
IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008 1

iSAM: Incremental Smoothing and Mapping
Michael Kaess, Student Member, IEEE, Ananth Ranganathan, Student Member, IEEE,

and Frank Dellaert, Member, IEEE

Abstract— We present incremental smoothing and mapping
(iSAM), a novel approach to the simultaneous localization and
mapping problem that is based on fast incremental matrix
factorization. iSAM provides an efficient and exact solution by
updating a QR factorization of the naturally sparse smoothing in-
formation matrix, therefore recalculating only the matrix entries
that actually change. iSAM is efficient even for robot trajectories
with many loops as it avoids unnecessary fill-in in the factor
matrix by periodic variable reordering. Also, to enable data
association in real-time, we provide efficient algorithms to access
the estimation uncertainties of interest based on the factored
information matrix. We systematically evaluate the different
components of iSAM as well as the overall algorithm using
various simulated and real-world datasets for both landmark
and pose-only settings.

Index Terms— Data association, localization, mapping, mobile
robots, nonlinear estimation, simultaneous localization and map-
ping (SLAM), smoothing.

I. INTRODUCTION

THE goal of simultaneous localization and mapping

(SLAM) [1]–[3] is to provide an estimate after every

step for both the robot trajectory and the map, given all

available sensor data. In addition to being incremental, to

be practically useful, a solution to SLAM has to perform

in real-time, be applicable to large-scale environments, and

support online data association. Such a solution is essential

for many applications, stretching from search and rescue, over

reconnaissance to commercial products such as entertainment

and household robots. While there has been much progress

over the past decade, none of the work presented so far fulfills

all of these requirements at the same time.

Our previous work, called square root SAM [4], [5], gets

close to this goal by factorizing the information matrix of

the smoothing problem. Formulating SLAM in a smooth-

ing context adds the complete trajectory into the estimation

problem, therefore simplifying its solution. While this seems

Draft manuscript, September 7, 2008. Accepted by TRO as a regular paper.
This work was partially supported by the National Science Foundation

under Grant No. IIS - 0448111 and by DARPA under grant number FA8650-
04-C-7131. This work was presented in part at the International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 2007, and
in part at the IEEE International Conference on Robotics and Automation,
Rome, Italy, April 2007.

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes four multime-
dia AVI format movie clips, which visualize different aspects of the algorithms
presented in this paper. This material is 4.3 MB in size.

Color versions of most figures are available online at
http://ieeexplore.ieee.org.

The first and last authors are with the College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332, USA. The second author is with
the Honda Research Institute, One Cambridge Center, Suite 401, Cambridge
MA 02142, USA. (e-mail: kaess@cc.gatech.edu; ananth@cc.gatech.edu; del-
laert@cc.gatech.edu).

counterintuitive at first, because more variables are added

to the estimation problem, the simplification arises from

the fact that the smoothing information matrix is naturally

sparse. In contrast, in filtering approaches the information

matrix becomes dense when marginalizing out robot poses.

As a consequence of applying smoothing, we are able to

provide an exact, yet efficient solution based on a sparse

matrix factorization of the smoothing information matrix in

combination with back-substitution. We call this matrix factor

the square root information matrix, based on earlier work on

square root information filtering (SRIF) and smoothing (SRIS),

as recounted in [6], [7].

In this paper we present incremental smoothing and map-

ping (iSAM), which performs fast incremental updates of

the square root information matrix yet is able to compute

the full map and trajectory at any time. Our previous work,

square root SAM, is a batch algorithm that first updates the

information matrix when new measurements become available

and then factors it completely. Hence it performs unnecessary

calculations when applied incrementally. In this work, in

contrast, we directly update the square root information matrix

with new measurements as they arrive, using standard matrix

update equations [8]. That means we reuse the previously

calculated components of the square root factor, and only

perform calculations for entries that are actually affected by

the new measurements. Thus we obtain a local and constant

time operation for exploration tasks.

For trajectories with loops, periodic variable reordering

prevents unnecessary fill-in in the square root factor that would

otherwise slow down the incremental factor update as well as

the recovery of the current estimate by back-substitution. Fill-

in is a well-known problem for matrix factorization, as the

resulting matrix factor can contain a large number of additional

non-zero entries that reduce or even destroy the sparsity

with associated negative consequences for the computational

complexity. As the variable ordering influences the amount of

fill-in obtained, it allows us to influence the computational

complexity involved in solving the system. While finding

the best variable ordering is infeasible, good heuristics are

available. We perform incremental updates most of the time,

but periodically apply a variable reordering heuristic, followed

by refactoring the resulting measurement Jacobian.

Incremental mapping also requires online data association,

hence we provide efficient algorithms to access the relevant

estimation uncertainties from the incrementally updated square

root factor. The key insight for efficient retrieval of these

quantities is that only some entries of the full covariance

matrix are needed, at least some of which can readily be

accessed [9]. We present an efficient algorithm that avoids

calculating all entries of the covariance matrix, and instead

2 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

Fig. 1. Bayesian belief network representation of the SLAM problem. xi is
the state of the robot at time i, lj the location of landmark j, ui the control

input at time i and zk the kth landmark measurement.

focuses on the relevant parts by exploiting the sparsity of the

square root factor. In addition to this exact solution, we also

provide conservative estimates that are again derived from the

square root factor.

We evaluate iSAM on simulated and real-world datasets for

both landmark-based and pose-only settings. The pose-only

setting is a special case of iSAM, in which no landmarks

are used, but general pose constraints between pairs of poses

are considered in addition to odometry. The results show that

iSAM provides an efficient and exact solution for both types

of SLAM settings. They also show that the square root factor

indeed remains sparse even for large-scale environments with

a significant number of loops.

This paper is organized as follows. We continue in the next

section with a review of the smoothing approach to SLAM

as a least squares problem, providing a solution based on

matrix factorization. We then present our incremental solution

in Section III, addressing the topics of loops in the trajectory

and nonlinear measurement functions in Section IV. For data

association we discuss efficient algorithms to retrieve the

necessary components of the estimation uncertainty in Section

V. We follow up with experimental results in Section VI and

finally discuss related work in Section VII.

II. SAM: A SMOOTHING APPROACH TO SLAM

In this section we review the formulation of the SLAM

problem in the context of smoothing, following [4], but

focusing on a solution based on QR matrix factorization. We

start with the probabilistic model underlying the smoothing

approach to SLAM, and show how inference on this model

leads to a least squares problem. We then obtain an equivalent

linear formulation in matrix form by linearization of the

measurement functions. We finally provide an efficient batch

solution based on QR matrix factorization.

A. A Probabilistic Model for SLAM

We formulate the SLAM problem in terms of the belief

network model shown in Fig. 1. We denote the robot states

by X = {xi} with i ∈ 0 . . . M , the landmarks by L = {lj}
with j ∈ 1 . . . N , the control inputs by U = {ui} for i ∈
1 . . . M and finally the landmark measurements by Z = {zk}

with k ∈ 1 . . . K. The joint probability of all variables and

measurements is given by

P (X, L, U, Z) ∝ P (x0)

M
∏

i=1

P (xi|xi−1,ui)

K
∏

k=1

P (zk|xik
, ljk

)

(1)

where P (x0) is a prior on the initial state, P (xi|xi−1,ui) is

the motion model, parametrized by the control input ui, and

P (zk|xik
, ljk

) is the landmark measurement model. Initially,

we assume known correspondences (ik, jk) for each measure-

ment zk. The problem of establishing correspondences, which

is also called data association, is deferred until Section V.

We assume Gaussian measurement models, as is standard

in the SLAM literature [10]. The process model

xi = fi(xi−1,ui) + wi (2)

describes the odometry sensor or scan-matching process,

where wi is normally distributed zero-mean process noise with

covariance matrix Λi. The Gaussian measurement equation

zk = hk(xik
, ljk

) + vk (3)

models the robot’s landmark sensors, where vk is normally

distributed zero-mean measurement noise with covariance Γk.

