
ISCS - A TOOL KIT FOR CONSTRUCTING

KNOWLEDGE-BASED SYSTEM CONFIGURATORS

Harry Wu, Hon Wai Chun, Alejandro Mimo

Honeywell Information Systems
300 Concord Rd., MS895A

Billerica, MA 01821.
617-671-3663

I. INTRODUCTION

System configuration is the process by which a
formalized description of a computer system and its

interconnected components is produced based on an initial

user account of the individual components. In recent
years, expert system technology has been applied
successfully to the construction of automatic system
configurators such as Rl/XCON (McDermott, 1982),

OCEAN (Szolovits, 1985), ISC (Wu, 1985), and SYSCON

(Rolston, 1985). Progress has been made in understanding

the process of configuration and in identifying the

general representational and functional requirements of

these systems. This paper describes an intelligent system

configuration shell (ISCS) which is specially designed as a

tool-kit to assist knowledge engineers in the construction

and maintenance of system configurators. The power of
the tool kit is derived from AI and software engineering

techniques, leveraging on the accumulated knowledge on

configuration.

In recent years, many major advances in

knowledge-based or expert system technology have been

made (Hayes-Roth, 1983). In particular, certain features
of knowledge representations (e.g. frame, rule, demon,

etc.) and inference mechanisms (e.g. agenda, forward and

backward chaining, etc.) have become the building blocks

of many commercially available tools (shells) for

developing knowledge-based systems (Richer, 1985).

These commercial AI tools provide excellent development

environments for experienced AI programmers but not

domain experts; they are general purpose in nature but

not problem oriented. The goal of our project is to adapt
the existing INTERLISP-D and LOOPS (a multi-paradigm

language -- Bobrow, 1981) environment on the XEROX

1108 workstation into one which is specially tailored for

the configuration problem. By specialization to a
particular problem domain, we created a shell which is

much more convenient to use and provides better
integration of the various concepts and control
mechanisms required for this problem domain.

While the basic theories are interesting on their

own and fundamental to AI, it is often the programming

aspects that make the AI tools attractive to the

practitioners. Some people even argued that a significant

part of the applicability of AI derives not from the AI

techniques per se but from the underlying software

technology (Sheil, 1983). Therefore in addition to
knowledge engineering techniques, the ISCS shell also

contains several additional software features which

facilitate the process of constructing system configurators.

The ISCS system has three main objectives: (1) to

provide an integrated representational framework for the

various knowledge sources relevant to the configuration

problem, (2) to assist a knowledge engineer in the

development and administration of the knowledge base,

and (3) to aid a knowledge engineer in the construction of

a system configurator. A prototype of the system is
implemented in INTERLISP-D and LOOPS on a XEROX

1108. The shell is being used to construct configuration

expert systems at Honeywell.

In the following sections, we describe how

knowledge acquisition is eased through the use of a

configuration language which is specially designed to

represent the various knowledge sources for
configuration, how knowledge encoding and modification

may be aided by the knowledge engineer assistant module

and how the development of user interface may be aided

by a generic user interface generator. Implementation

details are also given in the discussion.

II. CONFIGURATION

The task of configuration is one which selects and

organizes objects into some system so that, functioning as

a whole, it produces certain desired system behavior. In

this paper, we restrict the task to computer system
configuration; that is, we are only interested in selecting

and organizing devices and components to form a
computer system. A configuration task may choose to
address only software components, only hardware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

KNOWLEDGE REPRESENTATION / 10 15

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

components, or both; we describe them as software

configuration, hardware configuration, and integrated

system configuration respectively.

Configuration activities are traditionally carried

out by different organizations within a computer

company for different purposes. For instance, sales

representatives “configure” computer systems to fit the

needs of customers while field engineers “configure”

computer systems to fit physical installation requirements.

Rl (McDermott, 1982) was developed before XSEL

(McDermott, 1982) and thus are sometimes viewed as

separate systems. In reality, the two activities

complement each other. The difficulty of one activity

may be reduced if knowledge relevant in the other
activity can be made available; usually the sales

representatives and field engineers maintain contact with

each other in order to consummate an order. The design

of ISCS is such that it may be used to construct a sales

configurator, an engineer configurator, or one which

encompasses both activities.

