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Abstract 

It is shown that the Ising model with three-spin interactions on a triangular lattice is equivalent to 

a site-colouring problem on a hexagonal lattice. The transfer matrix method is then used to solve 

the colouring problem. The colouring of two neighbouring rows of sites is described by the positions 

of dislocations in an otherwise regular sequence of colours. This permits the use of a generalized 

Bethe's ansatz for the eigenvectors of the transfer matrix; the eigenvalues are found to be given 

by the solution of a set of equations. 

1. Introduction 

The Ising model plays a central role in the study of phase transitions in lattice 

systems. For many years, the two-dimensional system with nearest pair interactions 
(Onsager 1944) stood as the only model of a phase transition that yielded to mathe

matical analysis. More recently, the exact solution of a certain Ising model with 

pair and four-spin interactions (Kadanoff and Wegner 1971; Wu 1971), which is 

equivalent to an eight-vertex model (Baxter 1972), has been found. Since its critical 

behaviour is quite different from that of the nearest-neighbor model, there has been 

considerable recent interest in studying other Ising models with multiple-spin 
interactions. 

One multiple-spin system that has been considered is the Ising model with three

spin interactions on a triangular lattice (Wood and Griffiths 1972; Griffiths and 

Wood 1973; Merlini et al. 1973; Merlini 1973). It has been suggested (Griffiths 
1971; Gallavotti 1972) that interesting properties may be found in such systems 

which do not possess the up--down spin-reversal symmetry. We remark that while 

the three-spin model on a 'Union Jack' lattice is soluble (Hintermann and Merlini 

1972), it is natural to consider a three-spin model on a triangular lattice which has 

the symmetry of the interactions. This model is self-dual (Merlini and Gruber 1972; 

Wood and Griffiths 1972) so that its transition temperature can be conjectured using 

the Kramers and Wannier (1941) argument. The critical exponents (x', p and "I' 

have also been estimated from the low-temperature series analysis (Griffiths and Wood 
1973). No exact result was hitherto known. 

In a previous Letter (Baxter and Wu 1973) we have reported the exact solution of 
this model. Details of the analysis are now presented. In this paper the equations 

leading to the solution are derived, while the solution of these equations and the 

determination of the exponents (X, (X', v and v' are given in the subsequent Part II 
(Baxter 1974; present issue pp. 369-81). 
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2. Definition of Model 

Consider a system of N spins (J i = ± 1 located at the vertices of a triangular 

lattice L (Fig. 1). The three spins surrounding each face interact with a three-body 

interaction of strength -J so that the Hamiltonian reads 

Yt' = -J''[.(Ji(Jj(Jk, (1) 

with the summation extending over all faces of L. We wish to evaluate the partition 

function 

Z = L exp(-Yt'jkT). 
ui=±1 

Fig. 1. Triangular lattice L, the dots denoting the spins. 
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Fig. 2. (a) Decomposition of L into triangular sublattices L}, L2 and L3 consisting of sites 

numbered 1, 2, and 3 respectively. The full lines form the hexagonal lattice L13 while the 

dotted lines form L 23 ; the lattice L2 is the dual of L 13. 

(b) Spin labelling of a typical face of L 23 . 

(2) 

The lattice L can be decomposed into three triangular sublattices L 1, L2 and L 3• 

The sites of Li and L j form a hexagonal lattice Lij such that L12 is the dual of L 3 , etc. 

Two such lattices, L13 and L 23 , are shown in Fig. 2a. It is clear that replacing J 

by -J is equivalent to reversing all spins on one of the sublattices L i • Since such 
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reversal leaves Z unchanged, we shall hereinafter take J > 0 without loss of 

generality. 

Our first step is to eliminate the spins on L Z3 ' denoted by the dotted lines in Fig. 2a. 

