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I. INTRODUCTION 

System configuration is the process by which a 
formalized description of a computer system and its 

interconnected components is produced based on an initial 

user account of the individual components. In recent 
years, expert system technology has been applied 
successfully to the construction of automatic system 
configurators such as Rl/XCON (McDermott, 1982), 

OCEAN (Szolovits, 1985), ISC (Wu, 1985), and SYSCON 

(Rolston, 1985). Progress has been made in understanding 

the process of configuration and in identifying the 

general representational and functional requirements of 

these systems. This paper describes an intelligent system 

configuration shell (ISCS) which is specially designed as a 

tool-kit to assist knowledge engineers in the construction 

and maintenance of system configurators. The power of 
the tool kit is derived from AI and software engineering 

techniques, leveraging on the accumulated knowledge on 

configuration. 

In recent years, many major advances in 

knowledge-based or expert system technology have been 

made (Hayes-Roth, 1983). In particular, certain features 
of knowledge representations (e.g. frame, rule, demon, 

etc.) and inference mechanisms (e.g. agenda, forward and 

backward chaining, etc.) have become the building blocks 

of many commercially available tools (shells) for 

developing knowledge-based systems (Richer, 1985). 

These commercial AI tools provide excellent development 

environments for experienced AI programmers but not 

domain experts; they are general purpose in nature but 

not problem oriented. The goal of our project is to adapt 
the existing INTERLISP-D and LOOPS (a multi-paradigm 

language -- Bobrow, 1981) environment on the XEROX 

1108 workstation into one which is specially tailored for 

the configuration problem. By specialization to a 
particular problem domain, we created a shell which is 

much more convenient to use and provides better 
integration of the various concepts and control 
mechanisms required for this problem domain. 

While the basic theories are interesting on their 

own and fundamental to AI, it is often the programming 

aspects that make the AI tools attractive to the 

practitioners. Some people even argued that a significant 

part of the applicability of AI derives not from the AI 

techniques per se but from the underlying software 

technology (Sheil, 1983). Therefore in addition to 
knowledge engineering techniques, the ISCS shell also 

contains several additional software features which 

facilitate the process of constructing system configurators. 

The ISCS system has three main objectives: (1) to 

provide an integrated representational framework for the 

various knowledge sources relevant to the configuration 

problem, (2) to assist a knowledge engineer in the 

development and administration of the knowledge base, 

and (3) to aid a knowledge engineer in the construction of 

a system configurator. A prototype of the system is 
implemented in INTERLISP-D and LOOPS on a XEROX 

1108. The shell is being used to construct configuration 

expert systems at Honeywell. 

In the following sections, we describe how 

knowledge acquisition is eased through the use of a 

configuration language which is specially designed to 

represent the various knowledge sources for 
configuration, how knowledge encoding and modification 

may be aided by the knowledge engineer assistant module 

and how the development of user interface may be aided 

by a generic user interface generator. Implementation 

details are also given in the discussion. 

II. CONFIGURATION 

The task of configuration is one which selects and 

organizes objects into some system so that, functioning as 

a whole, it produces certain desired system behavior. In 

this paper, we restrict the task to computer system 
configuration; that is, we are only interested in selecting 

and organizing devices and components to form a 
computer system. A configuration task may choose to 
address only software components, only hardware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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components, or both; we describe them as software 

configuration, hardware configuration, and integrated 

system configuration respectively. 

Configuration activities are traditionally carried 

out by different organizations within a computer 

company for different purposes. For instance, sales 

representatives “configure” computer systems to fit the 

needs of customers while field engineers “configure” 

computer systems to fit physical installation requirements. 

Rl (McDermott, 1982) was developed before XSEL 

(McDermott, 1982) and thus are sometimes viewed as 

separate systems. In reality, the two activities 

complement each other. The difficulty of one activity 

may be reduced if knowledge relevant in the other 
activity can be made available; usually the sales 

representatives and field engineers maintain contact with 

each other in order to consummate an order. The design 

of ISCS is such that it may be used to construct a sales 

configurator, an engineer configurator, or one which 

encompasses both activities. 