In order to come up with a shell for the system
configuration problem domain, one must first identify the

tasks and knowledge common to system configuration

problems in general and then decide how they might be

represented conveniently. This problem is first studied by

McDermott in his seminal paper (McDermott, 1982) where

he demonstrated that this can be solved by a rule-based

system using only forward chaining. In a later system,

OCEAN (Szolovits, 1985), the developers used a richer

environment involving hybrid representations. Our

approach is similar to that of OCEAN. While a
knowledge-based configurator system can be implemented

by forward rules alone, we feel that by using a richer
environment and representation, knowledge encoding is

made conceptually closer to actual expert knowledge and

hence easier to construct. In particular, maintenance of a

knowledge base is made simpler by having modular

sources of configuration knowledge.

One may view the configuration process as
consisting of a data entry and value validation phase, a

completion phase, and an assignment phase. The process

usually starts with the specification of the components to

be included in the target system and site-specific
information. A configuration expert sorts through the

mass of data to validate the values and to see if the

information is complete. If components are missing, they

are added to the system. Finally, the expert attempts to

build a viable configuration which satisfies the site-

specific requirements. The output from the configuration
is a highly detailed and formalized document recording

the spatial, or functional layout of the components. The
configuration task is usually tedious and error-prone due

to the large amount of information involved. Moreover,

the information changes with time because old
components and systems become obsolete while new ones

are introduced. The task is also complicated by the fact

that the initial specification is seldom accurate or

complete many iterations of the configuration process

actually take place between the time a sales proposal is

first initiated till the system is delivered and installed.

Several sources of knowledge are required in the

system configuration process: knowledge about the
individual components, knowledge about the inter-

relationships among components and between components

and systems, knowledge about the configuration
procedures, and knowledge about the format of the output

description. In ISCS, separate knowledge representations
are used to capture these knowledge sources. Although
some of these ideas have been studied and advocated

elsewhere (Hayes-Roth, 1983), our goal is to illustrate how

they may be packaged and utilized in the domain of

system configuration. In this section, we provide a brief
conceptual overview of three of the more interesting

knowledge sources - the component model, the constraint

demons, and the configuration knowledge. Details on each

knowledge source are provided in the next section.

Information about components and system types

are described by the component model which defines the

attributes and options of the components and systems.

The component model constitutes a taxonomic hierarchy

of class and sub-classes and a part-of hierarchy to depict

the relationship between parts and sub-parts. Properties

may be inherited along the descendant path within a

hierarchy.

Constraints and dependencies may arise when

different types of components are assembled together into

a system. Constraint demons are provided to capture this
type of dependency knowledge. Constraint demons have

two basic constituents: descriptive predicates and sets of

imperative actions. The predicates define the constraints

and the context under which the demons should be

triggered, while the actions indicate the activities (usually

remedial corrections) to follow.

The configuration knowledge consists of a

hierarchy of procedural knowledge involved in

configuration. At the bottom level are operations where
each operation acts on a set of objects of the same

component type. For example, an operation may be
selecting an object from a set, or modifying every object

in a set. At the next level are tasks which are composed

of sequences of operations (hence tasks may act on objects

of different component types). For instance, a task may

act first on an aggregate and then its sub-parts by a

sequence of operations along a “part-of” path. Above the

tasks are plans which decide which tasks to execute.

III. ISCS

Although there are a large variety of tools and

knowledge representations embedded in ISCS, integration

and coherence are achieved by relying on a object-

oriented programming paradigm. A similar strategy has
been adopted in another tool-kit (Lafue, 1985). Figure 1

provides a schematic diagram of ISCS. In the middle of

the figure are the modules of the shell consisting of a

knowledge engineer assistant module, a control and

inference module, an user interface generator, and a site

database manager. The knowledge engineer assistant,

KEA, provides “structure-based” editors for the various
types of knowledge representations. It is the main vehicle

for knowledge entry and maintenance. The KEA also
interprets knowledge structures created through the ISCS

configuration language into the internal representations.

The control and inference module, CT, decides how a

configuration session proceeds by looking up site-specific

data from the data base and system-specific configuration

knowledge from the knowledge base. The user interface

generator, WSI, is a tool that allows a knowledge engineer

to create and customize an end-user interface. The
database manager handles the storage and retrieval of

site-specific data.

