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Abstract. We present a generic approach to readable formal proof doc-
uments, called Intelligible semi-automated reasoning (Isar). It addresses
the major problem of existing interactive theorem proving systems that
there is no appropriate notion of proof available that is suitable for hu-
man communication, or even just maintenance. Isar’s main aspect is its
formal language for natural deduction proofs, which sets out to bridge the
semantic gap between internal notions of proof given by state-of-the-art
interactive theorem proving systems and an appropriate level of abstrac-
tion for user-level work. The Isar language is both human readable and
machine-checkable, by virtue of the Isar/VM interpreter.

Compared to existing declarative theorem proving systems, Isar avoids
several shortcomings: it is based on a few basic principles only, it is quite
independent of the underlying logic, and supports a broad range of auto-
mated proof methods. Interactive proof development is supported as well.
Most of the Isar concepts have already been implemented within Isabelle.
The resulting system already accommodates simple applications.

1 Introduction

Interactive theorem proving systems such as HOL [10], Coq [7], PVS [15], and
Isabelle [16], have reached a reasonable level of maturity in recent years. On the
one hand supporting expressive logics like set theory or type theory, on the other
hand having acquired decent automated proof support, such systems provide
quite powerful environments for sizeable applications. Taking Isabelle/HOL as
an arbitrary representative of these semi-automated reasoning systems, typical
applications are the formalization of substantial parts of the Java type system
and operational semantics [14], formalization of the first 100 pages of a semantics
textbook [13], or formal proof of Church-Rosser property of A-reductions [12].
Despite this success in actually formalizing parts of mathematics and com-
puter science, there are still obstacles in addressing a broad range of users. One
of the main problems is that, paradoxically, none of the major semi-automated
reasoning systems support an adequate primary notion of proof that is amenable
to human understanding. Typical prover input languages are rather arcane, de-
manding a steep learning curve of users to write any proof scripts at all. Even
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worse, the resulting texts are very difficult to understand, usually requiring step-
wise replay in the system to make anything out of it. This situation is bad enough
for proof maintenance, but is impossible for communicating formal proofs — the
fruits of the formalization effort — to a wider audience.

According to folklore, performing proof is similar to programming. Compar-
ing current formal proof technology with that of programming languages and
methodologies, though, we seem to be stuck at the assembly language level.
There are many attempts to solve this problem, like providing user interfaces
for theorem provers that help users to put together proof scripts, or browser
tools presenting the prover’s internal structures, or generators and translators
to convert between different notions of proof — even natural language.

The Mizar System [19, 22] pioneered a different approach, taking the issue
of a human-readably proof language seriously. More recently, several efforts have
been undertaken to transfer ideas of Mizar into the established tradition of tac-
tical theorem proving, while trying to avoid its well-known shortcomings. The
DECLARE system [20, 21] has been probably the most elaborate, so far.

Our approach, which is called Intelligible semi-automated reasoning (Isar),
can be best understood in that tradition, too. We aim to address the problem at
its very core, namely the primary notion of formal proof that the systems offers
to its users, authors and audience alike. Just as the programming community
did some decades ago, we set out to develop a high-level formal language for
proofs that is designed with the human in mind, rather than the machine.

The Isar language framework, taking both the underlying logic and a set of
proof methods as parameters, results in an environment for “declarative” nat-
ural deduction proofs that may be “executed” at the same time. Checking is
achieved by the Isar virtual machine interpreter, which also provides an opera-
tional semantics of the Isar proof language.

Thus the Isar approach to readable formal proof documents is best charac-
terized as being interpretative. It offers a higher conceptual level of formal proof
that shall be considered as the new primary one. Any internal inferences taking
place within the underlying deductive system are encapsulated in an abstract
judgment of derivability. Any function mapping a proof goal to an appropriate
proof rule may be incorporated as proof method. Thus arbitrary automated proof
procedures may be integrated as opaque refinement steps.

This immediately raises the question of soundness, which is handled in Isar
according to the back-pressure principle. The Isar/VM interpreter refers to actual
inferences at the level below only abstractly, without breaching its integrity. Thus
we inherit whatever notion of correctness is available in the underlying inference
system (e.g. primitive proof terms). Basically, this is just the well-known “LCF
approach” of correctness-by-construction applied at the level of the Isar/VM.