In order to come up with a shell for the system 
configuration problem domain, one must first identify the 

tasks and knowledge common to system configuration 

problems in general and then decide how they might be 

represented conveniently. This problem is first studied by 

McDermott in his seminal paper (McDermott, 1982) where 

he demonstrated that this can be solved by a rule-based 

system using only forward chaining. In a later system, 

OCEAN (Szolovits, 1985), the developers used a richer 

environment involving hybrid representations. Our 

approach is similar to that of OCEAN. While a 
knowledge-based configurator system can be implemented 

by forward rules alone, we feel that by using a richer 
environment and representation, knowledge encoding is 

made conceptually closer to actual expert knowledge and 

hence easier to construct. In particular, maintenance of a 

knowledge base is made simpler by having modular 

sources of configuration knowledge. 

One may view the configuration process as 
consisting of a data entry and value validation phase, a 

completion phase, and an assignment phase. The process 

usually starts with the specification of the components to 

be included in the target system and site-specific 
information. A configuration expert sorts through the 

mass of data to validate the values and to see if the 

information is complete. If components are missing, they 

are added to the system. Finally, the expert attempts to 

build a viable configuration which satisfies the site- 

specific requirements. The output from the configuration 
is a highly detailed and formalized document recording 

the spatial, or functional layout of the components. The 
configuration task is usually tedious and error-prone due 

to the large amount of information involved. Moreover, 

the information changes with time because old 
components and systems become obsolete while new ones 

are introduced. The task is also complicated by the fact 

that the initial specification is seldom accurate or 

complete many iterations of the configuration process 

actually take place between the time a sales proposal is 

first initiated till the system is delivered and installed. 

Several sources of knowledge are required in the 

system configuration process: knowledge about the 
individual components, knowledge about the inter- 

relationships among components and between components 

and systems, knowledge about the configuration 
procedures, and knowledge about the format of the output 

description. In ISCS, separate knowledge representations 
are used to capture these knowledge sources. Although 
some of these ideas have been studied and advocated 

elsewhere (Hayes-Roth, 1983), our goal is to illustrate how 

they may be packaged and utilized in the domain of 

system configuration. In this section, we provide a brief 
conceptual overview of three of the more interesting 

knowledge sources - the component model, the constraint 

demons, and the configuration knowledge. Details on each 

knowledge source are provided in the next section. 

Information about components and system types 

are described by the component model which defines the 

attributes and options of the components and systems. 

The component model constitutes a taxonomic hierarchy 

of class and sub-classes and a part-of hierarchy to depict 

the relationship between parts and sub-parts. Properties 

may be inherited along the descendant path within a 

hierarchy. 

Constraints and dependencies may arise when 

different types of components are assembled together into 

a system. Constraint demons are provided to capture this 
type of dependency knowledge. Constraint demons have 

two basic constituents: descriptive predicates and sets of 

imperative actions. The predicates define the constraints 

and the context under which the demons should be 

triggered, while the actions indicate the activities (usually 

remedial corrections) to follow. 

The configuration knowledge consists of a 

hierarchy of procedural knowledge involved in 

configuration. At the bottom level are operations where 
each operation acts on a set of objects of the same 

component type. For example, an operation may be 
selecting an object from a set, or modifying every object 

in a set. At the next level are tasks which are composed 

of sequences of operations (hence tasks may act on objects 

of different component types). For instance, a task may 

act first on an aggregate and then its sub-parts by a 

sequence of operations along a “part-of” path. Above the 

tasks are plans which decide which tasks to execute. 

