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A simple statistical model of ferrimagnetism is investigated based upon the results of the 
theory of crystal statistics. It is generally composed of three kinds of Ising spins, of which 
one forms a plane square lattice and the other two occupy the midpoints of each of the bonds 
in this plane square lattice. The complete spin arrangement makes up a decorated plane 
square lattice, in which there exists an antiferromagnetic exchange coupling between every 
pair of nearest neighbouring spins. Syozi and Nakano investigated ten years ago similar kinds 
of Ising spin models, which were, however, simpler than the present model. The temperature 
dependence of the spontaneous magnetization of such a ferrimagnetic Ising model is investi­
gated using the Onsager-Yang theory of crystal statistics. In addition to the features found 
by Syozi and Nakano, there appear some other features of this dependence which are not 
seen in the case investigated by them. The probability that two nearest neighbouring 
points of the lattice which consists of every midpoint are occupied by a pair of similar atoms 
and of dissimilar atoms is also investigated. 

§ 1. Introduction 

Syozi and Nakand> (referred to as I hereafter) calculated the temperature 
dependence of the spontaneous magnetization in a ferrimagnetic Ising model 
based upon the Onsager-Yang theory2> and showed that the spontaneous magne­
tization exhibited several kinds of temperature dependence according to the 
assumed values of parameters. The model investigated by them was the so-call­
ed decorated lattice and the arrangement of atoms was like that in the normal 

spinel. The whole lattice could be divided into two sublattices, L1 and L2. 
Every point of L 1 was always occupied by an A atom and that of L2, which 
was composed of one decorating point on every bond of L 1 , was always occupi­
ed by a B atom. In this configuration there existed an antiferromagnetic coupl­
Ing between each pair consisting of the spin of the A atom on a site of L1 and 
the spin of the B atom on any site of L2 which was a nearest neighbour to 
it. 

In the present paper, we consider the case in which every point of L1, which 
is here taken as a plane square lattice, is exclusively occupied by an A atom 
but any point of L 2 is occupied by either a B atom or a C atom. The total 
number of B atoms and that of C atoms are both definitely given. The magne­
tic moments of the Ising spins of A, B and C atoms are generally different 
from one another. We have already published a preliminary report of some 
parts of this article.:l) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/35/4/600/1874795 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Ising Spin Models of Complex F'errimagnetism 601 

In the case that the arrangement of B atoms and C atoms on Ll is fixed, 
we can show, by calculating the partition functions of the whole systems, that 
the temperature dependence of the magnetization is essentially the san1.e as that 
obtained in I. This is discussed in § 2. The case in which any point of L 2 is 
occupied by either a B atom or a C atom and their distributions are quite un­
determined is also discussed by calculating the grand partition function of the 
system by the Onsager-Yang theory.2

) In this case we find several types of 
temperature dependence of the magnetization according to the relative magni­
tudes of the magnetic moments of the A, Band C atoms; some of these are of a 
new type. The general formulation is given in § 3 and the magnetization­
'temperature relations are investigated in § 4. We also investigate the correla­
tion that a B atom and a C atom come nearest to each other. We can show 
that the probability that two given nearest neighbouring points of L 2 are oc­
cupied by similar atoms is at most about ten percent larger than that by dis­
similar atoms in the neighbourhood of the Curie temperature but, in the limits 
of both low and high temperatures these two probabilities are equaL An ar­
rangement like the Verwey order is not realized by the interaction which is 
taken into account in the present article. These results are demonstrated in § 5. 

§ 2. Ferrimagnetism of a certain fixed arrangement 

The spontaneous magnetizations in the cases that all of B aton1s and C 
atoms are distributed on the lattice L 2 in a definite way are investigated. 

A 

A 

A 

B 
A 

Fig. 1. An arrangement of B 
and C atoms (like the 
Verwey order). 

