
 Open access Proceedings Article DOI:10.1109/ICDM.2010.124

iSAX 2.0: Indexing and Mining One Billion Time Series — Source link

Alessandro Camerra, Themis Palpanas, Jin Shieh, Eamonn Keogh

Institutions: University of Trento, University of California, Riverside

Published on: 13 Dec 2010 - International Conference on Data Mining

Related papers:

 Dimensionality reduction for fast similarity search in large time series databases

 iSAX: indexing and mining terabyte sized time series

 A symbolic representation of time series, with implications for streaming algorithms

 Searching and mining trillions of time series subsequences under dynamic time warping

 Fast subsequence matching in time-series databases

Share this paper:

View more about this paper here: https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-
4gzueykx1j

https://typeset.io/
https://www.doi.org/10.1109/ICDM.2010.124
https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j
https://typeset.io/authors/alessandro-camerra-2cyxxyn4pu
https://typeset.io/authors/themis-palpanas-4skrkf9r8e
https://typeset.io/authors/jin-shieh-2r6c0gczub
https://typeset.io/authors/eamonn-keogh-28ef33pirv
https://typeset.io/institutions/university-of-trento-26z50udz
https://typeset.io/institutions/university-of-california-riverside-c4zp8d5a
https://typeset.io/conferences/international-conference-on-data-mining-2f9gfcfj
https://typeset.io/papers/dimensionality-reduction-for-fast-similarity-search-in-large-32syfito14
https://typeset.io/papers/isax-indexing-and-mining-terabyte-sized-time-series-20pdh1hhla
https://typeset.io/papers/a-symbolic-representation-of-time-series-with-implications-4bu8lln3kv
https://typeset.io/papers/searching-and-mining-trillions-of-time-series-subsequences-2kv2u7mhup
https://typeset.io/papers/fast-subsequence-matching-in-time-series-databases-4huarqwh12
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j
https://twitter.com/intent/tweet?text=iSAX%202.0:%20Indexing%20and%20Mining%20One%20Billion%20Time%20Series&url=https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j
https://typeset.io/papers/isax-2-0-indexing-and-mining-one-billion-time-series-4gzueykx1j

iSAX 2.0: Indexing and Mining One Billion Time Series

Alessandro Camerra Themis Palpanas Jin Shieh Eamonn Keogh

University of Trento
a.camerra@studenti.unitn.it, themis@disi.unitn.eu

University of California, Riverside
{shiehj, eamonn}@cs.ucr.edu

Abstract—There is an increasingly pressing need, by several

applications in diverse domains, for developing techniques able

to index and mine very large collections of time series.

Examples of such applications come from astronomy, biology,

the web, and other domains. It is not unusual for these

applications to involve numbers of time series in the order of

hundreds of millions to billions. However, all relevant

techniques that have been proposed in the literature so far

have not considered any data collections much larger than one-

million time series. In this paper, we describe iSAX 2.0, a data

structure designed for indexing and mining truly massive

collections of time series. We show that the main bottleneck in

mining such massive datasets is the time taken to build the

index, and we thus introduce a novel bulk loading mechanism,

the first of this kind specifically tailored to a time series index.

We show how our method allows mining on datasets that

would otherwise be completely untenable, including the first

published experiments to index one billion time series, and

experiments in mining massive data from domains as diverse

as entomology, DNA and web-scale image collections.

Keywords-time series; data mining; representations; indexing

I. INTRODUCTION

The problem of indexing and mining time series has
captured the interest of the data mining and database
community for almost two decades. However, there remains
a huge gap between the scalability of the methods in the
current literature, and the needs of practitioners in many
domains. To illustrate this gap, consider the selection of
quotes from unsolicited emails sent to the current authors,
asking for help in indexing massive time series datasets.

• “…we have about a million samples per minute coming in
from 1000 gas turbines around the world… we need to be
able to do similarity search for...” Lane Desborough, GE.

• “…an archival rate of 3.6 billion points a day, how can
we (do similarity search) in this data?” Josh Patterson,
TVA.

Our communication with such companies and research
institutions has lead us to the perhaps surprising conclusion:
For all attempts at large scale mining of time series, it is the
time complexity of building the index that remains the most
significant bottleneck: e.g., a state-of-the-art method [3]
needs over 6 days to build an index with 100-million items.

Additionally, there is a pressing need to reduce retrieval
times, especially as such data is clearly doomed to be disk
resident. Once a dimensionality-reduced representation (i.e
DFT, DWT, SAX, etc.) has been decided on, the only way to
improve retrieval times is by optimizing splitting algorithms
for tree-based indexes (i.e., R-trees, M-trees, etc.), since a

poor splitting policy leads to excessive and useless
subdivisions, which create unnecessarily deep sub-trees and
causing lengthier traversals.

In this work we solve both of these problems with
significant extensions to the recently introduced multi-
resolution symbolic representation indexable Symbolic
Aggregate approXimation (iSAX) [3]. As we will show with
the largest (by far) set of time series indexing experiments
ever attempted, we can reduce the index building time by
72% with a novel bulk loading scheme, which is the first
bulk loading algorithm for a time series index. Also, our new
splitting policy reduces the size of the index by 27%. The
number of disk page accesses is reduced by 50%, while more
than 99.5% of those accesses are sequential.

To push the limits of time series data mining, we
consider experiments that index 1,000,000,000 (one billion)
time series of length 256. To the best of our knowledge, this
is the first time a paper in the literature has reached the one
billion mark for similarity search on multimedia objects of
any kind. On four occasions the best paper winners at
SIGKDD/SIGMOD have looked at the problem of indexing
time series, with the largest dataset considered by each paper
being 500,000 objects [20], 100,000 objects [21], 6,480
objects [1], and 27,000 objects [23]. Thus the 1,000,000,000
objects considered here represent real progress, beyond the
inevitable improvements in hardware performance.

We further show that the scalability achieved by our
ideas allows us to consider interesting data mining problems
in entomology, biology, and the web, that would otherwise
be untenable. The contributions we make in this paper can be
summarized as follows.

• We present mechanisms that allow iSAX 2.0, a data
structure suitable for indexing and mining time series, to
scale to very large datasets.

• We introduce the first bulk loading algorithm, specifically
designed to operate in the context of a time series index.
The proposed algorithm can dramatically reduce the
number of random disk page accesses (as well as the total
number of disk accesses), thus reducing the time required
to build the index by an order of magnitude.

• We also propose a new node splitting algorithm, based on
simple statistics that are accurate, yet efficient to compute.
This algorithm leads to an average reduction in the size of
the index by 27%.

• We present the first approach that is experimentally
validated to scale to data collections of time series with up
to 1 billion objects.

The rest of the paper is organized as follows. We review
some background material in Section II. Section III
introduces the basic pillars for our scalable index, iSAX 2.0.

Section IV discusses the experimental evaluation. Section V
presents the related work, and Section VI the conclusions.

II. PRELIMINARIES

As noted previously, there are numerous dimensionality
reduction techniques available for time series. In this section,
we review SAX, and its recent extension, iSAX, which are at
the heart of our proposed ideas. (For a more detailed
discussion, refer to [3].)