One way to accomplish this (Wegner 1973) is as follows. Consider a typical face 

of L Z3 ' as shown in Fig. 2b, enclosing a site of L l • Labelling the spins as indicated 

and defining 

AI=UIUZ, AZ=UZU3, ... , A6=U6 Ul, (3) 

the Hamiltonian (1) can then be written as 

.Yf = -JI}Z3) U(Al +Az+ ... +A6), (4) 

where the superscript (23) on the summation indicates that it is taken over all hexa

gonal faces of L Z3 . Thus we can eliminate the spins Ui onLZ3 in favour of the variables 

A = ± 1, provided that we ensure that Al ... A6 = + 1 for each hexagon. This can 

be done by associating with each face of L Z3 a factor t(1 + AI ... A6). The partition 

function then takes the form 

Z = L TI(Z3) [exp{Ku(Al + ... +A6)} 1-(1 +Al ... A6)] , (5) 
a ... 

where K == J/kT and the summation is over all values (+ 1 or -1) of the u's on Ll 

and the A'S on the edges of LZ3 • 

If we define, for A,/l = ± 1, a function g(A,/l) by 

g(A,l) = r l / 6 , g(A, -1) = Arl/6 , (6a) 

or equivalently 

g(l,/l) = r l / 6 , g(-l,/l) = /l2- l /6, (6b) 

then the factor -!-(1 + Al ... A6) in equation (5) can be written as 

L g(Al' /l) g(AZ' /l) ... g(A6' /l). (7) 
JJ 

Substituting the expression (7) into equation (5), there will be one such /l variable 

for each face of L Z3 or equivalently for each site of L l . Thus we may consider the 

sites of Ll to be described by the four-valued variable (u, /l). Collecting terms in 

Z according to the edges of L Z3 or equivalently the nearest neighbours of L l , the 

A-summations can be performed to give 

Z = L TI w(u,/l;U',/l'), (8) 
a.JJ 

where 

w(U,/l;U',/l') = L exp{K(u+U')AJ g(A.,/l)g(A,/l') 
"=±l 

= 2- l/3[exp,K(u+u')} +/l/l' exp{ -K(u+u')}]. (9) 

In equation (8) the summation is over all states (u, /l) of Ll and the product is over 

all nearest neighbours of L l . 
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3. Equivalent Colouring Problem 

We now convert Z into a colouring generating function for L13 (the full lines 

in Fig. 2a). It is seen from equations (8) and (9) that Z does not contain terms with 

aa' = JlJl' = -1. Therefore if for each term in (8) we associate colours 1,3,5,7 

with the sites of L1 according to the rule 

( +, +) = colour 1 , 

( -, -) = colour 5, 

( -, +) = colour 3, ) 

( +, -) = colour 7 , 

(10) 

then two neighbouring sites of L1 cannot be coloured {1,5} or {3,7}. We can then 

complete the colouring of L 13 by associating colours 2,4,6,8 with the sites of L3 

under the restriction that the colours of neighboring sites on L13 differ by exactly 1 

(to modulus 8, i.e. colour m = colour m + 8). In this way the colour of a given site 

~ of L3 is uniquely determined unless the three sites of L1 surrounding ~ have the same 

colour m; in the latter case ~ can be coloured either m - 1 or m + 1. 

We next introduce colour activities Zm == z(m) so that the generating function 

for the site-colouring of L 13 , 

Zc L z';.' ~2 ••• Zg8 , (11) 

is proportional to z. The simplest choice (Baxter and Wu 1973) is 

Z1 = Z3 = Zs = Z7 = 1, -1 -1' h2K 
Z2 = Z4 = Z6 = Zs = sIn == t, 

for which a site ~ of L3 has the weight w = t, r1 or t+ r1. It is easily verified that 

2w sinh 4K generates precisely the factor in equation (8) arising from the three sites 

of L1 surrounding~. Thus we have 

Z = (2sinh4K)N/3 Zc' (12) 