bouring to each other. 
The partition function 

tic field I-I is 

We first investigate the magnetization in the 
case shown in Fig. 1 that every white point is 
always occupied by an A atom and the black points 
are occupied alternately by a B atom and a C stom. 
We make use of the notation Jl.i, vi and ll for the 
spin variables of A, B and C atoms which can take 
values 1 and -1, rl and - rl and r2 and - r2 re­
spectively. Let the spin magnetic moments of the 
A, B and C atoms be {3, f3r1 and f3r2, and -- J(J>O) 
be the antiferromagnetic exchange coupling between 
a spin of an atom on a white point and a spin of 
an atom on black point which are nearest neigh-

of the whole system exposed to an external magne-

z =~{pi} ~{vj} ~{A.z} exp [- J'~(ij) Jl.i])j- J' ~(il)fJ.),l 

- H1 (~ifl.i + ~jv j + ~lXl)] , (2 ·1) 
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602 M. }fattori 

over all the ranges of the variables, viz. all Ji/s = ± 1, all v/s = ± r1 and all 
A./s = ± rz ; ~Wl and ~cal are the summations over all the nearest neighbouring 
pairs consisting of a white point and a black point. ~j is the summation over 
all white points and ~j and ~l over all black points occupied by B atoms and 
C atoms respectively. If the summations over {vi} and {J,l} are carried out 
first, Eq. (2 ·1) is reduced to the form 

z = (AlA2) N~{f.t-} ex;p [Kl~(ic)/1i/1c + K2~(ir)/J.i/ir -lF~i!Ji] 
~ 

= (A1Az) Nz4 (K1 Kz; II'), 

where N is the total number of white points and 

At= 2 [cosh (2J' + H1) rt ·cosh (2J'- H1) rt · cosh2 Hlrtr14 (t = 1, 2) , 

Kt= (1/4)ln[cosh(2J' +Hl)rt·cosh(2J'-l:ll)rt]- (1/2)ln cosh H1rt, 

H' = H1+ (1/2) ln [cosh (2J'- H1) rz ·cosh (2J' -I-:l1) r1J 

(2·2) 

- (1/2) ln [cosh (2J' + J-!1) r2 ·cosh (2J' + I-!1) r1J. (2 · 3) 

~Cic) and ~Cirl are summations over all the nearest neighbouring pa1rs of white 
points along a column and along a row. Further, 

Z4(K1Kz; I-I')=~{,"-} exp [Kl~(ic)!ti!Jc + 1\..2~(ir)/1i!Jr H'~iJli] (2 · 4) 
~ 

is just the partition function of the ferromagnetic plane square lattice in a magnetic 
field kT · H' / (3 with the longitudinal exchange coupling parameter kT · K 1 (>O) 
and the transverse one kT · K2 C> O) . As shown in (2 · 3), At and Kt are even 
functions of f-!1, and the spontaneous magnetization of the whole system, 

JH = (3 lim a ln Zja I-:l1 
lfl-~0 

= (3 lim aH' jaJ-Il · 8lnZ4 (Kd;:.z; 11') jai-l' 
H1-~0 

becomes accordingly 

(2·5) 

where 

(2. 5') 

and 

l'v14 (K1K2) = lim a ln Z4 (K1l\..2 ; H') jai-l'. (2·5") 
JP~o 

In the above, we have made use of the fact th~t I-1' is an odd function of 1-I. 
The function MlK1K 2) denotes the spontaneous magnetization of the plane square 
lattice which has longitudinal and transversal exchange coupling parameters 
kT · K 1 and kT · 1\..2 , when /(1 and /(2 are the values at a vanishing magnetic 
field. The factor f(T; r2r1) is an increasing function of temperature and its 
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Ising Spin Models of Complex Ferrimagnetism 603 

temperature dependence is similar to that which appeared in I. The parameters 

Kt (t = 1, 2) are decreasing functions of temperature and so is l\r14 (K1K2). It is 

expected that the variety of possibilities for the temperature dependence of the 

magnetization, in the case shown in Fig. 1, comes essentially from the behaviour · 
· of the function f(T), and the magnetization-temperature relations are divided 

into typical cases which are essentially the same as those in I. 
Next we consider the magnetization in the case that each white point is 

always surrounded by two B atoms and two C atoms on its nearest neighbour~ 

ing black points. The distribution of these four atoms. around a white atom 

may be different from that around another white atom. If the summation over 
the spin variables on the black points is carried out first, the partition function 

of this system in the presence of a magnetic field I-I is expressed, with the use 

of the functions given by (2 · 3), in the form 

Z= (A1A2)NZo(K1K2; H'), 

where Z0 (K1K 2 ; H') is the partition function of the plane square lattice con~ 

sisting of only white points with two kinds of coupling parameters l~T · K1 and 

kT · K 2 • These parameters kT · K1 and !?T · K2 appear for each bond respective~ 

ly according to whether a B or C atom stands on that bond. The spontaneous 

magnetization is obtained in the form 

. f) I-I' f) 
1\1 = {:J hm ~- -- ~-H---1- ln Zo (K1K2 ; H') 

Jl.~O 0 f-/1 U 

.where 

is the spontaneous magnetization of a ferromagnetic plane square lattice in which 

there exist two kinds of coupling parameters kT · K1 and kT · K2 in the way men­

tioned above. The function f(T; r2r1) is that which is given in (2 ·· 5'). The 

behaviour of the temperature dependence of 1\1o is supposed to be similar to 

the usual simple ferromagnet and therefore to that of AJ4, which is given in 

(2 · 5"). It is therefore concluded that the spontaneous magnetization in this 

case also has the same features as in the model discussed in I. 

