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ISI-reduced Modulation Over a Fading Multipat h channel1 
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Abstract :  In this work, the idea of using the channel eigen- 

vectors as the basis for a block based signaling scheme over a 

fading multipath channel is introduced. This basis minimizes 

the product of the average fading attenuations along different 

dimensions. The IS1 from the preceding blocks (intra-block ISI) 

is modeled by an additive Gaussian noise. To reduce the effect of 

the intra-block ISI, a number of zeros are transmitted between 

successive blocks. The number of zeros is optimized to minimize 

the average probability of error. As the transmission of zeros 

reduces the bandwidth efficiency, this optimization procedure is 

more useful for lower bit rates. By applying Quadrature Ampli- 

tude Modulation (QAM) to each dimension, we obtain a set of 

two-dimensional subchannels with unequal fadings. A coherent 

M-PSK constellation is employed over each QAM subchannel. 

We propose two methods t o  distribute the rate and energy be- 

tween the subchannels. In both methods, we impose the restric- 

tion that the average error probability for all the subchannels 

is the same. In the optimum method, the energy is distributed 

equally between the nonempty subchannels and the rate is dis- 

tributed to obtain equal average error probabilities. In a second 

method, the rate is distributed equally and the energy is dis- 

tributed to obtain equal average error probabilities. The second 

method allows us t o  use the same modulator/demodulator for all 

the subchannels and thereby reduces the complexity. Numerical 

results are presented for the second method. The results over a 

space of moderate dimensionality show substantial performance 

improvement with a small increase in the complexity. 

1 Introduction 

The design of a signal constellation is composed of selecting : (i) 

a basis for the channel space and (ii) a discrete set of points 

over this basis. The objective is to minimize the probability of 

error between the constelhtion points. A statistical channel is a 

channel with some statistical features obeying certain probabil- 

ity density function. The design of a signal constellation over a 

statistical channel involves some kind of averaging over the chan- 

nel statistics. This results in a system which is on the average 

the best possible choice. 

Some of the major problems associated with a statistical chan- 

nel are as follows: 

A statistical phase shift which intervene with the orthogo- 

nality of the two phases in a QAM transmission. In general, 

this results in some loss in dimensionality. 

Statistical nature of the channel impulse response whichi 

results in : (i) a variable transmission gain (fading) and (ii), 
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a variable intersymbol interference (ISI). 

In this work, we assume that by using coherent demodulation, 

the first problem is solved and we mainly focus on the second 

problem. 

In general, a channel impulse response of length greater than 

one results in IS1 between successive transmissions. The IS1 in- 

terferes with the orthogonality of the time multiplexed impulses. 

Our objective in dealing with the IS1 in our block based signaling 

scheme is : (i) to preserve the orthogonality of the block dimen- 

sions though the channel (ii) to minimize the interference from 

the preceding blocks. In the proposed scheme, the basis is se- 

lected as the eigenvectors of the channel correlation matrix. This 

basis minimizes the product of the average fading attenuations 

along different dimensions. The interference from the preced- 

ing blocks (intra-block ISI) is modeled by an additive Gaussian 

noise. To reduce the effect of the intra-block ISI, an appropriate 

number of zeros are transmitted between successive blocks. The 

number of zeros is optimized to minimize the average probabil- 

ity of error. As by transmitting zeros the bandwidth efficiency 

decreases, this optimization procedure is specially useful when 

the bit rate is low. 

By applying quadrature modulation, we obtain two dimen- 

sions with identical statistics from each baseband eigenvector. 

By using this modulation scheme, the channel is decomposed 

into a set of parallel two-dimensional subchannels with unequal 

fadings. A coherent M-PSI< signal constellation is employed over 
each two dimensional subchannel. It remains to distribute the 

rate and the energy between the subchannels. We propose two 

methods to do this. In both methods, we impose the restriction 

that the average error probability for all the subchannels is the 

same. In the optimum method, the energy is distributed equally 

between the nonempty subchannels and the rate is distributed to 

have equal minimum distance to noise ratio. This method results 

in an unequal number of points per different two dimensional 

subconstellations and thereby increases the complexity of the 

modulation/demodulation operations. In the second method, all 

the nonempty two dimensional subconstellations have the same 

number of points and the energy is distributed to produce equal 

minimum distance to noise ratio. 

As an example, the channel corresponding to the propagation 

of the electromagnetic wave in a mobile communication system 

is studied. 

