
Isabelle:
The next seven hundred theorem provers∗

Lawrence C Paulson

Computer Laboratory, University of Cambridge
Cambridge CB2 3QG, England

Isabelle [2] is a theorem prover for a large class of logics. The object-logics are
formalized within Isabelle’s meta-logic, which is intuitionistic higher-order logic with
implication, universal quantifiers, and equality.1 The implication φ =⇒ ψ means ‘φ
implies ψ’, and expresses logical entailment. The quantification

∧
x.φ means ‘φ is

true for all x’, and expresses generality in rules and axiom schemes. The equality
a ≡ b means ‘a equals b’, and allows new symbols to be defined as abbreviations.

Isabelle takes many ideas from lcf [1]. Formulae are manipulated through the
meta-language Standard ML; proofs can be developed in the backwards direction via
tactics and tacticals. But lcf represents the inference rule A B

A&B
by a function that

maps the theorems A and B to the theorem A&B, while Isabelle represents this rule
by an axiom in the meta-logic:∧

A.
∧
B. [[A]] =⇒ ([[B]] =⇒ [[A&B]])

Observe how object-logic formulae are enclosed in brackets: [[A]].

Higher-order logic uses the typed λ-calculus, whose notions of free and bound
variables handle quantifiers. So ∀x.A can be represented by All(λx.A), where All is
a new constant and A is a formula containing x. More precisely, ∀x.F (x) can be
represented by All(F ), where the variable F denotes a truth-valued function. Isabelle
represents the rule A

∀x.A by the axiom∧
F . (

∧
x. [[F (x)]]) =⇒ [[All(F )]]

The introduction rule is subject to the proviso that x is not free in the assumptions.
Any use of the axiom involves proving F (x) for arbitrary x, enforcing the proviso
[3]. Similar techniques handle existential quantifiers, the Π and Σ operators of Type

∗Appeared in E. Lusk and R. Overbeek (editors), 9th International Conf. on Automated Deduc-
tion, Springer LNCS 310 (1988), pages 772–773.

1An early version called Isabelle-86 uses a naive calculus of proof trees as its meta-logic.

1



Theory, the indexed union operator of set theory, and so forth. Isabelle easily handles
induction rules and axiom schemes, like set theory’s Axiom of Separation.

Proof trees are derived rules, built by putting rules together. This gives forwards
and backwards proof at the same time. Backwards proof is matching a goal with the
conclusion of a rule; the premises become the subgoals. Forwards proof is matching
theorems to the premises of a rule, making a new theorem.

Isabelle uses unification when joining rules. Higher-order unification is solving
equations in the typed λ-calculus with respect to α, β, and η-conversion. Unifying
f(x) with the constant A gives the two unifiers {f = λy.A} and {f = λy.y, x = A}.
Multiple unifiers are a reflection of ambiguity: the four unifiers of f(0) with P (0, 0)
reflect the four different ways that P (0, 0) can be regarded as depending upon 0.
Isabelle uses Huet’s unification procedure.

Logics are proliferating at an alarming rate; there are seven theorem provers de-
scended from Edinburgh lcf. With Isabelle, you need only specify the logic’s syntax
and rules. To go beyond proof checking, you can implement search procedures using
built-in tools. Isabelle consists of 4000 lines of Standard ML. On this base stand
object-logics such as Martin-Löf’s Type Theory, intuitionistic first-order logic, and
classical logic together with Zermelo-Fraenkel set theory.

Constructive Type Theory examples include the derivation of a choice principle
and simple number theory: proofs of commutative, associative, and distributive laws
for the arithmetic operations, culminating with (m mod n) + (m/n)× n = m.

For first-order logic, an automatic procedure can prove many theorems involving
quantifiers. The set theory examples include properties of union, intersection, and
Cartesian products. One example is a proof that the standard definition of ordered
pairs works: define (a, b) ≡ {{a}, {a, b}}; if (a, b) = (c, d) then a = c and b = d. Two
interesting properties of indexed intersection include

A 6= ∅&B 6= ∅ →
⋂

(A ∪B) = (
⋂
A) ∩ (

⋂
B)

C 6= ∅ →
⋂
x∈C

(A(x) ∩B(x)) = (
⋂
x∈C

A(x)) ∩ (
⋂
x∈C

B(x))

References

[1] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF
(Cambridge University Press, 1987).

[2] L. C. Paulson, Natural deduction as higher-order resolution, Journal of Logic
Programming 3 (1986), pages 237–258.

[3] L. C. Paulson, The foundation of a generic theorem prover, Report 130, Computer
Lab., University of Cambridge (1987).


