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Abstract— We introduce incremental smoothing and mapping
(iSAM), a novel approach to the problem of simultaneous
localization and mapping (SLAM) that addresses the data asso-
ciation problem and allows real-time application in large-scale
environments. We employ smoothing to obtain the complete
trajectory and map without the need for any approximations,
exploiting the natural sparsity of the smoothing information
matrix. A QR-factorization of this information matrix is at
the heart of our approach. It provides efficient access to the
exact covariances as well as to conservative estimates that
are used for online data association. It also allows recovery
of the exact trajectory and map at any given time by back-
substitution. Instead of refactoring in each step, we update
the QR-factorization whenever a new measurement arrives.
We analyze the effect of loops, and show how our approach
extends to the non-linear case. Finally, we provide experimental
validation of the overall non-linear algorithm based on the
standard Victoria Park data set with unknown correspondences.

I. INTRODUCTION

The goal of simultaneous localization and mapping

(SLAM) [1], [2], [3] is to provide a full solution for both the

robot trajectory and the map, given the sensor data, in every

time step. In addition, to be practically useful, the solution

should be real-time, applicable to large-scale environments,

and should include online data association. Such a solution

is essential for many applications, stretching from search and

rescue, over reconnaissance to commercial products such as

entertainment and house-hold robots. It also allows keeping

track of a sensor in unknown settings, providing a cheap

alternative to instrumenting the environment for augmented

reality. Furthermore, it allows for autonomous operation

when mapping buildings or entire cities for virtual reality

applications.

What makes SLAM difficult is the uncertainty arising from

integrating noisy local sensor data into a global frame. The

underlying problem has two components: a discrete corre-

spondence problem and a continuous estimation problem.

While they are largely orthogonal, knowledge about the

uncertainty in the continuous estimation can substantially

simplify the solution of the correspondence problem. This

is most important for loop closing, which is the problem of

identifying previously visited locations in the face of localiza-

tion uncertainty. To date, successful SLAM algorithms have

overwhelmingly used probabilistic approaches because the

probabilistic framework deals effectively with the uncertainty

introduced by the noisy sensor data.

Fig. 1. Only a small number of entries of the dense covariance matrix are
of interest for data association. In this example, the marginals between the
last pose x2 and the landmarks l1 and l3 are retrieved. The entries that need
to be calculated in general are marked in gray: Only the triangular blocks on
the diagonal and the last block column are needed, due to symmetry. Based
on our factored information matrix representation, the last column can be
obtained by simple back-substitution. The blocks on the diagonal can either
be calculated exactly by only calculating the entries corresponding to non-
zeros in the sparse factor R, or approximated by conservative estimates for
online data association.

Filtering algorithms, which only compute the current pose

of the robot, are the most widely used approach to real-time

SLAM, and are typically based on the extended Kalman filter

(EKF) [4]. However, filtering algorithms have significant

restrictions [5]. While filters work well for linear problems,

they are not suitable for most real-world problems, which

are inherently non-linear. The reason for this is well-known:

Marginalization over previous poses bakes any linearization

errors into the system in a way that cannot be undone, leading

to unbounded errors for large-scale problems. Moreover,

repeated marginalization also complicates the problem by

making the naturally sparse dependencies between poses and

landmarks, which are summarized by the information matrix,

dense. Approximations are required to deal with this added

complexity, as for example employed in the sparse extended

information filter [6] and the thin junction tree filter [7].

Smoothing approaches, in contrast, recover the complete

robot trajectory and the map and therefore avoid the problems

inherent to filters. In particular, the information matrix is

sparse and remains sparse over time, without the need for

any approximations. Even though the number of variables

increases continuously for smoothing, in many real-world

scenarios, especially those involving exploration, the infor-

mation matrix still contains far less entries than in filter-based

methods [8]. When repeatedly observing a small number of

landmarks, filters seem to have an advantage, at least when

ignoring the linearization issues. However, a better way of

dealing with this situation is to switch to localization after a

map of sufficient quality is obtained.
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The major contribution of this paper is a fast incremental

smoothing approach to the SLAM problem, that at the

same time provides efficient mechanisms for data association.

Our incremental smoothing and mapping algorithm (iSAM)

combines the advantages of factorization-based square-root

SAM [8], [9] with real-time performance for adding new

measurements and obtaining the trajectory and the map [10].

This is in contrast to existing solutions to the smoothing

problem, that do not provide efficient access to the quantities

needed for data association, or require batch processing,

making them unsuitable for real-time applications.

