can store as 814 

precise a set of visually detailed information as working memory.  815 

The current work converges with a recent paper by Fresa and Rothen (in press) that 816 

showed that in a perceptual learning situation, participants can learn to accurately reproduce 817 

colors from visual long-term memory with incredibly high fidelity. In fact, Fresa and Rothen (in 818 

press) even showed some degree of generalization, where participants who practiced visual long-819 

term memory color reproduction improved not only at memory for the practiced objects but even 820 

at memory for new objects that had been seen only once. This suggests that in addition to 821 

repetition improved the fidelity of individual memories, there may be larger scale learning that 822 

takes place that affects how accurately people can discriminate items from similar items in 823 

memory. 824 

What supports this accurate long-term memory performance? Visual working memories 825 

seem to be maintained in visual cortex at least to some extent (Serences, 2016), providing a 826 

natural basis for their level of perceptual detail. How can long-term memory have equal detail 827 

without such a neural basis for storage? Interestingly, while long-term memory is clearly not 828 

actively maintained in perceptual regions, studies have shown that long-term memory retrieval is 829 

associated with reaction of the same perceptual brain regions that are activated when perceiving 830 

the same items (e.g., Wheeler, Petersen & Buckner, 2000; Kahn, Davachi & Wagner, 2004), with 831 

such reinstatment proceeding memory retrieval (e.g., Polyn, Natu, Cohen & Norman, 2005; Xue 832 

et al. 2010). Thus, it is possible that visual long-term memory may rely on perceptual regions to 833 

access perceptual details in a similar manner to visual working memory, even if it is not actively 834 

maintained in these regions. 835 

 836 

 837 
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“Precision” as separate from “likelihood of retrieval”: The relationship between working 838 

memory and long-term memory 839 

While working and long-term memory are often compared to one another, the majority of 840 

research investigating their relative fidelity has been limited to encoding items quickly and just 841 

once in long-term memory experiments and comparing this to very strong working memories 842 

(e.g., Biderman et al. 2019; Brady et al. 2013; Schurgin & Flombaum, 2018a). The current work 843 

provides a suggestion that many of the documented differences between these two systems may 844 

not be due to a system-level distinction between them, but rather an artifact of comparing strong 845 

working memories to comparatively weak long-term memories. 846 

Indeed, this may explain differences in the results obtained by Brady et al. (2013) and 847 

Biderman et al. (2019), who used different set sizes of working memory to draw distinctions 848 

between working and long-term memory, with one group arguing for high-fidelity long-term 849 

memories and one arguing long-term memory is intrinsically lower fidelity than working 850 

memory. Our data lend credence to the idea that working memory and long-term memory are 851 

fundamentally similar in representational content, with moderately hard working memory tasks 852 

(e.g., set size 3-6) resulting in the same distribution of both similar and dissimilar errors as many 853 

long-term memory tasks, and long-term memory tasks with many repetitions giving identical 854 

error distributions of similar and dissimilar errors to easy working memory tasks (e.g., set size 1-855 

3). 856 

 One way to show this more quantitatively is to compare visual working memory 857 

performance to visual long-term memory performance by comparing a number of studies that 858 

make use of the same continuous report task using a color wheel. To visualize this, Figure 6 859 

compares visual long-term memory performance from the current set of studies and from past 860 

studies to previous data on working memory for color, plotting the parameters of a popular 861 

mixture model framework across a wide range of conditions in working memory tasks (see 862 

Schurgin et al. 2018 for a similar technique in working memory). This mixture modeling 863 

framework takes the distance between the target color and response and models these responses 864 

using a mixture model, which attempts to separately quantify memory performance in terms of a 865 

‘precision’ , and a ‘likelihood of retrieval’ (or its opposite, a “guess rate”). In the present 866 

manuscript, we do not quantify performance in these terms, as it has recently been shown that 867 

these parameters are not in fact separable (Schurgin, Wixted & Brady, 2018). Nevertheless, such 868 
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mixture model parameters are widely reported and provide a window into how accurately 869 

participants can discriminate items in memory for similar items. Thus, these parameters allow us 870 

to easily compare across memory systems for previous data using the continuous color task. 871 