III. ISCS 

Although there are a large variety of tools and 

knowledge representations embedded in ISCS, integration 

and coherence are achieved by relying on a object- 

oriented programming paradigm. A similar strategy has 
been adopted in another tool-kit (Lafue, 1985). Figure 1 

provides a schematic diagram of ISCS. In the middle of 

the figure are the modules of the shell consisting of a 

knowledge engineer assistant module, a control and 

inference module, an user interface generator, and a site 

database manager. The knowledge engineer assistant, 

KEA, provides “structure-based”  editors for the various 
types of knowledge representations. It is the main vehicle 

for knowledge entry and maintenance. The KEA also 
interprets knowledge structures created through the ISCS 

configuration language into the internal representations. 

The control and inference module, CT, decides how a 

configuration session proceeds by looking up site-specific 

data from the data base and system-specific configuration 

knowledge from the knowledge base. The user interface 

generator, WSI, is a tool that allows a knowledge engineer 

to create and customize an end-user interface. The 
database manager handles the storage and retrieval of 

site-specific data. 
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A. ISCS knowledge sources 

This subsection presents the major knowledge 

sources in ISCS. These knowledge sources correspond to 

‘the various types of knowledge required in the 

configuration task. 

1. The Component Model 

The component model captures information about 

individual systems and components. Each type of system 

or component is defined by a class, i.e. “prototype record”, 

which contains variables, i.e. “attributes” , related to that 

object type. Instances, i.e. “objects”, of the same class will 

have identical record structure. Two kinds of 

relationships may be specified between classes. 

The taxonomic hierarchv: In ISCS, this class- 

subclass hierarchy permits the knowledge engineer to 

define paths for class inheritance. For example, in figure 

2, the “7301” class is a subclass of “synchronous terminal”  

class which in turn is a subclass of “ terminal”  class. All 

properties, such as standard 1200 baud rate, about a 

terminal will also be inherited by a 7301 terminal unless 

indicated otherwise. 

The part-of hierarchv: Variables of a class may 

possess the “contain-parts”  property which is a list of class 

names. Instances of classes in the list are considered sub- 

parts. For instance, the example in figure 2 illustrates 

that terminals of type 7301, 7303, or 7305 may be hung on 

a synchronous communication line. The “part-of” and 

“contain-parts”  are inverse relationships; as soon as one 

direction is defined, the other direction will be 

automatically added. The variable name in the other 

direction is given by adding a suffix “-INV” to the 

variable name. The value for either the part-of or 

contain-parts relation is always a list to indicate an one- 

to-many relationship. Values may be inherited along the 

part-of hierarchy as well. In the example of figure 2, the 

channel number of a 7301 terminal is obtained from the 

synchronous communication line it is attached to. Unlike 

the taxonomic case where inheritance is at the class level, 

the part-of inheritance is at the instance level; values are 

automatically copied when two objects are linked together 

by an “AddTo” operation; e.g. (AddTo <an instance of 

SynchronousCommunicationLine> ‘TerminalAttached <an 

instance of T7303>). 

(CLASS Terminal 

. . . (BaudRate 1200) . . . 1 

(CLASS SynchronousTerminal 

. . . (Super Terminal) . . . ) 

(CLASS T7301 

(Super SynchronousTerminal) 

(TerminalAttached-INV NIL 

Part-Of 

(SynchronousCommunicationLine)) 

(ChannelNumber 

(Inherit TerminalAttached-INV)) . . . ) 

(CLASS SynchronousCommunicationLine 
. . . 

(TerminalAttached NIL 

Contain-Parts (T7301 T7305 T7307)) 

(ChannelNumber NIL) . . . ) 

Figure 2. Example of taxonomic and part-of hierarchy. 

2. The Constraint Demons 

Constraint demons are the means by which a 

knowledge engineer may specify restricted conditions and 

remedial corrections if these conditions are violated. A 

constraint demon has three properties: scope, predicate, 

User 

User Interface 

r-7 
E7 

/ v Conflguration Output Knowledge Engineer 

Site Data 

nowledge Base 

Figure 1. Schematic diagram of ISCS and its environment. 
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and action. Currently ISCS support two types of demons 

which are “triggered” under different circumstances. For 

a value demon, the corresponding predicate is tested at the 

time when a value is being stored into an instance 

variable of an object. For a class demon the 

corresponding predicate is tested every time a new 

instance from the (immediate) class is created. If the 

predicate evaluates to false then the actions are executed. 