A. The SAX Representation

In Figure 1(i) we show a time series T of
length n = 16. This time series can be
represented in w-dimensional space by a

vector of real numbers wccC ,,1 …= . The ith

element of C is calculated by:

∑
+−=

=
i

ij

jn
w

i

w
n

w
n

Tc
1)1(

Figure 1(ii) shows T converted into this representation
(called PAA [22]) reducing the dimensionality from 16 to 4.

Note that the PAA coefficients are intrinsically real-
valued, and for reasons we will make clear later, it can be
advantageous to have discrete coefficients. We can achieve
this discreteness with SAX. The SAX representation takes
the PAA representation as an input and discretizes it into a
small alphabet of symbols with cardinality a. The
discretization is achieved by creating a series of breakpoints
running parallel to the x-axis and labeling each region with a
discrete label. Any PAA segment that falls in that region can
then be mapped to the appropriate label.

Figure 1. i) A time series T, of length 16. ii) A PAA approximation of T,
with 4 segments. A time series T converted into SAX words of cardinality
4 (iii), and cardinality 2 (iv).

The SAX representation supports arbitrary breakpoints,
however it has been shown that an effective choice is a
sorted list of numbers Βreakpoints = β1, …, βa-1 such that the

area under a N(0,1) Gaussian curve from βi to βi+1 = 1/a
produces symbols with approximate equi-probability.

A SAX word is simply a vector of discrete numbers. For
example, the SAX word shown in Figure 1(iii) can be written
as {3, 3, 1, 0} or in binary form as {11, 11, 01, 00}. We
denote this word as T4, and assume that it is produced by the
function SAX(T,4,4). The “T” is written in boldface to
distinguish it from the raw data from which it was derived,
and the superscript of “4” denotes the cardinality of the
symbols. Under this notation the SAX word shown in Figure
1(iv) can be written as SAX(T,4,2) = T2 = {1, 1, 0, 0}. Note
that once we have T4 we can derive T2 by simply ignoring

the trailing bits from each symbol within the SAX word.
Naturally, this is a recursive property. If we converted T to
SAX with a cardinality of 8, we have SAX(T,4,8) = T

8 =
{110, 110, 011, 000}, from this we can convert to any lower
resolution that differs by a power of two, by ignoring the
correct number of bits. TABLE I makes this clearer.

TABLE I. CONVERTING TO A REDUCED (BY HALF) CARDINALITY SAX

WORD BY IGNORING TRAILING BITS.

SAX(T,4,16) = T16 = {1100,1101,0110,0001}
SAX(T,4,8) = T8 = {110 ,110 ,011 ,000}
SAX(T,4,4) = T4 = {11 ,11 ,01 ,00}
SAX(T,4,2) = T2 = {1 ,1 ,0 ,0}

The ability to change cardinalities on the fly is
exploitable by our splitting policies, as we will demonstrate
in Section III.B.

B. The iSAX Representation

It is tedious to write out binary strings, so we can use
integers to represent SAX symbols. For example:

SAX(T,4,8) = T8 = {110 ,110 ,011 ,000} = {6,6,3,0}
However, this can make the SAX word ambiguous. If we see
just the SAX word {6,6,3,0} we cannot be sure what the
cardinality is (although we know it is at least 7). We resolve
this ambiguity by writing the cardinality as a superscript.
From the above example:

iSAX(T,4,8) = T8 = {68,68,38,08}
One of the key properties of the iSAX representation is the
ability to compare two iSAX words of different cardinalities.
Suppose we have two time series, T and S, which have been
converted into iSAX words:

iSAX(T,4,8) = T8 = {110,110,011,000} = {68,68,38,08}
iSAX(S,4,2) = S2 = {0 ,0 ,1 ,1 } = {02,02,12,12}

We can find the lower bound between T and S, even though
the iSAX words that represent them are of different
cardinalities. The trick is to promote the lower cardinality
representation into the cardinality of the larger before giving
it to the MINDIST function. We can think of the tentatively
promoted S

2 word as S
8 = {0**1,0**2,1**3,1**4}, then the

question is simply what are correct values of the missing **i
bits. Note that both cardinalities can be expressed as the
power of some integer, guaranteeing an overlap in the
breakpoints used during SAX computation. Concretely, if we
have an iSAX cardinality of X, and an iSAX cardinality of
2X, then the breakpoints of the former are a proper subset of
the latter. This is shown in Figure 1(iii) and Figure 1(iv).

Using this insight, we can obtain the missing bit values in
S

8 by examining each position and computing the bit values
at the higher cardinality which are enclosed by the known
bits at the current (lower) cardinality and returning the one
which is closest in SAX space to the corresponding value in
T

8. This method obtains the S
8 representation usable for

MINDIST calculations: S8 = {011,011,100,100}.
Note that this may not be the same iSAX word we would

have gotten if we had converted the original time series S.
We cannot undo a lossy compression. However, using this
iSAX word does give us an admissible lower bound.

Finally, note that in addition to comparing between iSAX
words of different cardinalities, the promotion trick
described above can be used to compare iSAX words where

-3
-2
-1
0
1
2
3

A “raw” time series T

A piecewise constant

approximation of T

-3
-2
-1
0
1
2
3

4 8 12 16 0 4 8 12 160

00
01
10
11

0

1

iSAX(T,4,4)
iSAX(T,4,2)

PAA(T,4)

i)

ii)

iv)

iii)

each word has mixed cardinalities (such as {111, 11, 101, 0}
= {78,34,58,02}).

iSAX support for mixed cardinalities is a feature which
allows an index structure to split along any arbitrary
dimension or symbol. It is this flexibility which allows iSAX
to be indexable (as opposed to classic SAX). As we
demonstrate in the follow sections, we can exploit this
property to create a novel splitting policy that allows for
extremely efficient indexing of massive datasets.

C. Indexing iSAX

iSAX’s variable granularity allows us to index time
series. Using the iSAX representation, and by defining
values for the cardinality b and wordlength w, we can
produce a set of bw different mutually exclusive iSAX words.
These can be represented by files on disk, for example the
word {68,68,38,08} can be mapped to 6.8_6.8_3.8_0.8.txt

A user defined threshold th defines the maximum number
of time series that a file can hold.

Imagine that we are in the process of building an index,
and have chosen th = 100. At some point there may be
exactly 100 time series mapped to the iSAX word
{24,34,34,24}. If we come across another time series that
maps in the same place, we have an overflow, so we need to
split the file. The idea is to choose one iSAX symbol,
examine an additional bit, and use its value to create two new
files. In this case, the original file: {24,34,34,24} splits into
{48,34,34,24} (child file 1), and {58,34,34,24} (child file 2). For
some time series in the file, the extra bit in their first iSAX
symbol was a 1, and for others it was a 0. In the former case,
they are remapped to child 1, while in the latter, to child 2.

The use of the iSAX representation has led to the
creation of a hierarchical, but unbalanced, index structure
that contains non-overlapping regions, and has a controlled
fan-out rate. The three classes of nodes found in this index
structure are described below.