They also allow us to directly compare our data to that of Biderman et al. (2019), who claim that 872 

working memory is inherently lower fidelity than long-term memory based on the fits of such 873 

model.  874 

 In Figure 6, shown in gray are working memory data from a paper that examines many 875 

aspects of visual working memory (Schurgin et al., 2018), including performance from set sizes 876 

1-8 and various encoding and delay times. Shown in red are the data from the long-term memory 877 

color report tasks of both Biderman et al. (2019) and the current manuscript. As can be clearly 878 

seen, the two parameters trade-off nearly identically in the two memory systems, with the curves 879 

completely overlapping. In fact, the lowest performance – in terms of both “guess rate” and 880 

precision (SD) – comes from the working memory conditions (set size 6 and 8), where people 881 

are less accurate than in any of the long-term memory conditions tested in the current paper or by 882 

Biderman et al. (2019). Thus, contrary to Biderman et al. (2019), we do not observe any 883 

evidence in favor of the idea that long-term memory has intrinsically lower fidelity than working 884 

memory (e.g., noisier representations, with larger standard deviations). Instead, our data show 885 

that if you compare a wide range of standard long-term and working memory tasks, you find 886 

identical data distributions and parameters that fit those distributions.  887 

Importantly, our data also reveal that no individual points alone are sufficient to 888 

understand the relationship between the fidelity of these two systems, as memory strength can 889 

vary greatly in both systems. Biderman et al. (2019) compared long-term memory data only to 890 

set size 3 working memory, thus finding a working memory advantage; if they had compared 891 

long-term memory instead to set size 6 working memory data, they would have found a long-892 

term memory advantage. Only by plotting a wide range of memory strengths together does it 893 

become clear that the two systems lie on the same curve. 894 

 895 
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  896 

Figure 6. Gray circles indicate data from visual working memory for color across a range of set 897 

size (1-8), encoding times and delays from Schurgin, Wixted & Brady (2018). Unfilled circles 898 

come from set sizes 1 and 3; filled gray circled come from set size 6 and 8. Red circles are data 899 

from the long-term memory conditions of Biderman et al. (2019); red diamonds are data from 900 

the current paper. The black line represents the prediction of the Schurgin et al. (2018) TCC 901 

model, which argues that both parameters derive from a single process rather than being 902 

dissociable psychological components The tight coupling of the two parameters (“guess rate” 903 

and “SD”) across a wide range of conditions is strongly consistent with the idea that the 904 

parameters of the mixture model reflect one process, not two (as separately shown by Schurgin 905 

et al. 2018). The red LTM points falling on the same line as gray WM ones provides evidence 906 

that this coupling is the same for working memory and long-term memory. Note that the long-907 

term memory conditions in both the current paper and Biderman et al. (2019) are both better – 908 

down and to the left – than the set size 6 and 8 working memory conditions (filled gray circle), 909 

and several conditions in the current paper are as accurate as even the best working memory 910 

conditions observed in Schurgin et al. (2018). 911 

 912 

It is also important to note that the strong relationship observed between the 'guess' and 913 

'precision' parameters in both the working memory and long-term memory data converge with 914 

the proposal from Schurgin et al. (2018) that these parameters are not distinct, but tap just a 915 

single underlying process. The plot in Figure 6 is a state-trace plot (Dunn & Kalish, 2018), and is 916 

completely consistent with a single process model – where “precision” and “likelihood of 917 

retrieval” are just two ways of measuring the same underlying variable (memory strength). 918 

Furthermore, the black dashed line in Figure 6 is the prediction of the Target Confusability 919 

Competition (TCC) model proposed by Schurgin et al. (2018) – this model says that by 920 

necessity, when using this color space, the only possible mixture model parameters that can arise 921 

are the ones on that line (subject to measurement error).  The current long-term memory data are 922 

clearly consistent with this prediction. Thus, the current data also provide additional evidence 923 