1016 / ENGINEERING

A. ISCS knowledge sources

This subsection presents the major knowledge

sources in ISCS. These knowledge sources correspond to

‘the various types of knowledge required in the

configuration task.

1. The Component Model

The component model captures information about

individual systems and components. Each type of system

or component is defined by a class, i.e. “prototype record”,

which contains variables, i.e. “attributes” , related to that

object type. Instances, i.e. “objects”, of the same class will

have identical record structure. Two kinds of

relationships may be specified between classes.

The taxonomic hierarchv: In ISCS, this class-

subclass hierarchy permits the knowledge engineer to

define paths for class inheritance. For example, in figure

2, the “7301” class is a subclass of “synchronous terminal”

class which in turn is a subclass of “ terminal” class. All

properties, such as standard 1200 baud rate, about a

terminal will also be inherited by a 7301 terminal unless

indicated otherwise.

The part-of hierarchv: Variables of a class may

possess the “contain-parts” property which is a list of class

names. Instances of classes in the list are considered sub-

parts. For instance, the example in figure 2 illustrates

that terminals of type 7301, 7303, or 7305 may be hung on

a synchronous communication line. The “part-of” and

“contain-parts” are inverse relationships; as soon as one

direction is defined, the other direction will be

automatically added. The variable name in the other

direction is given by adding a suffix “-INV” to the

variable name. The value for either the part-of or

contain-parts relation is always a list to indicate an one-

to-many relationship. Values may be inherited along the

part-of hierarchy as well. In the example of figure 2, the

channel number of a 7301 terminal is obtained from the

synchronous communication line it is attached to. Unlike

the taxonomic case where inheritance is at the class level,

the part-of inheritance is at the instance level; values are

automatically copied when two objects are linked together

by an “AddTo” operation; e.g. (AddTo <an instance of

SynchronousCommunicationLine> ‘TerminalAttached <an

instance of T7303>).

(CLASS Terminal

. . . (BaudRate 1200) . . . 1

(CLASS SynchronousTerminal

. . . (Super Terminal) . . .)

(CLASS T7301

(Super SynchronousTerminal)

(TerminalAttached-INV NIL

Part-Of

(SynchronousCommunicationLine))

(ChannelNumber

(Inherit TerminalAttached-INV)) . . .)

(CLASS SynchronousCommunicationLine
. . .

(TerminalAttached NIL

Contain-Parts (T7301 T7305 T7307))

(ChannelNumber NIL) . . .)

Figure 2. Example of taxonomic and part-of hierarchy.

2. The Constraint Demons

Constraint demons are the means by which a

knowledge engineer may specify restricted conditions and

remedial corrections if these conditions are violated. A

constraint demon has three properties: scope, predicate,

User

User Interface

r-7
E7

/ v Conflguration Output Knowledge Engineer

Site Data

nowledge Base

Figure 1. Schematic diagram of ISCS and its environment.

KNOWLEDGE REPRESENTATION / 10 17

and action. Currently ISCS support two types of demons

which are “triggered” under different circumstances. For

a value demon, the corresponding predicate is tested at the

time when a value is being stored into an instance

variable of an object. For a class demon the

corresponding predicate is tested every time a new

instance from the (immediate) class is created. If the

predicate evaluates to false then the actions are executed.

The scope property of a demon indicates whether it is a

value or class demon. The action property contains a list

of actions that may be performed if the predicate is not

satisfied. The conditional portion of the action

specification allows a knowledge engineer to select

appropriate actions by context. When a demons’s

predicate is found to be false, each action is then carried

out sequentially. The variable “Predicate” is bound to the

result of the evaluation of the demon’s predicate and is

made available to all the actions. Constraint propagation

may be explicitly turn on or off for each demon action.

The first demon in figure 3 validates baud rates.

The demon will check values that are to be stored into

either a 7307 or 7309 terminal. The legitimate values are

1200, 4800, and 9600. There are two actions in the

example. One of them will be executed during input

phase when a user enters data into the system

interactively, the other will be executed during the

completion phase when the system automatically complete
all necessary information. The second demon makes sure

that there are enough synchronous communication lines

for 7307 terminals given the fact that at most five 7307’s

can be hung from one line. If not enough lines are there,

then a new one is added. In this case, constraint

propagation is turned on because there might be other

demons monitoring the creation of synchronous

communication lines.