B. SLAM as a Least Squares Problem

To obtain an optimal estimate for the set of unknowns given

all available measurements, we convert the problem into an

equivalent least squares formulation based on a maximum a

posteriori (MAP) estimate. As we perform smoothing rather

than filtering, we are interested in the MAP estimate for the

entire trajectory X and the map of landmarks L, given the

control inputs U and the landmark measurements Z. The

MAP estimate X∗, L∗ for trajectory and map is obtained by

minimizing the negative log of the joint probability from (1):

X∗, L∗ = arg max
X,L

P (X, L,U, Z)

= arg min
X,L

− log P (X, L,U, Z). (4)

Combined with the process and measurement models, this

leads to the following nonlinear least squares problem:

X∗, L∗ = arg min
X,L

{

M
∑

i=1

‖fi(xi−1,ui) − xi‖
2
Λi

+

K
∑

k=1

‖hk(xik
, ljk

) − zk‖
2
Γk

}

(5)

where we use the notation ‖e‖Σ = e
T Σ−1

e for the squared

Mahalanobis distance with covariance matrix Σ. Note that we

have dropped the prior P (x0) on the first pose for simplicity.

If the process models fi and measurement functions hk

are nonlinear and a good linearization point is not available,

nonlinear optimization methods are used, such as Gauss-

Newton or the Levenberg-Marquardt algorithm, which solve

a succession of linear approximations to (5) to approach the

minimum [11]. This is similar to the extended Kalman filter

approach to SLAM as pioneered by [12], but allows for

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 3

iterating multiple times to convergence, therefore avoiding the

problems arising from wrong linearization points.

As derived in the Appendix, linearization of the measure-

ment equations and subsequent collection of all components

in one large linear system yields the following standard least

squares problem:

θ
∗ = arg min

θ

‖Aθ − b‖
2

(6)

where the vector θ ∈ R
n contains all pose and landmark vari-

ables, the matrix A ∈ R
m×n is a large but sparse measurement

Jacobian with m measurement rows, and b ∈ R
m is the right-

hand side (RHS) vector. Such sparse least squares systems are

converted into an ordinary linear equation system by setting

the derivative of ‖Aθ − b‖
2

to 0, resulting in the so called

normal equations AT Aθ = AT b. This equation system can be

solved by Cholesky decomposition of AT A.

C. Solving by QR Factorization

We apply standard QR matrix factorization to the mea-

surement Jacobian A to solve the least squares problem (6).

In contrast to Cholesky factorization, this avoids having to

calculate the information matrix AT A with the associated

squaring of the matrix condition number. QR factorization of

the measurement Jacobian A yields:

A = Q

[

R

0

]

(7)

where R ∈ R
n×n is the upper triangular square root infor-

mation matrix (note that the information matrix is given by

RT R = AT A) and Q ∈ R
m×m is an orthogonal matrix. We

apply this factorization to the least squares problem (6):

‖Aθ − b‖
2

=

∥

∥

∥

∥

Q

[

R

0

]

θ − b

∥

∥

∥

∥

2

=

∥

∥

∥

∥

QT Q

[

R

0

]

θ − QT
b

∥

∥

∥

∥

2

=

∥

∥

∥

∥

[

R

0

]

θ −

[

d

e

]∥

∥

∥

∥

2

= ‖Rθ − d‖
2

+ ‖e‖
2

(8)

where we define [d, e]T := QT
b with d ∈ R

n and e ∈ R
m−n.

(8) becomes minimal if and only if Rθ = d, leaving the

second term ‖e‖
2

as the residual of the least squares prob-

lem. Therefore, QR factorization simplifies the least squares

problem to a linear system with a single unique solution θ
∗:

Rθ
∗ = d (9)

Most of the work for solving this equation system has already

been done by the QR decomposition, because R is upper tri-

angular, so simple back-substitution can be used. The result is

the least squares estimate θ
∗ for the complete robot trajectory

as well as the map, conditioned on all measurements.

Fig. 2. Using a Givens rotation as a step in transforming a general matrix
into upper triangular form. The entry marked ’x’ is eliminated, changing some
of the entries marked in red (dark), depending on sparsity.

III. ISAM: INCREMENTAL SMOOTHING AND MAPPING

We present our incremental smoothing and mapping (iSAM)

algorithm that avoids unnecessary calculations by directly

updating the square root factor when a new measurement

arrives. We begin with a review of Givens rotations for batch

and incremental QR matrix factorization. We then apply this

technique to update the square root factor, and discuss how to

retrieve the map and trajectory. We also analyze performance

for exploration tasks in simulated environments.

A. Matrix Factorization by Givens Rotations

A standard approach to obtain the QR factorization of a

matrix A uses Givens rotations [8] to clean out all entries

below the diagonal, one at a time. While this is not the

preferred way to do full QR factorization, we will later see that

this approach readily extends to factorization updates, which

are needed to incorporate new measurements. The process

starts from the left-most non-zero entry, and proceeds column-

wise, by applying the Givens rotation

Φ :=

[

cos φ sin φ

− sinφ cos φ

]

(10)

to rows i and k, with i > k as shown in Fig. 2. The parameter

φ is chosen so that aik, the (i, k) entry of A, becomes 0. After

all entries below the diagonal are zeroed out in this manner, the

upper triangular entries contain the R factor. The orthogonal

rotation matrix Q is typically dense, which is why this matrix

is never explicitly formed in practice. Instead, it is sufficient

to update the RHS vector b with the same rotations that are

applied to A.

Solving a least squares system Ax = b by matrix factoriza-

tion using Givens rotations is numerically stable and accurate

to machine precision if the rotations are determined as follows

[8, Sec. 5.1]:

(cos φ, sinφ) =

(1, 0) if β = 0
(

−α

β
q

1+(α
β)

2
, 1

q

1+(α
β)

2

)

if |β| > |α|

(

1
q

1+(β
α)

2
, −β

α
q

1+(β
α)

2

)

otherwise

where α := akk and β := aik.

B. Incremental Updating

When a new measurement arrives, it is more efficient to

modify the previous factorization directly by QR-updating,

instead of updating and refactoring the matrix A. Adding a

4 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

Fig. 3. Updating the factored representation of the smoothing information
matrix for the example of an exploration task: New measurement rows are
added to the upper triangular factor R and the right-hand side (RHS). The
left column shows the updates for the first three steps, the right column shows
the update after 50 steps. The update operation is symbolically denoted by
⊕. Entries that remain unchanged are shown in light blue (gray). For the
exploration task, the number of operations is bounded by a constant.

new measurement row w
T and RHS γ into the current factor

R and RHS d yields a new system that is not yet in the correct

factorized form:
[

QT

1

] [

A

w
T

]

=

[

R

w
T

]

, new rhs:

[

d

γ

]

. (11)

Note that this is the same system that is obtained by applying

Givens rotations to the updated matrix A′ to eliminate all

entries below the diagonal, except for the last (new) row.

Therefore Givens rotations can be determined that zero out

this new row, yielding the updated factor R′. As for the

full factorization, we simultaneously update the RHS with

the same rotations to obtain d
′. Several steps of this update

process are shown in Fig. 3.

New variables are added to the QR factorization by ex-

panding the factor R by the appropriate number of empty

columns and rows. This expansion is simply done before new

measurement rows containing the new variables are added. At

the same time, the RHS d is augmented by the same number

of zeros.

C. Incremental SAM

Applying the Givens rotations-based updating process to

the square root factor provides the basis for our efficient

incremental solution to smoothing and mapping. In general,

the maximum number of Givens rotations needed for adding

a new measurement row is n. However, as both R and the

new measurement row are sparse, only a constant number of

Givens rotations are needed. Furthermore, new measurements

typically refer to recently added variables, so that often only

the rightmost part of the new measurement row is (sparsely)

populated.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r

o
f

ro
ta

ti
o

n
s

Step

Number of Givens rotations per step

Exploration Task

Fig. 4. Number of Givens rotations needed per step for a simulated linear
exploration task. In each step, the square root factor is updated by adding
the new measurement rows by Givens rotations. The number of rotations is
independent of the length of the trajectory.