The scope property of a demon indicates whether it is a 

value or class demon. The action property contains a list 

of actions that may be performed if the predicate is not 

satisfied. The conditional portion of the action 

specification allows a knowledge engineer to select 

appropriate actions by context. When a demons’s 

predicate is found to be false, each action is then carried 

out sequentially. The variable “Predicate” is bound to the 

result of the evaluation of the demon’s predicate and is 

made available to all the actions. Constraint propagation 

may be explicitly turn on or off for each demon action. 

The first demon in figure 3 validates baud rates. 

The demon will check values that are to be stored into 

either a 7307 or 7309 terminal. The legitimate values are 

1200, 4800, and 9600. There are two actions in the 

example. One of them will be executed during input 

phase when a user enters data into the system 

interactively, the other will be executed during the 

completion phase when the system automatically complete 
all necessary information. The second demon makes sure 

that there are enough synchronous communication lines 

for 7307 terminals given the fact that at most five 7307’s 

can be hung from one line. If not enough lines are there, 

then a new one is added. In this case, constraint 

propagation is turned on because there might be other 

demons monitoring the creation of synchronous 

communication lines. 

(DEMON CheckBaudRate 

(* 7307 & 7309 baud rates) 

(Scope Value (T7307 BaudRate) 

(T7309 BaudRate)) 

(Predicate (MEMBER (0 BaudRate) 

(1200 4800 9600))) 

(Actions (IF InputPhase THEN 

(<-a BaudRate NIL) 

(PROMPTPRINT <message>)) 

(IF CompletionPhase THEN 

(<-a BaudRate 1200)) )) 

(DEMON LineForTerminalExists? 

(* max. of five 7307 terminals per syn comm line) 

(Scope Class (T7307)) 

(Predicate (LESS (NumberOf 

SynchronousCommunicationLine) 

(/ (NumberOf T7307) 5))) 

(Actions (IF InputPhase THEN 

(PROMPTPRINT <message>)) 

(IF CompletionPhase THEN 

(DemonPropagation ‘On) 

(CreateInstance 

‘SynchronousCommunicationLine)))) 

Figure 3. Example of constraint demons 

3. The configuration procedural knowledge 

ISCS provides a mean to decompose the procedural 

aspects of configuration into more manageable units. 
These units are organized in a hierarchy of three layers: 

Operation: An operation applies the same 
procedure to all the objects of the same class; e.g. send the 

same message to every objects of the same class. In 

addition, there is a preconditional predicate which is 

evaluated before an object is operated on. If the 

predicate fails then that particular object is skipped. The 

number of objects that are to be tested and worked on 

depends on the “Repeat” attribute (see figure 4). There 

are two automatically generated variables associated with 

each operation. After the execution of an operation, 

these two variables will contain respectively the objects 

that have been worked on or not. Figure 4 shows an 

operation which iterates through all 7307 terminals and 

assign each one to a communication line. In the example 

the variable “self” is bound to a different object during 

each iteration. After the operation, the variables, 

“T7307.AssignTerminalToCommLine.Done”  

and “T7307.AssignTerminalToCommLine.NotDone” , 

will contain respectively the terminals that have been 

attached and those that are still loose. 