(DEMON CheckBaudRate

(* 7307 & 7309 baud rates)

(Scope Value (T7307 BaudRate)

(T7309 BaudRate))

(Predicate (MEMBER (0 BaudRate)

(1200 4800 9600)))

(Actions (IF InputPhase THEN

(<-a BaudRate NIL)

(PROMPTPRINT <message>))

(IF CompletionPhase THEN

(<-a BaudRate 1200))))

(DEMON LineForTerminalExists?

(* max. of five 7307 terminals per syn comm line)

(Scope Class (T7307))

(Predicate (LESS (NumberOf

SynchronousCommunicationLine)

(/ (NumberOf T7307) 5)))

(Actions (IF InputPhase THEN

(PROMPTPRINT <message>))

(IF CompletionPhase THEN

(DemonPropagation ‘On)

(CreateInstance

‘SynchronousCommunicationLine))))

Figure 3. Example of constraint demons

3. The configuration procedural knowledge

ISCS provides a mean to decompose the procedural

aspects of configuration into more manageable units.
These units are organized in a hierarchy of three layers:

Operation: An operation applies the same
procedure to all the objects of the same class; e.g. send the

same message to every objects of the same class. In

addition, there is a preconditional predicate which is

evaluated before an object is operated on. If the

predicate fails then that particular object is skipped. The

number of objects that are to be tested and worked on

depends on the “Repeat” attribute (see figure 4). There

are two automatically generated variables associated with

each operation. After the execution of an operation,

these two variables will contain respectively the objects

that have been worked on or not. Figure 4 shows an

operation which iterates through all 7307 terminals and

assign each one to a communication line. In the example

the variable “self” is bound to a different object during

each iteration. After the operation, the variables,

“T7307.AssignTerminalToCommLine.Done”

and “T7307.AssignTerminalToCommLine.NotDone” ,

will contain respectively the terminals that have been

attached and those that are still loose.

(OPERATION AssignTerminalToCommLine

(’ attach each 7307 terminal to a comm line)

(Class T7307)

(Predicate T)

(Repeat UntilExhausted)

(Code (AddTo(GetAnInstance SynchronousCommunicationLine)

‘TerminalAtt ached self))))

(HIERARCHICAL-TASK Documentation

(* Output each comm line and its terminals)

(Root SynchronousCommunicationLine)

(Paths (SynchronousCommunicationLine

TerminalAttached))

(Code ((Class SynchronousCommunicationLine)

(IF <predicate> THEN (Document))

((Class T7307)

(IF T THEN (Document)))))

(ITERATIVE-TASK PutCardsOnBoards

(* assign all cards to boards)

(Type ALLI

(Predicate (AND (NULL Type-1-Card.NotDone)

(NULL Type-2-Card.NOtDone)))

(Epilog (IF (OR Type-1-Card.NotDone

Type-2-Card.NOtDone)

THEN (Createinstance Board)))

(Variables (NewBoard))

(Rules

(Rl:(SETQ NewBoard(Operation Board GetABoard)))

(Ra:(Operation Type-l-Card AllocateSlot NewBoard))

(RS:(Operation Type-a-Card AllocateSlot NewBoard))))

(OPERATION GetABoard

(* always returns the first board still in the “ NotDone” list)

(Class Board)

(Predicate T)

(Repeat 1)

(Code (Return self)))

(OPERATION AllocateSlot

(* Assign as many cards to a board as possible)

(Class Type-a-Card)

(Repeat UntilExhausted)

(Predicate (Type-l-Card-Fit? NewBoard))

(Code (Decrement-slot NewBoard)

(Fix-Slot self NewBoard)))

(PLAN Card-type-l-Or-Card-type-2

(* interchange r2 and r3 in task PutCardsOnBoards)

(Rules (MyRule: (If <predicate> THEN

(XChange PutCardsOnBoards R2: R3:)))))

Figure 4. Example of configuration knowledge

Task- A A task enables a knowledge engineer to

perform “aggregate” work by invoking individual

operations. It is especially useful when operations, acting

on different classes of objects, achieve jointly a common

objective. There are two types of tasks: hierarchical and

iterative.

