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Abstract—There is an increasingly pressing need, by several 

applications in diverse domains, for developing techniques able 

to index and mine very large collections of time series. 

Examples of such applications come from astronomy, biology, 

the web, and other domains. It is not unusual for these 

applications to involve numbers of time series in the order of 

hundreds of millions to billions. However, all relevant 

techniques that have been proposed in the literature so far 

have not considered any data collections much larger than one-

million time series. In this paper, we describe iSAX 2.0, a data 

structure designed for indexing and mining truly massive 

collections of time series. We show that the main bottleneck in 

mining such massive datasets is the time taken to build the 

index, and we thus introduce a novel bulk loading mechanism, 

the first of this kind specifically tailored to a time series index. 

We show how our method allows mining on datasets that 

would otherwise be completely untenable, including the first 

published experiments to index one billion time series, and 

experiments in mining massive data from domains as diverse 

as entomology, DNA and web-scale image collections. 

Keywords-time series; data mining; representations; indexing 

I.  INTRODUCTION 

The problem of indexing and mining time series has 
captured the interest of the data mining and database 
community for almost two decades. However, there remains 
a huge gap between the scalability of the methods in the 
current literature, and the needs of practitioners in many 
domains. To illustrate this gap, consider the selection of 
quotes from unsolicited emails sent to the current authors, 
asking for help in indexing massive time series datasets.  

• “…we have about a million samples per minute coming in 
from 1000 gas turbines around the world… we need to be 
able to do similarity search for...” Lane Desborough, GE.  

• “…an archival rate of 3.6 billion points a day, how can 
we (do similarity search) in this data?” Josh Patterson, 
TVA. 

Our communication with such companies and research 
institutions has lead us to the perhaps surprising conclusion: 
For all attempts at large scale mining of time series, it is the 
time complexity of building the index that remains the most 
significant bottleneck: e.g., a state-of-the-art method [3] 
needs over 6 days to build an index with 100-million items.  

Additionally, there is a pressing need to reduce retrieval 
times, especially as such data is clearly doomed to be disk 
resident. Once a dimensionality-reduced representation (i.e 
DFT, DWT, SAX, etc.) has been decided on, the only way to 
improve retrieval times is by optimizing splitting algorithms 
for tree-based indexes  (i.e., R-trees, M-trees, etc.), since a 

poor splitting policy leads to excessive and useless 
subdivisions, which create unnecessarily deep sub-trees and 
causing lengthier traversals. 

In this work we solve both of these problems with 
significant extensions to the recently introduced multi-
resolution symbolic representation indexable Symbolic 
Aggregate approXimation (iSAX) [3]. As we will show with 
the largest (by far) set of time series indexing experiments 
ever attempted, we can reduce the index building time by 
72% with a novel bulk loading scheme, which is the first 
bulk loading algorithm for a time series index. Also, our new 
splitting policy reduces the size of the index by 27%. The 
number of disk page accesses is reduced by 50%, while more 
than 99.5% of those accesses are sequential.  

To push the limits of time series data mining, we 
consider experiments that index 1,000,000,000 (one billion) 
time series of length 256. To the best of our knowledge, this 
is the first time a paper in the literature has reached the one 
billion mark for similarity search on multimedia objects of 
any kind. On four occasions the best paper winners at 
SIGKDD/SIGMOD have looked at the problem of indexing 
time series, with the largest dataset considered by each paper 
being 500,000 objects [20], 100,000 objects [21], 6,480 
objects [1], and 27,000 objects [23]. Thus the 1,000,000,000 
objects considered here represent real progress, beyond the 
inevitable improvements in hardware performance. 

We further show that the scalability achieved by our 
ideas allows us to consider interesting data mining problems 
in entomology, biology, and the web, that would otherwise 
be untenable. The contributions we make in this paper can be 
summarized as follows. 

• We present mechanisms that allow iSAX 2.0, a data 
structure suitable for indexing and mining time series, to 
scale to very large datasets. 

• We introduce the first bulk loading algorithm, specifically 
designed to operate in the context of a time series index. 
The proposed algorithm can dramatically reduce the 
number of random disk page accesses (as well as the total 
number of disk accesses), thus reducing the time required 
to build the index by an order of magnitude. 

• We also propose a new node splitting algorithm, based on 
simple statistics that are accurate, yet efficient to compute. 
This algorithm leads to an average reduction in the size of 
the index by 27%. 

• We present the first approach that is experimentally 
validated to scale to data collections of time series with up 
to 1 billion objects. 

The rest of the paper is organized as follows. We review 
some background material in Section II. Section III 
introduces the basic pillars for our scalable index, iSAX 2.0. 



Section IV discusses the experimental evaluation. Section V 
presents the related work, and Section VI the conclusions. 

II. PRELIMINARIES 

As noted previously, there are numerous dimensionality 
reduction techniques available for time series. In this section, 
we review SAX, and its recent extension, iSAX, which are at 
the heart of our proposed ideas. (For a more detailed 
discussion, refer to [3].) 

A. The SAX Representation 

In Figure 1(i) we show a time series T of 
length n = 16. This time series can be 
represented in w-dimensional space by a 

vector of real numbers wccC ,,1 …= . The ith 

element of C is calculated by: 
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Figure 1(ii) shows T converted into this representation 
(called PAA [22]) reducing the dimensionality from 16 to 4. 

Note that the PAA coefficients are intrinsically real-
valued, and for reasons we will make clear later, it can be 
advantageous to have discrete coefficients. We can achieve 
this discreteness with SAX. The SAX representation takes 
the PAA representation as an input and discretizes it into a 
small alphabet of symbols with cardinality a. The 
discretization is achieved by creating a series of breakpoints 
running parallel to the x-axis and labeling each region with a 
discrete label. Any PAA segment that falls in that region can 
then be mapped to the appropriate label. 

Figure 1. i) A time series T, of length 16. ii) A PAA approximation of T, 
with 4 segments.   A time series T converted into SAX words of cardinality 
4 (iii), and cardinality 2 (iv). 