We show how to perform data association based on a

factorization of the information matrix. Our method allows

efficient access to the exact marginal covariances, without

having to calculate the full covariance matrix. This is in

contrast to filters, that produce overconfident results, and

in contrast to existing smoothing algorithms, that cannot

efficiently access these quantities. For online data association,

more efficient conservative estimates are calculated, again

based on our factored representation.

In the remaining part of this section we discuss related

work. In Section II, we revisit the probabilistic formulation of

the full SLAM problem, the equivalent non-linear optimiza-

tion process, and a factorization-based solution. Section III

discusses data association with a focus on how to efficiently

obtain the marginal covariances from the factorization. In

Section IV, we present an incremental approach to factor-

ization, and show how it applies to loopy and non-linear

environments. We finally provide experimental validation for

our overall approach in Section V.

A. Related Work

Smoothing in the SLAM context is often referred to as the

full SLAM problem [6]. It is closely related to bundle adjust-

ment [11] in photogrammetry, and to structure from motion

(SFM) [12] in computer vision. The first smoothing approach

to the SLAM problem is presented in [13], where the

estimation problem is formulated as a network of constraints

between robot poses. The first implementation [14] was based

on matrix inversion. A number of improved and numerically

more stable algorithms have been developed, such as LRGC

[15], [16], Atlas [17], Graphical SLAM [18], multi-level

relaxation [19], square root SAM [8], GraphSLAM [6], and

Treemap [20], [21].

We briefly compare iSAM to closely related techniques.

[21] uses Cholesky factors to represent probability distri-

butions in a tree-based algorithm. However, multiple ap-

proximations are employed to reduce the complexity, while

iSAM solves the full and exact problem, and therefore allows

relinearization of all variables at any time. The problem of

data association is not addressed in [21].

Square-root smoothing and mapping (square-root SAM)

[9] solves the estimation problem by factorization of the

naturally sparse information matrix, while exploiting the

special structure of the SLAM problem for efficiency. How-

ever, the matrix has to be factored completely after each

step, resulting in unnecessary computational burden. We have

Fig. 2. Bayesian belief network representation of the SLAM problem,
where xi is the state of the robot at time i, lj the location of landmark j,

ui the control input at time i and zk the kth measurement.

recently presented an incremental solution [10], that we

extend in this work to deal with unknown data association.

II. SMOOTHING AND MAPPING (SAM)

In this section we review the formulation of the SLAM

problem in a smoothing framework, following the notation

of [9]. In contrast to filtering methods, no marginalization

is performed, and all pose variables are retained. We de-

scribe the underlying probabilistic model of this full SLAM

problem, show how inference on this model leads to a least-

squares problem, and provide a solution based on a matrix

factorization.

A. A Probabilistic Model for SLAM

We formulate the SLAM problem in terms of the belief

network model shown in Fig. 2. We denote the robot state at

the ith time step by xi, with i ∈ 0 . . .M , a landmark by lj ,

with j ∈ 1 . . . N , and a measurement by zk, with k ∈ 1 . . .K.

The joint probability is given by

P (X, L, Z) = P (x0)
M
∏

i=1

P (xi|xi−1, ui)
K
∏

k=1

P (zk|xik
, ljk

)

(1)

where P (x0) is a prior on the initial state, P (xi|xi−1, ui) is

the motion model, parametrized by the control input ui, and

P (zk|xik
, ljk

) is the landmark measurement model, assuming

known correspondences (ik, jk) for each measurement zk.

We assume Gaussian process and measurement models, as

is standard in the SLAM literature. The process model

xi = fi(xi−1, ui) + wi (2)

describes the robot behavior in response to control input,

where wi is normally distributed zero-mean process noise

with covariance matrix Λi. The Gaussian measurement equa-

tion

zk = hk(xik
, ljk

) + vk (3)

models the robot’s sensors, where vk is normally distributed

zero-mean measurement noise with covariance Σk.
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B. SLAM as a Least Squares Problem

We now discuss how to obtain an optimal estimate for

the set of unknowns given all available measurements. As

we perform smoothing rather than filtering, we are interested

in the maximum a posteriori (MAP) estimate for the entire

trajectory X = {xi} and the map of landmarks L = {lj},

given the measurements Z = {zk} and the control inputs

U = {ui}. Collecting all unknowns from X and L in

the vector Θ = (X, L), the MAP estimate Θ∗ is obtained

by minimizing the negative log of the joint probability

P (X, L, Z) from (1):

Θ∗ = arg min
Θ

− log P (X, L, Z). (4)

Combined with the process and measurement models, this

leads to the following non-linear least-squares problem

Θ∗ = arg min
Θ

{

M
∑

i=1

||fi(xi−1, ui) − xi||
2
Λi

+

K
∑

k=1

||hk(xik
, ljk

) − zk||
2
Σk

}

(5)

where we use the notation ||e||2Σ = eT Σ−1e for the squared

Mahalanobis distance given a covariance matrix Σ.