(OPERATION AssignTerminalToCommLine 

(’ attach each 7307 terminal to a comm line) 

(Class T7307) 

(Predicate T) 

(Repeat UntilExhausted) 

(Code (AddTo(GetAnInstance SynchronousCommunicationLine) 

‘TerminalAtt ached self)))) 

(HIERARCHICAL-TASK Documentation 

(* Output each comm line and its terminals) 

(Root SynchronousCommunicationLine) 

(Paths (SynchronousCommunicationLine 

TerminalAttached)) 

(Code ((Class SynchronousCommunicationLine) 

(IF <predicate> THEN (Document)) 

((Class T7307) 

(IF T THEN (Document))))) 

(ITERATIVE-TASK PutCardsOnBoards 

(* assign all cards to boards) 

(Type ALLI 

(Predicate (AND (NULL Type-1-Card.NotDone) 

(NULL Type-2-Card.NOtDone))) 

(Epilog (IF (OR Type-1-Card.NotDone 

Type-2-Card.NOtDone) 

THEN (Createinstance Board))) 

(Variables (NewBoard)) 

(Rules 

(Rl:(SETQ NewBoard(Operation Board GetABoard))) 

(Ra:(Operation Type-l-Card AllocateSlot NewBoard)) 

(RS:(Operation Type-a-Card AllocateSlot NewBoard)))) 

(OPERATION GetABoard 

(* always returns the first board still in the “ NotDone”  list) 

(Class Board) 

(Predicate T) 

(Repeat 1) 

(Code (Return self))) 

(OPERATION AllocateSlot 

(* Assign as many cards to a board as possible) 

(Class Type-a-Card) 

(Repeat UntilExhausted) 

(Predicate (Type-l-Card-Fit? NewBoard)) 

(Code (Decrement-slot NewBoard) 

(Fix-Slot self NewBoard))) 

(PLAN Card-type-l-Or-Card-type-2 

(* interchange r2 and r3 in task PutCardsOnBoards) 

(Rules (MyRule: (If <predicate> THEN 

(XChange PutCardsOnBoards R2: R3:))))) 

Figure 4. Example of configuration knowledge 

Task- A A task enables a knowledge engineer to 

perform “aggregate”  work by invoking individual 

operations. It is especially useful when operations, acting 

on different classes of objects, achieve jointly a common 

objective. There are two types of tasks: hierarchical and 

iterative. 
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A hierarchical task is used to traverse a “part-of” 
hierarchy and work on each object in this hierarchy. An 

iterative task is used to carry out a sequence of 

operations repeatedly. The second example, in figure 4, is 
a hierarchical task which traverses the communication 

lines and the terminals attached to each line in pre-order; 

i.e. visit a communication line and then all its terminals 

before visiting the next communication line. As shown in 

the example, a hierarchical task is similar to an operation 

except for the number of classes involved and for the 
order in which the objects are fetched. “Pruning”, i.e. the 

decision whether to follow a branch, is decided by the IF 

conditions. If an object fails its own predicate test then 
none of its descendants will be tested. 

An iterative task is similar to a LOOPS ruleset in 
concept in that rules are partitioned according to the 

objects that they affect. An iterative task is composed of 
a list of IF-THEN rules and operations. There are two 
mode of iteration which dictates whether all rules are 

executed or only one rule is executed during each pass of 

the iteration. A knowledge engineer supplies a condition 

for terminating the loop; the default is to stop the task 

when all the rules and operations have failed. The rules 

and operations in an iterative task are scanned by their 

sequential ordering in the task. An optional piece of 
code, “Epilog” may be executed after each iteration before 

the start of the next. This Epilog can look at the “trace” 

of the previous iteration and make corrections and 

preparations for the next pass. Each iterative task only 
looks at certain classes of objects. For each operation, 

there are two values to indicate the objects that have been 

worked on and those that have not. These two values are 

not reset after an iteration (unless explicitly stated in the 

EPILOG); in fact when an operations appears in an 

iterative task, it will only look at the objects that have 
not yet been worked on. If new objects are created, 
within or without an iterative task, they are 
automatically appended to the appropriate lists so that the 

operations can work on them in a subsequent iteration. 