1018 / ENGINEERING

A hierarchical task is used to traverse a “part-of”
hierarchy and work on each object in this hierarchy. An

iterative task is used to carry out a sequence of

operations repeatedly. The second example, in figure 4, is
a hierarchical task which traverses the communication

lines and the terminals attached to each line in pre-order;

i.e. visit a communication line and then all its terminals

before visiting the next communication line. As shown in

the example, a hierarchical task is similar to an operation

except for the number of classes involved and for the
order in which the objects are fetched. “Pruning”, i.e. the

decision whether to follow a branch, is decided by the IF

conditions. If an object fails its own predicate test then
none of its descendants will be tested.

An iterative task is similar to a LOOPS ruleset in
concept in that rules are partitioned according to the

objects that they affect. An iterative task is composed of
a list of IF-THEN rules and operations. There are two
mode of iteration which dictates whether all rules are

executed or only one rule is executed during each pass of

the iteration. A knowledge engineer supplies a condition

for terminating the loop; the default is to stop the task

when all the rules and operations have failed. The rules

and operations in an iterative task are scanned by their

sequential ordering in the task. An optional piece of
code, “Epilog” may be executed after each iteration before

the start of the next. This Epilog can look at the “trace”

of the previous iteration and make corrections and

preparations for the next pass. Each iterative task only
looks at certain classes of objects. For each operation,

there are two values to indicate the objects that have been

worked on and those that have not. These two values are

not reset after an iteration (unless explicitly stated in the

EPILOG); in fact when an operations appears in an

iterative task, it will only look at the objects that have
not yet been worked on. If new objects are created,
within or without an iterative task, they are
automatically appended to the appropriate lists so that the

operations can work on them in a subsequent iteration.

Figure 4 contains an example where cards are being

assigned into slots on a board. If there are not enough
boards to fit all type-l and type-2 cards then a new one is

added. The procedure repeats until all cards have been
assigned to boards. Note that the Epilog checks to see if

more boards are needed and creates one on demand so as

to ensure some progress in the following iteration.

Plan: Plans decide which tasks are be executed as

well as manipulate the tasks themselves. Each rule in a
task is treated as a named object and thus can be

manipulated. Plans can remove, replace, or relocate rules
within a task. This is useful in cases where the relative

locations of the rules are important. In Figure 4, a plan
may interchange the two rules in task “PutCardsOn-

Boards” so to assign card-type-2 before card-type-l. Note
that a plan is composed of rules with unique names, so a

plan may be modified by another plan, i.e. meta-plan.

B. Knowledge Engineer Assistant

The “Knowledge Engineer Assistant” (KEA) is a

module within ISCS which provides the development

environment for a knowledge engineer. KEA supplies

three major features: “structure-based editors” to guide the

knowledge engineer in constructing the knowledge base,

“development tools” to facilitate the knowledge encoding
and maintenance, and an “ interpreter” to translate the

ISCS knowledge sources into internal representation. The

main purpose for KEA is to make available to a

knowledge engineer enough tools and built-in mechanisms

so as to reduce the total time and effort needed in

creating a configuration knowledge base. KEA is built

upon the DEDIT facility in the Xerox Lisp machines

which is itself a “structure-based editor” for the
INTERLISP-D and LOOPS environment. KEA commands

are conveniently built into the DEDIT menu system. The

KEA operations are tightly integrated within the DEDIT

framework.

1. Structure-based Editors

One of the main focuses of ISCS is to provide an

appropriate set of knowledge representations or structures

to reflect conceptually the different sources of

configuration knowledge found in experts. By providing

the knowledge engineer with a more natural and

convenient means of encoding expert knowledge, the

process of knowledge acquisition is made easier. These

knowledge structures are expressed using the ISCS

configuration language. Each knowledge structure has its
own syntax, internal structure and control mechanism.

The “structure-based editors” guide the knowledge
engineer by providing syntax templates for the various

knowledge structures. Syntax and semantics are checked

before it is entered into the knowledge base; preventing

errors in the knowledge base at the earliest possible onset.

For example, the KEA will immediately create a

new variable or class for a knowledge engineer, if a value

demon is entered when the variable or class that it affects

is not yet defined. A knowledge engineer is not allowed

to exit form the KEA editors until all necessary

information has been furnished. A future improvement
would be for KEA to automatically keep track of all such

“loose” pieces and prompts the knowledge engineer to

complete the knowledge at appropriate times.