In practice one always considers a linearized version of

this problem. If the process models fi and measurement

equations hk are non-linear and a good linearization point

is not available, non-linear optimization methods solve a

succession of linear approximations to this equation in order

to approach the minimum. We therefore linearize the least-

squares problem by assuming that either a good linearization

point is available or that we are working on one iteration of

a non-linear optimization method, see [8] for the derivation:

δΘ∗ = arg min
δΘ

{

M
∑

i=1

||F i−1
i δxi−1 + Gi

iδxi − ai||
2
Λi

+

K
∑

k=1

||Hik

k δxik
+ J

jk

k δljk
− ck||

2
Σk

}

.(6)

where Hik

k , J
jk

k are the Jacobians of hk with respect to a

change in xik
and ljk

respectively, F i−1
i the Jacobian of fi at

xi−1, and Gi
i = I for symmetry. ai and ck are the odometry

and observation measurement prediction errors, respectively.

Collecting all Jacobian matrices into a single matrix A,

and all the vectors into a right-hand side vector b, we obtain

a standard least-squares problem:

θ∗ = arg min
θ

||Aθ − b||2. (7)

C. Solving by QR Factorization

We apply the standard QR matrix factorization [22] to

solve the least-squares problem (7). In the linear case, the

measurement Jacobian A of this least-squares problem is

independent of the current estimate θ. We can therefore

rewrite the least-squares problem (7) as

||Q

[

R

0

]

θ − b||2 = ||Rθ − d||2 + ||e||2 (8)

where Q is an orthogonal matrix and we define [d, e]T
∆
=

QT b. Note that if the Jacobian A is an m × n matrix, then

Q and R are m × m and n × n matrices respectively. The

first term ||Rθ − d||2 vanishes for the least-squares solution

θ∗, leaving the second term ||e||2 as the residual of the least-

squares problem.

The solution for the complete robot trajectory as well as

the entire map can be recovered efficiently at any given time

during the mapping process. This is simply achieved by back-

substitution using the current factor R and right-hand side d

to obtain an update for all model variables θ based on

Rθ = d. (9)

While the algorithmic complexity of back-substitution is

O(n2) for general dense matrices, it is more efficient in our

case. Throughout the paper, we will assume that the number

of entries per column of R does not depend on the number of

variables n that make up the map and trajectory. Even though

there can be a dependency on n for loopy environments, it

is typically so small that it can be ignored. This is confirmed

by our results in Section V for a very loopy real-world

dataset. Under this assumption, back-substitution requires

O(n) time. To further improve efficiency, we can also restrict

the calculation to a subset of variables by stopping the

back-substitution process when all variables of interest are

obtained. This constant time operation is typically sufficient

unless loops are closed.

III. COVARIANCES AND DATA ASSOCIATION

We now describe a method to perform maximum likeli-

hood data association, which requires marginal covariances,

in an efficient manner. The data association problem in

SLAM consists of matching measurements to their corre-

sponding landmarks. This is especially problematic when

closing large loops in the environment. A simple and com-

monly used data association technique is the nearest neighbor

(NN) approach, in which each measurement is matched to

the landmark that minimizes the prediction error. This corre-

sponds to a minimum cost assignment problem, based on a

cost matrix containing all the prediction errors. Details of the

method, including incorporation of spurious measurements,

can be found in [23]. We use the Jonker-Volgenant-Castanon

(JVC) assignment algorithm [24] to solve the minimum cost

assignment problem.