The SAX representation supports arbitrary breakpoints, 
however it has been shown that an effective choice is a 
sorted list of numbers Βreakpoints = β1, …, βa-1 such that the 

area under a N(0,1) Gaussian curve from βi  to βi+1 = 1/a 
produces symbols with approximate equi-probability.   

A SAX word is simply a vector of discrete numbers. For 
example, the SAX word shown in Figure 1(iii) can be written 
as {3, 3, 1, 0} or in binary form as {11, 11, 01, 00}. We 
denote this word as T4, and assume that it is produced by the 
function SAX(T,4,4). The “T” is written in boldface to 
distinguish it from the raw data from which it was derived, 
and the superscript of “4” denotes the cardinality of the 
symbols. Under this notation the SAX word shown in Figure 
1(iv) can be written as SAX(T,4,2) = T2 = {1, 1, 0, 0}. Note 
that once we have T4 we can derive T2 by simply ignoring 

the trailing bits from each symbol within the SAX word. 
Naturally, this is a recursive property. If we converted T to 
SAX with a cardinality of 8, we have SAX(T,4,8) = T

8 =  
{110, 110, 011, 000}, from this we can convert to any lower 
resolution that differs by a power of two, by ignoring the 
correct number of bits. TABLE I makes this clearer.  

 
TABLE I. CONVERTING TO A REDUCED (BY HALF) CARDINALITY SAX 

WORD BY IGNORING TRAILING BITS. 

SAX(T,4,16) = T16 = {1100,1101,0110,0001} 
SAX(T,4,8)   = T8 =  {110  ,110  ,011   ,000} 
SAX(T,4,4)   = T4 =  {11    ,11    ,01     ,00} 
SAX(T,4,2)   = T2 =  {1      ,1      ,0       ,0} 

The ability to change cardinalities on the fly is 
exploitable by our splitting policies, as we will demonstrate 
in Section III.B.  

B. The iSAX Representation 

It is tedious to write out binary strings, so we can use 
integers to represent SAX symbols. For example: 

SAX(T,4,8)  = T8 =  {110  ,110  ,011   ,000} = {6,6,3,0} 
However, this can make the SAX word ambiguous. If we see 
just the SAX word {6,6,3,0} we cannot be sure what the 
cardinality is (although we know it is at least 7). We resolve 
this ambiguity by writing the cardinality as a superscript.  
From the above example: 

iSAX(T,4,8)  = T8 =  {68,68,38,08} 
One of the key properties of the iSAX representation is the 
ability to compare two iSAX words of different cardinalities. 
Suppose we have two time series, T and S, which have been 
converted into iSAX words: 

iSAX(T,4,8) = T8 = {110,110,011,000} = {68,68,38,08} 
iSAX(S,4,2) = S2  = {0    ,0    ,1    ,1    } = {02,02,12,12} 

We can find the lower bound between T and S, even though 
the iSAX words that represent them are of different 
cardinalities. The trick is to promote the lower cardinality 
representation into the cardinality of the larger before giving 
it to the MINDIST function.  We can think of the tentatively 
promoted S

2 word as S
8 = {0**1,0**2,1**3,1**4}, then the 

question is simply what are correct values of the missing **i 
bits.  Note that both cardinalities can be expressed as the 
power of some integer, guaranteeing an overlap in the 
breakpoints used during SAX computation. Concretely, if we 
have an iSAX cardinality of X, and an iSAX cardinality of 
2X, then the breakpoints of the former are a proper subset of 
the latter. This is shown in Figure 1(iii) and Figure 1(iv). 

Using this insight, we can obtain the missing bit values in 
S

8 by examining each position and computing the bit values 
at the higher cardinality which are enclosed by the known 
bits at the current (lower) cardinality and returning the one 
which is closest in SAX space to the corresponding value in 
T

8. This method obtains the S
8 representation usable for 

MINDIST calculations:  S8 = {011,011,100,100}. 
Note that this may not be the same iSAX word we would 

have gotten if we had converted the original time series S. 
We cannot undo a lossy compression. However, using this 
iSAX word does give us an admissible lower bound. 

Finally, note that in addition to comparing between iSAX 
words of different cardinalities, the promotion trick 
described above can be used to compare iSAX words where 
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each word has mixed cardinalities (such as {111, 11, 101, 0} 
= {78,34,58,02}).  

iSAX support for mixed cardinalities is a feature which 
allows an index structure to split along any arbitrary 
dimension or symbol. It is this flexibility which allows iSAX 
to be indexable (as opposed to classic SAX). As we 
demonstrate in the follow sections, we can exploit this 
property to create a novel splitting policy that allows for 
extremely efficient indexing of massive datasets. 

C. Indexing iSAX 

iSAX’s variable granularity allows us to index time 
series. Using the iSAX representation, and by defining 
values for the cardinality b and wordlength w, we can 
produce a set of bw different mutually exclusive iSAX words. 
These can be represented by files on disk, for example the 
word {68,68,38,08} can be mapped to  6.8_6.8_3.8_0.8.txt   

A user defined threshold th defines the maximum number 
of time series that a file can hold.  

Imagine that we are in the process of building an index, 
and have chosen th = 100. At some point there may be 
exactly 100 time series mapped to the iSAX word 
{24,34,34,24}. If we come across another time series that 
maps in the same place, we have an overflow, so we need to 
split the file. The idea is to choose one iSAX symbol, 
examine an additional bit, and use its value to create two new 
files. In this case, the original file: {24,34,34,24} splits into 
{48,34,34,24} (child file 1), and {58,34,34,24} (child file 2). For 
some time series in the file, the extra bit in their first iSAX 
symbol was a 1, and for others it was a 0. In the former case, 
they are remapped to child 1, while in the latter, to child 2.  

The use of the iSAX representation has led to the 
creation of a hierarchical, but unbalanced, index structure 
that contains non-overlapping regions, and has a controlled 
fan-out rate. The three classes of nodes found in this index 
structure are described below. 

Root Node: The root node is representative of the 
complete iSAX space and is similar in functionality to an 
internal node. The root node contains no SAX 
representation, but only pointers to the children nodes. 

Leaf Node: This is a leaf level node, which contains a 
pointer to an index file on disk with the raw time series 
entries. The node itself stores the highest cardinality iSAX 
word for each time series.  