2 System block diagram 

The block diagram of the system under consideration is shown 

in Fig. (1). We assume discrete time model and block based 

processing. The block length is equal to N.  Two subsequent 

channel uses are separated by to seconds. The energy per chan- 

11.02.1 

0-7803-0591 -419210000-0288 $3.00 O 1992 l EEE 

Proc. Int. Conf. Universal Personal Commun. (Dallas, TX), pp. 11.02.1-11.02.5, Sept. 1992



nel use is normalized to unity. The rate to be transmitted per 

second is equal to Rt. The N x N unitary matrix M is the basis 

at  the channel input. By applying Quadrature Amplitude Mod- 

ulation, we obtain two dimensions with identical statistics from 

each column of M. A coherent M-PSK constellation is employed 

over each of these two-dimensional subspaces. 

Fig. 1 System block diagram. 

To reduce the effect of the intra-block ISI, L zeros are trans- 

mitted between successive blocks. This results in a total of N + L 
channel uses per each block. The idle time between two succes- 

sive N-dimensional blocks is equal to Lto seconds. The rate to 

be transmitted per block is equal to, Rtto(N + L). 

The objective is t o  minimize the probability of error between 

the constellation points for a given Rt.  Our tools are the selection 

of the constellation dimensions, the position of the constellation 

points and also the selection of the parameters L and to. 

The channel has an N x N-dimensional statistical transfer 

matrix, C .  The i'th column of C is the impulse response of the 

channel t o  an impulse at  time i. For a causal channel, C is a 

lower triangular matrix. We assume that the channel is com- 

posed of an infinite number of independent parallel subchannels. 

In this case, due to the law of the large numbers, the impulse 

response of the channel has a Gaussian distribution. In other 

words, the elements C(i ,  j )  of C are Gaussian random variables. 

We also assume that the elements of C are independent of each 

other and their statistics is invariant with time. In a more com- 

plex model, one can incorporate the effect of the fading memory, 

[I], [2], [3] or the time variance property of the channel statis- 

tics. We also assume that the expected value of C is equal to 

zero. A nonzero expected value results in a deterministic par- 

allel subchannel. Assuming complete phase recovery (coherent 

demodulation), the channel transfer matrix obtains a Raleigh 

distribution. The additive noise is white Gaussian with zero 

mean and power 02.  

The modulator matrix M is selected such that, 

and the demodulator matrix D is selected as, 

The matrix R, = E [c'c] is denoted as the channel correlation 

matrix. From ( I ) ,  it is seen that M is equal to the eigenvectors 

of R, with the eigenvalue matrix A2. The elements A2 deter- 

mine the average fading along different dimensions of M. It is a 

standard result of the matrix theory that for a fixed Trace(Rc), 

this selection minimizes the product of the average fading atten- 

uations along different dimensions. 

As already mentioned, the intra-block IS1 is modeled by an ad- 

ditive Gaussian noise. The assumption of Gaussianity is justified 

by considering that the channel transfer matrix has a Gaussian 

distribution. Using this model, the noise at  the demodulator 

output is composed of two components, say, n and n. The first 

component is due to the original Gaussian noise and the sec- 

ond component is due to the intra-block interference. The n 

component has a Gaussian distribution with the autocorrelation 

021. This is independent of the modulating matrix M. The n 

component has a Gaussian distribution which depends on the 

statistics of the source and the channel. Later, we will present 

an analytical expression for the power of this component in the 

case of a fading multipath channel and an M-PSK modulation. 

3 Fading multipath channel 

This channel corresponds to the propagation of the electromag- 

netic wave from an antenna to a receiver. We consider two kinds 

of reflections for the wave. The reflections occurring in the imme- 

diate neighborhood of the receiver have an additive effect. Using 

the law of large numbers, this results in a Gaussian density for 

the voltage distribution. Assuming coherent demodulation, the 

density function becomes Raleigh. 

The reflections occurring far from the receiver has a multi- 

plicative effect on the power attenuation. We assume that the 

average number of such reflections is proportional t o  time. This 

results in an exponential time decay for the energy propagation. 

The corresponding time constant is denoted by 7. 

In a more complicated model, we may assume that the power 

attenuation due to the far reflections has a lognormal distribu- 

tion. This is based on applying the law of the large numbers to 

the log of the multiplicative attenuations. 

In this case, the probability distribution of C(i ,  j ) ,  i 2 j, is 

equal to, 

where G depends on the gain of the receiver and transmitter 

antennas and also on the distance between the transmitter and 

receiver, [4], and the normalization factor A which is equal to, 

is used to keep the total energy constant. 