The maximum likelihood (ML) solution to data association

is more sophisticated than the NN approach in that it takes

into account the relative uncertainties between the current

robot location and the landmarks in the map. This can again

be reduced to a minimum cost assignment problem, where

we use a Mahalanobis distance rather than the Euclidean

distance. Again a threshold, typically 3 sigma, is used to

identify new landmarks or spurious measurements. The Ma-

halanobis distance needed for the ML solution is defined in

the measurement space. It is therefore based on the projection

Ξ of the combined pose and landmark uncertainties Σ into

the measurement space

Ξ = Hp(HtΣHT
t + Γ)HT

p (10)
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where Ht is the Jacobian of the transformation into the robot

system, Hp the Jacobian of the projection process in robot

coordinates, and Γ the measurement noise.

The ML solution thus requires knowledge of the relative

uncertainties between the current pose mi and any visible

landmark xj . These marginal covariances

Σij =

[

Σjj ΣT
ij

Σij Σii

]

(11)

contain blocks from the diagonal of the full covariance

matrix, as well as the last block row and column, as is

shown in Fig. 1. Note that the off-diagonal blocks are

essential, because the uncertainties are relative to an arbitrary

reference frame, that is typically fixed at the origin of the

trajectory. Calculating the full covariance matrix in order to

recover these entries of interest is not an option, because the

covariance matrix is always completely populated with n2

entries. However, this is also not necessary, as only some

triangular blocks on the diagonal and the last block column

are needed, as shown in gray in Fig. 1. The remaining entries

are obtained by symmetry.

Our factored representation allows us to retrieve the exact

values of interest without having to calculate the complete

dense covariance matrix, as well as to efficiently obtain a

conservative estimate. The exact pose uncertainty Σii and

the covariances Σij can be recovered in linear time. We will

choose the current pose to be the last variable in our factor R.

Therefore, the dim(mi) last columns X of the full covariance

matrix (RT R)−1 contain Σii as well as all Σij , as observed

in [25]. But instead of having to keep an incremental estimate

of these entries, we can retrieve the exact values efficiently

from the factor R by back-substitution. We define B as the

last dim(mi) unit vectors and solve

RT RX = B (12)

by a forward and a back-substitution

RT Y = B, RX = Y. (13)

The key to efficiency is that we never have to recover

a full dense matrix, but due to R being upper triangular

immediately obtain

Y = [0, ..., 0, R−1
ii ]T . (14)

Hence only dim(mi) back-substitutions are needed, which

only requires O(n) time based on our assumption that the

number of entries per column in R is independent of the

number of variables n. But we can do even better: Typically

only a small number of landmarks in the map can be visible

from the current robot location. As we only need the marginal

covariances of those, we can use a dynamic programming

approach that also calculates any intermediate entries that

might be needed. The result is constant time for exploration

tasks, but can be linear for loopy environments.

Fig. 3. Comparison of marginal covariance estimates projected into the

current robot frame (indicated by red rectangle), for a short trajectory (red
line) and some landmarks (green crosses). Conservative covariances (green,
large ellipses) are shown as well as the exact covariances (blue, smaller
ellipses) obtained by our fast algorithm. Note that the exact covariances
based on full inversion are also shown (orange, mostly hidden by blue).

A. Conservative Estimates

Conservative estimates for the structure uncertainties Σjj

can be obtained as proposed by [25]. As the covariance can

only shrink over time during the smoothing process, we can

use the initial uncertainties Σ̃jj as conservative estimates.

These are obtained by

Σ̃jj = H−pt

[

Σii

Γ

]

HT
−pt (15)

where H−pt is the Jacobian of the back-projection, including

the transformation into map coordinates, and Σii and Γ are

the current pose uncertainty and the measurement noise,

respectively. Fig. 3 provides a comparison of the conservative

and exact covariances. A more tight conservative estimate on

a landmark can be obtained after multiple measurements are

available.

B. Exact Covariances

Recovering the exact structure uncertainties Σjj is not

straightforward, as they are spread out along the diagonal, but

can still be performed efficiently in this context by exploting

the sparsity structure of R. In general, the inverse

Σ
∆
= (AT A)−1 = (RT R)−1 (16)

is obtained based on the factor R by noting that

RT RΣ = I (17)

and performing a forward, followed by a back-substitution

RT Y = I, RΣ = Y. (18)

As the information matrix is not band-diagonal in general,

this would seem to require calculating all O(n2) entries of

the fully dense covariance matrix, which is infeasible for

any non-trivial problem. Here is where the sparsity of the

factor R is of advantage again. Both, [26] and [11] present

an efficient method for recovering exactly all entries σij of
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Fig. 4. Using a Givens rotation to transform a matrix into upper triangular
form. The entry marked ’x’ is eliminated, changing some of the entries
marked in red (dark), depending on sparseness.