§ 3. Formulation in the case of variable arrangement of atoms 

In this section, we investigate the model in which every white point is 

always occupied by an A atom but any black point is occupied not by a definite 

atom but by either a B atom or a C atom. The total number of black points 

is 2N, 2N· (1- P) points of which are occupied by B atoms and 2"N'JY points 

by C atoms. We make use of the notation fli and Yi for the spin variables of 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/35/4/600/1874795 by U

.S. D
epartm

ent of Justice user on 16 August 2022



604 M. Eiattori 

atoms on white points and those on black points respectively, where the j's denote 

the sites of black points. The grand partition function of this system, when ex­

posed to a magnetic field H, is written as 

E= ~{t .. i} ~{v1} exp [- J'~Cii)/J.iVJ- H1 · (~dli + ~1v1) + g:~1v/], 

(3 ·1) 

where ~{v .} denotes summation over all range of variables on the black points, 
J 

VIZ. J)j = rb r2, - r1 and - r2; the other notation, except ~' has the same meanings 

as in § 2. The parameter g: introduced here should be determined from the 

equation 

(~1v/) = :g: ·ln E 

=r12 ·2N(1-P) +r22·2NP. (3·2) 

The condition (3 · 2) has been derived from the fact that the total number of 

B atoms and that of C atoms are definitely given. If the summation over {v1} 

IS carried out first in the calculation of the grand partition function, Eq. (3 ·1) 

IS reduced to the form 

(3·3) 

where Z4 (K; L) is the partition function in a magnetic field kT · L/ (3 of the 

plane square lattice with the nearest neighbouring exchange coupling kT · K, 
and use has been made of the abbreviations 

and 

L = H1 -ln D1+ ln D2 . 

The new parameters introduced in (3 · 4) are defined by 

and 

D1 = exp C~r22 ) cosh (2J' + H1) r2 + exp (g:r12) cosh (2J' + H1) r1, 

D2 = exp Cfr22) cosh (2J'- H1) r2 + exp Cfr12) cosh (2J'- H1) r1 

(3. 4) 

(3. 4') 

E is an even function of l-!1 , as is easily seen from Eq. (3 ·1). On the other 

hand E is not an odd function of f. Therefore 8 ln E/8f is an even function 

of H 1 , and not an even function of f, and it can be concluded from Eq. (3 · 2) 

that ~ should be an even function of H 1 • It is then clear from Eq. (3 · 4) that 

the parameters R and K are also even functions of EJ1. Making use of these 
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lsinff Spin Models o/ Complex Ferri·11agnetism 

facts, we can express the spontaneous :magnetization as 

where 

M4 (K) =lim _ _J_ ln Z4 (K; L). 
ll-?o a L 

605 

(3·5) 

The parameter ~ which has appeared in (3 · 5) should be determined by (3 · 2) 
in which r/1 is put equal to zero. It is convenient for later discussions to 
introduce a variable 

x=exp(-2K) = (X+1)/(Xcosh2J'r2+cosh2J'rl), (3·6) 

where K is the value of the expression (3 · 4) at I-11 = 0 and 

X= exp [ ~ · ( r z 
2 

- r 12
) ] 

in which ~ is also regarded as evaluated at H 1 = 0. After some calculation Eq. 
(3 · 2), which determines x, is reduced at H'1 = 0 to the form 

2 (1- P) I (1- x· cosh 2J'r2) + 2P/ (1- x· cosh 2J'rt) = 1 + E(x), (3 ·7) 

where E(x) = (1/2N) · (8 ln Z 4 (K) jfJK) is the correlation between nearest neigh­
bouring spins of the plane square lattice with the exchange coupling parameter 
(kT · K) and has already been given by Onsager ;2) 