Root Node: The root node is representative of the
complete iSAX space and is similar in functionality to an
internal node. The root node contains no SAX
representation, but only pointers to the children nodes.

Leaf Node: This is a leaf level node, which contains a
pointer to an index file on disk with the raw time series
entries. The node itself stores the highest cardinality iSAX
word for each time series.

Internal Node: An internal node designates a split in
iSAX space, and is created when the number of time series
contained by a leaf node exceeds th. The internal node splits
the iSAX space by promotion of cardinal values along one or
more dimensions as per the iterative doubling policy. iSAX
employs binary splits along a single dimension, using round
robin to determine the split dimension. Thus, internal nodes
store a SAX representation and pointers to their two children.

III. THE ISAX 2.0 INDEX

As discussed earlier, iSAX is a tree structure that is not
balanced. In addition, there is no special provision for
mechanisms that can facilitate the ingestion of large
collections of time series into the index. Through our initial
experimentation, we observed that these characteristics can

lead to prohibitively long index creation times. For example,
indexing a dataset with 500 million time series would need
20 days to complete. Even a modest dataset with 100 million
time series requires 2 days in order to be indexed (detailed
results are presented in Section IV).

Clearly, having to wait for such an extended amount of
time before analysis and mining is impractical. This becomes
even more pronounced in applications where large numbers
of time series are produced on a regular basis, and need to be
analyzed before proceeding with additional experiments.

Note that the above criticism of iSAX refers mainly to
index construction, and not the utility of the index. Previous
work has demonstrated the effectiveness and efficiency of
iSAX for performing various data analysis and mining tasks
[3]. The performance of iSAX on these tasks scales sub-
linearly as a function of the number of time series indexed.
During index creation, the primary bottleneck is hard drive
performance and the associated I/O costs. As the amount of
indexed data increases, this bottleneck becomes a hard
constraint which limits the overall scalability of the index.

In order to overcome the above problems, we propose the
following two complementary techniques to improve the
scalability of iSAX.

• A new algorithm for time series bulk loading that
considerably reduces the number of total disk page
accesses, while also minimizing the number of random
disk page accesses.

• A new splitting policy for the internal nodes of the index,
resulting in a significantly more compact indexing
structure, hence, further reducing the I/O cost.

In the following sections, we discuss in more detail these
extensions of the iSAX index structure that enable it to
efficiently operate with data collections orders of magnitude
larger than previously tested. We will refer to this improved
iSAX index as iSAX 2.0.

A. Bulk Loading

Inserting a large collection of time series into the index
iteratively is a very expensive operation, involving a high
number of disk I/O operations. This is because for each time
series, we have to store the raw data on disk, and insert into
the index the corresponding iSAX representation. Assuming
that the entire index is in main memory, the above procedure
translates to one random disk access for every time series in
the dataset in the best case (when there is no leaf node split),
or more random accesses otherwise.

We now describe an algorithm for bulk loading, which
can effectively reduce the number of disk I/O operations.
The main idea of the algorithm is that instead of developing
the entire index at once, we are focusing our efforts on
building the distinct subtrees of the index one at a time. This
is beneficial, because by growing a specific subtree of the
index, we are effectively minimizing the number of node
split operations and streamlining all the disk accesses. Using
the proposed algorithm, we can achieve the following.

• Minimize the required disk I/O, since we avoid revisiting
leaf nodes in order to split them (which would mean extra
disk accesses to read their contents from disk, and then
writing back the contents of the new leaf nodes). At the

same time, we make sure that every time we access the
disk for writing the contents of a leaf node, we write on
disk all of its contents at once.

• Maximize the number of sequential disk page accesses, in
the case where the contents of a leaf node do not fit in a
single disk page.

We note that the algorithm we propose is novel since the
existing approaches on bulk loading are not applicable in our
case (we discuss this in detail in Section V).

1) Algorithm Basics
In order to achieve the goals mentioned above, we need

to effectively group the time series that will end up in a
particular subtree of the index, and process them all together.
If we could fit all time series in main memory, then it would
be possible to create such groups after processing all time
series. We could subsequently build each distinct subtree of
the index sequentially, creating all necessary leaf nodes one
after the other, without needing to revisit any of the leaf
nodes already created.

In our case however, we have to develop a solution under
the (realistic) assumption that the entire dataset does not fit
in main memory. In the following paragraphs, we discuss the
details of the bulk loading algorithm we propose, which
operates under the assumption of limited main memory (i.e.,
less than necessary to fit the index and the entire dataset).
The pseudocode of the algorithm is depicted in Figure 3.

Our algorithm uses two main memory buffer layers,
namely First Buffer Layer (FBL), and Leaf Buffer Layer
(LBL). The FBL corresponds to the first level of iSAX 2.0
nodes. This correspondence remains stable throughout the
creation of the index, because unlike nodes in other indexing
structures, iSAX 2.0 nodes are not subject to shifts in the
course of repetitive insertions (since changes in the leaf
nodes due to splits are not propagated upwards the iSAX 2.0
tree). The LBL corresponds to leaf nodes. There are no
buffers related to the internal (i.e., other than the first level)
iSAX 2.0 nodes.

These two buffering layers are different in nature. The
role of the buffers in FBL is to cluster together time series
that will end up in the same iSAX 2.0 subtree, rooted in one
of the direct children of the root. The buffers in FBL do not
have a restriction in their size, and they grow till they occupy
all the available main memory. In contrast, the buffers in
LBL are used to gather all the time series of leaf nodes, and
flush them to disk. These buffers have the same size as the
size of the leaf nodes (on disk), which in general is more
than a single disk page.

2) Description of the Algorithm
The algorithm operates in two phases, which alternate

until the entire dataset is processed (i.e., indexed).
Phase 1: The algorithm reads time series and inserts

them in the corresponding buffer in FBL (lines 4-16 in
Figure 3). This phase continues until the main memory is
almost full. (We need a small amount of extra memory to
allocate new nodes during Phase 2. Yet, this is only needed
for the beginning of the first iteration of the loop at lines 12-
16, since each iteration releases memory.)

At the end of Phase 1, we have time series collected in
the FBL buffers. This situation is depicted in Figure 2(left).

Note that even though we have created some FBL buffers
(according to the time series processed so far), the
corresponding (leaf) nodes L1, L2, and L3, of the index are
not yet created.

R

insert new ts

FBL

L1 L2 L3

main memory

disk

R

L1 L2

I1

FBL

LBL
L4L3

main memory

disk

Phase 1 Phase 2

Figure 2. The bulk loading algorithm. left) Phase 1 fills the FBL buffers
with time series until main memory is full. right) Phase 2, processing
subtree rooted at node I1 (subtrees rooted at nodes L1 and L2 have already
been flushed to disk).