It can be shown that equation (12) is valid more generally provided that the 

activities satisfy 

(Zm + Z;;;-1)(Zm+ 1 +Z;;;-~1) = A == 2(t+r1) (13) 

for all m and the solutions are chosen so that ZmZm+2 = 1. Note that we can choose 

Z1 arbitrary, in which case Z2, ..• ,Zs are determined by equation (13). We do not 

expect Zc to depend on the choice of Z1' In the following we shall use any activities 

-1 -1 -1-1 
Zt> ••• ,zs = Z1,Z2,Z1 ,Z2 ,Zt> Z2,Z1 ,Z2 (14) 

which satisfy (13). We have in particular 

-1 
Zm = Zm+2 = Zm+4' (15) 

Also, equation (13) is unaffected by the transformation t ~ r1. This is the duality 

relation which predicts the critical point to occur at t = 1 (Merlini and Gruber 

1972; Wood and Griffiths 1972). 
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4. Transfer Matrix 

We proceed to evaluate the colouring generating function Zc using the method 

of the transfer matrix. The sites in each row of Lt3 are numbered as in Fig. 3, where 

we assume cyclic boundary conditions in both directions. Let there be M (even) 

sites in a row and r == 2N/3M rows. Let C = {Ct, ... , CM} be the colouring of the 

upper row and C' = {c1, ... ,cM} the colouring of the lower row. Introduce the 

transfer matrix 
M 

A(C, C) = n [Z(Ci) z(c;)J t , (16) 
;=1 

if the colours of the adjacent sites along the bold line in Fig. 3 differ by 1, and 

A( C, C') = 0 otherwise. Then in the usual manner we have 

Zc = L A(C,C')A(C', C") ... A(c(r-l), C) = trAr. 
C,C', ... 

For a large lattice, N, M, r -+ 00 and we then have 

Z;/ZN ~ A~/M, 

where Ao is the largest eigenvalue of A. 

Fig.3. Numbering (left to right) 

of the sites in each of two 

adjacent horizontal rows of the 

lattice L 13 • The bold line joins 

the sites in both rows. 

(17) 

(18) 

To compute the eigenvalues of A, a more convenient expression of A(C, C') is 

needed. We observe that a basic sequence of colours along the bold line in Fig. 3, 

starting from Ct = m, is 

{m, m+ 1, m+2, ... , m+M-l}. (19) 

Using equations (15) and assuming M = 4~, where J is an integer, we obtain for 

this sequence A( C, C') = 1. The general matrix element A( C, C') can now be 

described by introducing dislocations in this otherwise increasing sequence. For 

this purpose it is convenient to consider L z, the dual of L 13 • The site-colouring of 

L13 now becomes the face-colouring of L z. A typical dislocated colouring of L z 
is shown in Fig. 4, where the faces of C and C' have been shaded for easy identification. 

Since the colours of adjacent faces of L z differ by 1, we may draw arrows on the 

edges of L z such that each points to an observer's left (right) if the colours increase 

(decrease) as he crosses the arrow. Then the basic sequence of colouring (19) corre

sponds to there being up arrows on the edges bordering the shaded faces (the bold 

lines in Fig. 4). A dislocation of the sequence is therefore denoted by a down arrow 

along these edges. Before we proceed further, we remark that there are always 

three arrows in and three out at each vertex of L z. Hence our colouring problem 
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bears the same relation to the 'triangular ice' model (Baxter 1969) as the three

colourings of the square lattice (Baxter 1970) does to the 'square ice' model (Lieb 
1967). 

Starting from the basic sequence (19), the effect of a down arrow is to repeat the 

activities Zm-l and Zm' where m is the colour immediately preceding the down arrow. 
This introduces a factor 

Wm- l == w(m-l) = (ZmZm-l)! (20) 

to A( C, C '). In general, if there are n down arrows bordering the shaded faces in 
Fig. 4 then 

n 

A(C,C') = n w(mj-l), (21) 
}=l 

where mj is the colour immediately preceding thejth down arrow. 

x= I'd 1 2 3 

y= M-I M 1 2 

Fig. 4. Typical face-colouring of L 2 • Dislocations in the colours C and C' are denoted by down 
arrows along the intervening edges. 