The issue of presentation of Isar documents can be kept rather trivial, because
the proof language has been designed with readability already in mind. Some
pretty printing and pruning of a few details should be sufficient for reasonable
output. Nevertheless, Isar could be easily put into a broader context of more
advanced presentation concepts, including natural language generation (e.g. [3]).



The rest of this paper is structured as follows. Section 2 presents some ex-
ample proof documents written in the Isar language. Several aspects of Isar are
discussed informally as we proceed. Section 3 reviews formal preliminaries re-
quired for the subsequent treatment of the Isar language. Section 4 introduces
the Isar formal proof language syntax and operational semantics, proof methods,
and extra-logical features.

2 Example Isar Proof Documents

Isar provides a generic framework for readable formal proofs that supports a
broad range of both logics and proof tools. A typical instantiation for actual
applications would use Higher-order Logic [0] together with a reasonable degree
of automation [17, 18]. Yet the main objective of Isar is not to achieve shorter
proofs with more automation, but better ones. The writer is enabled to express
the interesting parts of the reasoning as explicit proof text, while leaving other
parts to the machine. For the sake of the following examples, which are from
pure first-order logic (both intuitionistic and classical), we refer to very simple
proof methods only.

2.1 Basic Proofs

To get a first idea what natural deduction proofs may look like in Isar, we
review three well-known propositions from intuitionistic logic: I: A — A and
K:A—-B—Aand S:(A—B—C(C)— (A— B)— A— C; recall that — is
nested to the right.

theorem I: A — A
proof

assume A

show A .
qed

Unsurprisingly, the proof of I is rather trivial: we just assume A in order to
show A again. The dot “.” denotes an immediate proof, meaning that the current
problem holds by assumption.

theorem K: A— B — A
proof

assume A

show B — A

proof

show A .

qged

qed

Only slightly less trivial is K: we assume A in order to show B — A, which
holds because we can show A trivially. Note how proofs may be nested at any



time, simply by stating a new problem (here via show). The subsequent proof
(delimited by a proof/qed pair), is implicitly enclosed by a logical block that
inherits the current context (assumptions etc.), but keeps any changes local.
Block structure, which is a well-known principle from programming languages,
is an important starting point to achieve structured proofs (e.g. [9]). Also note
that there are implicit default proof methods invoked at the beginning (proof)
and end (ged) of any subproof. The initial method associated with proof just
picks standard introduction and elimination rules automatically according to the
topmost symbol involved (here — introduction), the terminal method associated
with ged solves all remaining goals by assumption. Proof methods may be also
specified explicitly, as in “proof (rule modus-ponens)”.

theorem S: (A—-B—-(C)—-(A—-B)—A—-C
proof
assume A - B — C
show (A— B) - A—C
proof
assume A — B
show A — C
proof
assume A
show C
proof (rule modus-ponens)
show B — C by (rule modus-ponens)
show B by (rule modus-ponens)
qed
qged
qed
qed

In order to prove S we first decompose the three topmost implications, rep-
resented by the assume/show pairs. Then we put things together again, by
applying modus ponens to get C from B — C and B, which are themselves
established by modus ponens (by abbreviates a single-step proof in terminal po-
sition). Note that the context of assumptions A — B — C, A — B, A is taken
into account implicitly where appropriate.

What have we achieved so far? Certainly, there are more compact ways to
write down natural deduction proofs. In typed A-calculus our examples would
read \x:A.zand \z: Ay:B.xand \o:A— B —-Cy:A— Bz A (z2) (y2).

The Isar text is much more verbose: apart from providing fancy keywords
for arranging the proof, it explicitly says at every stage which statement is
established next. Speaking in terms of A-calculus, we have given types to actual
subterms, rather than variables only. This sort of redundancy has already been
observed in the ProveEasy teaching tool [5] as very important ingredient to
improve readability of formal proofs. Yet one has to be cautious not to become
too verbose, lest the structure of the reasoning be obscured again. Isar already
leaves some inferences implicit, e.g. the way assumptions are applied. Moreover,



the level of primitive inferences may be transcended by appealing to automated
proof procedures, which are treated as opaque refinement steps (cf. §2.4).