Phase 2: The algorithm proceeds by moving the time
series contained in each FBL buffer to the appropriate LBL
buffers. During this phase, the algorithm processes the
buffers in FBL sequentially. For each FBL buffer, the
algorithm reads the time series and creates all the necessary
internal (lines 25-33) and leaf (lines 36-39) iSAX 2.0 nodes
in order to index these time series. It basically creates the
entire subtree (or any missing nodes in case a subtree has
already been constructed) rooted at the node corresponding
to that FBL buffer. For example, in Figure 2(right), by
emptying the right-most FBL buffer, we create the subtree
rooted at internal node I1. The algorithm also creates for
each leaf node a corresponding LBL buffer (line 38). When
all time series of a specific FBL buffer have been moved
down to the corresponding LBL buffers, the algorithm
flushes these LBL buffers to disk (line 15). Notice that in
Figure 2(right), the LBL buffers for the subtrees rooted at
nodes L1 and L2 have already been flushed to disk, and all
the available memory can be dedicated to the LBL buffers of
the I1 subtree.

At the end of Phase 2 of the algorithm, all the time series
from the FBL buffers have moved down the tree to the
appropriate leaf nodes (creating new ones if necessary) and
LBL buffers, and then from the LBL buffers to the disk. This
means that all buffers (both FBL and LBL) are empty, and
we are ready to continue processing the dataset, going back
to Phase 1 of the algorithm. This process continues until the
entire dataset has been indexed.

Note that the way the algorithm works, all LBL buffers
are flushed to disk at the end of Phase 2. An interesting
question is whether we would gain in performance by not
flushing the buffers that are almost empty (thus, saving disk
accesses that do little actual work). This strategy would
certainly be beneficial for the first time around. It turns out
however, that overall it would not lead to better performance.
This is because it would reduce the available main memory
for the FBL buffers (by reserving memory for the LBL

buffers not flushed to disk), and consequently, result to
processing less time series during the subsequent Phase 1.
We experimentally validated this argument, and in the
interest of space do not report detailed results on this
variation of the algorithm.

B. Node Splitting Policy

It is evident that the size of an indexing structure affects
index creation time: a more compact structure translates to a
smaller number of disk accesses.

Unlike other indexing structures, the iSAX index is not
balanced. This was a design decision that led to a simple
node splitting policy that does not take into account the data
contained in the node to be split. In some cases, splitting a
node may still result in all the time series ending up in one of
the two new nodes, thus, necessitating an additional split.
This design decision may lead to a poor utilization of the leaf
nodes, and results in a larger and deeper index structure.

We propose a node splitting policy that makes informed
decisions based on knowledge of the distribution of the data
stored in each node. The intuition behind this algorithm is
the following. When splitting a node, we wish to distribute
the time series in this node equally to the two new nodes. In
order to do this exactly, we would have to examine all
segments, and for each segment all possible cardinalities.
This approach though, would be prohibitively expensive.
Our algorithm is instead examining for each segment the
distributions of the highest cardinality symbols across the
relevant time series. Then, it splits the node on the segment
for which the distribution of the symbols indicates there is a
high probability to divide the time series into the two new
nodes, therefore avoiding the problem of useless node splits.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

FBL[] // array of FBL buffers
LBL[] // array of LBL buffers
Function Bulk_Insert()
while (more time series to index)
 ts_new = next time series to be indexed
 iSAX_word = iSAX representation of ts_new
 if (main memory still available)
 if (no FBL buffer contains iSAX_word)
 create new FBL buffer corresponding to iSAX_word
 add ts_new to FBL[]
 else if (main memory is full)
 for each buf in FBL[]
 for each ts in buf
 call function Insert(ts)
 flush LBL buffers created during insertion (corresponding to buf)
 remove from memory those LBL buffers

Function Insert(ts_new)
 iSAX_word = iSAX representation of ts_new
 if (subtree corresponding to iSAX_word exists)
 // current node has a child node to receive ts_new
 n = destination node of ts_new // route ts_new down the tree
 if (n is leaf node)
 if (n not full) // node does not need to be split
 add ts_new into LBL[n] // buffer corresponding to n
 else // node n needs to be split
 for each ts in n
 // read all time series of n (from disk)
 add ts to LBL[n]
 n_new = new internal node
 for each ts in LBL[n]
 n_new.Insert(ts)
 n_new.Insert(ts_new)
 remove n // all time series moved under n_new
 else if (n is internal node)
 n.Insert(ts_new)
 else // current node does not have a child node to receive ts_new
 n_new_leaf = new leaf node
 create new LBL buffer corresponding to n_new_leaf
 add ts_new to this new LBL buffer

Figure 3. Pseudocode for the bulk loading algorithm.

Consider the example depicted in Figure 4, where we
assume an iSAX word of length (i.e., number of segments)
four, and we would like to split a node whose cardinality is 2
(for all segments). For each segment, we compute the μ ± 3σ
range of the corresponding symbols. We observe that this
range for segment 1 lies entirely below the lowest breakpoint
of cardinality 4 (i.e., the cardinality of the two new nodes
after the split). Only the ranges of segments 2 and 3 cross
some breakpoint of cardinality 4. Between these two, the
algorithm will pick to split on segment 3, because its μ value
lies closer to a breakpoint than that of segment 2. This is an
indication that with high probability some of the time series
in the node to be split will end up in the new node
representing the area above the breakpoint, while the rest
will move to the second new node, thus, achieving a
balanced split.

The pseudocode for the node splitting algorithm is shown
in Figure 5 (called every time we have to create new internal
node: lines 29 and 37 in Figure 3). The algorithm starts by
computing for each segment the first two moments (mean μ
and standard deviation σ) of the distribution of symbols over
all the time series in the node to be split (lines 2-3). Note that
this computation does not incur additional cost. Remember
that the highest detail iSAX approximation of each time
series is already stored along with the time series themselves,
and we need to read those in order to materialize the node
split.

Subsequently, the algorithm has to choose one of the
segments for splitting the node. For each segment, the
algorithm examines whether the range generated by μ ± 3σ
crosses any of the iSAX breakpoints of the immediately
higher cardinality (lines 6-10). Among the segments for
which this is true, the algorithm picks the one whose μ value
lies closer to a breakpoint (lines 9-10).

segment 1 segment 2 segment 3 segment 4

μ[1] + 3σ[1]

μ[2] + 3σ[2]

μ [3] + 3σ[3]

μ [4] + 3σ[4]

b
re

a
k

p
o

in
t

fo
r

ca
rd

in
a

li
ty

 2

b
re

a
k

p
o

in
ts

 f
o

r
ca

rd
in

a
li

ty
 4

Figure 4. Node splitting policy example.

1
2
3
4
5
6
7
8
9
10
11

Function Split()
mean[] = ComputeSymbolMean() // using highest iSAX representation -
stdev[] = ComputeSymbolStDev() // already computed during insertions
segmentToSplit = none
for each segment s in the iSAX word
 b = getBreakPoint(s) // breakpoint of s with increased cardinality
 if (b within mean[s] ± 3stdev[s])
 // segment s is candidate for splitting
 if (mean[s] closer to b than segmentToSplit)
 segmentToSplit = s
segmentToSplit.IncreaseCardinality()

Figure 5. Pseudocode for the node splitting algorithm.

IV. EXPERIMENTAL EVALUATION

We have designed all experiments such that they are
reproducible. To this end, we have built a webpage which

contains all datasets and code used in this work, together
with spreadsheets that contain the raw numbers displayed in
all the figures [24].