From (3), for i 2 j ,  we obtain, 

and, 

E [{C(i, j))'] = (GIA) exp[-(i - j ) t o / ~ I .  (6) 

For a causal channel, C is lower triangular and the elements 

of R, = C i C  have the following form, 

Using (5), (6) and (7) the elements of R c  are found as, 

N-1 

R,(i, i) = (GIA) exp [-(k - i ) t o / ~ ]  , 
k=i 

where i = 0 , .  . . , N - 1 and, 

N-1 

R,(i, j )  = (G/A) f exp [-(2k - i - j ) to/2r] ,  
k=max(i,j) 



Fig. 2 The set of parallel subchannels obtained by applying 
QAM modulation. 

where i ,  j = 0, .  . ., N - 1, i # j . Obviously, the modulator ma- 

trix M (the set of eigenvectors of &) is independent of ( G / A )  
but the fading matrix A2 (the set of eigenvalues of &) has a 

multiplicative factor equal to (GIA).  

To compute the interference from the preceding blocks, define 

the N x N matrix T with the elements, 

where, 

The j ' th column of T denotes the effect of the interference from 

the j'th channel use within all the preceding blocks. 

The correlation matrix of the data vector i is equal to, 

R; = E [iit]. We assume that i is a white process (Ri is diag- 

onal). The i'th diagonal element of R i  denotes the pow& of 

the i'th component of i. Let's a,(i), i = 0, .  . . , N - 1, denotes 

the i'th diagonal element of M R i M t .  This is the average power 

at  the channel input as a function of the time index within a 

block. The vector a, is con~posed of the set of the elements 

a,(i), i = 0, .  . . , N - 1. Using these notations, it is easy to show 

that b, = Tar is equal to the power of the intra-block interfer- 
ence. 

In summary, the interference from the previous blocks is mod- 

eled by an additive Gaussian noise with the power, b, =Ta,, 

where a, denotes the average power at  the channel input as 

a function of the time index within a block. This results in 
a Gaussian noise of power 6; along the i'th dimension a t  the 

demodulator output where c?: is the i'th diagonal element of 

DB,Dt = A2MB,Mt, B, is a diagonal matrix with the diago- 

nal vector b,. The total power of the Gaussian noise along the 

i'th dimension is equal to, 11;  = cr2 + &:. After quadrature mod- 

ulation, we obtain a set of N two-dimensional subchannels with 

Raleigh fading, Fig. (2). The average power fading dong the 

i'th subchannel is equal to the i'th diagonal element of A2 (de- 

noted as A:). The i'subchannel has an additive Gaussian noise 
of power n? = o 2  + B:. 

4 Problem formulation 

4.1 Signal constellation 

We have N two-dimensional Raleigh fading subchannels with the 

average power fadings A&. . . ,A%-1 and the additive Gaussian 

noise of power n: = o2 + 61, i = 0, .  . . , N - 1. The total rate and 

energy are equal to, Rtto(N + L) and N + L, respectively. We 

want to distribute the rate and the energy between the two- 

dimensional subchannels such that the probability of error is 
minimized. In this case, some of the poor subchannels (with 

high fading and/or high additive noise) may remain empty. The 
number of the nonempty subconstella.tions is denoted by No. For 

a given No, the matrices M, and R i  are of dimensionality 

N x No, No x No and No x No, respectively. 

The proposed transmission scheme can be interpreted as a 

special kind of diversity. In this case, instead of transmitting 

the same data for several times over the dimensions orthogo- 

nal in time or frequency, we select a linear combination of the 

time multiplexed dimensions for a single transmission. This ]in- 

ear combination is the eigenvector corresponding t o  the largest 

eigenvalue. The major property of this eigenvector is that its 

power is concentrated near the initial part of the block. This re- 

duces the amount of the energy propagated into the subsequent 

blocks and thereby reduces the intra-block interference. 

The value of L is optimized to minimize the average value 
of the error probability for a given total rate and energy. A 

value of L > 0 decreases the bandwidth efficiency. In this case, 

the optimization procedure tries to use the available bandwidth 

in the best possible way. This can be also considered as an 

attempt to match the power spectrum of the modulator output 

t o  the channel frequency response (line coding). By increasing 

the bit rate, the optimum value of the idle time, Lto, decreases. 

This means that the improvement caused by inserting the idle 

time between transmissions is higher for lower values of the bit 

rate. To compensate this effect for higher bit rates, one should 

increase the block length N .  

We can look a t  this phenomenon from another point of view. 

Considering that the rate per block is equal Rtto(N + L), for a 

given to, a larger L results in a lower c?? but at  the same time 

results in higher rate per each N-dimensional block. These two 

phenomena have opposite effects on the error probability. The 

selection of L is based on providing the best compromise between 

these two effects. 