2.2 Mixing Backward and Forward Reasoning

The previous examples have been strictly backward. While any proof may in
principle be written this way, it may not be most natural. Forward style is often
more adequate when working from intermediate facts.

Isar offers both backward and forward reasoning elements, as an example
consider the following three proofs of AA B — B A A.

lemma ANB— BAA | lemma AAB — BAA | lemma AANB — BAA
proof proof proof
assume AN B assume A A B assume ab: ANB
show BA A then from ab
proof show BA A have a: A ..
show B proof from ab
by (rule conj,) assume A, B have b: B ..
show A show 7’thesis .. from b, a
by (rule conj,) qed show BAA ..
qed qed qed
qged

The first version is strictly backward, just as the examples of §2.1. We have
to provide the projections conj, o explicitly, because the corresponding goals do
not provide enough syntactic structure to determine the next step. This may be
seen as an indication that forward reasoning would be more appropriate.

Consequently, the second version proceeds by forward chaining from the as-
sumption A A B, as indicated by then. This corresponds to A elimination, i.e.
we may assume the conjuncts in order to show again B A A. Repeating the cur-
rent goal is typical for elimination proofs, so Isar provides a way to refer to it
symbolically as 7thesis. The double dot “..” denotes a trivial proof, by a single
standard rule. Alternatively, we could have written “by (rule conj-intro)”.

Forward chaining may be done not only from the most recent fact, but from
any one available in the current scope. This typically involves naming intermedi-
ate results (assumptions, or auxiliary results introduced via have) and referring
to them explicitly via from. Thus the third proof above achieves an extreme
case of forward-style reasoning, with only the outermost step being backward.

The key observation from these examples is that there is more to readable
natural deduction than pure A-calculus style reasoning. Isar’s then language
element can be understood as reverse application of A-terms. Thus elimination
proofs and other kinds of forward reasoning are supported as first-class concepts.

Leaving the writer the choice of proof direction is very important to achieve
readable proofs, although yielding a nice balance between the extremes of purely
forward and purely backward requires some degree of discernment. As a rule of
thumb for good style, backward steps should be the big ones (decomposition,



case analysis, induction etc.), while forward steps typically pick up assumptions
or other facts to achieve the next result in a few small steps.
As a more realistic example for mixed backward and forward reasoning con-

sider Peirce’s law, which is a classical theorem so its proof is by contradiction.
Backward-only proof would be rather nasty, due to the —-nesting.

theorem Peirce’s-Law: ((A— B) — A) — A

proof [ﬂA}
assume ab-a: (A— B) — A :
show A A
proof (rule contradiction) —— use classical contradiction rule: A

assume not-a: —A

have ab: A — B
proof

assume a: A

from not-a,a show B ..
qed

from ab-a, ab show A ..
qged
qed

There are many more ways to arrange the reasoning. In the following variant
we swap two sub-proofs of the contradiction. The result looks as if a cut had
been performed. (The [-] parentheses are a version of begin-end.)

theorem Peirce’s-Law: ((A— B) — A) — A
proof
assume ab-a: (A — B) —» A
show A
proof (rule contradiction)
[ assume ab: A — B —— to be proved later (= cut)
from ab-a, ab show A .. |

assume not-a: —A
show A — B
proof
assume a: A
from not-a,a show B ..
qed
qed
qed

Which of the two variants is actually more readable is a highly subjective
question, of course. The most appropriate arrangement of reasoning steps also
depends on what the writer wants to point out to the audience in some particular
situation. Isar does not try to enforce any particular way of proceeding, but aims
at offering a high degree of flexibility.



2.3 Intra-logical and Extra-logical Binding of Variables

Leaving propositional logic behind, we consider (3z. P(f(x))) — (Fz. P(x)).
Informally, this holds since after assuming Jz. P(f(x)), we may fix some a such
that P(f(a)) holds, and use f(a) as witness for z in 3x. P(z) (note that the
two bound variables x are in separate scopes). So the proof is just a composi-
tion of — introduction, 3 elimination, 3 introduction. Writing down a natural
deduction proof tree would result in a very compact and hard to understand
representation of the reasoning involved, though. The Isar proof below tries to
mimic our informal explanation, exhibiting many (redundant) details.