Experimental evaluation was conducted on an Intel Xeon
E5504 with 24GB of main memory, 2TB Seagate Barracuda
LP hard disk, running Windows Vista Business SP2. All
code is in C#/.NET 3.5 Framework. For the case study in
Section IV.B, we used an AMD Athlon 64 X2 5600+ with
3GB of memory, 400 GB Seagate Barracuda 7200.10 hard
disk, and running Windows XP SP2 (with /3GB switch).

Our experiments are divided into three sections: A) tests
that measure the classic metrics of disk accesses, wall clock
time, index size, sensitivity to parameters, etc. B) a detailed
case study of a deployed use of our system in an important
entomology problem, C) examples of higher level data
mining algorithms built using our index as a subroutine.

The algorithms that we evaluate are iSAX 2.0, and the
original iSAX, where all the available main memory is used
for disk buffer management (i.e., buffers corresponding to
the leaf level nodes). We also compare to iSAX-BufferTree,
which is an adaptation of the Buffered R-Tree bulk loading
algorithm [17]. In this case, instead of having buffers only at
the first and leaf levels, we also have some buffers at
intermediate levels of the index tree. These buffers are of
equal size, which depends on the size of the index (i.e., the
buffer size decreases as the index grows). An important
distinction of iSAX 2.0 is that it is the only bulk loading
strategy of the three specifically designed for a non-balanced
index tree. It adaptively resizes (FBL) and positions (LBL)
its memory buffers according to the needs of the incoming
time series. The experiments demonstrate that this choice
leads to significant savings in terms of disk page accesses.

We do not additionally compare our ideas to other time
series indices. This would normally be an untenable position
for a paper, but we note the following three points.

First, the largest time series dataset indexed by a rival
technique is one million objects [2]. In contrast, in this work
we consider a dataset which is one thousand times larger.
Even our “small” datasets are two orders of magnitude
larger. No papers that we are aware of claim to scale to the
truly massive datasets we wish to consider, and forcing them
to do so may misrepresent their contributions (in indexing
moderate sized datasets).

Second, most of the previous comparisons of indexing
methods for time series simply reduce to claims about the
relative merits of a time series representation method, i.e.,
DWT vs. DFT methods. However there is an increasing
understanding that this is a red-herring. It has been forcedly
shown that averaged over many datasets, the time series
representation makes very little difference [14].

Finally, a unique property of iSAX is its tiny bit-aware
index size. This means that an iSAX index is very small
compared to the data it indexes, and thus we can fit the entire
index in main memory even for the massive datasets we wish
to consider. In order to compare to other methods, we have
to consider the case of what to do when the index itself is
mostly disk-resident, and in virtually every case the original
authors provide no guidance. For completeness, we show
that using the iSAX representation, we obtain the same

benefit as other methods (in terms of tightness of lower
bounds), at a fraction of the space cost.

We can measure the tightness of the lower bounds, which
is defined as the lower bounding distance over the true
distance. Figure 6 shows this for random walk time series of
length 256, with eight PAA/DWT coefficients, eight DFT
coefficients (using the complex conjugate property), eight
Chebyshev polynomials coefficients, and a SAX
representation also of length eight. We varied the cardinality
of SAX from 2 to 256, whereas the other methods use a
constant 8 bytes per coefficient, and thus have a constant
value for tightness of lower bounds in this experiment. We
averaged results over 1,000 random pairs of time series. The
results suggest that there is little reason to choose between
PAA/DWT/DFT/CHEB, as has been noted elsewhere [14].
They also show that once the cardinality of iSAX is greater
than 50, it is competitive with the other methods, even
though it requires only one eighth the space (one byte per
coefficient vs. eight bytes per coefficient for
PAA/DWT/DFT/CHEB).

Figure 6. A comparison of the tightness of lower bound for various time
series representations. All approaches except SAX use a constant 8 bytes,
and therefore have a constant tightness of lower bound. The results for
SAX show the effect of varying the cardinality from 2 to 256 (and hence
the number of bits from 2 to 8).

In summary, this work is only apparently tackling a
problem that has been worked on before. In fact, indexing a
billion time series is effectively a new problem, considered
here for the first time.

A. Scalability of iSAX 2.0

In this section, we present experimental results on the
scalability of iSAX 2.0. In particular, we evaluate the effect
of the proposed node splitting and bulk loading algorithms
on the time to build and the size of the index.

1) Splitting Policy Evaluation
We ran experiments in order to evaluate the new splitting

policy implemented in iSAX 2.0. In these experiments, we
compare our results against those obtained by the use of the
iSAX splitting policy. We generated datasets of sizes 1-100
million time series, where each time series has length of 256,
generated as follows. In order to generate the series, we use a
standard normal distribution N(0,1), where each point in the
time series is generated as xi+1=N(xi,1). We report the
averages over these 10 runs (their variance was 5% or less
for all our experiments).

Even if the datasets used in this section are smaller than
the other used in this paper, the results follow the same
trends. We note that we obtain similar results to the ones
presented below when instead of varying the number of time
series, we vary the threshold th. We omit these results for
brevity. (All experiments in this section were run using the

0 50 100 200 250
0

0.2

0.4

0.6

0.8

1

SAX

PAA/DWT

T
ig

h
tn

es
s

o
f

lo
w

er
 b

o
u
n
d
 DFT

CHEB

Cardinality of SAX words
150

proposed bulk loading algorithm, as well. Though, this fact
does not affect the interpretation of the results.)

Index Size: In the first set of experiments, we measure
the total size of the index (in number of nodes), after having
indexed the entire dataset. Figure 7(right) shows that there is
a quadratic dependency between the number of nodes in the
index and the number of time series indexed.

The results show that the new splitting policy
implemented in iSAX 2.0 can effectively reduce the number
of nodes required by the index. On average, iSAX 2.0 needs
34% less nodes than the iSAX index. These results validate
our premise that using the first moments of the distributions
of the iSAX symbols is a simple, yet, effective mechanism
for identifying suitable split segments.

The results also demonstrate the significant impact that
the leaf node capacity has on the index. Evidently, when this
capacity is decreased, the index needs to grow many more
internal and leaf nodes in order to accommodate the time
series to be indexed.

Index Build Time: In the next set of experiments, we
measure the time needed to build the index as a function of
the number of time series (Figure 7(left)). We observe that
the curves in the graph follow the same trends as before, with
the time to build the index increasing quadratically.

This result is not surprising, since the build time is
strongly correlated to the number of nodes of the index.
Once again we observe the benefit of the proposed node
splitting algorithm, which leads to an average reduction of
30% in the index built time. Therefore, maintaining a small
index size is highly desirable.

Leaf Node Utilization: We now investigate the average
utilization (or occupancy) of the leaf nodes. A bad splitting
policy that does not take into account information on the data
contained in the nodes to be split can generate unbalanced
splits, leading to low usage of the leaf nodes and to long
insertion times. Remember that having many leaf nodes with
low utilization translates to the need for an increased number
of leaf nodes (in order to accommodate the same number of
time series), and consequently, for an increased number of
disk page accesses.