For a linear exploration task, incorporating a set of new

landmark and odometry measurements takes constant time.

Examples of such updates are shown in Fig. 3. The simulation

results in Fig. 4 show that the number of rotations needed is

independent of the size of the trajectory and the map. Updating

the square root factor therefore takes O(1) time, but this does

not yet provide the current least squares estimate.

The current least squares estimate for the map and the full

trajectory can be obtained at any time by back-substitution in

time linear in the number of variables. While back-substitution

has quadratic time complexity for general dense matrices, it

is more efficient in the context of iSAM. For exploration

tasks, the information matrix is band-diagonal. Therefore, the

square root factor has a constant number of entries per column

independent of the number of variables n that make up the map

and trajectory. Therefore, back-substitution requires O(n) time

in iSAM. In the linear exploration example from above, this

results in about 0.12s computation time after 10 000 steps.

In fact, for this special case of exploration, only a constant

number of the most recent values has to be retrieved in each

step to obtain the exact solution incrementally.

IV. LOOPS AND NONLINEAR FUNCTIONS

We discuss how iSAM deals with loops in the robot

trajectory, as well as with nonlinear sensor measurement

functions. While realistic SLAM applications include much

exploration, the robot often returns to previously visited places,

closing loops in the trajectory. We discuss the consequences

of loops on the matrix factorization and show how to use

periodic variable reordering to avoid unnecessary increases

in computational complexity. Furthermore, real-world sensing

often leads to nonlinear measurement functions, typically

by means of angles such as bearing to a landmark or the

robot heading. We show how iSAM allows relinearization of

measurement equations, and suggest a solution in connection

with the periodic variable reordering.

A. Loops and Periodic Variable Reordering

Environments with loops do not have the nice property of

local updates, resulting in increased complexity. In contrast

to pure exploration, where a landmark is only visible from a

small part of the trajectory, a loop in the trajectory brings the

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 5

(a) Simulated double 8-loop at interesting stages of loop closing (for
simplicity, only a reduced example is shown here).

(b) Factor R. (c) The same factor R after variable
reordering.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

T
im

e
 i
n

 s
e

c
o

n
d

s

Step

Execution time per step in seconds

A

B

C

No reordering
Always reorder

Every 100 steps

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000

T
im

e
 i
n

 s
e

c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Step

Execution time per step in seconds - log scale

A

B

CNo reordering
Always reorder

Every 100 steps

(d) Execution time per step for different updating strategies are shown in both
linear (top) and log scale (bottom).

Fig. 5. For a simulated environment consisting of an 8-loop that is traversed
twice (a), the upper triangular factor R shows significant fill-in (b), yielding
bad performance (d, continuous red). Some fill-in occurs at the time of the
first loop closing (A). Note that there are no negative consequences on the
subsequent exploration along the second loop until the next loop closure
occurs (B). However, the fill-in then becomes significant when the complete 8-
loop is traversed for the second time, with a peak when visiting the center point
of the 8-loop for the third time (C). After variable reordering according to a
approximate minimum degree heuristic, the factor matrix again is completely
sparse (c). In the presence of loops, reordering the variables after each step (d,
dashed green) is sometimes less expensive than incremental updates. However,
a considerable increase in efficiency is achieved by using fast incremental
updates interleaved with only occasional variable reordering (d, dotted blue),
here performed every 100 steps.

robot back to a previously visited location. A loop introduces

correlations between current poses and previously observed

landmarks, which themselves are connected to earlier parts of

the trajectory. An example based on a simulated environment

with a robot trajectory in the form of a double 8-loop is shown

in Fig. 5.

Loops in the trajectory can result in a significant increase

of computational complexity through a large increase of non-

zero entries in the factor matrix. Non-zero entries beyond the

sparsity pattern of the information matrix are called fill-in.

While the smoothing information matrix remains sparse even

in the case of closing loops, the incremental updating of the

factor matrix R leads to fill-in as can be seen from Fig. 5(b).

We avoid fill-in by variable reordering, a technique well

known in the linear algebra community, using a heuristic

to efficiently find a good block ordering. The order of the

columns in the information matrix influences the variable

elimination order and therefore also the resulting number of

entries in the factor R. While obtaining the best column

variable ordering is NP hard, efficient heuristics such as the

COLAMD (column approximate minimum degree) ordering

by Davis et al. [13] have been developed that yield good

results for the SLAM problem as shown in [4], [5]. We apply

this ordering heuristic to blocks of variables that correspond

to the robot poses and landmark locations. As has been

shown in [4], operating on these blocks leads to a further

increase in efficiency as it exploits the special structure of the

SLAM problem. The corresponding factor R after applying the

COLAMD ordering shows negligible fill-in, as can be seen in

Fig. 5(c).

We propose fast incremental updates with periodic vari-

able reordering, combining the advantages of both methods.

Factorization of the new measurement Jacobian after variable

reordering is expensive when performed in each step. But

combined with incremental updates it avoids fill-in and still

yields a fast algorithm as supported by the timing results in

Fig. 5(d). In fact, as the log scale version of this figure shows,

our solution is one to three orders of magnitude faster than

either the purely incremental or the batch solution with the

exception of occasional peaks caused by reordering of the

variables and subsequent matrix factorization. In this example

we use a fixed interval of 100 steps after which we reorder

the variables and refactor the complete matrix.

B. nonlinear Systems

While we have so far only discussed the case of lin-

ear measurement functions, SLAM applications usually are

faced with nonlinear measurement functions. Angular mea-

surements, such as the robot orientation or the bearing to

a landmark, are the main source for nonlinear dependencies

between measurements and variables. In that case everything

discussed so far is still valid. However, after solving the

linearized version based on the current variable estimate we

might obtain a better estimate resulting in a modified Jacobian

based on this new linearization point. For standard nonlinear

optimization techniques this process is iterated as explained

in Section II-B until the change in the estimate is sufficiently

6 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

small. Convergence is guaranteed, at least to a local minimum,

and the convergence speed is quadratic because we apply a

second order method.

As relinearization is not needed in every step, we propose

combining it with periodic variable reordering. The SLAM

problem is different from a standard nonlinear optimization as

new measurements arrive sequentially. First, we already have

a very good estimate for most if not all of the old variables.

Second, measurements are typically fairly accurate on a local

scale, so that good estimates are available for a newly added

robot pose as well as for newly added landmarks. We can

therefore avoid calculating a new Jacobian and refactoring it

in each step, a fairly expensive batch operation. Instead, for

the results presented here, we combine relinearization with the

periodic variable reordering for fill-in reduction as discussed in

the previous section. In other words, in the variable reordering

steps only, we also relinearize the measurement functions as

the new measurement Jacobian has to be refactored anyways.

V. DATA ASSOCIATION

As an incremental solution to the SLAM problem also

requires incremental data association, we provide efficient

algorithms to access the quantities of interest of the underlying

estimation uncertainty. The data association problem in SLAM

consists of matching measurements to their corresponding

landmarks. While data association is required on a frame-to-

frame basis, it is particularly problematic when closing large

loops in the trajectory. We start with a general discussion of

the data association problem, based on a maximum likelihood

formulation. We discuss how to access the exact values of

interest as well as conservative estimates from the square root

factor of the smoothing information matrix. We then compare

the performance of these algorithms to fast inversion of the

information matrix and to nearest neighbor matching.

A. Maximum Likelihood Data Association

The often used nearest neighbor (NN) approach to data

association is not sufficient in many cases, as it does not take

into account the estimation uncertainties. NN assigns each

measurement to the closest predicted landmark measurement.

The NN approach corresponds to a minimum cost assignment

problem, based on a cost matrix that contains all the prediction

errors. Details of this minimum cost assignment problem and

of how to deal with spurious measurements are given in [14].