lemma (3z. P(f(z))) — (3z. P(z))

proof [A(Oﬂ)]z
assume Jz. P(f(z))
then show Jz. P(x) Jz. A(x) B
proof (rule ex-elim) —— use 3 elimination rule: B
fix a

assume P(f(a)) (is P(Twitness))
show 7thesis by (rule ez-intro [with P Thwitness])
qed
qed

After forward chaining from fact Jx. P(f(x)), we have locally fixed an ar-
bitrary a (via fix) and assumed that P(f(a)) holds. In order to stress the role
of the constituents of this statement, we also say that P(f(a)) matches the pat-
tern P(7twitness) (via is). Equipped with all these parts, the thesis is finally
established using 3 introduction instantiated with P and the T?witness term.

Above example exhibits two different kinds of variable binding. First fix a,
which introduces a local Skolem constant used to establish a quantified propo-
sition as usual. Second (is P(7witness)), which defines a local abbreviation for
some term by higher-order matching, namely ?witness = f(a). The subsequent
reasoning refers to a from within the logic, while abbreviations have a quite
different logical status: being expanded before actual reasoning, the underlying
logic engine will never see them. In a sense, this just provides an extra-logical
illusion, yet a very powerful one.

Term abbreviations are also an important contribution to keep the Isar lan-
guage lean and generic, avoiding separate language features for logic-specific
proof idioms. Using appropriate proof methods together with abbreviations hav-
ing telling names like 77lhs, 7rhs, Tcase already provides sufficient means for rep-
resenting typical proofs by calculation, case analysis, induction etc. nicely. Also
note that 7thesis is just a special abbreviation that happens to be bound auto-
matically — just consider any new goal goal implicitly decorated by (is 7thesis).
Note that “thesis” is a separate language element in Mizar [22].

2.4 Automated Proof Methods and Abstraction

The quantifier proof of §2.3 has been rather verbose, intentionally. We have
chosen to provide proof rules explicitly, even given instantiations. As it happens,



these rules and instantiations can be figured out by the basic mechanism of
picking standard introduction and elimination rules that we have assumed as
the standard initial proof method so far.

lemma (3z. P(f(z))) — (3z. P(z))
proof
assume Jz. P(f(z))
then show Jz. P(x)
proof
fix a
assume P(f(a))
show 7thesis ..
qed

Much more powerful automated deduction tools have been developed over the
last decades, of course. From the Isar perspective, any of these may be plugged
into the generic language framework as particular proof methods. Thus we may
achieve more abstract proofs beyond the level of primitive rules, by letting the
system solve open branches of proofs automatically, provided the situation has
become sufficiently “obvious”. In the following version of our example we have
collapsed the problem completely by a single application of method “blast”,
which shall refer to the generic tableau prover tactic integrated in Isabelle [18].

lemma (3z. P(f(z))) — (3z. P(x)) by (blast)

Abstraction via automation gives the writer an additional dimension of choice
in arranging proofs, yet a limited one, depending on the power of the automated
tools available. Thus we achieve accidental abstraction only, in the sense that
more succinct versions of the proof text still happen to work.

In practice, there will be often a conflict between the level of detail that
the writer wishes to confer to his audience, and the automatic capabilities of the
system. Isar also provides a simple mechanism for explicit abstraction. Subproofs
started by proof*/by” rather than proof /by are considered below the current
level of interest for the intended audience. Thus excess detail may be easily
pruned by the presentation component, e.g. printed as ellipsis (“...”).

In a sense, proof™/by™* have the effect of turning concrete text into an ad-hoc
proof method (which are always considered opaque in Isar). More general means
to describe methods would include parameters and recursion. This is beyond the
scope of Isar, though, which is an environment for writing actual proofs rather
than proof methods. Isar is left computationally incomplete by full intention.
High-level languages for proof methods are an issue in their own right [1].

3 Formal Preliminaries

3.1 Basic Mathematical Notations

Functions. We write function application as f « and use A-abstraction A z. f(x).
Point-wise update of functions is written postfix, f[z; = ... := z, = y] de-
notes the function mapping z1,...,z, to y and any other x to f(x). Sequential



composition of functions f and g (from left to right) is written f;¢ which is
defined as (f;9)(x) = g (f x). Any of these operations may be used both for
total functions (A — B) and partial functions (4 — B).