The graph of Figure 7(right) shows that the new splitting
algorithm results in leaf nodes with an average of 54% more
occupancy than the old splitting algorithm, underlining the
effectiveness of the proposed policy. The experiments also
show that there is no variability in the leaf node utilization as
we vary the number of time series in the index.

0

1m

2m

1M 5M 10M 25M 50M 100M

In
d

ex
 S

iz
e

 (

#
 N

o
d

es
)

Number of Time Series

Old index size

New index size
0

10

20

30

40

50

60

70

80

N
o

d
e

O
cc

u
pa

nc
y

(%
)

New node occupancy

Old node occupancy

0

2

4

6

8

10

12

14

16

18

20

1M 5M 10M 25M 50M 100M

New build time

Old build time

Number of Time Series

B
u

ild
 T

im
e

(m
in

u
te

s)

Figure 7. Splitting policy comparison between iSAX (old) and iSAX 2.0
(new) when varying the size of the dataset: construction time (left), number
of nodes and leaf node occupancy (right).

2) Bulk Loading Evaluation
In order to test the proposed approach, we index a set of

datasets with sizes from 100 million to 1 billion time series

composed by random walks of length 256. Each data point in
the time series is produced as xi+1=N(xi,1), where N(0,1) is a
standard normal distribution. We use a leaf node threshold
th=8000 and wordlength w=8. We compare the obtained
results with the performance of the iSAX index.

Index Build Time: The first experiment shows the time
needed to build the index for the two different methods (see
Figure 8(top)). The results demonstrate the scalability of
iSAX 2.0 as the dataset size increases, with a trend that is
almost linear. In contrast, the time to build the iSAX index
grows much faster, and very quickly becomes prohibitively
expensive. It took 12, and 20 days to index the datasets of
size 400, and 500 million time series, respectively. At that
point though, we were forced to discontinue the experiments
with iSAX. We estimated that it would take around 56 days
to index 1 billion time series. The iSAX-BufferTree
algorithm initially performs better than iSAX, but its
performance deteriorates as the size of the dataset increases.

The problem with the above two strategies is that they
cannot effectively concentrate the available memory
resources in the areas of the index that are most needed.
Instead, they allocate memory in a more balanced way across
the index, which does not result in the best performance
since in our case the index is not a balanced tree.

Using the proposed bulk loading algorithm, iSAX 2.0
manages to index a dataset with 100 million time series in
just 16 hours. The 1 billion time series dataset is indexed in
less than 400 hours (about 16 days), which corresponds to an
indexing time of 1ms/time series.

Disk Page Accesses: In Figure 8(middle), we show the
number of disk page accesses performed by the three
indexing methods during the same experiments.

0.E+00

2.E+02

4.E+02

B
u

il
d

 T
im

e
 (

h
o

u
rs

)

0.E+00

1.E+09

2.E+09

D
is

k
 P

a
g

e
 A

cc
e

ss
e

s

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

100M 200M 300M 400M 500M 800M 900M 1B

D
is

k
 P

a
g

e
 A

cc
e

ss
e

s

Time series Indexed

iSAX 2.0 (random)

iSAX 2.0 (sequential)

iSAX

iSAX 2.0

iSAX

iSAX-BufferTree

iSAX-BufferTree

iSAX 2.0

Figure 8. Index metrics as a function of dataset sizes. top) Time to build an
index. middle) Disk page accesses between indexing methods. bottom)
Distribution of sequential and random disk page accesses for iSAX 2.0.

The graph shows that when using the bulk loading
algorithm, we need to access the disk only half the times as
before. This is already a significant improvement in the
performance of the algorithm. Though, if we take a closer
look at the experimental results, we make another very
interesting observation (refer to Figure 8(bottom)). More
than 99.5% of the disk page accesses that iSAX 2.0 has to
perform are sequential accesses, which means that random
accesses are consistently two orders of magnitude less than
the number of sequential accesses. In contrast, most of the
disk accesses that the iSAX and iSAX-BufferTree strategies
perform are much more expensive random accesses (since
they involve the flushing of buffers corresponding to
different nodes of the index), leading to an index build time
that is an order of magnitude larger than that of iSAX 2.0.

These results show that the bulk loading algorithm is
extremely effective in reducing the I/O cost, thus, enabling
iSAX 2.0 to index 1,000,000,000 time series.

B. A Case Study in Entomology

Many insects such as aphids, thrips and leafhoppers feed
on plants by puncturing their membranes and sucking up the
contents. This behavior can spread disease from plant to
plant causing discoloration, deformities, and reduced
marketability of the crop. It is difficult to overstate the
damage these insects can do. For example, just one of the
many hundreds of species of Cicadellidae (Commonly
known as Sharpshooters or Leafhoppers), Homalodisca
coagulate first appeared in California around 1993, and has
since done several billions of dollars of damage and now
threatens California’s $34 billion dollar grape industry [5].

In order to understand and ultimately control these
harmful behaviors, entomologists glue a thin wire to the
insect’s back, and then measure fluctuations in voltage level
to create an Electrical Penetration Graph (EPG). Figure
9(top) shows the basic setup.

This simple apparatus has allowed entomologists to make
significant progress on the problem. As USDA scientist Dr.
Elaine Backus recently noted, “Much of what is known today
about hemipteran feeding biology .. has been learned via use
of EPG technology” [6]. However, in spite of the current
successes, there is a bottleneck in progress due to the huge
volumes of data produced. For example, a single experiment
can last up to 24 hours. At 100 Hz that will produce a time
series with approximately eight-million data points.
Entomologists frequently need to search massive archives for
known patterns to confirm/refute hypotheses. For example, a
recent paper asks if the chemical thiamethoxam causes a
reduction in xylem1 feeding behavior by a Bird Cherry-Oat
Aphid (Rhopalosiphum padi). The obvious way to test such a
hypothesis is to collect EPG data of both a treatment group
and a control group and search for occurrences of the (well
known) xylem feeding pattern.

Recently, the Entomology Dept. at UC Riverside asked
us to create an efficient tool for mining massive EPG

1 Xylem is plant sap responsible for the transport of water
and soluble mineral nutrients from the roots throughout the
plant.

collections [7]. We have used the techniques introduced in
this work as a beta version of such a tool, which will
eventually be made freely available to the entomological
community. Let us consider a typical scenario in which the
tool may be used. In Figure 9(bottom) we see a copy of Fig.
2 from [4]. This time series shows a behavior observed in a
Western Flower Thrip (Frankliniella occidentalis), an insect
which is a vector for more than 20 plant diseases. The Beet
Leafhopper (Circulifer tenellus) is not particularly closely
related to thrips, but it also feeds on plants by puncturing
their membranes and sucking sap. Does the Beet Leafhopper
exhibit similar behavior?

Figure 9. top) A schematic diagram showing an EPG apparatus used to
record insect behavior. bottom) An EPG insect behavior derived from
subset of Fig. 2 from [4]. An idealized version of the observed behavior
created by us is shown with a bold blue line.