Instead of NN, we use the maximum likelihood (ML)

solution to data association [15], which is more sophisticated

in that it takes into account the relative uncertainties between

the current robot location and the landmarks in the map. The

ML formulation can again be reduced to a minimum cost

assignment problem, using a Mahalanobis distance rather than

the Euclidean distance. This Mahalanobis distance is based

on the projection Ξ of the combined pose and landmark

uncertainties Σ into the sensor measurement space

Ξ = JΣJT + Γ (12)

where Γ is the measurement noise and J is the Jacobian of

the linearized measurement function h from (3). We use the

Fig. 6. Only a small number of entries of the dense covariance matrix
are of interest for data association. In this example, the marginals between
the latest pose x2 and the landmarks l1 and l3 are retrieved. The entries
that need to be calculated in general are marked in gray: Only the triangular
blocks along the diagonal and the right-most block column are needed, due to
symmetry. Based on our factored information matrix representation, the last
column can be obtained by simple back-substitution. As we show here, the
blocks on the diagonal can either be calculated exactly by only calculating the
entries corresponding to non-zeros in the sparse factor R, or approximated
by conservative estimates for online data association.

Jonker-Volgenant-Castanon (JVC) assignment algorithm [16]

to solve this assignment problem.

B. Marginal Covariances

Knowledge of the relative uncertainties between the current

pose xi and any visible landmark lj is needed for the ML

solution to the data association problem. These marginal

covariances

Σ =

[

Σjj ΣT
ij

Σij Σii

]

(13)

contain blocks from the diagonal of the full covariance matrix,

as well as the last block row and column, as is shown in

Fig. 6. Note that the off-diagonal blocks are essential, because

the uncertainties are relative to an arbitrary reference frame,

which is often fixed at the origin of the trajectory.

Calculating the full covariance matrix to recover these

entries is not an option because the covariance matrix is always

completely populated with n2 entries, where n is the number

of variables. However, calculating all entries is not necessary

if we always add the most recent pose at the end, that is

we first add the newly observed landmarks, then optionally

perform variable reordering, and finally add the next pose. In

that case, only some triangular blocks on the diagonal and the

last block column are needed as indicated by the gray areas

in Fig. 6, and the remaining entries are given by symmetry.

Our factored representation allows us to retrieve the exact

values of interest without having to calculate the complete

dense covariance matrix as well as to obtain a more efficient

conservative estimate.

Common to both exact solution and conservative estimates

are the recovery of the last columns of the covariance matrix

from the square root factor, which can be done efficiently

by back-substitution. The exact pose uncertainty Σii and the

covariances Σij can be recovered in linear time, based on the

sparse R factor. As we choose the current pose to be the last

variable in our factor R, the last block-column X of the full

covariance matrix (RT R)−1 contains Σii as well as all Σij as

observed in [9]. But instead of having to keep an incremental

estimate of these quantities, we can retrieve the exact values

efficiently from the factor R by back-substitution. With dx the

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 7

Fig. 7. Comparison of marginal covariance estimates projected into the

current robot frame (robot indicated by red rectangle), for a short trajectory
(red curve) and some landmarks (green crosses). Conservative covariances
(green, large ellipses) are shown as well as the exact covariances (blue, smaller
ellipses) obtained by our fast algorithm. Note that the exact covariances based
on full inversion are also shown (orange, mostly hidden by blue).

dimension of the last pose, we define B ∈ R
n×dx as the last

dx unit vectors

B =

[

0(n−dx)×dx

Idx×dx

]

(14)

and solve

RT RX = B (15)

by a forward and a back-substitution

RT Y = B, RX = Y. (16)

The key to efficiency is that we never have to recover a full

dense matrix, but due to R being upper triangular immediately

obtain

Y = [0, ..., 0, R−1
ii]T . (17)

Recovering these columns is efficient, because only a constant

number of dx back-substitutions are needed.

C. Conservative Estimates

Conservative estimates for the structure uncertainties Σjj

are obtained from the initial uncertainties as proposed by

Eustice [9]. As the uncertainty can never grow when new

measurements are added to the system, the initial uncertainties

Σ̃jj provide conservative estimates. These are obtained by

Σ̃jj = J̄

[

Σii

Γ

]

J̄T (18)

where J̄ is the Jacobian of the linearized back-projection

function (an inverse of the measurement function is not always

available, for example for the bearing-only case), and Σii and

Γ are the current pose uncertainty and the measurement noise,

respectively. Fig. 7 provides a comparison of the conservative

and exact covariances. A more tight conservative estimate

on a landmark can be obtained after multiple measurements

are available, or later in the process by means of the exact

algorithm that is presented next.

D. Exact Covariances

Recovering the exact structure uncertainties Σjj is not

straightforward, as they are spread out along the diagonal, but

can still be done efficiently by again exploiting the sparsity

structure of R. In general, the covariance matrix is obtained

as the inverse of the information matrix

Σ := (AT A)−1 = (RT R)−1 (19)

based on the factor R by noting that

RT RΣ = I (20)

and performing a forward, followed by a back-substitution

RT Y = I, RΣ = Y. (21)

Because the information matrix is not band-diagonal in gen-

eral, this would seem to require calculating all n2 entries of

the fully dense covariance matrix, which is infeasible for any

non-trivial problem. Here is where the sparsity of the factor R

is of advantage again. Both, [17] and [18] present an efficient

method for recovering exactly all entries σij of the covariance

matrix Σ that coincide with non-zero entries in the factor

R = (rij):

σll =
1

rll
(

1

rll
−

n
∑

j=l+1,rlj 6=0

rljσjl) (22)

σil =
1

rii
(−

l
∑

j=i+1,rij 6=0

rijσjl −

n
∑

j=l+1,rij 6=0

rijσlj) (23)

for l = n, . . . , 1 and i = l − 1, . . . , 1, where the other half

of the matrix is given by symmetry. Note that the summations

only apply to non-zero entries of single columns or rows of the

sparse matrix R. This means that in order to obtain the top-

left-most entry of the covariance matrix, we at most have to

calculate all other entries that correspond to non-zeros in R.

The algorithm has O(n) time complexity for band-diagonal

matrices and matrices with only a small number of entries

far from the diagonal, but can be more expensive for general

sparse R.

Based on a dynamic programming approach, our algorithm

provides access to all entries of interest for data association.

Fig. 7 shows the marginal covariances obtained by this al-

gorithm for a small example. Note that they coincide with

the exact covariances obtained by full inversion. As the upper

triangular parts of the block diagonals of R are fully populated,

and due to symmetry of the covariance matrix, we obtain all

block diagonals and therefore also the structure uncertainties

Σjj . Even if any of these populated entries in R happen to

be zero, or if additional entries are needed that are outside

the sparsity pattern of R, they are easily accessible. We use a

dynamic programming approach that obtains the entries we

need, and automatically calculates any intermediate entries

as required. That also allows efficient retrieval of additional

quantities that may be required for other data association

techniques, such as the joint compatibility test [19].

8 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

(a) Trajectory based on odometry only. (b) Trajectory and map after incremental optimizia-
tion.

(c) Final R factor with side length 21 187.

Fig. 8. Results for the full Victoria Park sequence. Solving the complete problem including data association in each step took 7.7 minutes on a laptop computer.
For known correspondences, the time reduces to 5.9 minutes. Since the dataset is from a 26 minute long robot run, iSAM with unknown correspondences is
over 3 times faster than real-time in this case, calculating the complete and exact solution in each step. The trajectory and landmarks are shown in yellow
(light), manually overlaid on an aerial image for reference. Differential GPS was not used in obtaining our experimental results, but is shown in blue (dark)
for comparison - note that in many places it is not available.

TABLE I

EXECUTION TIMES FOR DIFFERENT DATA ASSOCIATION TECHNIQUES FOR

A SIMULATED LOOP. THE TIMES INCLUDE UPDATING OF THE

FACTORIZATION, SOLVING FOR ALL VARIABLES, AND PERFORMING THE

RESPECTIVE DATA ASSOCIATION TECHNIQUE, FOR EVERY STEP.