the covariance matrix Σ that coincide with non-zero entries

in the factor R:

σll =
1

rll

(
1

rll

−

n
∑

j=l+1,rlj 6=0

rljσjl), (19)

σil =
1

rii

(−

l
∑

j=i+1,rij 6=0

rijσjl −

n
∑

j=l+1,rij 6=0

rijσlj) (20)

for l = n, . . . , 1 and i = l − 1, . . . , 1. Note that the

summations only apply to non-zero entries of single columns

or rows of the sparse matrix R. The algorithm therefore

has O(n) time complexity for band-diagonal matrices and

matrices with only a constant number of entries far from the

diagonal, but can be more expensive for general sparse R.

As the upper triangular parts of the block diagonals of R

are fully populated, and due to symmetry of the covariance

matrix, this algorithm provides access to all block diagonals,

which includes the structure uncertainties Σjj . Fig. 3 shows

marginal covariances obtained by this algorithm for a small

example. Note that they coincide with the exact covariances

obtained by full inversion.

IV. INCREMENTAL SAM (ISAM)

We revisit our incremental solution to the full SLAM

problem [10] based on updating a factored representation of

the information matrix of the least-squares problem from (7).

For simplicity we initially only consider the case of linear

process and measurement models, and return to the non-

linear case later in this section.

A. Givens Rotations

A standard approach to obtain the QR factorization of the

measurement Jacobian A uses Givens rotations [22] to clean

out all entries below the diagonal, one at a time. As we

will see later, this approach readily extends to factorization

updates, as will be needed to incorporate new measurements.

The process starts from the bottom left-most non-zero entry,

and proceeds either column- or row-wise, by applying the

Givens rotation
[

cos φ sinφ

− sinφ cos φ

]

(21)

to rows i and k, with i > k. The parameter φ is chosen

so that the (i, k) entry of A becomes 0, as shown in Fig.

4. Givens rotations are numerically stable and accurate to

machine precision, if implemented correctly [22, 5.1]. After

all entries below the diagonal are zeroed out, the upper

Fig. 5. Updating a factored representation of the smoothing information
matrix: New measurement rows are added to the upper triangular factor R
and the right-hand side (rhs). The left column shows the first three updates,
the right column shows the update after 50 steps. The update operation is
symbolically denoted by ⊕. Entries that remain unchanged are shown in
light blue (gray). For a typical exploration task the number of operations is
bounded by a constant.

triangular entries contain the R factor. Note that a sparse

measurement Jacobian A will result in a sparse R factor, at

least for an appropriate variable ordering, as will be discussed

later. However, the orthogonal rotation matrix Q is typically

dense, which is why this matrix is never explicitly stored

or even formed in practice. Instead, it is sufficient to update

the right-hand side (rhs) b with the same rotations that are

applied to A.

Instead of factorizing the updated measurement Jacobian

A when a new measurement arrives, it is more efficient to

modify the previous factorization by QR-updating. Adding a

new measurement row wT and rhs γ into the current factor

R and rhs d yields a new system that is not in the correct

factorized form:
[

QT

1

] [

A

wT

]

=

[

R

wT

]

, new rhs:

[

d

γ

]

. (22)

Note that this is the same system that would be obtained by

applying Givens rotations to eliminate all entries below the

diagonal, except for the last (new) row. Therefore Givens

rotations can be determined that zero out this new row,

yielding the updated factor R′. In the same way as for the

full factorization, we simultaneously update the right-hand

side with the same rotations to obtain d′.

For iSAM, QR-updating is efficient. In general, the max-

imum number of Givens rotations needed for adding a new

row is n. However, as R and the new measurement row

are sparse, only a constant number of Givens rotations are

needed. Furthermore, new measurements typically refer to

recently added variables, so that often only the rightmost

part of the new measurement row is (sparsely) populated.

An example demonstrating the locality of the update process

is shown in Fig. 5.
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It is easy to add new landmark and pose variables to the

QR factorization, as we can just expand the factor R by

the appropriate number of zero columns and rows, before

updating with the new measurement rows. Similarly, the

right-hand side d is augmented by the same number of zero

entries. The ordering of the variables requires some careful

consideration. In each step, we first add the new landmarks

for the current pose, and only then add the next pose. This

assures that the last variable in the system is always the most

recent pose, which is needed for an efficient recovery of the

covariances, as described in Section III.