To answer this question we indexed 20,005,622
subsequences of length 176 from the Beet Leafhopper EPG
data, which had been collected in 60 individual experiments
conducted from 2007 to 2009. We used a th size of 2000 and
w of 8 to construct an index on our AMD machine. Even
with fewer resources, it took only 6.25 hours to build the
index, which occupied a total of 26.6 gigabyte on disk space.
As shown in Figure 9(bottom), we used the simple idealized
version as a query to our database. Figure 10(left) shows the
result of an approximate search, which takes less than 0.5
seconds to answer.

Figure 10. Query time series, and its approximate nearest neighbor.

This result suggests that although the insect species is
different (recall we queried a Thrip behavior on Beet
Leafhopper database) the behaviors are similar, differing
only in the insertion of stylet behavior. As a sanity check we
also queried the database with an idealized version of a Beet
Leafhopper behavior, the so-called “Waveform A”, in this
case, Figure 10(right) shows that the match is much closer.

C. Mining Massive DNA Sequences

The DNA of the Rhesus Macaque (Macaca mulatta)
genome consists of nearly 3 billion base pairs (approximately
550,000 pages of text if written out in the format of this

Five Seconds

non-penetration
(arbitrary length)

ingestion of cell contents
(arbitrary length)

insertion of stylets

penetration of the mandible
repetitive head nodding

Idealized Template

plant membrane Stylet

voltage source

input resistor

0 50 100 150 2000

10

20

to insect

conductive glue

voltage reading

to plant

0 40 80 120 160 0 40 80 120 160

Idealized version of
“Waveform A”

Nearest Neighbor

Nearest Neighbor

Idealized version of probing

behavior

paper), beginning with TAACCCTAACCCTAA… We
converted this sequence into a time series using the simple
algorithm shown in TABLE II.

TABLE II. AN ALGORITHM FOR CONVERTING DNA TO TIME SERIES.

T1 = 0;
For i = 1 to length(DNAstring)
 If DNAstringi = A, then Ti+1 = Ti + 2
 If DNAstringi = G, then Ti+1 = Ti + 1
 If DNAstringi = C, then Ti+1 = Ti - 1
 If DNAstringi = T, then Ti+1 = Ti - 2
End

Figure 11(left) shows an example of the time series
created from the DNA of monkey chromosome 3, together
with the human chromosome 21. Note that they are not
globally similar, but a subsection of each is locally similar if
we flip the direction of one sequence. This figure suggests
what is already known: the most recent common ancestor of
the macaque and humans lived only about 25 million years
ago, so we expect their DNA to be relatively similar.
However, since humans have 23 chromosomes and the
monkey has only 21, the mapping of chromosomes cannot be
one-to-one; some chromosomes must be mapped in a jigsaw
fashion. But what is the mapping?

Figure 11. left) An example of DNA converted into time series. right) The
cells represent potential mappings between the Macaque and Human
Genomes. The darker the cell, the more often the nearest neighbor of a time
series taken from a particular human chromosome had a nearest neighbor
from a particular Macaque chromosome. *Quote from An initial genetic

linkage map of the rhesus macaque. Rogers et al.
2
.

To answer this question, we indexed the entire time
series corresponding to the macaque DNA (non-sex related).
We used a subsequence length of 16,000, down-sampled by
a factor of 25 to mitigate “noise”. We then used a sliding
window with a step size of 5 to extract a total of 21,612,319
subsequences. To index, we used a th size of 1000 and w of
10. In total, it took 9 hours to build the index.

We obtained queries from the human genome in the same
manner and queried with both the original and transposed
versions. For each human chromosome, we issued an
average of 674 approximate searches (recall that
chromosomes have differing lengths) and recorded the ten
nearest neighbors. In Figure 11(right) we summarize where
the top ten neighbors are found, by creating a grid and
coloring the cell with an appropriate shade of gray. For
example, a pure white cell at location {i,j} means that no
query from human chromosomei mapped to monkey
chromosomej and a pure black cell at location {i,j} means
that all ten queries from human chromosomei mapped to

2 The smallest chromosomes including the sex
chromosomes are omitted

monkey chromosomej. This figure has some unambiguously
dark cells, telling us for example that Human 2 is
homologous (“equivalent”) to Macaque 3. In addition, in
some cases the cells in the figure suggest that two human
chromosomes may match to a single Macaque chromosome.
For example, in the column corresponding to Macaque 7, the
two darkest cells are rows 14 and 15. The first paper to
publish a genetic linkage map of the two primates tells us
“macaque7 is homologous to human14 and human15” [12].
More generally, this correspondence matrix is at least 95% in
agreement with the current agreement on homology between
these two primates [12]. This experiment demonstrates that
we can easily index tens of millions of subsequences in less
than a day, answer 13,480 queries in 2.5 hours, and produce
objectively correct results.

D. Mining Massive Image Collections

While there are hundreds of possible distance measures
proposed for images, a recent paper has shown that simple
Euclidean distance between color histograms is very
effective if the training dataset is very large [8]. More
generally, there is an increasing understanding that having
lots of data without a model can often beat smaller datasets,
even if they are accompanied by a sophisticated model
[9][10]. Indeed, Peter Norvig, Google’s research director,
recently noted that “All models are wrong, and increasingly
you can succeed without them”. The ideas introduced in this
work offer us a chance to test this theory.

We indexed the color histograms of the famous MIT
collection of 80 million low-resolution images [8]. As shown
in Figure 12, these color histograms can be considered
pseudo “time series”. At indexing time we omitted very
simple images (e.g. those that are comprised of only one or
two colors, etc.). In total, our index contains the color
histograms of 69,161,598 images.

We made color histograms of length 256, and used a th
size of 2000 and w of 8. It took 12.3 hours to build the index,
which is inconsequential compared to the nine months of
twenty-four hours a day crawling it took to collect it [8]. The
data occupies a total of 133 gigabytes of disk space. The
latter figure only includes the space for the time series, the
images themselves required an extra of 227 gigabytes.

Figure 12. left) A detail of The Son of Man by René Magritte, which we
used as a query to our index, finding “Match 1”. right) A detail of The
Scream by Edvard Munch, which we used as a query that returned “Match
2”. The insets show the similarity of the images in RGB histogram space.

Does this random sampling of the webs images contain
examples of iconic art images? To test this, we found
examples of two famous images using Google image search
and converted the image to color histograms of length 256.
We then used these to search our collection with an
approximate search. Each search took less than a second, and
the results can be seen in Figure 12. Note that we are not
claiming that Euclidean distance between color histograms is
the best measure for image similarity. This experiment
simply demonstrates the scalability and generality of our

Query 1

Match 1

0 250

Query 1
RGB

Match 1
RGB

Query 2

Match 2

0 250

Query 2
RGB

Match 2
RGB

“In two cases, macaque2, homologous to human3,

and macaque15, homologous to human9,..”*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2
3
4 5
6 7
8 9
10

11

12

13

14

15

16

17

18

19

20

21

H
u

m
an

Rhesus Macaque

0 400,000 800,000

0 200,000

Human Chromosome 21
 (extract)

Rhesus
Monkey Chromosome 3

 (extract)

Human 21

Monkey 3

ideas, as a side effect of demonstrating the unreasonable
effectiveness of (massive amounts of) data [9].