2. Development Tools

The “development tools” provide an integrated set

of knowledge access facilities which allows the knowledge

engineer to inspect the current status of the knowledge

base, to list the library functions appropriate for the

current context, as well as to integrate new knowledge

structures. For example, just by simply marking a

variable of a class and selecting appropriate “development

tool” menu item, the system can list all the current

constraint demons attached to this slot, or all other classes

which also include this variable in their definition.

Each new piece of expert knowledge might have to

be integrated with existing knowledge structures already

in the knowledge base. This integration is made easy and

error-free through the use of access functions and

automatic encoding. For example, browsers may be used

to display the relationships among pieces of knowledge,

e.g. the “part-of” relationship.

There are also knowledge source dependent tools
which reduce the amount of encoding required by the

knowledge engineer. For example, in the “part-of”
hierarchy, when a contain-parts pointer is set from an

object to sub-part objects, the inverse pointer is

automatically added into the parent object structure.

KNOWLEDGE REPRESENTATION / 1019

3. Interpreter

The “interpreter” translates knowledge sources

developed using the ISCS configuration language into

internal representations. The internal representation

consists of INTERLISP-D and LOOPS structures. The

main unifying mechanism is the object-oriented

programming paradigm in LOOPS. In particular, we use

the active value feature of LOOPS to implement the value

demons, and the “New” method of a metaclass to

implement class demons.

C. The User Interface Generator

The ISCS system provides a user interface

generating facility called WSI (Mimo, 1986). The facility

assists knowledge engineers in the development of user

interfaces. Our design is based on an analysis of the

environment that a human expert would work in.

Consider the case of the sales or field representative who

is configuring a computer system for a customer. The
volume of data that one must manage is plentiful. After

gathering the information, the representative stores the

data on a collection of business data forms. The data

entry process itself is intermittently spread out across

many interactive sessions. The purchase order is usually

reworked many times before it is finally sealed. When

one builds a knowledge-based system for such a type of

users, one must design the system so as to fit the user’s

working habit. The WSI facility attempts to simulate the

field representatives’ working behavior by providing data

sheets for them to enter data and a file cabinet metaphor

for storage and organization of data sheets. A knowledge

engineer may develop customized data sheets and cabinets

with the aid of the WSI facility.

the WSI mixins as supers in the class definitions of the

components and systems, may immediately obtain a user

interface with standard behavior. Customization may be

obtained by adding special properties to instance variables

in class definitions. WSI, by examining these properties

of an object, determines whether a particular variable

should be displayed or not in the corresponding data

sheet, whether it is modifiable or read-only, whether

menus are attached to the variable, what menu

(dynamically or statically created) to show, etc. WSI is

non-obtrusive because the properties that it relies on are

separated from those used in the actual computational

tasks. On the other hand, it is possible for a knowledge

engineer to indicate to WSI to examine properties

involved in computations so as to minimize redundant and

inconsistent information between the user interface and

the computation tasks.

The WSI facility is integrated into the ISCS

programming environment through the inheritance and

specialization techniques of object-oriented programming.

A knowledge engineer may gradually enhance and refine

the user interface by the addition of more and more

properties to each instance variable in a class definition

through a period of time. This incremental approach is

very important in projects like knowledge-based systems

where the initial phase of the project is focused mainly

on knowledge acquisition and leaves little time for the

user interface. By linking to the WSI facility via the

“superclass” specification, a standard user interface is

immediately obtained. Starting on day one, a knowledge

engineer may use the WSI facility for demonstration and

testing. As the knowledge base grows and is validated, a

knowledge engineer can then pay attention to interface

issues. Through the single concept of data sheets and

object-oriented programming, a consistent user interface is

achieved across the development cycle of a knowledge-

based system. Figure 5 shows the interface of a system

configurator that utilizes the WSI facility.

IV. SUMMARY

The WSI facility is based on a single integrating

concept, the data sheet. A data sheet is a business data

entry form in concept and a screen image of an internal

object in operation. Both end users and knowledge

engineers perceive a WSI-derived user interface as one

that provides capability for the organization and

manipulation of data sheets. Through this integrating

idea consistent user interface behavior is achieved. A

data sheet may be filed in a folder which is stored in a

drawer that, in turn, is contained in a cabinet.