Internal Node: An internal node designates a split in 
iSAX space, and is created when the number of time series 
contained by a leaf node exceeds th. The internal node splits 
the iSAX space by promotion of cardinal values along one or 
more dimensions as per the iterative doubling policy. iSAX 
employs binary splits along a single dimension, using round 
robin to determine the split dimension. Thus, internal nodes 
store a SAX representation and pointers to their two children. 

III. THE ISAX 2.0 INDEX 

As discussed earlier, iSAX is a tree structure that is not 
balanced. In addition, there is no special provision for 
mechanisms that can facilitate the ingestion of large 
collections of time series into the index. Through our initial 
experimentation, we observed that these characteristics can 

lead to prohibitively long index creation times. For example, 
indexing a dataset with 500 million time series would need 
20 days to complete. Even a modest dataset with 100 million 
time series requires 2 days in order to be indexed (detailed 
results are presented in Section IV). 

Clearly, having to wait for such an extended amount of 
time before analysis and mining is impractical. This becomes 
even more pronounced in applications where large numbers 
of time series are produced on a regular basis, and need to be 
analyzed before proceeding with additional experiments. 

Note that the above criticism of iSAX refers mainly to 
index construction, and not the utility of the index. Previous 
work has demonstrated the effectiveness and efficiency of 
iSAX for performing various data analysis and mining tasks 
[3]. The performance of iSAX on these tasks scales sub-
linearly as a function of the number of time series indexed.  
During index creation, the primary bottleneck is hard drive 
performance and the associated I/O costs. As the amount of 
indexed data increases, this bottleneck becomes a hard 
constraint which limits the overall scalability of the index. 

In order to overcome the above problems, we propose the 
following two complementary techniques to improve the 
scalability of iSAX.  

• A new algorithm for time series bulk loading that 
considerably reduces the number of total disk page 
accesses, while also minimizing the number of random 
disk page accesses.  

• A new splitting policy for the internal nodes of the index, 
resulting in a significantly more compact indexing 
structure, hence, further reducing the I/O cost. 

In the following sections, we discuss in more detail these 
extensions of the iSAX index structure that enable it to 
efficiently operate with data collections orders of magnitude 
larger than previously tested. We will refer to this improved 
iSAX index as iSAX 2.0. 

A. Bulk Loading 

Inserting a large collection of time series into the index 
iteratively is a very expensive operation, involving a high 
number of disk I/O operations. This is because for each time 
series, we have to store the raw data on disk, and insert into 
the index the corresponding iSAX representation. Assuming 
that the entire index is in main memory, the above procedure 
translates to one random disk access for every time series in 
the dataset in the best case (when there is no leaf node split), 
or more random accesses otherwise. 

We now describe an algorithm for bulk loading, which 
can effectively reduce the number of disk I/O operations. 
The main idea of the algorithm is that instead of developing 
the entire index at once, we are focusing our efforts on 
building the distinct subtrees of the index one at a time. This 
is beneficial, because by growing a specific subtree of the 
index, we are effectively minimizing the number of node 
split operations and streamlining all the disk accesses. Using 
the proposed algorithm, we can achieve the following. 

• Minimize the required disk I/O, since we avoid revisiting 
leaf nodes in order to split them (which would mean extra 
disk accesses to read their contents from disk, and then 
writing back the contents of the new leaf nodes). At the 



same time, we make sure that every time we access the 
disk for writing the contents of a leaf node, we write on 
disk all of its contents at once. 

• Maximize the number of sequential disk page accesses, in 
the case where the contents of a leaf node do not fit in a 
single disk page. 

We note that the algorithm we propose is novel since the 
existing approaches on bulk loading are not applicable in our 
case (we discuss this in detail in Section V). 

1) Algorithm Basics 
In order to achieve the goals mentioned above, we need 

to effectively group the time series that will end up in a 
particular subtree of the index, and process them all together. 
If we could fit all time series in main memory, then it would 
be possible to create such groups after processing all time 
series. We could subsequently build each distinct subtree of 
the index sequentially, creating all necessary leaf nodes one 
after the other, without needing to revisit any of the leaf 
nodes already created.  

In our case however, we have to develop a solution under 
the (realistic) assumption that the entire dataset does not fit 
in main memory. In the following paragraphs, we discuss the 
details of the bulk loading algorithm we propose, which 
operates under the assumption of limited main memory (i.e., 
less than necessary to fit the index and the entire dataset). 
The pseudocode of the algorithm is depicted in Figure 3. 

Our algorithm uses two main memory buffer layers, 
namely First Buffer Layer (FBL), and Leaf Buffer Layer 
(LBL). The FBL corresponds to the first level of iSAX 2.0 
nodes. This correspondence remains stable throughout the 
creation of the index, because unlike nodes in other indexing 
structures, iSAX 2.0 nodes are not subject to shifts in the 
course of repetitive insertions (since changes in the leaf 
nodes due to splits are not propagated upwards the iSAX 2.0 
tree). The LBL corresponds to leaf nodes. There are no 
buffers related to the internal (i.e., other than the first level) 
iSAX 2.0 nodes. 

These two buffering layers are different in nature. The 
role of the buffers in FBL is to cluster together time series 
that will end up in the same iSAX 2.0 subtree, rooted in one 
of the direct children of the root. The buffers in FBL do not 
have a restriction in their size, and they grow till they occupy 
all the available main memory. In contrast, the buffers in 
LBL are used to gather all the time series of leaf nodes, and 
flush them to disk. These buffers have the same size as the 
size of the leaf nodes (on disk), which in general is more 
than a single disk page. 

2) Description of the Algorithm 
The algorithm operates in two phases, which alternate 

until the entire dataset is processed (i.e., indexed).  
Phase 1: The algorithm reads time series and inserts 

them in the corresponding buffer in FBL (lines 4-16 in 
Figure 3). This phase continues until the main memory is 
almost full. (We need a small amount of extra memory to 
allocate new nodes during Phase 2. Yet, this is only needed 
for the beginning of the first iteration of the loop at lines 12-
16, since each iteration releases memory.)  

At the end of Phase 1, we have time series collected in 
the FBL buffers. This situation is depicted in Figure 2(left). 