For an exploration task in the linear case, the number of

rotations needed to incorporate a set of new landmark and

odometry measurements is independent of the size of the

trajectory and map [10]. Updating therefore has O(1) time

complexity for exploration tasks. Recovering all variables

after each step requires O(n) time, but is still very efficient

even after 10 000 steps, at about 0.12 seconds per step.

Furthermore, a constant time approximation can be obtained,

as only the most recent variables change significantly enough

to warrant recalculation. This is achieved by stopping the

back-substitution once the change in the variable estimate

drops below a threshold.

B. Loops and Variable Reordering

In contrast to pure exploration, where landmarks are only

observed in consecutive frames, loops can lead to fill-in of

the factor R. A loop is a cycle in the trajectory that brings the

robot back to a previously visited location. This introduces

correlations between current poses and previously observed

landmarks, which themselves are connected to earlier parts

of the trajectory. Results based on a simulated environment

with multiple loops are shown in Fig. 6. Even though

the information matrix remains sparse in the process, the

incremental updating of the factor R leads to fill-in. This

fill-in is local and does not affect further exploration, as is

evident from the example.

However, this fill-in can be avoided, as it depends on the

ordering of the variables. While obtaining the best ordering

is NP hard, efficient heuristics like colamd [27] have been

developed in linear algebra, that yield good results for the

SLAM problem as evaluated in [9]. The same factor R after

reordering shows no signs of fill-in. However, reordering of

the variables and subsequent factorization of the new mea-

surement Jacobian itself is also expensive when performed

in each step. We therefore propose fast incremental updates

interleaved with periodic reordering, yielding a fast algorithm

as supported by the dashed blue curve in Fig. 6(d).

When the robot continuously observes the same landmarks,

for example by remaining in one small room, this approach

will eventually fail, as the information matrix itself will

become dense. However, in this case filters will also fail due

to underestimation of uncertainties that will finally converge

to 0. A better solution to deal with this scenario is to

eventually switch to localization.

(a) Simulated double 8-loop at interesting stages of loop closing.

A B C

(b) Factor R. (c) The same factor R after vari-
able reordering.
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(d) Execution time per step for different updating strategies are shown in
both linear and log scale.

Fig. 6. For a simulated environment consisting of an 8-loop that is traversed
twice (a), the upper triangular factor R shows significant fill-in (b), yielding
bad performance (d, continuous red). Some fill-in occurs when the first loop
is closed (A). Note that this has no negative consequences on the subsequent
exploration along the second loop until the next loop closure occurs (B).
However, the fill-in then becomes significant when the complete 8-loop is
traversed for the second time, with a peak when visiting the center point of
the 8-loop for the third time (C). After variable reordering, the factor matrix
again is completely sparse (c). Reordering after each step (d, dashed green)
can be less expensive in the case of multiple loops. A considerable increase
in efficiency is achieved by using fast incremental updates interleaved with
occasional reordering (d, dotted blue), here every 100 steps.
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Execution time

Overall Avg./step Max./step

NN 2.03s 4.1ms 81ms

ML conservative 2.80s 5.6ms 95ms

ML exact, efficient 27.5s 55ms 304ms

ML exact, full 429s 858ms 3 300ms

Fig. 7. Execution times for different data association techniques for a
simulated 500-pose loop with 240 landmarks. The execution times include
updating of the factorization, solving for all variables, and performing the
respective data association technique, for every step.

C. Non-linear Systems

Updating the linearization point based on a new variable

estimate changes the measurement Jacobian. One way then

to obtain a new factorization is to refactor the measurement

Jacobian. However, in many situations it is not necessary to

perform relinearization [28]. First, measurements are typi-

cally fairly accurate on a local scale, so that relinearization

is not needed in every step. Therefore, to avoid additional

computation, the relinearization can be performed together

with the periodic variable reordering. Second, measurements

are also local and only affect a small number of variables

directly, with their effects rapidly declining while propagating

through the constraint graph. An exception is a situation such

as a loop closing, that can affect many variables at once. In

any case it is sufficient to perform selective relinearization

only over variables whose estimate has changed by more

than some threshold. Relinearization can then also be applied

incrementally, by first removing the affected measurement

rows from the current factor by QR-downdating (eg. hy-

perbolic rotations [22]), followed by adding the relinearized

measurement rows by QR-updating (eg. Givens rotations).