Execution time
Overall Avg./step Max./step

NN 2.03s 4.1ms 81ms

ML conservative 2.80s 5.6ms 95ms

ML exact, efficient 27.5s 55ms 304ms

ML exact, full 429s 858ms 3300ms

E. Evaluation

Table I compares the execution times of NN as well as

ML data association for different methods of obtaining the

marginal covariances. The results are based on a simulated

environment with a 500-pose loop and 240 landmarks, with

significant measurement noise added. Undetected landmarks

and spurious measurements are simulated by replacing 3%
of the measurements by random measurements. The nearest

neighbor (NN) approach is dominated by the time needed for

factorization updates and back-substitution in each step. As

those same calculations are also performed for all covariance-

based approaches that follow, these times are a close approxi-

mation to the overall calculation time without data association.

The numbers show that while our exact algorithm is much

more efficient than full inversion, our conservative solution is

better suited for real-time application. In the second and third

rows, the maximum likelihood (ML) approach is evaluated for

our fast conservative estimate and our efficient exact solution.

The conservative estimate only adds a small overhead to

the NN time, which is mostly due to back-substitution to

obtain the last columns of the exact covariance matrix. This

is computationally the same as the back-substitution used for

solving, except that it covers a number of columns equal to

the dimension of a single pose instead of just one. Recovering

the exact marginal covariances becomes fairly expensive in

comparison as additionally the block-diagonal entries have

to be recovered. Our exact efficient algorithm is an order

of magnitude faster compared to the direct inversion of the

information matrix, even though we have used an efficient

algorithm based on a sparse LDLT matrix factorization [8].

However, this does not change the fact that all n2 entries of the

covariance matrix have to be calculated for the full inversion.

Nevertheless, even our fast algorithm will get expensive for

large environments and cannot be calculated in every step.

Instead, as the uncertainties can never grow when new mea-

surements are added, exact values can be calculated when time

permits in order to update the conservative estimates.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

While we evaluate the individual components of iSAM

in their respective sections, we now evaluate our overall

algorithm on simulated data as well as real-world datasets. The

simulated data allow comparison with ground-truth, while the

real-world data prove the applicability of iSAM to practical

problems. We explore both, landmark-based as well as pose

constraint based SLAM.

We have implemented iSAM in the functional programming

language OCaml, using exact, automatic differentiation [20]

to obtain the Jacobians. All timing results in this section are

obtained on a 2 GHz Pentium M laptop computer.

A. Landmark-based iSAM

Landmark-based iSAM works well in real-world settings,

even in the presence of many loops in the robot trajectory. We

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 9

have evaluated iSAM on the Sydney Victoria Park dataset, a

popular test dataset in the SLAM community, that consists of

laser-range data and vehicle odometry, recorded in a park with

sparse tree coverage. It contains 7247 frames along a trajectory

of 4 kilometer length, recorded over a time frame of 26
minutes. As repeated measurements taken by a stopped vehicle

do not add any new information, we have dropped these,

leaving 6969 frames. We have extracted 3640 measurements

of landmarks from the laser data by a simple tree detector.

iSAM with unknown correspondences runs comfortably in

real-time. Performing data association based on conservative

estimates, the incremental reconstruction including solving for

all variables after each new frame is added, took 464s or

7.7 minutes, which is significantly less than the 26 minutes

it took to record the data. That means that even though

the Victoria Park trajectory contains a significant number of

loops (several places are traversed 8 times), increasing fill-

in, iSAM is still over 3 times faster than real-time. The

resulting map contains 140 distinct landmarks as shown in

Fig. 8(b). Solving after every step is not necessary, as the

measurements are fairly accurate locally, therefore providing

good estimates. Calculating all variables only every 10 steps

yields a significant improvement to 270s or 4.5 minutes.

Naturally, iSAM runs even faster with known data associa-

tion, for example due to uniquely identifiable landmarks. For

this test, we use the correspondences that were automatically

obtained before. Under known correspondences, the time

reduces to 351s or 5.9 minutes. The difference is mainly

caused by the back-substitution over the last three columns

to obtain the off-diagonal entries in each step that are needed

for data association. The decrease is not significant because

a similar back-substitution over a single column still has to

be performed to solve for all variables in each step. But, as a

consequence, solving by back-substitution only every 10 steps

now significantly reduces the time to 159s or 2.7 minutes.

More importantly, iSAM still performs in real-time towards

the end of the trajectory, where the computations get more

expensive. The average calculation time for the final 100
steps are the most expensive ones to compute as the number

of variables is largest. Even for the slow case of retrieving

the full solution after every step, iSAM takes in average

0.120s and 0.095s per step, with and without data association,

respectively. These results compare favorably to the 0.22s

needed for real-time performance. These computation times

include a full linearization, COLAMD variable reordering step

and matrix factorization, which took 1.8s in total in both cases.

Despite all the loops, the final factor R as shown in Fig. 8(c) is

still sparse, with 207 422 entries for 21 187 variables, yielding

an average of only 9.79 entries per column.

B. Pose Constraint-based iSAM

iSAM can straightforwardly be applied to estimation prob-

lems without landmarks, purely based on pose constraints,

as we show in this section based on known correspon-

dences. Such pose constraints most commonly arise from scan-

matching dense laser range data, but can also be generated

from visual input [9]. Pose constraints either connect subse-

quent poses similar to odometry measurements, or they con-

nect two arbitrary poses when closing loops. Pose constraints

are incorporated in a similar way than the odometry mea-

surements, by introducing new terms that represent the error

between the predicted and the measured difference between a

pair of poses. We evaluate pose-only iSAM on simulated as

well as real-world datasets, assuming known data association,

as the generation of pose constraints by scan-matching has

been well studied and good algorithms are available [22], [23].

The incremental solution of iSAM is comparable in quality

to the solution obtained by full nonlinear optimization. To

allow ground truth comparison, we use the simulated Man-

hattan world from [21] shown in Fig. 9(a),(b). This dataset

contains 3500 poses and 5598 constraints, 3499 of which

are odometry measurements. While the result in [21] seems

to be better as the left part is more straightened out, our

solution has a slightly lower normalized χ2 value of 1.0406,

compared to 1.0412. After one extra relinearization and back-

substitution, the normalized χ2 is 1.0375, the same value that

we obtain by full nonlinear optimization until convergence.

These results show that iSAM is comparable in accuracy to

the exact solution provided by square root SAM.

In terms of computational speed, iSAM also fares well

for this dataset. Solving the full problem for each newly

added pose, while reordering the variables and relinearizing

the problem every 100 steps, takes iSAM 140.9s, or an average

of 40ms per step. The last 100 steps take an average of 48ms

each, which includes 1.08s for variable reordering and matrix

factorization. The resulting R factor shown in Fig. 9(c) is

sparse with 187 423 entries for a side length of 10 500.

iSAM also performs well on real-world data, both in

quality of the solution as well as speed. We apply iSAM

to two publicly available laser range datasets that appear in

several publications. The first one is the Intel dataset shown

in Fig. 10(b), providing a trajectory with many loops with

continued exploration of the same environment in increasing

detail. Preprocessing by scan matching results in 910 poses

and 4453 constraints. iSAM obtains the full solution after each

step, with variable reordering every 20 frames in 77.4s, or

about 85ms per step. The last 100 steps take an average of

290ms including 0.92s for each of the five reordering and

factorization steps. The final R factor is shown in Fig. 10(c),

with 2730 variables containing 90 363 entries.

The second real-world pose-only example we use to evalu-

ate iSAM is the MIT Killian Court dataset shown in Fig. 11(b)

that features much exploration with a few large-scale loops.

Again the dataset was preprocessed, yielding 1941 poses and

2190 pose constraints. iSAM takes 23.7s for a complete solu-

tion after each step, or about 12.2ms per step, with variable

reordering after every 100 steps. The last 100 steps take an av-

erage of 31ms including 0.36s for reordering/refactorization.

The final R factor with 52 414 entries is shown in Fig. 11(c).

C. Sparsity of Square Root Factor

The complexity of iSAM heavily depends on the sparsity

of the square root factor, as this affects both retrieving the

solution as well as access to the covariances. Retrieving the

10 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

(a) Original noisy data set. (b) Trajectory after incremental optimization. (c) Final R factor with side length 10 500.