Figure 4 contains an example where cards are being 

assigned into slots on a board. If there are not enough 
boards to fit all type-l and type-2 cards then a new one is 

added. The procedure repeats until all cards have been 
assigned to boards. Note that the Epilog checks to see if 

more boards are needed and creates one on demand so as 

to ensure some progress in the following iteration. 

Plan: Plans decide which tasks are be executed as 

well as manipulate the tasks themselves. Each rule in a 
task is treated as a named object and thus can be 

manipulated. Plans can remove, replace, or relocate rules 
within a task. This is useful in cases where the relative 

locations of the rules are important. In Figure 4, a plan 
may interchange the two rules in task “PutCardsOn- 

Boards”  so to assign card-type-2 before card-type-l. Note 
that a plan is composed of rules with unique names, so a 

plan may be modified by another plan, i.e. meta-plan. 

B. Knowledge Engineer Assistant 

The “Knowledge Engineer Assistant”  (KEA) is a 

module within ISCS which provides the development 

environment for a knowledge engineer. KEA supplies 

three major features: “structure-based editors”  to guide the 

knowledge engineer in constructing the knowledge base, 

“development tools” to facilitate the knowledge encoding 
and maintenance, and an “ interpreter”  to translate the 

ISCS knowledge sources into internal representation. The 

main purpose for KEA is to make available to a 

knowledge engineer enough tools and built-in mechanisms 

so as to reduce the total time and effort needed in 

creating a configuration knowledge base. KEA is built 

upon the DEDIT facility in the Xerox Lisp machines 

which is itself a “structure-based editor”  for the 
INTERLISP-D and LOOPS environment. KEA commands 

are conveniently built into the DEDIT menu system. The 

KEA operations are tightly integrated within the DEDIT 

framework. 

1. Structure-based Editors 

One of the main focuses of ISCS is to provide an 

appropriate set of knowledge representations or structures 

to reflect conceptually the different sources of 

configuration knowledge found in experts. By providing 

the knowledge engineer with a more natural and 

convenient means of encoding expert knowledge, the 

process of knowledge acquisition is made easier. These 

knowledge structures are expressed using the ISCS 

configuration language. Each knowledge structure has its 
own syntax, internal structure and control mechanism. 

The “structure-based editors”  guide the knowledge 
engineer by providing syntax templates for the various 

knowledge structures. Syntax and semantics are checked 

before it is entered into the knowledge base; preventing 

errors in the knowledge base at the earliest possible onset. 

For example, the KEA will immediately create a 

new variable or class for a knowledge engineer, if a value 

demon is entered when the variable or class that it affects 

is not yet defined. A knowledge engineer is not allowed 

to exit form the KEA editors until all necessary 

information has been furnished. A future improvement 
would be for KEA to automatically keep track of all such 

“loose” pieces and prompts the knowledge engineer to 

complete the knowledge at appropriate times. 

2. Development Tools 

The “development tools” provide an integrated set 

of knowledge access facilities which allows the knowledge 

engineer to inspect the current status of the knowledge 

base, to list the library functions appropriate for the 

current context, as well as to integrate new knowledge 

structures. For example, just by simply marking a 

variable of a class and selecting appropriate “development 

tool” menu item, the system can list all the current 

constraint demons attached to this slot, or all other classes 

which also include this variable in their definition. 

Each new piece of expert knowledge might have to 

be integrated with existing knowledge structures already 

in the knowledge base. This integration is made easy and 

error-free through the use of access functions and 

automatic encoding. For example, browsers may be used 

to display the relationships among pieces of knowledge, 

e.g. the “part-of” relationship. 

There are also knowledge source dependent tools 
which reduce the amount of encoding required by the 

knowledge engineer. For example, in the “part-of” 
hierarchy, when a contain-parts pointer is set from an 

object to sub-part objects, the inverse pointer is 

automatically added into the parent object structure. 
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3. Interpreter 

The “interpreter”  translates knowledge sources 

developed using the ISCS configuration language into 

internal representations. The internal representation 

consists of INTERLISP-D and LOOPS structures. The 

main unifying mechanism is the object-oriented 

programming paradigm in LOOPS. In particular, we use 

the active value feature of LOOPS to implement the value 

demons, and the “New” method of a metaclass to 

implement class demons. 