E(x) = ( {!~ ) {i + il;~i:';t,f.') -~~1'-t/i= ~>-;;-;, ,;} , (3. 7') 

where 

2 _ 16 (x- x 3
) 

2 w - -··-----·- --------~-----------·-
(1 + x2)4 

(3·7") 

As X must be positive, we can see from (3 · 6) that x can take values between 
[cosh 2J'r2] -l and [cosh 2J'r1] -l both of which are smaller than unity, and K 
must be positive at H1 = 0. Thus the M4 (K) appearing in (3 · 5) is the spon­
taneous magnetization of the ferromagnetic plane square lattice with the nearest 
neighbouring exchange coupling (kT · K) and has been calculated exactly by 
Yang ;2

) 

M (K) = N[- (!_±·!2) . (1- 6x2 + x4) t;2Jlf4 
4 (1-x2)2 

We shall give here an explicit expression for the spontaneous magnetization 
given by formula (3 · 5). It can be rewritten as 

(3 ·8) 

. where 
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and 

.1\1. l-lattori 

(3·9) 

D (2J'11; a)= [cosh 2J'11a- cosh 2J'11J - 1· [2x{cosh 2J'11a sinh 2J'11 

-a sinh 2J'11a cosh 2J'11} + 2 {a sinh 2J'11a 

(3. 10) 

in which x is determined from (3 · 7) and can be proved to depend only on 

2J'I1 and the ratio 12/11 if the parameter P is fixed. This ratio l2/l1 has 
been abbreviated as a. 

~ 4<. Calculation 

The temperature dependence of the spontaneous magnetization (3 · 8) is 
largely influenced by that of the factor F(11; 2J'I1 ; a) defined by (3 · 9) and 
(3 ·10). We hereafter assume, without loss of generality, that 12 is larger than 
lr, that is a> 1, and investigate the behaviour of the magnetization for all pos­
sible values of 11 and of a. We must determine x which appears in (3 ·10) 
as a function of 2J'I1 and a from (3 · 7), but it is difficult to solve exactly, and 
we inspect the properties of the factor F in two extreme temperature regions, 
viz. at nearly vanishing temperatures and at the Curie temperature which is 
determined from (3 ·7) by setting x= v2 -1 and E= 1/v2. We hereafter 
assume P= 1/2 which corresponds to the case that the total number of B atoms 
and that of C atoms are equal to each other and to N. 
i) Near zero temperature; x~l. Expanding E(x) in terms of x, we find 
E(x) = 1 + 0 (x4

) and x= x 0 + 0 (x0
5

) from (3 · 7), where 

xa =(cosh 2J'11a +cosh 2J'11) I (2 cosh 2J'11a ·cosh 2J'11). (4 ·1) 

If we insert x= x 0 in (3 ·10), the factor F which is defined in (3 · 9) becomes 

F= 1-11 [a tanh 2J'11a +tanh 2J'11J, (4·2) 

which is an increasing function of temperature and is the same as that in (2 · 5') 
which corresponds to the case like the Verwey order . in a real ferrimagnet 
shown in Fig. 1. When P is not equal to 1/2, we can easily see that the factor 
corresponding to ( 4 · 2) is 1-2PI 2 tanh 2J' 12- 2 ( 1- P) 11 tanh 2J' 11 . In the limit 
of vanishing temperature, we find 

(4·3) 

which shows that the spins of A atoms on white points and the spins of B and 
C atoms on black points are always antiparallel each other at zero temperature. 
ii) At the Curie temperature: \Ve denote the value of 2J'11 at the Curie temper­
ature by 2J' ell ; this is determined from (3 · 7), in terms of a, by setting 

x= 1/2-1 and E(x) = 1/1/2, and we get 
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Ising $pin Nfodels of Complex Ferrimagnetism 607 

cosh 2Jc'r1a = (cosh 2Jc'rl + 1) I (cosh 2Jc'r1 -1). (4· 4) 

The function D which is defined by (3 ·10) is therefore a function only of a 
-at the Curie temperature and is denoted as De (a), this function can be written 
as 

X {1- ( y2 --1) cosh2 J/r1}]. (4·5) 

The function Dc(a)-1 takes the value (1/2+1) 112/1/8~;'0.55 at the limit a->1 
and decreases like (2+ v2)/4a~0.85ja as a becomes large. 

Y, 
t 

0.4 

0.3 

0.2 

0.1 

0 
I 

(!) 