Note that even though we have created some FBL buffers 
(according to the time series processed so far), the 
corresponding (leaf) nodes L1, L2, and L3, of the index are 
not yet created. 

R

insert new ts

FBL

L1 L2 L3

main memory

disk

R

L1 L2

I1

FBL

LBL
L4L3

main memory

disk

Phase 1 Phase 2

Figure 2. The bulk loading algorithm. left) Phase 1 fills the FBL buffers 
with time series until main memory is full. right) Phase 2, processing 
subtree rooted at node I1 (subtrees rooted at nodes L1 and L2 have already 
been flushed to disk). 

Phase 2: The algorithm proceeds by moving the time 
series contained in each FBL buffer to the appropriate LBL 
buffers. During this phase, the algorithm processes the 
buffers in FBL sequentially. For each FBL buffer, the 
algorithm reads the time series and creates all the necessary 
internal (lines 25-33) and leaf (lines 36-39) iSAX 2.0 nodes 
in order to index these time series. It basically creates the 
entire subtree (or any missing nodes in case a subtree has 
already been constructed) rooted at the node corresponding 
to that FBL buffer. For example, in Figure 2(right), by 
emptying the right-most FBL buffer, we create the subtree 
rooted at internal node I1. The algorithm also creates for 
each leaf node a corresponding LBL buffer (line 38). When 
all time series of a specific FBL buffer have been moved 
down to the corresponding LBL buffers, the algorithm 
flushes these LBL buffers to disk (line 15). Notice that in 
Figure 2(right), the LBL buffers for the subtrees rooted at 
nodes L1 and L2 have already been flushed to disk, and all 
the available memory can be dedicated to the LBL buffers of 
the I1 subtree.  

At the end of Phase 2 of the algorithm, all the time series 
from the FBL buffers have moved down the tree to the 
appropriate leaf nodes (creating new ones if necessary) and 
LBL buffers, and then from the LBL buffers to the disk. This 
means that all buffers (both FBL and LBL) are empty, and 
we are ready to continue processing the dataset, going back 
to Phase 1 of the algorithm. This process continues until the 
entire dataset has been indexed.  

Note that the way the algorithm works, all LBL buffers 
are flushed to disk at the end of Phase 2. An interesting 
question is whether we would gain in performance by not 
flushing the buffers that are almost empty (thus, saving disk 
accesses that do little actual work). This strategy would 
certainly be beneficial for the first time around. It turns out 
however, that overall it would not lead to better performance. 
This is because it would reduce the available main memory 
for the FBL buffers (by reserving memory for the LBL 



buffers not flushed to disk), and consequently, result to 
processing less time series during the subsequent Phase 1. 
We experimentally validated this argument, and in the 
interest of space do not report detailed results on this 
variation of the algorithm.  

B. Node Splitting Policy 

It is evident that the size of an indexing structure affects 
index creation time: a more compact structure translates to a 
smaller number of disk accesses.  

Unlike other indexing structures, the iSAX index is not 
balanced. This was a design decision that led to a simple 
node splitting policy that does not take into account the data 
contained in the node to be split. In some cases, splitting a 
node may still result in all the time series ending up in one of 
the two new nodes, thus, necessitating an additional split. 
This design decision may lead to a poor utilization of the leaf 
nodes, and results in a larger and deeper index structure. 

We propose a node splitting policy that makes informed 
decisions based on knowledge of the distribution of the data 
stored in each node. The intuition behind this algorithm is 
the following. When splitting a node, we wish to distribute 
the time series in this node equally to the two new nodes. In 
order to do this exactly, we would have to examine all 
segments, and for each segment all possible cardinalities. 
This approach though, would be prohibitively expensive. 
Our algorithm is instead examining for each segment the 
distributions of the highest cardinality symbols across the 
relevant time series. Then, it splits the node on the segment 
for which the distribution of the symbols indicates there is a 
high probability to divide the time series into the two new 
nodes, therefore avoiding the problem of useless node splits. 
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FBL[]       // array of FBL buffers 
LBL[]       // array of LBL buffers 
Function Bulk_Insert()  
while ( more time series to index )  
     ts_new = next time series to be indexed 
     iSAX_word = iSAX representation of  ts_new  
     if  ( main memory still available ) 
           if  ( no FBL buffer contains iSAX_word) 
                    create new FBL buffer corresponding to iSAX_word 
           add ts_new to FBL[] 
    else   if ( main memory is full ) 
           for each buf in FBL[] 
                  for each ts in buf 
                        call function Insert(ts) 
                  flush LBL buffers created during insertion (corresponding to buf) 
                  remove from memory those LBL buffers 
----------------------------------------------------------------------------------- 
Function Insert(ts_new) 
         iSAX_word = iSAX representation of  ts_new 
         if (subtree corresponding to iSAX_word exists ) 
                  // current node has a child node to receive ts_new 
                  n = destination node of ts_new   // route ts_new down the tree 
                  if ( n is leaf node ) 
                          if ( n not full )                    //  node does not need to be split 
                                  add ts_new into LBL[n]     // buffer corresponding to n 
                          else // node n needs to be split 
                                 for each ts in n              
                                        // read all time series of n (from disk) 
                                        add ts to LBL[n]     
                                  n_new = new internal node 
                                  for each ts in LBL[n] 
                                         n_new.Insert( ts) 
                                  n_new.Insert(ts_new) 
                                  remove n   // all time series moved under n_new 
                  else if ( n is internal node ) 
                         n.Insert(ts_new) 
         else  // current node does not have a child node to receive ts_new 
                 n_new_leaf = new leaf node 
                 create new LBL buffer corresponding to n_new_leaf 
                 add ts_new to this new LBL buffer 

Figure 3. Pseudocode for the bulk loading algorithm. 