C. The User Interface Generator 

The ISCS system provides a user interface 

generating facility called WSI (Mimo, 1986). The facility 

assists knowledge engineers in the development of user 

interfaces. Our design is based on an analysis of the 

environment that a human expert would work in. 

Consider the case of the sales or field representative who 

is configuring a computer system for a customer. The 
volume of data that one must manage is plentiful. After 

gathering the information, the representative stores the 

data on a collection of business data forms. The data 

entry process itself is intermittently spread out across 

many interactive sessions. The purchase order is usually 

reworked many times before it is finally sealed. When 

one builds a knowledge-based system for such a type of 

users, one must design the system so as to fit the user’s 

working habit. The WSI facility attempts to simulate the 

field representatives’ working behavior by providing data 

sheets for them to enter data and a file cabinet metaphor 

for storage and organization of data sheets. A knowledge 

engineer may develop customized data sheets and cabinets 

with the aid of the WSI facility. 

the WSI mixins as supers in the class definitions of the 

components and systems, may immediately obtain a user 

interface with standard behavior. Customization may be 

obtained by adding special properties to instance variables 

in class definitions. WSI, by examining these properties 

of an object, determines whether a particular variable 

should be displayed or not in the corresponding data 

sheet, whether it is modifiable or read-only, whether 

menus are attached to the variable, what menu 

(dynamically or statically created) to show, etc. WSI is 

non-obtrusive because the properties that it relies on are 

separated from those used in the actual computational 

tasks. On the other hand, it is possible for a knowledge 

engineer to indicate to WSI to examine properties 

involved in computations so as to minimize redundant and 

inconsistent information between the user interface and 

the computation tasks. 

The WSI facility is integrated into the ISCS 

programming environment through the inheritance and 

specialization techniques of object-oriented programming. 

A knowledge engineer may gradually enhance and refine 

the user interface by the addition of more and more 

properties to each instance variable in a class definition 

through a period of time. This incremental approach is 

very important in projects like knowledge-based systems 

where the initial phase of the project is focused mainly 

on knowledge acquisition and leaves little time for the 

user interface. By linking to the WSI facility via the 

“superclass” specification, a standard user interface is 

immediately obtained. Starting on day one, a knowledge 

engineer may use the WSI facility for demonstration and 

testing. As the knowledge base grows and is validated, a 

knowledge engineer can then pay attention to interface 

issues. Through the single concept of data sheets and 

object-oriented programming, a consistent user interface is 

achieved across the development cycle of a knowledge- 

based system. Figure 5 shows the interface of a system 

configurator that utilizes the WSI facility. 

IV. SUMMARY 

The WSI facility is based on a single integrating 

concept, the data sheet. A data sheet is a business data 

entry form in concept and a screen image of an internal 

object in operation. Both end users and knowledge 

engineers perceive a WSI-derived user interface as one 

that provides capability for the organization and 

manipulation of data sheets. Through this integrating 

idea consistent user interface behavior is achieved. A 

data sheet may be filed in a folder which is stored in a 

drawer that, in turn, is contained in a cabinet. 

A data sheet in the WSI facility is a scrollable 

window which displays the attribute names and values, of 

an object. The data sheet window is mouse-sensitive and 

both the attribute names and values may be selected by a 

mouse device. The behavior of the WSI facility may 

depend on the button pressed, the attribute selected, and 

the context of the system configurator at the time of the 

mouse selection. For instance, a user interface may be 
designed such that when a user “clicks” at the attribute 

name “Memory Size” in a “Site Information data sheet” , 
menus with different items will appear depending on the 

model number of the site system. This feature is useful 
because different models of computers have different 

memory configurations. 