Records are like tuples with explicitly labeled fields. For any record r: R with
some field a: A the following operations are assumed: selector get-a: R — A,
update set-a: A — (R — R), and the functional map-a: (A — A) — (R — R)
which is defined as map-a f = \r. set-a (f (get-a r)).

Lists. Let list of A be the set of lists over A. We write [z1,...,z,] for the list of
elements x4, ..., x,. List operations include x o zs (cons) and zs @Q ys (append).

3.2 Lambda-Calculus and Natural Deduction

Most of the following concepts are from A-Prolog or Isabelle [16, Part I].

A-Terms are formed as (typed) constants or variables (from set var), by appli-
cation t u, or abstraction )\ z. t. We also take a-, §-conversions for granted.

Higher-order Abstract Syntaz. Simply-typed A-terms provide a means to describe
abstract syntax adequately. Syntactic entities are represented as types, and con-
structors as (higher-order) constants. Thus tree structure is achieved by (nested)
application, variable binding by abstraction, and substitution by g-reduction.

Natural Deduction (Meta-logic). We consider a minimal = /V-fragment of intui-
tionistic logic. For the abstract syntax, fix type prop (meta-level propositions),
and constants =: prop — prop — prop (nested to the right), V: (« — prop) —
prop. We write [©1,...,¢n] = ¢ for ¢p1 = ... = ¢, = ¢, and Va. P z for
V(\x. P x). Deduction is expressed as an inductive relation I" - ¢, by the usual
rules of assumption, and = /V introduction and elimination. Note that the corre-
sponding proof trees can be again seen as A-terms, although at a different level,
where propositions are types. The set “I” is also called “theorem”.

Encoding Object-logics. A broad range of natural deduction logics may now be
encoded as follows. Fix types i of individuals, o of formulas, and a constant
D:o — prop (for expressing derivability). Object-level natural deduction rules
are represented as meta-level propositions, e.g. 3: (i — 0) — o elimination as
D(3z. P x) = (V. D(P z) = D(Q)) = D(Q). Let form be the set of proposi-
tions D(A), for A:o. D is usually suppressed and left implicit. Object-level rules
typically have the form of nested meta-level horn-clauses.

4 The Isar Proof Language

The Isar framework takes a meta-logical formulation (see §3.2) of the underlying
logic as parameter. Thus we abstract over logical syntax, rules and automated
proof procedures, which are represented as functions yielding rules (see §4.2).



4.1 Syntax

For the subsequent presentation of the Isar core syntax, var and form are from
the underlying higher-order abstract syntax (see §3.2), name is any infinite set,
while the method parameter refers to proof methods (see §4.2).

theory-stmt = theorem [name:| form proof
| lemma [name:] form proof
| types ... | consts ... | defs ... | ...

proof = proof [(method)| stmt* qed [(method))

stmt = begin stmt* end

| note name = name™
| fix var™
| assume [name:] form™
| then goal-stmt
| goal-stmt

goal-stmt = have [name:| form proof
| show [name:] form proof

The actual Isar proof language (proof) is enclosed into a theory specification
language (theory-stmt) that provides global statements theorem or lemma,
entering into proof immediately, but also declarations and definitions of any kind.
Note that advanced definitional mechanisms may also require proof. Enclosed
by proof/qed, optionally with explicit initial or terminal method invocation,
proof mainly consists of a list of local statements (stmt). This marginal syntactic
role of method is in strong contrast to existing tactical proof languages.

Optional language elements above default to “it:” for result names, proof
method specifications “(single)” for proof, “(assumption)” for qed (cf. §4.3).

A few well-formedness conditions of Isar texts are not yet covered by the
above grammar. Considering begin—end and show/have—ged as block delim-
iters, we require any mame reference to be well-defined in the current scope.
Furthermore, the paths of variables introduced by fix may not contain dupli-
cates, and then may only occur directly after note, assume, or qed.