Let the position between Cx and Cx + l in C be numbered by x. Then the colours 

C can be specified by the positions of the down arrows 

x ={ Xl' X2' ... , Xn} • (22) 

Since at X odd there is only one arrow separating two faces of row C, there can be 

at most one down arrow there, whilst at X even there are three arrows into the 

vertex separating faces of row C, and so up to three down arrows can be crossed 

on moving from the face to the left of x to the face on the right via the faces of the 

next row C'. Hence X must lie in the domain D specified by 

1 ~ Xl ~ X2 ~ ... ~ Xn ~ M (23) 

with no odd x's equal and at most three even x's equal. 
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Similarly for C' let the position between c; and c~+ 1 be Y and the down arrows 

be at Y = {Y1, ... ,Yn}. The possible values of Yj are 

Yj = xj-l, 

= xj-2, x j -1, Xj' 

Xj odd, 

Xj even. 

(24a) 

(24b) 

Furthermore, if Xj = Xj+1 then Yj # Yj+1' As an example, the down arrows in 

Fig. 4 are at 

x = {2,3, ... ,M,M}, Y = {2,2, ... ,M-1,M}. 

Note that the number n of down arrows is the same in each row. 

We can now write down mj and hence A(C, C') in these notations. If there is 

only one down arrow which goes through the position x in row C and the position Y 

in row C', it can be readily verified that in all cases the colour preceding this down 

arrow is m + x + Y - 1, if C1 = m. If there is more than one down arrow then 

m j = m + x j + Y j - 1 - 2(j - 1), because each down arrow repeats two colours. Con

sequently, we obtain from equation (21) 

n 

A(C,C') = TI w(m+xj+Yj-2j), x, Y E D and (24), (25a) 
j=1 

= 0, otherwise. (25b) 

Also, to fulfil the cyclic boundary condition in the horizontal direction, we require 

2M-2n = 8f, f integer. (26) 

Since M is even, so must be n. The diagonalization of the transfer matrix whose 

elements are given by equations (25) will be taken up in the next section. 

5. Bethe's Ansatz 

Since the number n of down arrows is the same for each row, the transfer matrix 

A( C, C') breaks up into diagonal blocks connecting states with the same number n. 

We can then look at one particular value of n (= 0,2, ... , 2M) subject to the condition 

(26). Let 

fm(X) == fm(X1 ,X2 , ... ,xn) (27) 

be the element of the eigenvector of A corresponding to the state with C1 = m and 

down arrows at X. The eigenvalue equation for A( C, C') can be written as 

f* CU
1 

w(m+xj + Yj-2j»)fm+z(Y) = Afm(X), (28) 

where A is the eigenvalue, X and Yare contained in the domain D, and the asterisk 

indicates that the summations are restricted to the conditions (24). Also in equation 

(28) the terms with Yl = ° should be replaced by the boundary condition 

fm+z(O,yz, · .. ,Yn) = fm(yz, ... ,y", M). (29) 
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To solve equation (28), we try the generalized Bethe's (1931) ansatz 

fm(X) = I a(P)c!>P1(m-2,x1)···c!>pnCm-2n,xn), (30) 
P 

where the summation is over all n! permutations P = {PI, ... , Pn} of the integers 

{I, ... , n}. The coefficients a(P) and the n functions c!>l(m, x), ... , c!>n(m, x) are at our 

disposal. We require that there exist n wave numbers kl' ... , kn such that 

c!>/m, x) = c!>/m+4,x) = ajm exp(ikj x) , x odd, 

= bjm exp(ikj x) , x even. 

We now proceed to determine A by considering various cases. 