The WSI facility supplies generic mechanisms to 

support the mapping between internal objects and 

external screen data sheets, operations on the data sheets, 

and storage and retrieval of data sheets. All the generic 
mechanisms are implemented by methods in “mixins”. 

Moreover each mechanism has a full set of default 

behaviors. A knowledge engineer, by simply including 

We have described a tool kit, ISCS, for constructing 

knowledge-based system configurators. ISCS is designed 

to assist a knowledge engineer in the encoding and 

maintenance of configuration knowledge, and to facilitate 

user interface development. The various knowledge 

representations and system modules are integrated through 

an object-oriented foundation. 

The design and implementation of ISCS is 

leveraged upon our past experience in the development of 

knowledge-based system configurator (Wu, 1985). Many 

of the features in ISCS have been hand-coded into a 

configurator that we have developed recently. ISCS is the 

outcome of a post-mortem analysis of the former 

configurator. It is still under improvement and will 

eventually be used as a standard development vehicle by 

Honeywell knowledge engineers. 

As ISCS is deployed, new requirements and 

functionality will emerge and incorporated into the 

system. At present, we have identified two areas that we 

will study after our current project. The knowledge 

engineer assistant is currently a “passive” module; a 

knowledge engineer must decide which knowledge 

representation to use and then invoke the appropriate 

editor or tool. We intend to add a “user dialog” feature 
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which will assist and guide a knowledge engineer in the 

selection of knowledge representation through an 

interactive sessions. The other area that we will enhance 

is in the provision of a facility that enables knowledge 

engineers to design form layouts; at the moment a WSI 

data sheet has only a very simple layout consisting of two 

columns, one for name and one for value. 

REFERENCES 

Bobrow D.G. and Stefik M., “ The Loops Manual” , Tech. Rep. KB- 

VLSI-81-13, Knowledge system area, XEROX Palo Alto Research Center, 1981. 

Chun H.W., “ The ISCS Knowledge Engineer Assistant” , Honeywell 

SCOS/AST Technical Report, AST8603, 1986. 

Hayes-Roth F., Waterman D., and Lenat D., “ Building Expert 

Systems” , Addison-Wesley, Reading, MA, 1983. 

Lafue G. and Smith R., “A Modular Tool Kit For Knowledge 

Management” , IJCAI, 1985. 

McDermott J., “Rl: A Rule-Based Configurer of Computer Systems” , 

Artificial Intelligence 19, 1982. 

McDermott J., “ XSEL: A Computer Sales Person’s Assistant” , 

Machine Intelligence, 10, 1982. 

Mimo A., Chun H.W., and Wu H., “WSI - A Facility for Organizing 

and Manipulating Data Sheets” , Honeywell SCOS/AST Technical Report, 

AST8601, 1986. 

Mimo A., “WSI: A Guide to its Implementation and Use” , Honeywell 

SCOS/AST Technical Report, AST8602, 1986. 

Richer M., “ Evaluating the Existing Tools for Developing Knowledge- 

Based Systems” , Standford Knowledge Systems Laboratory, Report KSL85-19, 

Standford University, 1985. 

Rolston D., “An Expert System for DPS 90 Configuration” , 9th 

Annual Honeywell International Computer Sciences Conference, 1985. 

Sheil B., “ The Artificial Intelligence Tool Box” , Proceedings of the 

NYU symposium on Artificial Intelligence and Business, edited by Reitman W., 

ABLEX publishing Corp., 1983. 

Szolovits P. and Clancey W., “ Case Study: OCEAN” , Tutorial 8, 

IJCAI, 1985. 

Wu H., Virdhagriswaran S., Chun H.W., and Mimo A., “ ISC- An 

Expert System for the Configuration of DPS-6 Software Systems” , 9th Annual 

Honeywell International Computer Sciences Conference, 1985. 

l+OhWWELL SYSTEM CONFIGWMTOFI 

Figure 5. Sample session of a configurator system implemented on ISCS. 
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