 

 

Miner, Schurgin, Brady: Repetition and long-term memory fidelity 

 

33 

 

there is effectively only a single parameter of memory difficulty observed in continuous 924 

reproduction error histograms.  925 

How should we think about the “precision” of working memory vs. long-term memory in 926 

this framework? The TCC model, consistent with the state-trace plot (Fig. 6), suggests that there 927 

is no such concept as the ‘precision’ of a memory system. Instead, there is only a concept of 928 

‘memory strength’, which combines with a fixed similarity function for a given stimulus space 929 

(see https://bradylab.ucsd.edu/tcc/). The way this memory strength manifests in terms of the 930 

errors people make, and in terms of their ability to make discriminations between similar vs. 931 

dissimilar items, appears to be the same for working memory and long-term memory. However, 932 

the stimulus space matters quite a bit: that is, different stimuli spaces (e.g., different color 933 

wheels, or different features) have different characteristic similarity functions, and thus different 934 

shaped error distributions and different mixture model parameter (Schurgin et al. 2018). Thus, 935 

rather than the difficulty of discriminating items from similar ones arising due to differential 936 

limits in the ‘precision’ memory systems (e.g., Biderman et al. 2019), these limits seem to result 937 

from differences in the underlying similarity structure of the perceptual dimensions being studied 938 

(e.g., the color wheel being used). Overall, then, our data suggest that visual working memory 939 

and visual long-term memory largely overlap in their ability to represent high fidelity color 940 

information – either in terms of mixture model parameters (Fig. 6) or simple descriptive statistics 941 

of error. Thus, difficult long-term memory tasks and difficult working memory both result in the 942 

same “standard deviation” and same “guess rate”; easy working memory and easy long-term 943 

memory tasks likewise result in identical memory parameters. This suggests that not only can 944 

long-term memory hold precise memories but that memory fidelity functions similarly in the two 945 

memory systems. 946 

 947 

Are working memory and long-term memory the same system? 948 

There is significant evidence for shared principles between working memory and long-term 949 

memory, particularly for verbal stimuli (Jonides et al., 2008; McElree, 2006; Nairne, 2002). For 950 

example, items putatively held in active storage are not accessed any faster than those held in 951 

passive storage (McElree, 2006), and both systems can be integrated in some temporal context 952 

views of memory (Brown, Neath & Chater, 2007). Similarly, there appear to be shared principles 953 

of access and refreshing between working memory and long-term memory (e.g., Ranganath, 954 
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Johnson & D’Esposito, 2003), resulting in some claims that there may be no need to posit two 955 

distinct memory systems (Ranganath & Blumenfeld, 2005).  956 

The current work is consistent with another important way in which working memory 957 

and long-term memory are not distinct: representations in both systems appear to have the same 958 

fidelity, and, indeed, asking participants to reproduce colors in both systems not only produces 959 

similar distributions, but seemingly identical ones, both in terms of the “heavy tail” and the 960 

width of the central part of the distribution (Figure 6). Does this mean working memory and 961 

long-term memory are not in any way distinct?  962 

We find the evidence from neuroscience that there are different processes going on when 963 

accessing actively maintained information vs. passively stored information compelling. For 964 

example, there is clear continued firing in the form of the Contralateral Delay Activity (Vogel & 965 

Machizawa, 2004) when participants actively maintain color information in working memory, 966 

but this is not present if the information has already been stored in long-term memory 967 

(e.g.,Carlisle, Arita, Pardo & Woodman, 2011). fMRI evidence also strongly suggests active 968 

storage during the working memory delay for visual stimuli (e.g., Xu & Chun, 2006; Harrison & 969 