Consider the example depicted in Figure 4, where we 
assume an iSAX word of length (i.e., number of segments) 
four, and we would like to split a node whose cardinality is 2 
(for all segments). For each segment, we compute the μ ± 3σ 
range of the corresponding symbols. We observe that this 
range for segment 1 lies entirely below the lowest breakpoint 
of cardinality 4 (i.e., the cardinality of the two new nodes 
after the split). Only the ranges of segments 2 and 3 cross 
some breakpoint of cardinality 4. Between these two, the 
algorithm will pick to split on segment 3, because its μ value 
lies closer to a breakpoint than that of segment 2. This is an 
indication that with high probability some of the time series 
in the node to be split will end up in the new node 
representing the area above the breakpoint, while the rest 
will move to the second new node, thus, achieving a 
balanced split.  

The pseudocode for the node splitting algorithm is shown 
in Figure 5 (called every time we have to create new internal 
node: lines 29 and 37 in Figure 3). The algorithm starts by 
computing for each segment the first two moments (mean μ 
and standard deviation σ) of the distribution of symbols over 
all the time series in the node to be split (lines 2-3). Note that 
this computation does not incur additional cost. Remember 
that the highest detail iSAX approximation of each time 
series is already stored along with the time series themselves, 
and we need to read those in order to materialize the node 
split.  

Subsequently, the algorithm has to choose one of the 
segments for splitting the node. For each segment, the 
algorithm examines whether the range generated by μ ± 3σ 
crosses any of the iSAX breakpoints of the immediately 
higher cardinality (lines 6-10). Among the segments for 
which this is true, the algorithm picks the one whose μ value 
lies closer to a breakpoint (lines 9-10). 
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Figure 4. Node splitting policy example. 
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11

Function Split() 
mean[ ] = ComputeSymbolMean()     // using highest iSAX representation - 
stdev[ ] = ComputeSymbolStDev()    // already computed during insertions 
segmentToSplit = none 
for each segment s in the iSAX word 
       b = getBreakPoint( s )  // breakpoint of s with increased cardinality 
       if ( b within mean[ s ] ± 3stdev[ s ] ) 
            // segment s is candidate for splitting 
            if  ( mean[ s ] closer to b than  segmentToSplit ) 
                  segmentToSplit = s 
segmentToSplit.IncreaseCardinality() 

Figure 5. Pseudocode for the node splitting algorithm. 

IV. EXPERIMENTAL EVALUATION 

We have designed all experiments such that they are 
reproducible. To this end, we have built a webpage which 



contains all datasets and code used in this work, together 
with spreadsheets that contain the raw numbers displayed in 
all the figures [24]. 

Experimental evaluation was conducted on an Intel Xeon 
E5504 with 24GB of main memory, 2TB Seagate Barracuda 
LP hard disk, running Windows Vista Business SP2. All 
code is in C#/.NET 3.5 Framework. For the case study in 
Section IV.B, we used an AMD Athlon 64 X2 5600+ with 
3GB of memory, 400 GB Seagate Barracuda 7200.10 hard 
disk, and running Windows XP SP2 (with /3GB switch). 

Our experiments are divided into three sections: A) tests 
that measure the classic metrics of disk accesses, wall clock 
time, index size, sensitivity to parameters, etc. B) a detailed 
case study of a deployed use of our system in an important 
entomology problem, C) examples of higher level data 
mining algorithms built using our index as a subroutine.  

The algorithms that we evaluate are iSAX 2.0, and the 
original iSAX, where all the available main memory is used 
for disk buffer management (i.e., buffers corresponding to 
the leaf level nodes). We also compare to iSAX-BufferTree, 
which is an adaptation of the Buffered R-Tree bulk loading 
algorithm [17]. In this case, instead of having buffers only at 
the first and leaf levels, we also have some buffers at 
intermediate levels of the index tree. These buffers are of 
equal size, which depends on the size of the index (i.e., the 
buffer size decreases as the index grows). An important 
distinction of iSAX 2.0 is that it is the only bulk loading 
strategy of the three specifically designed for a non-balanced 
index tree. It adaptively resizes (FBL) and positions (LBL) 
its memory buffers according to the needs of the incoming 
time series. The experiments demonstrate that this choice 
leads to significant savings in terms of disk page accesses. 

We do not additionally compare our ideas to other time 
series indices. This would normally be an untenable position 
for a paper, but we note the following three points. 

First, the largest time series dataset indexed by a rival 
technique is one million objects [2]. In contrast, in this work 
we consider a dataset which is one thousand times larger. 
Even our “small” datasets are two orders of magnitude 
larger. No papers that we are aware of claim to scale to the 
truly massive datasets we wish to consider, and forcing them 
to do so may misrepresent their contributions (in indexing 
moderate sized datasets). 

Second, most of the previous comparisons of indexing 
methods for time series simply reduce to claims about the 
relative merits of a time series representation method, i.e., 
DWT vs.  DFT methods. However there is an increasing 
understanding that this is a red-herring. It has been forcedly 
shown that averaged over many datasets, the time series 
representation makes very little difference [14]. 

Finally, a unique property of iSAX is its tiny bit-aware 
index size. This means that an iSAX index is very small 
compared to the data it indexes, and thus we can fit the entire 
index in main memory even for the massive datasets we wish 
to consider. In order to compare to other methods, we have 
to consider the case of what to do when the index itself is 
mostly disk-resident, and in virtually every case the original 
authors provide no guidance. For completeness, we show 
that using the iSAX representation, we obtain the same 

benefit as other methods (in terms of tightness of lower 
bounds), at a fraction of the space cost.  

We can measure the tightness of the lower bounds, which 
is defined as the lower bounding distance over the true 
distance. Figure 6 shows this for random walk time series of 
length 256, with eight PAA/DWT coefficients, eight DFT 
coefficients (using the complex conjugate property), eight 
Chebyshev polynomials coefficients, and a SAX 
representation also of length eight. We varied the cardinality 
of SAX from 2 to 256, whereas the other methods use a 
constant 8 bytes per coefficient, and thus have a constant 
value for tightness of lower bounds in this experiment. We 
averaged results over 1,000 random pairs of time series. The 
results suggest that there is little reason to choose between 
PAA/DWT/DFT/CHEB, as has been noted elsewhere [14]. 
They also show that once the cardinality of iSAX is greater 
than 50, it is competitive with the other methods, even 
though it requires only one eighth the space (one byte per 
coefficient vs. eight bytes per coefficient for 
PAA/DWT/DFT/CHEB). 

