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Ising ferro magnets with random anisotropy are studied by a new effective field theory 
beyond the usual Weiss molecular field approximation. Magnetization curves and variation of 
Curie temperatures are discussed for two random anisotropic cases. The results are compared 
with those of the usual mean field theory. 

Effects of uniaxial anisotropy field on 
magnets have been studied in a number of 
recent papers by means of the molecular·field 
theory and Green-function technique. By the 
use of Green-function method Devlin has 
discussed the problem for the case of Hei­
senberg model.') In contrast with the Hei­
senberg model it is interesting to investigate 
the problem for the case of Ising model, 
especially beyond the mean field results. 

On the other hand, the system in which 
uniaxial anisotropy fields on each magnetic 
site have random orientations has been in­
vestigated only within a simple molecular­
field theory.2).3) Mizuno studied a model in 

which each spin is subjected to a random 
local magnetic field for some disordered fer­
romagnets. 4

) 

In this work, the Ising ferromagnetic 
systems for 5 = 1 with uniform and random 
uniaxial anisotropy are studied by making 
use of the newly developed effective field 
theory with correlations:) in which spin cor­
relations are partly taken into account. 

The Hamiltonian of the system is given 
by 

H = --2~ 2},Ju- 5/5/ - 2;.D,( 5/)2, 
<J , 

where Jij is the exchange interaction and D, 
the magnitude of the uniaxial anisotropy. 

Following Suzukj/) we can obtain an 
exact spin correlation function, 

Z _ < 2 sinh(,BE,) ) 
<5, >- exp(-,BDi)+2cosh(,BEi ) , (2) 

where Et = '2:.Jij5/ and < ... > indicates an 
ensemble average <A>=Tr A exp( -,BH)/Tr 
exp( -,BH). 

Let us introduce the differential operator 
into Eq. (2) as follows: 

(3) 

with 

f(x)- 2 sinh x (4) 
i - exp(-,BDi)+2 cosh x 

Introducing a decoupling approximation 
<5i5j>~<5i><5j> for de j, which cor­
responds to the Zernike approximation for 5 
= t Ising model,5),6) and using an identity for 
5 = 1 Ising system, 

exp( a5 Z
) = (5 Z

)2 cosh a 

+ 5 z sinh a + 1 - ( 5 Z)2 

Eq. (3) is given by 

<5iz > = ry[ « 5n2>cosh(-a~ tij) 

+ <5/>sinh( ~ tij) 

+ 1 - « 5/)2> ]fi(x) I X~O ' 

where tij = Jij/kB T. 

(5) 

In order to evaluate <5/>, it is necessary to 
evaluate «5,z)2>. By the same procedure as 
Eq. (5), we have 
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« S/)2> = 1][ « S/)2>cosh( a: t;j) 
+ <S/>sinh(a: tU)+1 

- « S/)2> ]g;(x) 1 x~o 
with 

gi(X) 
2 cosh x 

exp( - /3D;) + 2 cosh x 

(6) 

(7) 

For the case of random uniaxial anisotro­
py, it is necessary to take an average over all 
possible configurations for random variables. 
Using a decoupling approximation for a ran­
dom average, (for example, see the Appendix 
of Ref. 6)) we obtain for a system with 
nearest-neighbor interaction J, 

(j = [ q cosh( :x t) + (j sinh( a: t) 
+1-q r <j;(x »rl x~o' 

q = [ q cosh( a: t) + (j sinh( a: t) 

with 

+ 1- q r <g;(x »r I,~o 

<j;(x »r= JP(D;)j;(x )dD;, 

<g;(X»r= jP(D;)g;(x)dD;, 
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(8) 

(9) 

where (j and q are the random averages of 
<S/> and «S/)2> respectively, t=JlksT, z 

is the coordination number, and P( D;) is the 
probability function of the anisotropy fields. 
For simplicity P( D;) is chosen in the follow­
ing two forms: 

case (I) 

with 

case (II) 

P(D,)= co(D;- D1)+(l- c) 

Xo(D;- D2) 

1 
P(D;)=--z;;j for OsDo-,ds 

D;sDo+,d , 

0, elsewhere. 

Here we solve the coupled equations (8) 
and (9) numerically for z = 6. At first, let us 
discuss the case of uniform anisotropy (crys­
talline case). Magnetization curve and q vs 
TITc curve in Fig. 1 are above those in 
molecular-field <,-pproximation (MFA) and 
Curie temperatures also depicted in Fig. 1 are 
smaller in our formalism than those in MFA. 
These results are all in contrast to those of 
Heisenberg modeL 1) This is probably due to 
the facts that in Ising systems with uniaxial 
anisotropy the thermal fluctuations at low 
temperatures are restricted in comparison 
with those in Heisenberg systems and the 
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Fig. L Magnetization curves, q vs T and Curie temperatures vs D In crystalline case in 

comparison with MFA result. Arrows show the values of TciTco at D = =. 
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Fig. 2. Curie temperatures In random anisotropy case as a function of c (case I) and Ll (case II). 

effect of anisotropy is partly taken into ac­

count in Ising systems. 
This method corresponds to the Zernike 

approximation for a limit of infinite anisot­
ropy (5 = ~ ), as already discussed in Ref. 6). 
(The arrow in Fig. 1 shows the value of Te in 

the Zernike approximation.) 

Next we turn to the case of random aniso­
tropy. In Fig. 2 Curie temperatures are plot­
ted as a function of c and Ll for cases (I) and 

(II). Figures 3 and 4 represent (J and II as a 

function of T/Te respectively. From these 
results we can see that the existence of the 
random anisotropy fields makes (J and Q for 

T/Te< 1 decrease faster than those of crys­
talline case as the temperature increases, 

whereas Q for T/Tc > 1 decreases slower. 

Those qualitatively agree with the previous 
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MFA results. 2
),3) Finally the advantage of 

our method is that its formulations are rather 
simpler than other approximations beyond 

MF A and its applications to the various ran­
dom spin systems are facile. 
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Fig. 3. Magnetization curves in crystalline case 
[(a), (bJ. (ell and in random anisotropy case 
[(d), (e)l 
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Fig. 4. q vs TlTe. (a), (b), (c), (d) and (e) are 
the same as in Fig. 3. 
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