Fig. 2. Dependence . of the functions 
Dc(a)-1 and D 0(a)-1 on a; the 

broken line and the solid line re-
present. De -J and D 0- 1 respectively. 

The value of Dc(a) - 1 and the value 
Do( a) - 1 = 1/ (1 +a) of D at. the temperature 
zero are calculated numerically and the 
curves which show the dependence of 
these values on a are drawn :[n Fig. 2. 
The value of IJc·-l and that of Do - 1 coin­

cide at a= ao where ao is nearly equal to 
4. We divide the r1- a plane into several 
regions shown in· Fig. 2. If a is smaller 

than ao, we see that De is always smaller 
than D 0 and therefore the value of F at 
the Curie temperature is larger than that 
at zero temperature. If a is larger than 
ao, then the value of F at the Curie 
temperature is smaller than that at zero 
temperature. 

Using these facts, and recalling that the value of F near zero temperature 
increases with rising temperature, we can draw schematic curves of F cor­
responding to the various regions in Fig. 3. The spontaneous magnetization is 
the absolute value of the expression (3 · 8) which is proportional to the pro-

. duct of F thus obtained with M 4 (x). We can easily prove, by taking deriva­
tives with respect to temperature on both sides of (3 · 7), that x is.an increasing 
function of temperature and therefore M4 (x) is a decreasing function of temper­
atures. The spontaneous magnetization in the various regions is drawn schema­
tically in Fig. 4. We find several types of magnetization-temperature-curves, 
some of which have different features from those found in I, viz. the magnetiz­
ations in the cases of (I'), (III') and the boundary between (I') and (III'). 
The types other than these are essentially the same as those which have already 
been found in I. 
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608 M. Hattori 

F F 
F t t t 

0 
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0 
~r ---r 

' 
(I) 

(I )b 

F F 
t t 

0 0 0 
-T -r ~r 

(II) (II') (ill) 

F F F 
t t t 
0 0 0 -T ---o>-J -T 

(ill') Boundary between Boundary between 
(IT) and (ill) ( r'l and (ill) 

F F 

t t 

0 0 
-T ~r 

Boundary between Boundary between 
(I) and (ill) (II') and ( m') 

Fig. 3. Dependence of the functions F on temperature in various regions in Fig. 2. 

§ 5. Ordering of B and C atoms in the suhlattice L 2 

The ordering of B and C atoms in the sublattice L2 will be investigated in 
this section. We divide the lattice L2 consisting of the black points in Fig. 1 
into two sublattices as shown in Fig. 5, i.e. one indicated by black squares and 
the other by black triangles. We denote the spin variables of atoms on the 
white points, those on the black squares and those on the black triangles by f.Li 

v1 and Az respectively. A white circle is always occupied by an A atom, and 
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IMI 

t 

IMI 
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(II) and (III) 

0 c___ __ __j_ 0 '-------''-----
_,.._ T 

Boundary between 
(I) and (III) 

_, T 

Boundary between 
(:II ') a n d ( ill') 

IMI 

t 

IMI 

t 

IMI 
t 

_, T 

(ill) -T 

-T 

Boundary between 
(I') and (ill') 

Fig. 4. Dependence of the magnetizations on temperature in respective regions in Fig. 2. 

609 

the black squares and .black triangles are each occupied by either a B or a C 

atom. 
If we assume by the use of a sort of long range order parameter s that 

the black squares are occupied by N· (1 + s) /2 B atoms and N· (1- s) /2 C atoms 

in all, and all the black triangles by N· (1- s) /2 B atoms and N· (1 + s) /2 C 

atoms, the average value (i) of s2 is calculated first. It can be calculated 

using the equation 
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610 !vi. Hattori 

I 'H'' 
......, ' (5 ·1) 

where 

(5·2) 

The parameter ~ is determined from (3 · 2) or (3 · 7), that is to say, from the 

Fig. 5. Sublattice with the 
black squares and that 
with the black triangles. 

condition that the total number of B atoms and 
that of C atoms are both equal to N. The sum­

mations ~{" .} and z={:\} imply respectively summa-
1. l 

tion over all ranges of variables on the black 
squares and on the black triangles, and therefore 
each of the JJ/s and J..z's can take four values ± r1 
and ± r 2 • The other notation means the same 
as before. By making use of the identity 

ln E', 

we can obtain, for an infinitely large N, the equation 

In which the right-hand side expression is nothing but( (1/N) · z=jv/)- ( (1/N) · 
z=zA1