Figure 6. A comparison of the tightness of lower bound for various time 
series representations. All approaches except SAX use a constant 8 bytes, 
and therefore have a constant tightness of lower bound. The results for 
SAX show the effect of varying the cardinality from 2 to 256 (and hence 
the number of bits from 2 to 8). 

In summary, this work is only apparently tackling a 
problem that has been worked on before. In fact, indexing a 
billion time series is effectively a new problem, considered 
here for the first time.  

A. Scalability of iSAX 2.0 

In this section, we present experimental results on the 
scalability of iSAX 2.0. In particular, we evaluate the effect 
of the proposed node splitting and bulk loading algorithms 
on the time to build and the size of the index. 

1) Splitting Policy Evaluation 
We ran experiments in order to evaluate the new splitting 

policy implemented in iSAX 2.0. In these experiments, we 
compare our results against those obtained by the use of the 
iSAX splitting policy. We generated datasets of sizes 1-100 
million time series, where each time series has length of 256, 
generated as follows. In order to generate the series, we use a 
standard normal distribution N(0,1), where each point in the 
time series is generated as xi+1=N(xi,1). We report the 
averages over these 10 runs (their variance was 5% or less 
for all our experiments).  

Even if the datasets used in this section are smaller than 
the other used in this paper, the results follow the same 
trends. We note that we obtain similar results to the ones 
presented below when instead of varying the number of time 
series, we vary the threshold th. We omit these results for 
brevity. (All experiments in this section were run using the 
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proposed bulk loading algorithm, as well. Though, this fact 
does not affect the interpretation of the results.) 

Index Size: In the first set of experiments, we measure 
the total size of the index (in number of nodes), after having 
indexed the entire dataset. Figure 7(right) shows that there is 
a quadratic dependency between the number of nodes in the 
index and the number of time series indexed. 

The results show that the new splitting policy 
implemented in iSAX 2.0 can effectively reduce the number 
of nodes required by the index. On average, iSAX 2.0 needs 
34% less nodes than the iSAX index. These results validate 
our premise that using the first moments of the distributions 
of the iSAX symbols is a simple, yet, effective mechanism 
for identifying suitable split segments. 

The results also demonstrate the significant impact that 
the leaf node capacity has on the index. Evidently, when this 
capacity is decreased, the index needs to grow many more 
internal and leaf nodes in order to accommodate the time 
series to be indexed.   

Index Build Time: In the next set of experiments, we 
measure the time needed to build the index as a function of 
the number of time series (Figure 7(left)). We observe that 
the curves in the graph follow the same trends as before, with 
the time to build the index increasing quadratically. 

This result is not surprising, since the build time is 
strongly correlated to the number of nodes of the index. 
Once again we observe the benefit of the proposed node 
splitting algorithm, which leads to an average reduction of 
30% in the index built time. Therefore, maintaining a small 
index size is highly desirable.  

Leaf Node Utilization: We now investigate the average 
utilization (or occupancy) of the leaf nodes. A bad splitting 
policy that does not take into account information on the data 
contained in the nodes to be split can generate unbalanced 
splits, leading to low usage of the leaf nodes and to long 
insertion times. Remember that having many leaf nodes with 
low utilization translates to the need for an increased number 
of leaf nodes (in order to accommodate the same number of 
time series), and consequently, for an increased number of 
disk page accesses. 

The graph of Figure 7(right) shows that the new splitting 
algorithm results in leaf nodes with an average of 54% more 
occupancy than the old splitting algorithm, underlining the 
effectiveness of the proposed policy. The experiments also 
show that there is no variability in the leaf node utilization as 
we vary the number of time series in the index.  
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Figure 7. Splitting policy comparison between iSAX (old) and iSAX 2.0 
(new) when varying the size of the dataset: construction time (left), number 
of nodes and leaf node occupancy (right). 

2) Bulk Loading Evaluation 
In order to test the proposed approach, we index a set of 

datasets with sizes from 100 million to 1 billion time series 

composed by random walks of length 256. Each data point in 
the time series is produced as xi+1=N(xi,1), where N(0,1) is a 
standard normal distribution. We use a leaf node threshold 
th=8000 and wordlength w=8. We compare the obtained 
results with the performance of the iSAX index. 

Index Build Time: The first experiment shows the time 
needed to build the index for the two different methods (see 
Figure 8(top)). The results demonstrate the scalability of 
iSAX 2.0 as the dataset size increases, with a trend that is 
almost linear. In contrast, the time to build the iSAX index 
grows much faster, and very quickly becomes prohibitively 
expensive. It took 12, and 20 days to index the datasets of 
size 400, and 500 million time series, respectively. At that 
point though, we were forced to discontinue the experiments 
with iSAX. We estimated that it would take around 56 days 
to index 1 billion time series. The iSAX-BufferTree 
algorithm initially performs better than iSAX, but its 
performance deteriorates as the size of the dataset increases.  

The problem with the above two strategies is that they 
cannot effectively concentrate the available memory 
resources in the areas of the index that are most needed. 
Instead, they allocate memory in a more balanced way across 
the index, which does not result in the best performance 
since in our case the index is not a balanced tree. 

Using the proposed bulk loading algorithm, iSAX 2.0 
manages to index a dataset with 100 million time series in 
just 16 hours. The 1 billion time series dataset is indexed in 
less than 400 hours (about 16 days), which corresponds to an 
indexing time of 1ms/time series.  

Disk Page Accesses: In Figure 8(middle), we show the 
number of disk page accesses performed by the three 
indexing methods during the same experiments.  
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The graph shows that when using the bulk loading 
algorithm, we need to access the disk only half the times as 
before. This is already a significant improvement in the 
performance of the algorithm. Though, if we take a closer 
look at the experimental results, we make another very 
interesting observation (refer to Figure 8(bottom)). More 
than 99.5% of the disk page accesses that iSAX 2.0 has to 
perform are sequential accesses, which means that random 
accesses are consistently two orders of magnitude less than 
the number of sequential accesses. In contrast, most of the 
disk accesses that the iSAX and iSAX-BufferTree strategies 
perform are much more expensive random accesses (since 
they involve the flushing of buffers corresponding to 
different nodes of the index), leading to an index build time 
that is an order of magnitude larger than that of iSAX 2.0. 