Next the Isar core language is extended by a few derived elements. (Below
same and single refer to standard proof methods introduced in §4.3.)

from ay,...,a, = note facts =aq,...,a, then
hence = then have
thus = then show

by (m) = proof (m) qed (“terminal proof”)
. = proof (single) ged (“trivial proof”)
= proof (same) qed (“immediate proof”)

Basically, this is already the full syntax of the Isar language framework. Any
logic-specific extensions will be by abbreviations or proof methods only.
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4.2 Operational Semantics

The canonical operational semantics of Isar is given by direct interpretation
within the Isar virtual machine (Isar/VM ). Well-formed proof texts, which have
tree structure if considered as abstract syntax entities, are translated into lists of
Isar/VM instructions in a rather trivial way (the translation is particularly easy,
because Isar lacks recursion): any syntactic construct, as indicated by some major
keyword (proof, begin, show, etc.), simply becomes a separate instruction,
which acts as transformer of the machine configuration.

Before going into further details, we consider the following abstract presen-
tation of the Isar/VM. The machine configuration has three modes of operation,
depicted as separate states prove, state, chain below. Transitions are marked by
the corresponding Isar/VM instructions.

theorem a: ¢ note a = ai,...,an
lemma a: ¢

proof (m) D begin
end
have a: ¢ fix z
prove show a: ¢ state [ D assume a: @

have a: ¢ ] then
show a: ¢ D qed (m)

.
qed (m)

Any legal path of Isar/VM transitions constitutes an (interactive) proof,
starting with theorem/lemma and ending eventually by a final qed. Inter-
mediately, the two main modes alternate: prove (read “apply some method to
refine the current problem”) and state (read “build up a suitable environment to
produce the next result”). Minor mode chain modifies the next goal accordingly.

More precisely, the Isar/VM configuration is a non-empty list of levels (for
block structure), where each level consists of a record with the following fields:

mode : prove | state | chain
fixes : list of var
asms : list of form
results : mame — list of theorem
problem : (bool x name) x ((list of theorem) x theorem) | none

Fields fizes and asms constitute the Skolem and assumption context. The
results environment collects lists of intermediate theorems, including the special
one “facts” holding the most recent result (used for forward chaining). An open
problem consists of a flag (indicating if the finished result is to be used to refine
an enclosing goal), the result’s name, a list of facts for forward chaining, and the
actual goal (for theorem see §3.2). Goals are represented as rules according to
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Isabelle tradition [16, Part I]: I" + [(P1 = ¢1), ..., (Pn = ¢p)] = x means that
in assumption context I', main goal x is to be shown from n subgoals ®; = ;.

An initial configuration, entered by theorem a: ¢ or lemma a: ¢, has a
single level with fields mode = prove, fizes = [], asms = [, results = {(facts, [])},
and problem = ((false,a), ([, ¢ = ¢)). The terminal configuration is [|. Inter-
mediate transitions are by the (partial) function 7 [I], mapping Isar/VM con-
figurations depending on instruction I and the current mode value as follows.
Basic record operations applied to a configuration refer to the topmost level.

mode = prove :
T [proof (m)] = refine-problem m; set-mode state

mode = state :
T[note a =ay,...,a,] =
map-results (\r. r[facts := a :=r(ay) Q- -- Qr(a,)])
T [begin] = reset-facts; open-block; set-problem none
[end] = close-block
[fix ] = map-fizes (\ zs. zs Q [x]); reset-facts
[assume a: ¢1,...,¢,] =
map-asms (\ND. P Q [p1,...4));
map-results (\r. r[facts:=a:=[p1 F ©1,..., 00 F ©nl])
T[qed (m)] = refine-problem m; check-result; apply-result; close-block
7 [then] = set-mode chain
T [have a: ¢] = setup-problem (false,a) (false, )
T[show a: ¢] = setup-problem (true,a) (false, ¢)

T
T
T

mode = chain :
T [have a: ¢] = setup-problem (false,a) (true, )
T[show a: ¢] = setup-problem (true,a) (true, ¢)

open-block (xoxs) = xoxouxs
close-block (x o xs) = s
reset-facts = map-results (\r. r[facts := []])
setup-problem result-info (use-facts, ) ¢ = f ¢ where

® = get-asms c

facts = if use-facts then (get-results c facts) else [|

f = reset-facts; open-block; set-mode prove;

set-problem (result-info, (facts,® b (P = ¢) = ¢))

refine-problem m =

map-problem (\(x, (y, goal)). (z, (y, backchain goal (m facts)))
check-result ¢ = ¢ if problem has no subgoals, else undefined
apply-result (x oxs) = x o (f xs) where

((use-result,a), (y, res)) = get-problem x

result =
generalise (get-fizes x) (discharge (get-asms x — get-asms ) res)
f = map-results (\r. r [facts := a := [result]]);

if use-result then refine-problem (\y. result) else (\x. x)

12



Above operation setup-problem initializes a new problem according the cur-
rent assumption context and forward chaining mode etc. The goal is set up to
establish result ¢ from ¢ under the assumptions.