Fig. 9. iSAM results for the simulated Manhattan world from [21] with 3500 poses and 5598 constraints. iSAM takes about 40ms per step. The resulting
R factor has 187 423 entries, which corresponds to 0.34% or an average of 17.8 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 2730.

Fig. 10. Results from iSAM applied to the Intel dataset. iSAM calculates the full solution for 910 poses and 4453 constraints with an average of 85ms
per step, while reordering the variables every 20 steps. The problem has 910 × 3 = 2730 variables and 4453 × 3 = 13 359 measurement equations. The R
factor contains 90 363 entries, which corresponds to 2.42% or 33.1 entries per column.

(a) Trajectory based on odometry only. (b) Final trajectory and evidence grid map. (c) Final R factor with side length 5823.

Fig. 11. iSAM results for the MIT Killian Court dataset. iSAM calculates the full solution for the 1941 poses and 2190 pose constraints with an average
of 12.2ms per step. The R factor contains 52 414 entries for 5823 variables, which corresponds to 0.31% or 9.0 per column.

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 11

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000

N
u

m
b

e
r

p
e

r
c
o

lu
m

n

Step

Average number of non-zero matrix entries per column in R

Victoria Park
Manhatten

Intel
Killian

Fig. 12. Average number of entries per column in the R factor over time for
the different data sets in this section. Even though the environments contain
many loops, the average converges to a low constant in most cases, confirming
our assumption that the number of entries per column is approximately
independent of the number of variables n.

solution from the square root factor requires back-substitution,

which usually has quadratic time complexity. However, if

there are only a constant number of entries per column in

the square root factor, then back-substitution only requires

O(n) time. The same applies to retrieval of the last columns

of the covariance matrix, which is the dominant cost for our

conservative estimates.

Our results show that the number of entries per column

is typically bound by a low constant. Figure 12 shows how

the density of the factor matrix R develops over time for

each dataset used in this section. The densities initially in-

crease, showing very large changes: Increases are caused

by incremental updating of the matrix factor, while sudden

drops are the consequence of the periodic variable reordering.

Except for the Intel sequence, all curves clearly converge to

a low constant, explaining the good performance of iSAM.

For the Intel dataset, the density increases more significantly

because: 1) the trajectory starts with a coarse run through the

building, followed by more detailed exploration, and 2) there

are unnecessarily many pose constraints to previous parts of

the trajectory that lead to fill-in. This is also the reason for

choosing a shorter interval for the periodic variable reordering

(20 steps) than for all other datasets (100 steps). Nevertheless,

as the results for that sequence show, iSAM still performs

faster than needed for real-time.

From a theoretical point of view some bounds can be speci-

fied depending on the nature of the environment. [24] provides

an upper bound of O(n log n) for the fill-in of the square

root factor for planar mapping with restricted sensor range.

That means that the average fill-in per column is bound by

O(log n). One special case is a pure exploration task, in which

the robot never returns to previously mapped environments.

In that case the information matrix is band-diagonal, and

therefore the factor matrix without variable reordering has a

constant number of entries per column. Another special case

is a robot that remains in the same restricted environment,

continuously observing the same landmarks. In that case the

optimal solution is given by the variable ordering that puts all

landmarks at the end and iSAM performs a calculation similar

to the Schur complement. The result is a system that requires

computation time linear in the length of the trajectory, but

with a large constant that is quadratic in the constant number

of landmarks. However, once the complete environment of the

robot is mapped, there is no longer any need for SLAM, but

rather localization based on the obtained map is sufficient.

VII. RELATED WORK

There is a large body of literature on the field of robot

localization and mapping, and we will only address closely

related work as well as some of the most influential algorithms.

A general overview of the area of SLAM can be found in

[3], [10], [25], [26]. Initial work on probabilistic SLAM was

based on the extended Kalman filter (EKF) and is due to

Smith et al. [12], building on earlier work [1], [27], [28]. It

has soon been shown that filtering is inconsistent in nonlinear

SLAM settings [29] and much later work [30], [31] focuses

on reducing the effect of nonlinearities and providing more

efficient, but typically approximate solutions to deal with

larger environments.

Smoothing in the SLAM context avoids these problems by

keeping the complete robot trajectory as part of the estimation

problem. It is also called the full SLAM problem [10] and is

closely related to bundle adjustment [18] in photogrammetry,

and to structure from motion (SFM) [32] in computer vision.

While those are typically solved by batch processing of all

measurements, SLAM by nature is an incremental problem.

Also, SLAM provides additional constraints in the form of

odometry measurements and an ordered sequence of poses that

are not present in general SFM problems. The first smoothing

approach to the SLAM problem is presented in [33], where the

estimation problem is formulated as a network of constraints

between robot poses. The first implementation [34] was based

on matrix inversion.

A number of improved and numerically more stable al-

gorithms have since been developed, based on well-known

iterative techniques such as relaxation [10], [35], [36], gradient

descent [37], [38], conjugate gradient [39], and more recently

multi-level relaxation [40], [41]. The latter is based on a

general multi-grid approach that has proven very successful in

other fields for solving systems of equations. While most of

these approaches represent interesting solutions to the SLAM

problem, they all have in common that it is very expensive to

recover the uncertainties of the estimation process.

Recently, the information form of SLAM has become very

popular. Filter-based approaches include the sparse extended

information filter (SEIF) [42] and the thin junction tree filter

(TJTF) [43]. On the smoothing side, Treemap [44] exploits

the information form, but applies multiple approximations to

provide a highly efficient algorithm. Square root SAM [4],

[5] provides an efficient and exact solution based on a batch

factorization of the information matrix, but does not address

how to efficiently access the marginal covariances.

While iSAM includes the complete trajectory and map, this

is not always the case when smoothing is applied. Instead,

the complexity of the estimation problem can be reduced

by omitting the trajectory altogether, as for example pursued

by D-SLAM [45], where measurements are transformed into

relative constraints between landmarks. Similarly, parts of

12 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

the trajectory can be omitted as done by Folkesson and

Christensen [37], where parts of the underlying graph are

collapsed into so-called star nodes. Alternatively, the problem

can be stated as estimating the trajectory only, which leads

to an exactly sparse information matrix [46], [47], where

image measurements are converted to relative pose constraints.

While this approach is similar to our pose-only case, they

employ iterative methods to solve the estimation problem.

While conservative estimates are available in Eustice’s work

[46], and in fact were the inspiration for our work, efficient

access to the exact covariances is not possible based on the

iterative solver.

Recently, some SLAM algorithms employ direct equation

solvers based on Cholesky or QR factorization. Treemap [48]

uses Cholesky factors to represent probability distributions in

a tree-based algorithm. However, multiple approximations are

employed to reduce the complexity, while iSAM solves the full

and exact problem, and therefore allows relinearization of all

variables at any time. The problem of data association is not

addressed in [48]. Square root SAM [4] solves the estimation

problem by factorization of the naturally sparse information

matrix. However, the matrix has to be factored completely

after each step, resulting in unnecessary computational burden.

We have recently presented our incremental solution [49] and

its extension to unknown data association [50] in conference

versions of this extended article.

To the best of our knowledge, updating of matrix factor-

izations has not been applied in the context of SLAM yet.

However, it is a well-known technique in many areas, with

applications such as computer vision [18], [51] and signal

processing [52]. Golub and Van Loan [8] present general

methods for updating matrix factorizations based on [53], [54],

including the Givens rotations we use in this work. Davis

has done much work in the areas of variable ordering and

factorization updates, and provides highly optimized software

libraries [13], [55] for various such tasks.