These results show that the bulk loading algorithm is 
extremely effective in reducing the I/O cost, thus, enabling 
iSAX 2.0 to index 1,000,000,000 time series. 

B. A Case Study in Entomology 

Many insects such as aphids, thrips and leafhoppers feed 
on plants by puncturing their membranes and sucking up the 
contents. This behavior can spread disease from plant to 
plant causing discoloration, deformities, and reduced 
marketability of the crop. It is difficult to overstate the 
damage these insects can do. For example, just one of the 
many hundreds of species of Cicadellidae (Commonly 
known as Sharpshooters or Leafhoppers), Homalodisca 
coagulate first appeared in California around 1993, and has 
since done several billions of dollars of damage and now 
threatens California’s $34 billion dollar grape industry [5]. 

In order to understand and ultimately control these 
harmful behaviors, entomologists glue a thin wire to the 
insect’s back, and then measure fluctuations in voltage level 
to create an Electrical Penetration Graph (EPG). Figure 
9(top) shows the basic setup. 

This simple apparatus has allowed entomologists to make 
significant progress on the problem. As USDA scientist Dr. 
Elaine Backus recently noted, “Much of what is known today 
about hemipteran feeding biology .. has been learned via use 
of EPG technology” [6].  However, in spite of the current 
successes, there is a bottleneck in progress due to the huge 
volumes of data produced. For example, a single experiment 
can last up to 24 hours. At 100 Hz that will produce a time 
series with approximately eight-million data points. 
Entomologists frequently need to search massive archives for 
known patterns to confirm/refute hypotheses. For example, a 
recent paper asks if the chemical thiamethoxam causes a 
reduction in xylem1 feeding behavior by a Bird Cherry-Oat 
Aphid (Rhopalosiphum padi). The obvious way to test such a 
hypothesis is to collect EPG data of both a treatment group 
and a control group and search for occurrences of the (well 
known) xylem feeding pattern.  

Recently, the Entomology Dept. at UC Riverside asked 
us to create an efficient tool for mining massive EPG 

                                                           
1 Xylem is plant sap responsible for the transport of water 
and soluble mineral nutrients from the roots throughout the 
plant. 

collections [7]. We have used the techniques introduced in 
this work as a beta version of such a tool, which will 
eventually be made freely available to the entomological 
community.  Let us consider a typical scenario in which the 
tool may be used. In Figure 9(bottom) we see a copy of Fig. 
2 from [4]. This time series shows a behavior observed in a 
Western Flower Thrip (Frankliniella occidentalis), an insect 
which is a vector for more than 20 plant diseases. The Beet 
Leafhopper (Circulifer tenellus) is not particularly closely 
related to thrips, but it also feeds on plants by puncturing 
their membranes and sucking sap. Does the Beet Leafhopper 
exhibit similar behavior?  

Figure 9. top) A schematic diagram showing an EPG apparatus used to 
record insect behavior. bottom) An EPG insect behavior derived from 
subset of Fig. 2 from [4]. An idealized version of the observed behavior 
created by us is shown with a bold blue line. 

To answer this question we indexed 20,005,622 
subsequences of length 176 from the Beet Leafhopper EPG 
data, which had been collected in 60 individual experiments 
conducted from 2007 to 2009. We used a th size of 2000 and 
w of 8 to construct an index on our AMD machine. Even 
with fewer resources, it took only 6.25 hours to build the 
index, which occupied a total of 26.6 gigabyte on disk space. 
As shown in Figure 9(bottom), we used the simple idealized 
version as a query to our database. Figure 10(left) shows the 
result of an approximate search, which takes less than 0.5 
seconds to answer.  

Figure 10. Query time series, and its approximate nearest neighbor. 

This result suggests that although the insect species is 
different (recall we queried a Thrip behavior on Beet 
Leafhopper database) the behaviors are similar, differing 
only in the insertion of stylet behavior. As a sanity check we 
also queried the database with an idealized version of a Beet 
Leafhopper behavior, the so-called “Waveform A”, in this 
case, Figure 10(right) shows that the match is much closer. 

C. Mining Massive DNA Sequences 

The DNA of the Rhesus Macaque (Macaca mulatta) 
genome consists of nearly 3 billion base pairs (approximately 
550,000 pages of text if written out in the format of this 
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paper), beginning with TAACCCTAACCCTAA… We 
converted this sequence into a time series using the simple 
algorithm shown in TABLE II. 

TABLE II. AN ALGORITHM FOR CONVERTING DNA TO TIME SERIES. 

T1 = 0; 
For i = 1 to length(DNAstring) 
       If  DNAstringi = A, then Ti+1 = Ti + 2 
       If  DNAstringi = G, then Ti+1 = Ti + 1 
       If  DNAstringi = C, then Ti+1 = Ti - 1 
       If  DNAstringi = T, then Ti+1 = Ti - 2 
End 

Figure 11(left) shows an example of the time series 
created from the DNA of monkey chromosome 3, together 
with the human chromosome 21. Note that they are not 
globally similar, but a subsection of each is locally similar if 
we flip the direction of one sequence. This figure suggests 
what is already known: the most recent common ancestor of 
the macaque and humans lived only about 25 million years 
ago, so we expect their DNA to be relatively similar. 
However, since humans have 23 chromosomes and the 
monkey has only 21, the mapping of chromosomes cannot be 
one-to-one; some chromosomes must be mapped in a jigsaw 
fashion. But what is the mapping?  

Figure 11. left) An example of DNA converted into time series. right) The 
cells represent potential mappings between the Macaque and Human 
Genomes. The darker the cell, the more often the nearest neighbor of a time 
series taken from a particular human chromosome had a nearest neighbor 
from a particular Macaque chromosome. *Quote from An initial genetic 

linkage map of the rhesus macaque. Rogers et al.
2
. 

To answer this question, we indexed the entire time 
series corresponding to the macaque DNA (non-sex related). 
We used a subsequence length of 16,000, down-sampled by 
a factor of 25 to mitigate “noise”. We then used a sliding 
window with a step size of 5 to extract a total of 21,612,319 
subsequences. To index, we used a th size of 1000 and w of 
10. In total, it took 9 hours to build the index. 