Tong, 2009). Similarly, hippocampal damage seems to, at least in some instances, selective 970 

impair long-term memory access but not working memory access, particularly for small numbers 971 

of items (e.g., Jeneson & Squire, 2012). How can these ideas – on one hand, evidence for a 972 

unified system, with similar fidelity; and on the other hand, clearly distinct and more active 973 

neural substrates for working memory -- be reconciled? 974 

One possibility with significant support in the literature is that working memory and 975 

long-term memory are different processes for working with the same underlying memory 976 

representations. That is, while the representations are themselves the same, it is possible to keep 977 

these representations actively accessible with attention – “working memory” – or to allow them 978 

to become passive, and then retrieve them later (“long-term memory”). These different ways of 979 

working with memories are importantly distinct, but the memories themselves may not be. This 980 

is broadly consistent with the view of working memory as “activated” long-term memory 981 

representations (e.g., Cowan, 1999; Lewis-Peacock & Postle, 2008). 982 

 983 

 984 

 985 
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Conclusion  986 

We show that repetition, either in the lab or naturalistically, leads to incredibly high fidelity 987 

long-term memories, such that items with which we have significant experience can be 988 

reproduced in a continuous report task as accurately as if they had just been seen.  In particular, 989 

with more repetitions, people are able to accurately reproduce a color extremely precisely -- as 990 

precisely as an item seen one second ago in visual working memory. Despite the fundamentally 991 

different neural substrate of visual working memory, with items stored and maintained in 992 

perceptual regions (e.g., Serences, 2016), visual working memory does not seem to have an 993 

intrinsic advantage in making fine-grained discriminations compared to visual long-term 994 

memory. Instead, memory strength – which varies a large amount in both working memory and 995 

long-term memory -- is the main driver of the ability to make fine-grained judgments about the 996 

exact perceptual features of previously seen objects, independent of memory system. 997 
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Appendix 1006 

 1007 

1. Target Confusability Competition (TCC) model fits to the long-term memory data 1008 

Previous research comparing the fidelity of color memory across working and long-term 1009 

memory, such as Brady et al. (2013) and Biderman (2019), relied on mixture models, which 1010 

quantify memory performance in terms of two putatively distinct concepts: a ‘precision’ 1011 

(strength of information in memory), and a ‘guess rate’ (probability an item is in memory) 1012 

(Zhang & Luck, 2008).  1013 

 In the present manuscript, we do not quantify performance in these terms, as it has 1014 

recently been shown that these parameters are not in fact separable (Schurgin, Wixted & Brady, 1015 

2018). That is, large errors – which result in a “long tail” often interpreted as evidence of discrete 1016 

guessing – appear to arise from the same process as do small errors. In light of this finding, 1017 

separately modeling different aspects of memory is unnecessary -- an item’s memory strength 1018 

can be quantified in signal detection terms as d′ (Schurgin, Wixted & Brady, 2018) or non-1019 

parametrically (e.g., using the circular standard deviation of participants’ errors) -- but in either 1020 

case, there appears to be no separate process of ‘guessing’ that needs to be accounted for. Thus, 1021 

to summarize errors across trials and estimate overall memory performance in the present 1022 

manuscript, we calculated the circular standard deviation of responses by condition. The circular 1023 

standard deviation (sometimes known as the angular deviation) has been recommended as a 1024 

measure because despite being straightforward and non-parametric, it is closely related to model-1025 

based measures like d′ (Schurgin, Wixed & Brady, 2018).  1026 

However, rather than simply using the circular standard deviation, it is also possible to fit 1027 

the Target Confusability Competition (TCC) model to the data from the experiments we do with 1028 

continuous report, to obtain d’, a measure of memory strength. Doing so reveals that the model 1029 

accurately fits both the working memory and long-term memory data, and gives substantially 1030 

similar conclusions to the circular standard deviation analyses (e.g., Figure A1).  1031 

 1032 
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 1033 

Figure A1. Fits of TCC to Experiment 1 data. Blue is the fit of the 1-parameter (d’) TCC model 1034 

that assumes a single process generates all errors (e.g., that there is no discrete guess state). 1035 

Gray is the histogram of participants errors. The d’ values are the fit to the data collapsed 1036 

across all participants; the average and variation in d’ across participants for all experiments is 1037 

reported in the table below. Note that the d’ of the fit to the average data is not the same as the 1038 

average d’ of fits to individual subjects.  1039 

 1040 

The average and SEM of the memory strength (d’) values for each condition are reported below. 1041 