VIII. CONCLUSION

We have presented iSAM, a fast incremental solution to the

SLAM problem that updates a sparse matrix factorization. By

employing smoothing we obtain a naturally sparse information

matrix. As our approach is based on a direct equation solver

using QR factorization, it has multiple advantages over iter-

ative methods. Most importantly, iSAM allows access to the

underlying estimation uncertainties, and we have shown how

to access those efficiently, both the exact values as well as

conservative estimates. We have further evaluated iSAM for

both simulated and real-world data. In addition to the typical

landmark-based application, we have also presented results for

trajectory-only estimation problems.

iSAM compares favorably with other methods in terms of

computational speed. Even though some other algorithms are

faster, they either only provide approximations, or they do not

provide access to the exact estimation uncertainties. iSAM in

contrast, combines exact recovery of the map and trajectory

with efficient retrieval of the covariances needed for data

association, while providing real-time processing on readily

available hardware. Therefore we expect that approximate so-

lutions will become less important in the future, and methods

like iSAM that are based on direct equation solvers will take

their place.

There is still potential for improvements in several aspects

of iSAM. An incremental variable ordering that balances fill-

in and the cost for incrementally updating the matrix could

prove beneficial. This could allow completely eliminating any

batch steps, because relinearization can also be performed

incrementally, as typically only a small number of variables are

affected. Finally, for both recovery of the solution and access

to the covariances, back-substitution could be restricted to only

access the entries that are actually needed.

Our incremental solution should also be of interest beyond

the applications presented here. One potential application is

tracking a sensor in unknown settings for augmented reality,

as a cheap alternative to instrumenting the environment. We

are working on visual SLAM applications of iSAM that

will benefit from scalable and exact solutions, especially

for unstructured outdoor environments. Furthermore, the real-

time properties of iSAM allow for autonomous operation

when mapping buildings or entire cities for virtual reality

applications.

APPENDIX

For completeness of this paper, we review how to linearize

the measurement functions and collect all components of the

nonlinear least squares objective function (5) into one general

least squares formulation, following [4]. We linearize the

measurement functions in (5) by Taylor expansion, assuming

that either a good linearization point is available or that we are

working on one iteration of a nonlinear optimization method.

In either case, the first-order linearization of the process term

in (5) is given by:

fi(xi−1,ui) − xi

≈
{

fi(x
0
i−1,ui) + F i−1

i δxi−1

}

−
{

x
0
i + δxi

}

=
{

F i−1
i δxi−1 − δxi

}

− ai (24)

where F i−1
i is the Jacobian of the process model fi(.) at the

linearization point x
0
i−1, as defined by

F i−1
i :=

∂fi(xi−1,ui)

∂xi−1

∣

∣

∣

∣

x
0

i−1

(25)

and ai := x
0
i − fi(x

0
i−1,ui) is the odometry prediction error

(note that ui here is given and hence constant). The first-

order linearizations of the measurement term in (5) is obtained

similarly,

hk(xik
, ljk

) − zk

≈
{

hk(x0
ik

, l0jk
) + Hik

k δxik
+ J

jk

k δljk

}

− zk

=
{

Hik

k δxik
+ J

jk

k δljk

}

− ck (26)

where Hik

k and J
jk

k are respectively the Jacobians of the

measurement function hk(.) with respect to a change in xik

KAESS et al.: iSAM: INCREMENTAL SMOOTHING AND MAPPING 13

and ljk
evaluated at the linearization point (x0

ik
, l0jk

):

Hik

k :=
∂hk(xik

, ljk
)

∂xik

∣

∣

∣

∣

(x0

ik
,l0

jk
)

(27)

J
jk

k :=
∂hk(xik

, ljk
)

∂ljk

∣

∣

∣

∣

(x0

ik
,l0

jk
)

(28)

and ck := zk − hk(x0
ik

, l0jk
) is the measurement prediction

error.

Using the linearized process and measurement models (24)

and (26), respectively, (5) becomes

δθ∗ = arg min
δθ

{

M
∑

i=1

∥

∥F i−1
i δxi−1 + Gi

iδxi − ai

∥

∥

2

Λi

+

K
∑

k=1

∥

∥

∥
Hik

k δxik
+ J

jk

k δljk
− ck

∥

∥

∥

2

Γk

}

.(29)

That is, we obtain a linear least squares problem in δθ that

needs to be solved efficiently. To avoid treating δxi in a special

way, we introduce the matrix Gi
i = −Idx×dx

.

By a simple change of variables we can drop the covariance

matrices Λi and Γk. With Λ−1/2 the matrix square root of Λ,

we can rewrite the Mahalanobis norm as follows

‖e‖
2
Λ := e

T Λ−1
e = (Λ−T/2

e)T (Λ−T/2
e) =

∥

∥

∥
Λ−T/2

e

∥

∥

∥

2

(30)

that is, we can always eliminate Λi from (29) by pre-

multiplying F i−1
i , Gi

i, and ai in each term with Λ
−T/2
i , and

similarly eliminate Γk from the measurement terms. For scalar

measurements this simply means dividing each term by the

measurement standard deviation. Below we assume that this

has been done and drop the Mahalanobis notation.

Finally, after collecting the Jacobian matrices into one large

matrix A, and the vectors ai and ck into one right-hand

side vector b, we obtain the following standard least squares

problem

δθ∗ = arg min
δθ

‖Aδθ − b‖
2

(31)

where we drop the δ· notation for simplicity outside of this

appendix.

ACKNOWLEDGMENTS

We are grateful to U. Frese, C. Stachniss and E. Olson for

helpful discussions, and W. Burgard’s group and especially

G. Grisetti for making their code available. Also, we thank

E. Olson for sharing the Manhattan world dataset, D. Haehnel

for the Intel dataset, M. Bosse for the Killian Court dataset,

and E. Nebot and H. Durrant-Whyte for the Victoria Park

dataset. Finally, we thank the reviewers for their valueable

comments.

REFERENCES

[1] R. Smith and P. Cheeseman, “On the representation and estimation of
spatial uncertainty,” Intl. J. of Robotics Research, vol. 5, no. 4, pp. 56–
68, 1987.

[2] J. Leonard, I. Cox, and H. Durrant-Whyte, “Dynamic map building for
an autonomous mobile robot,” Intl. J. of Robotics Research, vol. 11,
no. 4, pp. 286–289, 1992.

[3] S. Thrun, “Robotic mapping: a survey,” in Exploring artificial intelli-

gence in the new millennium. Morgan Kaufmann, Inc., 2003, pp. 1–35.

[4] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localization
and mapping via square root information smoothing,” Intl. J. of Robotics

Research, vol. 25, no. 12, pp. 1181–1203, Dec 2006.

[5] F. Dellaert, “Square Root SAM: Simultaneous location and mapping via
square root information smoothing,” in Robotics: Science and Systems

(RSS), 2005.

[6] G. Bierman, Factorization methods for discrete sequential estimation,
ser. Mathematics in Science and Engineering. New York: Academic
Press, 1977, vol. 128.

[7] P. Maybeck, Stochastic Models, Estimation and Control. New York:
Academic Press, 1979, vol. 1.

[8] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore:
Johns Hopkins University Press, 1996.

[9] R. Eustice, H. Singh, J. Leonard, M. Walter, and R. Ballard, “Visually
navigating the RMS titanic with SLAM information filters,” in Robotics:

Science and Systems (RSS), Jun 2005.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
press, Cambridge, MA, 2005.

[11] J. Dennis and R. Schnabel, Numerical methods for unconstrained

optimization and nonlinear equations. Prentice-Hall, 1983.

[12] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in Robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer-Verlag, 1990, pp. 167–193.

[13] T. Davis, J. Gilbert, S. Larimore, and E. Ng, “A column approximate
minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol. 30,
no. 3, pp. 353–376, 2004.

[14] F. Dellaert, “Monte Carlo EM for data association and its applications
in computer vision,” Ph.D. dissertation, School of Computer Science,
Carnegie Mellon, September 2001, also available as Technical Report
CMU-CS-01-153.

[15] Y. Bar-Shalom and X. Li, Estimation and Tracking: principles, tech-

niques and software. Boston, London: Artech House, 1993.

[16] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, vol. 38, no. 4,
pp. 325–340, 1987.