We obtained queries from the human genome in the same 
manner and queried with both the original and transposed 
versions. For each human chromosome, we issued an 
average of 674 approximate searches (recall that 
chromosomes have differing lengths) and recorded the ten 
nearest neighbors. In Figure 11(right) we summarize where 
the top ten neighbors are found, by creating a grid and 
coloring the cell with an appropriate shade of gray. For 
example, a pure white cell at location {i,j} means that no 
query from human chromosomei mapped to monkey 
chromosomej and a pure black cell at location {i,j} means 
that all ten queries from human chromosomei mapped to 

                                                           
2  The smallest chromosomes including the sex 
chromosomes are omitted 

monkey chromosomej. This figure has some unambiguously 
dark cells, telling us for example that Human 2 is 
homologous (“equivalent”) to Macaque 3. In addition, in 
some cases the cells in the figure suggest that two human 
chromosomes may match to a single Macaque chromosome. 
For example, in the column corresponding to Macaque 7, the 
two darkest cells are rows 14 and 15. The first paper to 
publish a genetic linkage map of the two primates tells us 
“macaque7 is homologous to human14 and human15” [12]. 
More generally, this correspondence matrix is at least 95% in 
agreement with the current agreement on homology between 
these two primates [12]. This experiment demonstrates that 
we can easily index tens of millions of subsequences in less 
than a day, answer 13,480 queries in 2.5 hours, and produce 
objectively correct results.  

D. Mining Massive Image Collections 

While there are hundreds of possible distance measures 
proposed for images, a recent paper has shown that simple 
Euclidean distance between color histograms is very 
effective if the training dataset is very large [8]. More 
generally, there is an increasing understanding that having 
lots of data without a model can often beat smaller datasets, 
even if they are accompanied by a sophisticated model 
[9][10]. Indeed, Peter Norvig, Google’s research director, 
recently noted that “All models are wrong, and increasingly 
you can succeed without them”. The ideas introduced in this 
work offer us a chance to test this theory.  

We indexed the color histograms of the famous MIT 
collection of 80 million low-resolution images [8]. As shown 
in Figure 12, these color histograms can be considered 
pseudo “time series”. At indexing time we omitted very 
simple images (e.g. those that are comprised of only one or 
two colors, etc.). In total, our index contains the color 
histograms of 69,161,598 images. 

We made color histograms of length 256, and used a th 
size of 2000 and w of 8. It took 12.3 hours to build the index, 
which is inconsequential compared to the nine months of 
twenty-four hours a day crawling it took to collect it [8]. The 
data occupies a total of 133 gigabytes of disk space. The 
latter figure only includes the space for the time series, the 
images themselves required an extra of 227 gigabytes. 

Figure 12. left) A detail of The Son of Man by René Magritte, which we 
used as a query to our index, finding “Match 1”. right) A detail of The 
Scream by Edvard Munch, which we used as a query that returned “Match 
2”. The insets show the similarity of the images in RGB histogram space. 

Does this random sampling of the webs images contain 
examples of iconic art images? To test this, we found 
examples of two famous images using Google image search 
and converted the image to color histograms of length 256. 
We then used these to search our collection with an 
approximate search. Each search took less than a second, and 
the results can be seen in Figure 12.  Note that we are not 
claiming that Euclidean distance between color histograms is 
the best measure for image similarity. This experiment 
simply demonstrates the scalability and generality of our 
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ideas, as a side effect of demonstrating the unreasonable 
effectiveness of (massive amounts of) data [9]. 

V. RELATED WORK 

The literature on time series indexing is vast; see 
[14][2][3] and the references therein for useful surveys and 
empirical comparisons. There are at least a dozen well-
known methods for approximation (i.e. dimensionality 
reduction) of time series data, including  Discrete Fourier 
Transformation [20], Singular Value Decomposition (SVD), 
Discrete Cosine Transformation, Discrete Wavelet 
Transformation [26], Piecewise Aggregate Approximation 
[22], Adaptive Piecewise Constant Approximation [21], 
Chebyshev polynomials [1]. However, recent extensive 
empirical evaluations suggest that on average, there is little 
to differentiate between these representations in terms of 
fidelity of approximation, and thus indexing power [14].  

The approximation we use in this work is intrinsically 
different from the techniques listed above in that it is discrete 
[25], rather than real-valued. This discreteness is 
advantageous in that the average byte used by discrete 
representations carries much more information than its real 
valued counterparts. This allows our index to have a much 
smaller memory footprint, and it allows us to explore novel, 
simple and effective splitting strategies that exploit the 
discrete nature of the representation. 

The problem of bulk loading has been studied in the 
context of traditional database indices, such as B-trees and 
R-trees and other multi-dimensional index structures 
[15][16][17][18][19][27]. For these structures two main 
approaches have been proposed. First, we have the merge-
based techniques [15] that preprocess data into clusters. For 
each cluster, they proceed with the creation of a small tree 
that is finally merged into the overall index. It is not clear 
how such techniques could be applied in our problem setting, 
since clustering datasets of such scale could incur a cost 
higher than indexing. Second, there are the buffering-based 
techniques [17][18][27] that use main memory buffers to 
group and route similar time series together down the tree, 
performing the insertion in a lazy manner. These techniques 
are not directly applicable in our setting, since they have 
been designed to improve the bulk loading performance of 
balanced index structures (as shown in our experiments for 
an adaptation of [17]). Another interesting technique would 
be the two step approach of the Path-Based method [18]. But 
this one is not applicable either, because it requires the 
existence of a balanced index tree in order to produce correct 
results. 

Finally, we note that no previous work has explicitly 
studied the problem of bulk loading in the context of an 
index for time series data. 

VI. CONCLUSIONS 

We describe iSAX 2.0, an index structure specifically 
designed for ultra-large collections of time series, and 
propose new mechanisms and algorithms for efficient bulk 
loading and node splitting. We experimentally validate the 
proposed algorithms, including the first published 
experiments to consider datasets of size up to one billion 

time series, showing that we can deliver a significant 
improvement in the time required to build the index. 
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