2
), and Eq. (5 ·1) can therefore be rewritten as follows : 

(5 ·3) 

Equation (5 · 3) is always valid whatever couplings exist between any pair of spins, 
because in the proof of (5 · 3) use has not been made of any special form of 
coupling. Equation (5 · 3) is reduced to the form (s2

) = (s)2 where s is the long 
range order parameter introduced above. It is required .that (s) should vanish 
In the present model because the sublattice composed of black squares and that 
of black triangles are equivalent. This fact is based upon quite the same state 
of affairs as in the theory of a diatomic alloy. On the basis of the equation 
(s2

) = (s)2
, (s2

) equals zero, too. Accordingly an arrangement shown in Fig. 1 
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Ising Spin lt1odels of Comj:>lex Ferrimagnetism 611 

like the Verwey order cannot be realized in the present model. 
We next consider the correlation between a black square and a black 

triangle which are connected with broken lines in Fig. 5. We compare the 
probability that such pair is occupied by similar atoms with the probability that 
it. is occupied by dissimilar atoms. Let the symbols [BB], [CC], [BC] and 

. [CB] · denote the total numbers of the above mentioned pairs, which are occupi­
ed by two B atoms, two C atoms, a B and a C atoms and a C and a B atoms 
respectively. As already shown in this section, all the black squares are always 
occupied by N/2 B atoms and N/2 C atoms and also all the black triangles by 
N/2 B atoms and N/2 C atoms. There are the following relations among the 
numbers [BB], [CC], [BC] and [CB]: 

and 

N_ = [BB] + [BC], 
2 

~ = [CB] + [CC], 

N 
= [T~B] + [CB] 

2 

N···= [BC] + [CC]. 
2 

These relations are reduced to the following : 

[BB] = [CC], [BC] = [CB], 

N = [BB] + [CC] + [BC] + [CB]. (5. 4) 

We see from (5·4) that if 2<[BB])/N is lager than 1/2, the probability that 
a pair of sites connected by an oblique broken line in Fig. 5, of which one is 
a black square and the other is a black triangle, is occupied by similar atoms 
is larger than the probability that this pair is occupied by dissimilar atoms, and 
if 2< [BB]) / N is smaller than 1/2, then the state of affairs is reversed. To see 
whether 2<[BB])/N is larger or smaller than 1/2, it is useful to consider the 
average value <L:;(jl)v/7-}) of L:;(jl)v/A.z2 in which L:;Ull denotes the. summation 
over all the above mentioned pairs, because we have the relation 

This average value can be calculated from the equation 

-~Nl--<L;(j0 v/l,z 2) = _} __ lim ( -~-) ln E, 
N '7~0 ar; . 

where 

(5·5) 
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(5 ·6) 

The parameter ~ is similar to the one introduced in § 3, which is determined 
from the condition that the total number of B atoms and that of C atoms are 
both equal to N. If the summations over ::z={vi} and ::z=p.,L} are carried out first 
in the calculation of the right-hand side of Eq. (5 · 6), the grand partition func­
tion E is reduced to the following form : 

where 

E= A N:E{p) exp [Kl~(in)JliJln + K2~(i.~)JliJls] 

=A NZt (K1K2)' 

is the partition function of the triangular lattice 
with the coupling parameters kT · K1 on both the 
vertical and horizon tal bonds, and kT · K 2 on the 
oblique bond as shown in Fig. 6. It can also be 
regarded as the partition function of the plane 
square lattice with a second nearest neighbour 
coupling parameter kT · K 2 as well as the nearest­
neighbour coupling parameter kT · K1. Use has 
been made of the abbreviations 

Fig. 6. The triangular lattice 
with the coupling para­
meters kT·K1 on the 
vertical and horizontal 
bonds, and kT · K 2 on 
the oblique bond. and 

1 1 K1 = ·· · - ln P1 - ln Pz 
4 4 

where 

and 

Kz = _}- ln P1 + ~- ln Pz- _l_ ln Ps 
4 4 2 ' 

P1 = 4 {exp [r;rz4 + 2~Yz2] · cosh2 2J'rz 

+ 2 exp [r;r/r12 + ~ · Cr/ + Y12
)] ·cosh 2J'rz cosh 2J'rl 

+ exp [r;r14 + 2~r/] · cosh2 2J'rl}, 

Pz = 4 { exp [r;r/ + 2~rz2] + 2 exp [r;rz2Y12 + ~ · Cr/ + Y1 2
)] 

+ exp [IJY14 + 2~r12]} 
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Pa = 4 {exp ['lJr24 + 2~r22]. cosh 2J'r2 + exp ['lJr22rJ2 + ~. Cr22 + r12) J 

x (cosh 2J'r2 +cosh 2J'rl) + exp ['iJr14 + 2~r12J · cosh2J'rl}. 