V. EXPERIMENTS AND RESULTS

A. Evaluation of Data Association Techniques

To compare the different data association techniques,

we have created a simulated environment with a 500-pose

loop and 240 landmarks, with significant measurement noise

added. Undetected landmarks and spurious measurements are

simulated by replacing 3% of the measurements by random

measurements.

The execution times of the different data association

techniques are shown in Fig. 7. The nearest neighbor (NN)

approach is dominated by the time needed for factorization

and backsubstitution in each step. The maximum likelihood

(ML) approach is evaluated for our fast conservative estimate

(Section III-A) and our efficient exact solution (Section III-

B). The conservative estimate only adds a small overhead,

which is mostly due to back-substitution to obtain the last

columns of the exact covariance matrix. Recovering the

exact matrix in comparison is fairly expensive, as the block-

diagonal entries have to be recovered. To show the advantage

of our exact efficient algorithm, we included results based on

the direct inversion of the information matrix. Note that we

have used a fast algorithm based on a sparse LDLT matrix

Fig. 8. Optimized map of the full Victoria Park sequence. Solving the
complete problem including data association in each step took 4.5 minutes
on a laptop. For known correspondences the time reduces to 2.7 minutes.
Since the dataset is from a 26 minute long robot run, iSAM with correspon-
dences is over 5 times faster than real time on a laptop computer. The
trajectory and landmarks are shown in yellow (light), manually overlayed on
an aerial image for reference. Differential GPS was not used in obtaining our
experimental results, but is shown in blue (dark) for comparison purposes.
Note that GPS is not available in many places.

factorization [22], but this does not change the fact that all

n2 entries of the covariance matrix have to be calculated.

B. Victoria Park Dataset

We have applied iSAM to the Sydney Victoria Park

dataset (available at http://www.acfr.usyd.edu.au/

homepages/academic/enebot/dataset.htm), a popular

test dataset in the SLAM community. The data consists

of 7 247 frames along a trajectory of 4 kilometer length,

recorded over a time frame of 26 minutes. 6 969 frames

are left after removing all measurements where the robot

was stationary. We have extracted 3 640 measurements of

landmarks from the laser data by a simple tree detector.

We have evaluated the performance of iSAM for both,

known and automatic data association. The final optimized

trajectory and map are shown in Fig. 8. The incremental

reconstruction includes solving for all variables after each

new frame is added. All timing results are obtained on

a 2 GHz Pentium M laptop computer. Using conservative

estimates for data association, it took 464s (7.7 minutes) to

calculate, which is significantly less than the 26 minutes it

took to record the data. The resulting reconstruction contains

140 distinct landmarks. Under known correspondences, the

time reduces to 351s (5.9 minutes). The difference is mainly

caused by the back-substitution of the last three columns
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in order to obtain the off-diagonal entries in each step. A

similar back-substitution, but only over a single column, is

performed to solve for all variables in each step. This is in

fact not really needed, as the measurements are fairly accurate

locally. Calculating all variables only every 10 steps yields a

significant improvement to 270s (4.5 minutes) with and 159s

(2.7 minutes) without data association.

Even though this trajectory contains a significant number

of loops (several places are traversed 8 times), iSAM is

over 5 times faster than real time. The average calculation

time for the final 100 steps, which are the most expensive

ones to compute, is 0.120s and 0.095s, with and without

data association, respectively. This compares favorably to

the 0.22s needed for real time. These times include a full

factorization and variable reordering, which took 1.8s in

total in both cases. Despite all the loops, the final factor

R is still sparse, with 207 422 entries for 21 187 variables,

yielding an average of 9.79 entries per column. This supports

our assumption that the number of entries per column is

approximately independent of the number of variables n,

even for very loopy environments.

VI. CONCLUSIONS

We presented a real-time SLAM algorithm that overcomes

the problems inherent to filters. The key is a factored rep-

resentation of the information matrix, that provides access

to the marginal covariances needed for data association, and

allows retrieving the exact trajectory and map in linear time.

Efficiency arises from incrementally updating the factorized

system while periodically reordering the variables to avoid

fill-in. We have finally demonstrated that our algorithm is

capable of solving large-scale SLAM problems in real-time,

including data association.

Future work includes the search for a good incremental

variable ordering, so that full matrix factorizations can be

completely avoided. For very large-scale environments it

seems likely that the complexity can be bounded by ap-

proaches similar to submaps or multi-level representations,

that have proven successful in combination with other SLAM

algorithms.
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