Operation refine-problem back-chains (using a form of meta-level modus po-
nens) with the method applied to the facts to be used for forward chaining.

Operation apply-result modifies the upper configuration, binding the result
and refining the second topmost problem wrt. block structure (if use-result had
been set). Note that generalise and discharge are basic meta-level rules.

We claim (a proof is beyond the scope of this paper) that the Isar/VM is
correct and complete as follows. For any ¢, there is a path of transitions from
the initial to the terminal configuration iff F ¢ is a theorem derivable by natural
deduction, assuming any rule in the image of the set of methods.

This result would guarantee that the Isar/VM does not fail unexpectedly, or
produce unexpected theorems. Actual correctness in terms of formal derivability
is achieved differently, though. Applying the well-known “LCF approach” of
correctness-by-construction at the level of the Isar/VM implementation, results
are always actual theorems, relative to the primitive inferences underlying proof
methods and bookkeeping operations such as refine-problem.

4.3 Standard Proof Methods.

In order to turn the Isar/VM into an actually working theorem proving system,
some standard proof methods have to be provided. We have already referred to
a few basic methods like same, single, which are defined below.

We have modeled proof methods as functions producing appropriate rules
(meta-level theorems), which will be used to refine goals by backchaining. Oper-
ationally, this corresponds to a function reducing goal ' & = yto ' &' =
(leaving the hypotheses and main goal unchanged). This coincides with tactic
application, only that proof methods may depend on facts for forward chaining.
For the subsequent presentation we prefer to describe methods according to this
operational view.

Method “same” inserts the facts to any subgoal, which are left unchanged
otherwise; “rule a” applies rule a by back-chaining, after forward-chaining from
facts; “single” is similar to “rule”, but determines a standard introduction or
elimination rule from the topmost symbol of the goal or the first fact automati-
cally; “assumption” solves subgoals by assumption.

These methods are sufficient to support primitive proofs as presented in §2.
A more realistic environment would provide a few more advanced methods, in
particular automated proof tools such as a generic tableau prover “blast” [18], a
higher-order simplifier “simp” etc. A sufficiently powerful combination of such
proof tools could be even made the default for qed. In contrast, the initial
proof method should not be made too advanced by default, lest the subsequent
proof text be obscured by the left-over state of its invocation. In DECLARE [21]
automated initial proof methods are rejected altogether because of this.
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4.4 Extra-logical Features

Isar is not a monolithic all-in-one language, but a hierarchy of concepts having
different logical status. Apart from the core language considered so far, there are
additional extra-logical features without semantics at the logical level.

Term Abbreviations. Any goal statement (show etc.) may be annotated with a
list of term abbreviation patterns (is pat, ... is pat, ). Alternatively, abbrevia-
tions may be bound by explicit let pat = term statements.

Levels of Interest decorate proof /by commands by a natural number or x (for
infinity), indicating that the subsequent proof block becomes less interesting for
the intended audience. The presentation component will use these hints to prune
excess detail, collapsing it to ellipsis (“...”), for example.

“

Formal Comments of the form “—— text” may be associated with any Isar
language element. The comment text may contain any text, which may again
contain references to formal entities (terms, formulas, theorems etc.).

5 Conclusion and Related Work

We have proposed the generic Intelligible semi-automated reasoning (Isar) ap-
proach to readable formal proof documents. Its main aspect, the Isar formal
proof language, supports both “declarative” proof texts and machine-checking,
by direct “execution” within the Isar virtual machine (Isar/VM). While Isar
does not require automation for basic operation, arbitrary automated deduction
tools may be included in Isar proofs as appropriate. Automated tools are an
important factor in scalability for realistic applications, of course.