(31a) 

(31b) 

All down arrows distinct. First consider the case when all x/s in equation (28) 

are distinct. Then each Y j summation in this equation is independent and we may 

satisfy (28) simply by solving 

I* w(m+x+Y)c!>j(m+2,y) = Ajc!>/m,x) (32) 
y 

for j = 1, ... ,n and equate 

A = Al A2 ... An • (33) 

Equation (32) represents two equations corresponding to x odd or even. Let 

Tj,m+2 = [ 
0 W m +l exp( -ikj )] 

wm_1exp(-ikj) Ajm ' 
[
ajm] 

Vjm = bjm ' (34) 

where A jm == wm + Wm- 2 exp( - 2ik). Then equation (32) can be written as 

Tj ,m+2 Vj ,m+2 = Aj Vjm . (35) 

Operating on equation (35) by Tjm and using the fact that Vj ,m-2 = Vj,m+2' we see 

that AI is the eigenvalue of Tjm Tj,m+2. We then find, using (13), 

Aj-AJ[exp(-4ik) +Aexp(-2ik) +lJ+exp(-4ik) = o. (36) 

Here, use has also been made of equations (15), or the relations 

-1 

Wm Wm+2 Wm+4· (37) 

We are gratified to see that A is independent of m as desired. The solution of equation 

(35), which is given here for later use, is: 

aj,m+2 = bjmWm_1Ailexp(-ikj), (38a) 

bj ,m+2 = bjmAim1[Aj _Ail W~-l exp( -2ik)J, (38b) 

ajm = bjmAimlWm+lexp(-ik)[1-Ai2W~_lexp(-2ik)J. (38c) 

Finally, if we let 

Aj = exp(Ej-ik) , (39) 
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equation (36) then becomes 

cosh2Ej = cos2kj +t+t-l. (40) 

It follows that Ej is real if k j is real. 

Two down arrows together. Next consider the case when two even x's coincide. 
We now choose a(P) to make the ansatz (30) satisfy equation (28) with the eigenvalue 

(33) unchanged. For convenience consider n = 2 and Xl = X2 = X (even). Then we 

require 

L* w(m+x+Yt-2)w(m+x+Y2- 4)fm+2(Yt>Y2) = A1 A2fm(x,x), (41) 
Y1Y2 

where 

fm+z(xt> X2) = a(1, 2) tPl(m, Xl) tPz(m-2, X2) +a(2, 1) tPz(m,xl) tPl(m-2, X2) (42) 

and the asterisk in equation (41) indicates summation over the three possible Y 

configurations 

(Yl'Yz) = (x-2,x-I), (x-2,x), (x-l,x). 

Straightforward substitution of the relation (42) into (41) and use of equations (31) 

and (38) then lead to 

B12 == a(1,2)/a(2,I) = -S2tfS12' (43) 

where 

S12 == A2(A~ - W;-l el)A2m - A2"l W;-l el e2 A 1m A 2m Wm - w; el (A2 - A2"l W;-l e2)A1m 

-WmW;+lel(1-A12w;_lel)(A2 -A2"l w;_l e2) (44) 

and 

ej == exp( - 2ikj). 

For the ansatz to work we need the ratio B12 to be independent of m. Fortunately 

this is indeed the case, as we can simplify equation (43) to 

B12 = - (Al + All el e2)/(A2 + A2"l el e2) . (45) 

The simplest way to prove equation (45) is to see by direct multiplication that 

S12(A1 + All el e2) = S21 (A2 + A2"l el e2) 

= Al A2 wm - 2[(el +e2)(1 +el e2) +el e2 -(A-W;_l)+W;] 

-wm W;-1(A1 A2)-1[W;_2 e~ e~ +el ez(el +e2)(1 +el e2) +e~ e~(A-w;+1)] 

+(Al A2"l +A1 1 A2)el e2 wm(1-W;-l W;-2)' (46) 

Here, equation (36) has been used to eliminate A~ and A1"3 occurring in the product. 