 1042 

Experiment 1 1043 

 WM - set size 1 WM - set size 3 LTM - 1 repeat LTM - 2 repeats LTM - 8 repeats 

d’ 3.73 (0.09) 2.54 (0.10) 1.42 (0.11) 1.94 (0.12) 2.81 (0.15) 

 1044 

 1045 

 1046 
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Experiment 2A 1047 

 WM - set size 1 LTM - 1 repeat LTM - 2 repeats 

d’ 3.70 (0.12) 2.53 (0.15) 3.90 (0.08) 

 1048 

Experiment 2B 1049 

 LTM - 1 repeat LTM - 8 repeats 

d’ 1.52 (0.09) 3.73 (0.14) 

 1050 

Experiment 3 1051 

 LTM - 1 repeat 

of 8 seconds 

LTM - 8 repeats 

of 1 seconds 

d’ 2.29 (0.13) 3.30 (0.17) 

 1052 

 1053 

2. Mixture model fits for Experiments 1, 2 and 3 1054 

Although we no longer have reason to believe that previously reported evidence supports the 1055 

mixture model’s distinction between two separate aspects of memory (number of items; 1056 

precision of those items), our pre-registered analysis plan suggested the use of not only the non-1057 

parametric angular deviation but also mixture model parameter estimates. Thus, we report the 1058 

mixture model parameters here for Experiment 1-3. Note that they are consistent with the claim 1059 

we make using non-parametric methods: both in terms of guess rate and standard deviation, 1060 

repetition improved long-term memory, and 8 repetitions improves performance to 1061 

approximately the level of set size 3 working memory. Data is formatted as mean (SEM).  1062 

 1063 

Experiment 1 1064 

 WM - set size 1 WM - set size 3 LTM - 1 repeat LTM - 2 repeats LTM - 8 repeats 

guess 0.01 (0.003) 0.11 (0.02) 0.44 (0.03) 0.29 (0.03) 0.10 (0.02) 

SD 15.3 (0.4) 20.6 (0.9) 23.8 (1.4) 21.4 (1.1) 18.3 (0.97) 

 1065 
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Experiment 2A 1066 

 WM - set size 1 LTM - 1 repeat LTM - 2 repeats 

guess 0.01 (0.003) 0.29 (0.04) 0.21 (0.05) 

SD 15.2 (0.7) 24.9 (1.6) 19.9 (1.4) 

 1067 

Experiment 2B 1068 

 LTM - 1 repeat LTM - 8 repeats 

guess 0.39 (0.03) 0.04 (0.009) 

SD 23.8 (2.0) 13.9 (0.7) 

 1069 

Experiment 3 1070 

 LTM - 1 repeat 

of 8 seconds 

LTM - 8 repeats 

of 1 seconds 

guess 0.20 (0.03) 0.07 (0.02) 

SD 20.6 (1.1) 17.0 (1.1) 

 1071 

They also show, as previously reported by Schurgin et al (2018) and visualized in Figure 6, a 1072 

strong relationship between SD and guess estimates, consistent with the idea that they vary along 1073 

a single dimension and in fact reflect the outcome of only a single process (see General 1074 

Discussion). 1075 

 1076 

3.  Replication of Experiment 2 1077 

In another experiment (Experiment S1), participants performed only the long-term memory task, 1078 

for items repeated either once or 8 times. N=33 participants (7 excluded per preregistration 1079 

criterion, final sample: 26) saw 24 objects per block. The task was blocked such that in some 1080 

blocks participants saw 24 unique objects, whereas in others they saw only 3 objects, each 1081 

presented 8 times. Immediately following the last object (e.g., with no change detection task), we 1082 

found that angular deviation was 51.8 (SEM: 2.2) for items seen once, and 16.6 (SEM: 1.1) for 1083 

items seen 8 times. This is consistent with the results of Experiment 2B. 1084 
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