[17] G. Golub and R. Plemmons, “Large-scale geodetic least-squares adjust-
ment by dissection and orthogonal decomposition,” Linear Algebra and

Its Applications, vol. 34, pp. 3–28, Dec 1980.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and

Practice, ser. LNCS, W. Triggs, A. Zisserman, and R. Szeliski, Eds.
Springer Verlag, Sep 1999, pp. 298–375.

[19] J. Neira and J. Tardos, “Data association in stochastic mapping using the
joint compatibility test,” IEEE Trans. Robot. Automat., vol. 17, no. 6,
pp. 890–897, December 2001.

[20] A. Griewank, “On Automatic Differentiation,” in Mathematical Pro-

gramming: Recent Developments and Applications, M. Iri and K. Tan-
abe, Eds. Kluwer Academic Publishers, 1989, pp. 83–108.

[21] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in IEEE Intl. Conf. on Robotics and

Automation (ICRA), 2006, pp. 2262–2269.

[22] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with Rao-Blackwellized particle filters,” IEEE Trans.

Robototics, vol. 23, no. 1, pp. 34–46, 2007.

[23] D. Hähnel, W. Burgard, D. Fox, and S. Thrun, “A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale envi-
ronments from raw laser range measurements,” in IEEE/RSJ Intl. Conf.

on Intelligent Robots and Systems (IROS), 2003, pp. 206–211.

[24] P. Krauthausen, F. Dellaert, and A. Kipp, “Exploiting locality by nested
dissection for square root smoothing and mapping,” in Robotics: Science

and Systems (RSS), 2006.

[25] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-
ping (SLAM): Part I the essential algorithms,” Robotics & Automation

Magazine, Jun 2006.

[26] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and map-
ping (SLAM): Part II state of the art,” Robotics & Automation Magazine,
Sep 2006.

[27] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Int. Symp on Robotics Research, 1987.

[28] H. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Trans.

Robot. Automat., vol. 4, no. 1, pp. 23–31, 1988.

[29] S. Julier and J. Uhlmann, “A counter example to the theory of simulta-
neous localization and map building,” in IEEE Intl. Conf. on Robotics

and Automation (ICRA), vol. 4, 2001, pp. 4238–4243.

14 IEEE TRANSACTIONS ON ROBOTICS, MANUSCRIPT SEPTEMBER 7, 2008

[30] J. Guivant and E. Nebot, “Optimization of the simultaneous localization
and map building algorithm for real time implementation,” IEEE Trans.

Robot. Automat., vol. 17, no. 3, pp. 242–257, June 2001.
[31] J. Knight, A. Davison, and I. Reid, “Towards constant time SLAM

using postponement,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS), 2001, pp. 405–413.
[32] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.
[33] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Autonomous Robots, pp. 333–349, Apr 1997.
[34] J.-S. Gutmann and B. Nebel, “Navigation mobiler roboter mit laser-

scans,” in Autonome Mobile Systeme. Berlin: Springer Verlag, 1997.
[35] T. Duckett, S. Marsland, and J. Shapiro, “Fast, on-line learning of

globally consistent maps,” Autonomous Robots, vol. 12, no. 3, pp. 287–
300, 2002.

[36] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous local-
ization and map building in large-scale cyclic environments using the
Atlas framework,” Intl. J. of Robotics Research, vol. 23, no. 12, pp.
1113–1139, Dec 2004.

[37] J. Folkesson and H. Christensen, “Graphical SLAM - a self-correcting
map,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 1,
2004, pp. 383–390.

[38] ——, “Closing the loop with graphical SLAM,” IEEE Trans. Robototics,
vol. 23, no. 4, pp. 731–741, Aug 2007.

[39] K. Konolige, “Large-scale map-making,” in Proc. 21th AAAI National

Conference on AI, San Jose, CA, 2004.
[40] U. Frese, “An O(log n) algorithm for simultaneous localization and

mapping of mobile robots in indoor environments,” Ph.D. dissertation,
University of Erlangen-Nürnberg, 2004.

[41] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localisation and mapping,” IEEE Trans. Robotics,
vol. 21, no. 2, pp. 196–207, April 2005.

[42] S. Thrun and Y. Liu, “Multi-robot SLAM with sparse extended infor-
mation filters,” in Proceedings of the 11th International Symposium of

Robotics Research (ISRR’03). Sienna, Italy: Springer, 2003.
[43] M. Paskin, “Thin junction tree filters for simultaneous localization and

mapping,” in Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2003.
[44] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous

localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp. 103–
122, 2006.

[45] Z. Wang, S. Huang, and G. Dissanayake, “DSLAM: Decoupled localiza-
tion and mapping for autonomous robots,” in International Symposium

of Robotics Research (ISRR 05), Oct 2005.
[46] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state

filters,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), April
2005, pp. 2417–2424.

[47] R. Eustice, H. Singh, J. Leonard, and M. Walter, “Visually mapping the
RMS Titanic: Conservative covariance estimates for SLAM information
filters,” Intl. J. of Robotics Research, vol. 25, no. 12, pp. 1223–1242,
Dec 2006.

[48] U. Frese and L. Schröder, “Closing a million-landmarks loop,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Oct
2006, pp. 5032–5039.

[49] M. Kaess, A. Ranganathan, and F. Dellaert, “Fast incremental square root
information smoothing,” in Intl. Joint Conf. on AI (IJCAI), Hyderabad,
India, 2007, pp. 2129–2134.

[50] ——, “iSAM: Fast incremental smoothing and mapping with efficient
data association,” in IEEE Intl. Conf. on Robotics and Automation

(ICRA), Rome, Italy, April 2007, pp. 1670–1677.
[51] Z. Khan, T. Balch, and F. Dellaert, “MCMC data association and sparse

factorization updating for real time multitarget tracking with merged
and multiple measurements,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 28, no. 12, pp. 1960–1972, December 2006.

[52] F. Ling, “Givens rotation based least squares lattice related algorithms,”
IEEE Trans. Signal Processing, vol. 39, no. 7, pp. 1541–1551, Jul 1991.

[53] P. Gill, G. Golub, W. Murray, and M. Saunders, “Methods for modifying
matrix factorizations,” Mathematics and Computation, vol. 28, no. 126,
pp. 505–535, 1974.

[54] W. Gentleman, “Least squares computations by Givens transformations
without square roots,” IMA J. of Appl. Math., vol. 12, pp. 329–336,
1973.

[55] T. Davis and W. Hager, “Modifying a sparse Cholesky factorization,”
SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 3, pp.
606–627, 1996.

Michael Kaess (S’02) is finishing the Ph.D. degree
in computer science in the College of Computing,
Georgia Institute of Technology, Atlanta, where he
received the M.S. degree in computer science in
2002. He did his undergraduate studies at the Uni-
versity of Karlsruhe, Germany.

His research interests include probabilistic meth-
ods in mobile robotics and computer vision, in par-
ticular efficient localization and large-scale mapping,
as well as data association.

Ananth Ranganathan (S’02) received the Ph.D.
degree in computer science from the College of
Computing, Georgia Institute of Technology, Atlanta
in 2008. He received the B.Tech degree in computer
science from the Indian Institute of Technology,
Roorkee, India, in 2002. His Ph.D. thesis research
was on applying Bayesian modeling and inference
techniques to the problem of topological mapping in
robotics.

Currently, he is Senior Research Scientist at the
Honda Research Institute, Cambridge MA. His re-

search focuses on probabilistic methods in robotics and computer vision,
specifically for mapping and planning in robotics, and scene and object
recognition in computer vision.

Frank Dellaert (M’96) received the Ph.D. degree in
computer science from Carnegie Mellon University
in 2001, an M.S. degree in computer science and
engineering from Case Western Reserve University
in 1995, and the equivalent of an M.S. degree in
electrical engineering from the Catholic University
of Leuven, Belgium, in 1989.

He is currently an Associate Professor in the
College of Computing at the Georgia Institute of
Technology. His research focuses on probabilistic
methods in robotics and vision.

Prof. Dellaert has published more than 60 articles in journals and refereed
conference proceedings, as well as several book chapters. He also serves as
Associate Editor for IEEE TPAMI.