More generally we require 

Bjl == a( ... ,j,~, ... ) = _ Aj +Aj: exp[ -2i(k,+k)] = _ cosh(Ej+!k,) (47) 
a( ... , l,J, ... ) Al +AI exp[ -2i(kl+kj)] cosh(EI+ lkJ) 

for all permutations of adjacent elements in a(P). It follows then, within an overall 
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constant, that 

a(PI, ... , Pn) = TI Bii,pj' 
1 ~i<j~n 

(48) 

Three down arrows together. It remains to see that the ansatz (30) leads to the 

same eigenvalue (33) even if three (even) x's are equal. It suffices to consider n = 3 
for which one needs to show 

wm- 2 Wm- 1 wmfm+2(x-2,x-l,x) = A1 A2 A3fm(x, x, x) . (49) 

It is far from obvious that the relation (49) should hold. But again we are fortunate 

to find that (49) is indeed an identity ensured by equation (47). Details of the proof 

are tedious, although straightforward, and will be omitted. 

Thus we have shown that the ansatz (30) will satisfy equation (28) with 

A = A1 ... An provided that the coefficients a(P) are given by equation (48). 

6. Boundary Condition 

We now fix k 1 , ... , kn to satisfy the boundary condition (29). Substituting equation 

(30) into (29) and making a cyclic shift of P on the right-hand side, we obtain 

L a(PI, ... ,Pn)cpp1(m, 0) [CPP2(m-2,x2)'" cppim-2n+2,xn)] 
P 

= L a(P2, ... , Pn, PI) [CPP2(m-2,x2)'" cppim-2n+2,xn)] CPP1(m-2n,M). (50) 
P 

This can be made an identity if we require, for all P and m, 

a(Pl, ... ,Pn)cpPl(m,O) = a(P2, ... ,Pn,Pl)cpPl(m-2n,M). (51) 

Now n is even. Using the conditions (31) and (47), equation (51) then becomes 

exp(iMkPl) = a(Pl, ... ,Pn)/a(P2, ... ,Pn,Pl) = Bp1,P2BPl,P3 ... BPl,Pn' 

or 
n 

exp(iMk) = - TI Bj /, j = 1,2, ... ,n. (52) 
1=1 

Equation (52) is a set of n equations for determining the n wave numbers k 1, ... , kn• 

Here, it must be remembered that Aj depends on k j through equation (36). 

It is clear that k j is real if Bj/ is unimodular. Since Bj/ also depends on k j and k" 

to be consistent we need to show that Bj/ is unimodular if k j and k/ are real. This is 

indeed the case since 

Bj/BJ/ = cosh(Ej+ik/)cosh(Ej-ik,)/cosh(E/+ik)cosh(E/-ik) 

= (cosh2Ej +cos2k/)/(cosh2E/ +cos2kj) = 1. (53) 

The last step follows from equation (40), and we have used the fact that Ej and E/ 

are real if k j and k / are real. 

7. Conclusions 

We have shown that the eigenvalues of the transfer matrix (25) can be obtained 

from equation (28) using the ansatz (30). The procedure for computing the partition 

function Z may be summarized as follows. 
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(i) Solve equation (52) for the n real wave numbers kl> ... , kno where Bjl is 

given by equation (47) and Aj depends on k j through equation (36). 

(ii) Put A = Ai A2 ... An . 

(iii) Let 
v = lim Al/M 

M 
0, 

.... 00 

where Ao is the largest A in (ii) for all n. 

(iv) Then 
lim Zl/N = (2 sinh 4K)1/3 V2/3 • 

N .... oo 

(54) 

(55) 

(v) The eigenvectors of the transfer matrix are given by equations (30) and (48). 

It should be noted that the equations for kl' ... , kn and A1> ••• , An are indeed independent 

of the choice of Zl in equation (13), as has been stated. Thus there is a class of non

trivially related activities for which the generating function of the colouring problem 

is a constant. A similar property is possessed by the three-colourings of the square 

lattice (Baxter 1970). 
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