Another factor is the time interval between successive channel 

uses, namely to. The selection of to is based on optimizing a 

similar tradeoff as in the case of L. 

The third factor is the number of the nonempty subconstel- 

lations, No. A lower No results in a higher rate per each of 

the nonempty subconstellations. At the same time, a lower No 

results in a better preformance (lower fading and lower addi- 

tive noise power) for the nonempty subspaces. Again, these two 

phenomena have reverse effects on the error probability and the 

decision is based on providing the best compromise. 

4.2 Probability of error 

For an average energy E, the minimum distance of an M-PSK 

is equal to, 

d:;, = 8~ sin2 q. 
M ( 12) 



For an M-PSK, the decision regions are radial and conse- 

quently are insensitive to fading, 151. In this case, assuming 

coherent demodulation, the probability of error is averaged over 

the statistics of the fading. 

Assuming a Gaussian noise of power a', the probability of 

error between two points of distance d is upperbounded by 

(1/2)exp(-d2/8a2), 151. Using this results and assuming a 

Raleigh fading of variance Xz, the average error probability be- 

tween nearest neighbors of an M-PSK is easily found as, 

- -1 

Pe = lm 5 exp [- (3 + $) a'] da = (1 + SNR) , 

(13) 
where is equal to, 

P E  T 
SNR = - sinZ - 

uZ M 

Using a grey code, this is approximately equal to the bit error 

rate, BER. Similarly, the outage probability is computed as, 

We impose the restriction that the minimum distance to noise 

ratio and consequently the average error probability along all 

the subspaces is the same. The rate and the energy allocation is 

based on maximizing this ratio. 

In the following, we propose two methods to achieve this ob- 

jective. 

4.3 Optimum method for the rate and the energy 
distribution 

The optimum rule for the rate and energy distribution is com- 

puted from following opti~nization procedure : 

- X?Ei sin2(r/Mi) 
Maximize ShrR = 

n: 
h'o-1 

Subject to: 1 Ei = N + L 
i=O 

No-1 

C Ri = ( N  + L)Rtto 
ico 

Using the Lagrange method to solve (16), we obtain, 

and, 

Ri = log, 
K 

arcsin (@ n: NO/A:(N + L) 

where is calculated using the equation, 

c log2 
K 

= ( N  + L)Rtto.  
i=O I arcsin ( W ~ : N O / A : ( N  + L) 

(19) 
The value of No, L and to are calculated to maximize the m. 

4.4 Second method for the rate and the energy dis- 
tribution 

In the optimum method, the rate allocated to different two di- 

mensional subconstellations are nonequal. This slightly increases 

the complexity of the modulation and demodulation operations. 

In the second method, all the two dimensional subconstellations 

have the same rate, R; = Ro = ( N  + L)Rtto/No, V i ,  but the ener- 

gies are different. We impose the additional constraint that Ro is 

an integer. The two dimensional subconstellations are obtained 

by the scaling of a base M-PSI< constellation with different scale 

factors. To provide equal minimum distance to noise ratio along 

all the dimensions, the energy allocation has the following form : 

The unknown integers N ,  L and Ro are selected to maximize, 

This is achieved by an exhaustive search. 

For this problem, the matrix Ri is equal to, [(N + L)/No]I 

where I is the No x No identity matrix. 

5 Numerical results 

In this section we present numerical results for the second 

method. This method employs the scaled version of the same 

constellation over all the subspaces. The overall complexity of 

the modulation/demodulation operations is low. The perfor- 

mance of this scheme for Rt = 1,8 megabits/second and N = 1,4  

are shown in Fig. (3) and (4). The effective signal to noise ratio 

is equal to G/a2.  The time constant of the energy propagation 

is selected as 7- = 60 ns, [4]. The curves corresponding to N = 1 
is used as the reference scheme. We should keep in mind that 

the performance of this reference scheme is also optimized over 

the sampling interval (to) and the idle time interval between 

subsequent impulses (Lto). The increase in the complexity with 

respect to the reference scheme is that of two N x No linear trans- 

formations. It is seen that for the moderate value of the complex 

dimensionality N = 4, the saving in energy is substantial. 

Fig. (5) shows the two eigenvectors corresponding to the 

largest eigenvalues for N = 4. It is seen that the power is con- 

centrated in the initial parts of the signals. This effect reduces 

the intra-block interference. Table (1) shows the corresponding 

values of Ro and No. It is seen that in most cases just one of the 

dimensions is nonempty (No = 1). Frbm Fig. (5), the correspond- 

ing eigenvector depends approximately linearly on time. Also, 

in most case, Ro = 2 which corresponds to a biphase signaling. 
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