By using the fact that the parameter K 2 tends to zero as 'lJ---'>0, we can rewrite, 
\Vithout knowledge of the explicit expression for the partition function Zt (K1K2), 
Eq. (5 · 5) as follows : 

__?( [B!_3_l~_ 
N 

~-- = [(~-~~ ~~-()~~~[~_r_2)_(1_=_:! ~()~11 __ ~{~1')) ]_~ 
2 2x 2 ·[cosh 2J'r2- cosh 2J'r1J 2 

(5 ·7) 

where (f-1/1") denotes the correlation between a pair of second nearest neigh­
bouring spins in the plane square lattice L1 which interacts with the coupling 
parameter (kT · K) expressed in terms of K given in (3 · 4), and (f-1/1') is equal 
to the E(x) which appears in (3 · 7), that is to say, it is the correlation be­
tween a pair of nearest neighbouring spins in the lattice L 1 • For (!lf-1 11

) and 
(/1/1') Kaufman and Onsager found the expressions 

< > ( 1+x
2 

)' < ') ( 1+x
2 

)
2 

[ 1 1 \"";
2 

----------- J !lf-1" = ----- 2 - f-1/1 - -
2 

• -- - -~- v1- W 2 sin\o dcp 
1-x , 1-x 2 n o 

and 

(f-1/1') = E(x), 

where E(x) and W 2 were given respectively in (3 · 7') and (3 · 7"). The 
parameter x is determined from Eq. (3 · 7) at P= 1/2. It is seen that at low 
temeratures, the right-hand side of (5 · 7) is positive and tends to zero at vanish­
ing temperatures. At high temperatures, the right-hand side of (5 · 7) is also 
positive and tends to zero as the temperature rises. At the Curie temperature, 
by setting x=l/2-1, (/Lf-1')=1/t/2 and (f-Lf-1")=2/n and using Eq. (4·4), we 
obtain from (5 · 7) the following equation: 

The right-hand side of (5 · 8) is an increasing function of a and it can be shown 
that 

2 1 1 - ( 4 ) . 0. 04 7 O<--([BB])r=r -----<----(3-21/2) · - -1 ~ -. 
N c 2 2 n 2 

The probability that a pair of sites connected with a broken line in Fig. 5 is 
occupied by similar atoms is at most about ten percent larger than the proba­
bility that it is occupied by dissimilar atoms : 
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~ 6. Conclusion 

The spontaneous magnetization and the ordering of atoms m the decorated 
plane square lattice have been investigated. In the case that an arrangement of 
atoms is fixed like the perfect Verwey ordering in a real ferrimagnet, which is 
shown in Fig. 1, and in some rather more general cases which have been in­
vestigated in ~ 2, the types of magnetization--temperature--curve are essentially 
the same as those found in I where all sites of the decoration lattice L 2 were 
exclusively occupied by a single s,art of atom. When a decoration point indi­
cated by a black circle in Fig. 1 is occupied by either a B atom or a C stom, 
and the total number of B atoms and that of C atoms are respectively given, 
there appears several types of temperature dependence of the magnetization ac­
cording to the relative magnitudes of the magnetic moments of the three kinds 
of atoms, some of which are new types, as shown in Fig. 4; the new types 
correspond to the cases that the numerical relation between y 1 and a is repre­
sented by the regions (I'), (III') and the boundary between (I') and (III'). 

Dividing the lattice L2 into two sublattices as shown in Fig. 5, we can con­
clude, in the present model, that all the black squares are occupied by B atoms 
and C atoms whose numbers are equal to each other, and that also in the sub­
lattice of black triangles, the total number of B atoms and that of C atoms are 
equal to each other. The probabilities that a pair of sites connected with a 
oblique broken line in Fig. 5 is occupied respectively by similar atoms and by 
dissimilar atoms are nearly equal to each other both near zero temperature and 
at high temperatures. At the Curie temperature, the probability of occupation 
by similar atoms is at most about ten percent larger than that of occupation by 
dissimilar atoms. The explicit expression in this case is given in (5 · 7). 
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