V. RELATED WORK

The literature on time series indexing is vast; see
[14][2][3] and the references therein for useful surveys and
empirical comparisons. There are at least a dozen well-
known methods for approximation (i.e. dimensionality
reduction) of time series data, including Discrete Fourier
Transformation [20], Singular Value Decomposition (SVD),
Discrete Cosine Transformation, Discrete Wavelet
Transformation [26], Piecewise Aggregate Approximation
[22], Adaptive Piecewise Constant Approximation [21],
Chebyshev polynomials [1]. However, recent extensive
empirical evaluations suggest that on average, there is little
to differentiate between these representations in terms of
fidelity of approximation, and thus indexing power [14].

The approximation we use in this work is intrinsically
different from the techniques listed above in that it is discrete
[25], rather than real-valued. This discreteness is
advantageous in that the average byte used by discrete
representations carries much more information than its real
valued counterparts. This allows our index to have a much
smaller memory footprint, and it allows us to explore novel,
simple and effective splitting strategies that exploit the
discrete nature of the representation.

The problem of bulk loading has been studied in the
context of traditional database indices, such as B-trees and
R-trees and other multi-dimensional index structures
[15][16][17][18][19][27]. For these structures two main
approaches have been proposed. First, we have the merge-
based techniques [15] that preprocess data into clusters. For
each cluster, they proceed with the creation of a small tree
that is finally merged into the overall index. It is not clear
how such techniques could be applied in our problem setting,
since clustering datasets of such scale could incur a cost
higher than indexing. Second, there are the buffering-based
techniques [17][18][27] that use main memory buffers to
group and route similar time series together down the tree,
performing the insertion in a lazy manner. These techniques
are not directly applicable in our setting, since they have
been designed to improve the bulk loading performance of
balanced index structures (as shown in our experiments for
an adaptation of [17]). Another interesting technique would
be the two step approach of the Path-Based method [18]. But
this one is not applicable either, because it requires the
existence of a balanced index tree in order to produce correct
results.

Finally, we note that no previous work has explicitly
studied the problem of bulk loading in the context of an
index for time series data.

VI. CONCLUSIONS

We describe iSAX 2.0, an index structure specifically
designed for ultra-large collections of time series, and
propose new mechanisms and algorithms for efficient bulk
loading and node splitting. We experimentally validate the
proposed algorithms, including the first published
experiments to consider datasets of size up to one billion

time series, showing that we can deliver a significant
improvement in the time required to build the index.

ACKNOWLEDGMENT

This research was funded by NSF awards 0803410 and 0808770,
and by FP7 EU IP project KAP (grant agreement no. 260111).

REFERENCES

[1] Cai, Y. and Ng, R. 2004. Indexing spatio-temporal trajectories with
Chebyshev polynomials. In Proc. SIGMOD 2004. 599-610.

[2] Assent I., Krieger R., Afschari F., Seidl T. (2008). The TS-Tree:
Efficient Time Series Search and Retrieval. EDBT 2008

[3] J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized
time series. In ACM SIGKDD, 2008

[4] Kindt F, Joosten NN, Peters D, Tjallingii WF. 2003. Characterisation
of the feeding behaviour of western flower thrips in terms of EPG
waveforms. J. Insect Physiol. 49: 183–91

[5] Andersen, P., Brodbeck, B., Mizell, R. (2009) Assimilation efficiency
of free and protein amino acids by H. vitripennis feeding on
C.sinensis and V. vinifera. Florida Entomologist . March 1, 2009.

[6] Backus, E. & Bennett, W. (2009). The AC–DC Correlation Monitor:
New EPG design with flexible input resistors to detect both R and
emf components for any piercing–sucking hemipteran. Journal of
Insect Physiology. Vol 55, Issue 10, October 2009, Pages 869-884

[7] Greg Walker (2009) Personal Communication. August 12th.
[8] A. Torralba, R. Fergus, W. T. Freeman (2008). 80 Million Tiny

Images: A Large Data Set for Nonparametric Object and Scene
Recognition. IEEE PAMI Vol. 30, No. 11. (2008), pp. 1958-1970.

[9] A. Halevy, P. Norvig, and F. Pereira (2009). The Unreasonable
Effectiveness of Data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12.

[10] C. Anderson, “The End of Theory: The Data Deluge Makes the
Scientific Method Obsolete,” Wired, vol. 16, no. 7, June 23, 2008.

[11] Reeves, R.H. and Cabin, D.E. (1999) Mouse chromosome 16.
Mamm. Genome, 10, 957.

[12] Rogers, J. et al. An initial genetic linkage map of the rhesus macaque
(Macaca mulatta) genome using human microsatellite loci. Genomics
87, 30–38 (2006).

[13] Asif, T.C., et al. 2002. Initial sequencing and comparative analysis of
the mouse genome. Nature 420: 520–562

[14] Ding, H. Trajcevski, G., Scheuermann, P., Wang, X. , Keogh. E.
Querying and mining of time series data: experimental comparison of
representations and distance measures. PVLDB 1(2): 1542-1552 (2008)

[15] Rupesh Choubey, Li Chen, Elke A. Rundensteiner: GBI: A
Generalized R-Tree Bulk-Insertion Strategy. SSD 1999: 91-108

[16] An, N., Venkata, K. Kanth, R., Ravada, S. Improving Performance
with Bulk-Inserts in Oracle R-Trees. VLDB 2003: 948-951

[17] Lars Arge, Klaus Hinrichs, Jan Vahrenhold, Jeffrey Scott Vitter:
Efficient Bulk Operations on Dynamic R-Trees. Algorithmica
33(1):104-128 (2002)

[18] Jochen Van den Bercken, Bernhard Seeger: An Evaluation of Generic
Bulk Loading Techniques. VLDB 2001: 461-470

[19] Jochen Van den Bercken, Bernhard Seeger, Peter Widmayer: A
Generic Approach to Bulk Loading Multidimensional Index
Structures. VLDB 1997: 406-415

[20] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Subsequence Matching in Time-Series Databases. SIGMOD , 1994.

[21] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Locally
Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In SIGMOD Conference, 2001.

[22] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality Reduction for Fast Similarity Search in Large Time
Series Databases. Knowl. Inf. Syst., 3(3), 2001.

[23] E. J. Keogh, Smyth P. A Probabilistic Approach to Fast Pattern
Matching in Time Series Databases. KDD 1997: 24-30

[24] http://www.cs.ucr.edu/~eamonn/iSAX/iSAX.html
[25] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a

novel symbolic representation of time series. Data Min. Knowl.
Discov., 15(2), 2007.

[26] I. Popivanov and R. J. Miller. Similarity Search Over Time-Series
Data Using Wavelets. In ICDE, 2002.

[27] Eljas Soisalon-Soininen, Peter Widmayer: Single and Bulk Updates
in Stratified Trees: An Amortized and Worst-Case Analysis.
Computer Science in Perspective 2003: 278-292.