A data sheet in the WSI facility is a scrollable

window which displays the attribute names and values, of

an object. The data sheet window is mouse-sensitive and

both the attribute names and values may be selected by a

mouse device. The behavior of the WSI facility may

depend on the button pressed, the attribute selected, and

the context of the system configurator at the time of the

mouse selection. For instance, a user interface may be
designed such that when a user “clicks” at the attribute

name “Memory Size” in a “Site Information data sheet” ,
menus with different items will appear depending on the

model number of the site system. This feature is useful
because different models of computers have different

memory configurations.

The WSI facility supplies generic mechanisms to

support the mapping between internal objects and

external screen data sheets, operations on the data sheets,

and storage and retrieval of data sheets. All the generic
mechanisms are implemented by methods in “mixins”.

Moreover each mechanism has a full set of default

behaviors. A knowledge engineer, by simply including

We have described a tool kit, ISCS, for constructing

knowledge-based system configurators. ISCS is designed

to assist a knowledge engineer in the encoding and

maintenance of configuration knowledge, and to facilitate

user interface development. The various knowledge

representations and system modules are integrated through

an object-oriented foundation.

The design and implementation of ISCS is

leveraged upon our past experience in the development of

knowledge-based system configurator (Wu, 1985). Many

of the features in ISCS have been hand-coded into a

configurator that we have developed recently. ISCS is the

outcome of a post-mortem analysis of the former

configurator. It is still under improvement and will

eventually be used as a standard development vehicle by

Honeywell knowledge engineers.

As ISCS is deployed, new requirements and

functionality will emerge and incorporated into the

system. At present, we have identified two areas that we

will study after our current project. The knowledge

engineer assistant is currently a “passive” module; a

knowledge engineer must decide which knowledge

representation to use and then invoke the appropriate

editor or tool. We intend to add a “user dialog” feature

1020 / ENGINEERING

which will assist and guide a knowledge engineer in the

selection of knowledge representation through an

interactive sessions. The other area that we will enhance

is in the provision of a facility that enables knowledge

engineers to design form layouts; at the moment a WSI

data sheet has only a very simple layout consisting of two

columns, one for name and one for value.

REFERENCES

Bobrow D.G. and Stefik M., “ The Loops Manual” , Tech. Rep. KB-

VLSI-81-13, Knowledge system area, XEROX Palo Alto Research Center, 1981.

Chun H.W., “ The ISCS Knowledge Engineer Assistant” , Honeywell

SCOS/AST Technical Report, AST8603, 1986.

Hayes-Roth F., Waterman D., and Lenat D., “ Building Expert

Systems” , Addison-Wesley, Reading, MA, 1983.

Lafue G. and Smith R., “A Modular Tool Kit For Knowledge

Management” , IJCAI, 1985.

McDermott J., “Rl: A Rule-Based Configurer of Computer Systems” ,

Artificial Intelligence 19, 1982.

McDermott J., “ XSEL: A Computer Sales Person’s Assistant” ,

Machine Intelligence, 10, 1982.

Mimo A., Chun H.W., and Wu H., “WSI - A Facility for Organizing

and Manipulating Data Sheets” , Honeywell SCOS/AST Technical Report,

AST8601, 1986.

Mimo A., “WSI: A Guide to its Implementation and Use” , Honeywell

SCOS/AST Technical Report, AST8602, 1986.

Richer M., “ Evaluating the Existing Tools for Developing Knowledge-

Based Systems” , Standford Knowledge Systems Laboratory, Report KSL85-19,

Standford University, 1985.

Rolston D., “An Expert System for DPS 90 Configuration” , 9th

Annual Honeywell International Computer Sciences Conference, 1985.

Sheil B., “ The Artificial Intelligence Tool Box” , Proceedings of the

NYU symposium on Artificial Intelligence and Business, edited by Reitman W.,

ABLEX publishing Corp., 1983.

Szolovits P. and Clancey W., “ Case Study: OCEAN” , Tutorial 8,

IJCAI, 1985.

Wu H., Virdhagriswaran S., Chun H.W., and Mimo A., “ ISC- An

Expert System for the Configuration of DPS-6 Software Systems” , 9th Annual

Honeywell International Computer Sciences Conference, 1985.

l+OhWWELL SYSTEM CONFIGWMTOFI

Figure 5. Sample session of a configurator system implemented on ISCS.

KNOWLEDGE REPRESENTATION / 102 1