Isar is most closely related to “declarative” theorem proving systems, notably
Mizar [19, 22]. The Mizar project, started in the 1970s, has pioneered the idea
of performing mathematical proof in a structured formal language, while hiding
operational detail as much as possible. The gap towards the underlying calculus
level is closed by a specific notion of obuvious inferences. Internally, Mizar does
not actually reduce its proof checking to basic inferences. Thus Mizar proofs are
occasionally said to be “rigorous” only, rather than “formal”.

Over the years, Mizar users have built up a large body of formalized math-
ematics. Despite this success, though, there are a few inherent shortcomings
preventing further scalability for large applications. Mizar is not generic, but
tightly built around its version of typed set theory and the obvious inferences
prove checker. Its overall design has become rather baroque, such that even re-
engineering the syntax has become a non-trivial effort recently. Also note that
Mizar has a batch-mode proof checker only.

While drawing from the general experience of Mizar, Isar provides a fresh
start that avoids these problems. The Isar concepts have been carefully designed
with simplicity in mind, while preserving scalability. Isar is based on a lean hier-
archic arrangement of basic concepts only. It is quite independent of the underly-
ing logic and its automated tools, by employing a simple meta-logic framework.
The Isar/VM interpretation process directly supports interactive development.
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Two other systems have transferred Mizar ideas to tactical theorem proving.
The “Mizar mode for HOL” [11] is a package that provides means to write tactic
scripts in a way resembling Mizar proof text — it has not been developed beyond
some initial experiments, though. DECLARE [20, 21] is a much more elaborate
system experiment, which draws both from the Mizar and HOL tradition. It has
been applied by its author to some substantial formalization of Java operational
semantics [21]. DECLARE heavily depends on a its built-in automated procedure
for proof checking, causing considerable run-time penalty compared to ordinary
tactical proving. Furthermore, proofs cannot be freely arranged according to
usual natural deduction practice.

Apart from “declarative” or “intelligible” theorem proving, there are sev-
eral further approaches to provide human access to formal proof. Obviously,
user interfaces for theorem provers (e.g. [3]) would be of great help in perform-
ing interactive proofs. Yet there is always a pending danger of overemphasizing
advanced interaction mechanisms instead of adding high-level concepts to the
underlying system. For example, proof-by-pointing offers the user a nice way to
select subterms with the mouse. Such operations are rather hard to communi-
cate later, without doing actual replay. In Isar one may select subterms more
abstractly via term abbreviations, bound by higher-order matching.

Nevertheless, Isar may greatly benefit from some user interface support, like
a live document editor that helps the writer to hierarchically step back and forth
through the proof text during development. In fact, there is already a prototype
available, based on the Edinburgh ProofGeneral interface. A more advanced
system, should also provide high-level feedback and give suggestions of how to
proceed — eventually resulting in Computer-aided proof writing (CAPW) as
proposed in [21]. Furthermore, digestible information about automated proof
methods, which are fully opaque in Isar so far, would be particularly useful. To
this end, proof transformation and presentation techniques as employed e.g. in
2Mega [2] appear to be appropriate. Ideally, the resulting system might be able
to transform internal inferences of proof tools into the Isar proof language format.
While this results in bottom-up generation of Isar proofs, another option would
be top-down search of Isar documents, similar to the proof planning techniques
that 2Mega [2] strongly emphasizes, too. Shifting the focus even more beyond
Isar towards actual high-level proof automation, we would arrive at something
analogous to the combination of tactical theorem proving and proof planning
undertaken in Clam/HOL [4].

We have characterized Isar as being “interpretative” — a higher level lan-
guage is interpreted in terms of some lower level concepts. In contrast, transfor-
mational approaches such as [8] proceed in the opposite direction, abstracting
primitive proof objects into a higher-level form, even natural-language.

Most of the Isar concepts presented in this paper have already been im-
plemented within Isabelle. Isar will be part of the forthcoming Isabelle99 re-
lease. The system is already sufficiently complete to conduct proofs that are
slightly more complex than the examples presented here. For example, a proof
of Cantor’s theorem that is much more comprehensive than the original tactic
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script discussed in [16, Part III]. Another example is correctness of a simple
translator for arithmetic expressions to stack-machine instructions, formulated
in Isabelle/HOL. The Isar proof document nicely spells out the interesting in-
duction and case analysis parts, while leaving the rest to Isabelle’s automated
proof tools. More realistic applications of Isabelle/Isar are to be expected soon.
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