isl: An Integer Set Library for the Polyhedral Model

Sven Verdoolaege

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Team ALCHEMY, INRIA Saclay, France
Sven.Verdoolaege@\{cs.kuleuven.be,inria.fr\}
September 15, 2010

Outline

(1) Introduction
(2) Internals
(3) Operations

- Set Difference
- Set Coalescing
- Parametric Vertex Enumeration
- Bounds on Quasi-Polynomials
(4) Conclusion

Outline

(2) Internals
(3) Operations

- Set Difference
- Set Coalescing
- Parametric Vertex Enumeration
- Bounds on Quasi-Polynomials

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating sets and relations of integer tuples bounded by affine constraints \leadsto finite unions of projections of parametric lattice polytopes

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating sets and relations of integer tuples bounded by affine constraints
$\leadsto \rightarrow$ finite unions of projections of parametric lattice polytopes

- very similar to Omega and Omega+ libraries
- similar to polymake, but different focus/philosophy
- integer values instead of rational values
- designed for the polyhedral model for program analysis and transformation (but also useful for other applications)
- library ("calculator" interface is available too) \Rightarrow embeddable in a compiler
- works best on sets of small dimensions (up to about 10; some operations also work for higher dimensions)
- self-contained (apart from GMP)
- closed representation
- objects may be sets or relations (or piecewise quasipolynomials)

Examples of Sets and Relations

$$
S=\{(x, y) \mid 1 \leq y \leq x \leq 5\}
$$

Examples of Sets and Relations

$$
S=\{(x, y) \mid 1 \leq y \leq x \leq 5\}
$$

$R_{1}=\{(x, y) \rightarrow(y, x)\}=\left\{(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \mid x^{\prime}=y \wedge y^{\prime}=x\right\}$

Examples of Sets and Relations

$$
S=\{(x, y) \mid 1 \leq y \leq x \leq 5\}
$$

$$
\begin{aligned}
& R_{1}=\{(x, y) \rightarrow(y, x)\}=\left\{(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \mid x^{\prime}=y \wedge y^{\prime}=x\right\} \\
& R_{2}=\left\{(x, y) \rightarrow\left(x, y^{\prime}\right) \mid x \geq 2 \wedge 1 \leq y^{\prime} \leq 3\right\}
\end{aligned}
$$

Sets and Relations in the Polyhedral Model

$$
\begin{aligned}
& \text { for (i = 0; i < n; ++i) } \\
& \text { for (} \mathrm{j}=0 \text {; } \mathrm{j} \text { < } \mathrm{i} \text {; ++j) } \\
& f(a[j][i+j][2 * i]) ;
\end{aligned}
$$

Typical sets and relations

- Iteration domain
\Rightarrow set of all possible values of the iterators

$$
n \rightarrow\{(i, j) \mid 0 \leq i<n \wedge 0 \leq j<i\}
$$

- Access relation
\Rightarrow maps iteration vector to array index

$$
\{(i, j) \rightarrow(j, i+j, 2 i)\}
$$

Comparison to Related Libraries

- Compared to double description based libraries (PolyLib, PPL)
- All operations are performed on constraints

Reason: objects in target application domain usually have few constraints, but may have many vertices

- Full support for parameters
- Built-in support for existentially quantified variables
- Built-in support for relations
- Focus on integer values

Comparison to Related Libraries

- Compared to double description based libraries (PolyLib, PPL)
- All operations are performed on constraints

Reason: objects in target application domain usually have few constraints, but may have many vertices

- Full support for parameters
- Built-in support for existentially quantified variables
- Built-in support for relations
- Focus on integer values
- Compared to Omega and Omega+
- All operations are performed in arbitrary integer arithmetic using GMP
- Different way of handling existentially quantified variables
- Named and nested spaces
- Parametric vertex enumeration \Rightarrow useful for the barvinok counting library and for computing bounds
- Support for piecewise quasipolynomials
\Rightarrow results of counting problems

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets iscc: interactive isl calculator (included in barvinok distribution)

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets iscc: interactive isl calculator (included in barvinok distribution)

Future work:

- remove dependence on PolyLib and NTL

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets iscc: interactive isl calculator (included in barvinok distribution)

Future work:

- remove dependence on PolyLib and NTL

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations CLooG: generates code to scan elements in parametric affine sets iscc: interactive isl calculator (included in barvinok distribution)

Future work:

- remove dependence on PolyLib and NTL
- merge barvinok into isl

Outline

(1) Introduction
(2) Internals
(3) Operations

- Set Difference
- Set Coalescing
- Parametric Vertex Enumeration
- Bounds on Quasi-Polynomials

Internal Structure

Internal Structure

Internal Representation

$S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$
$R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$

- "basic" types: "convex" sets and maps (relations)
- equality + inequality constraints
- parameters s
- (optional) explicit representation of existentially quantified variables as integer divisions
\Rightarrow useful for aligning dimensions when performing set operations (e.g., set difference)
\Rightarrow can be computed using PILP

Internal Representation

$S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$
$R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$

- "basic" types: "convex" sets and maps (relations)
- equality + inequality constraints
- parameters s
- (optional) explicit representation of existentially quantified variables as integer divisions
\Rightarrow useful for aligning dimensions when performing set operations (e.g., set difference)
\Rightarrow can be computed using PILP
- sets and maps
\Rightarrow (disjoint) unions of basic sets/maps

Internal Representation

$S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$
$R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}$

- "basic" types: "convex" sets and maps (relations)
- equality + inequality constraints
- parameters s
- (optional) explicit representation of existentially quantified variables as integer divisions
\Rightarrow useful for aligning dimensions when performing set operations (e.g., set difference)
\Rightarrow can be computed using PILP
- sets and maps
\Rightarrow (disjoint) unions of basic sets/maps
- union sets and union maps
\Rightarrow unions of sets/maps in different spaces

Parametric Integer Linear Programming

$$
R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \leqslant \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric Integer Linear Programming Example

$R=\{x \rightarrow y \mid 3 y \geq 31-x \wedge 2 y \leq 29-x \wedge 3 y \leq 38-x \wedge 2 y \geq 26-x\}$

Parametric Integer Linear Programming Example

$R=\{x \rightarrow y \mid 3 y \geq 31-x \wedge 2 y \leq 29-x \wedge 3 y \leq 38-x \wedge 2 y \geq 26-x\}$ lexmin $R=\{x \rightarrow y \mid(x \leq 25 \wedge x \geq 16 \wedge 3 y \geq 31-x \wedge 3 y \leq 33-x \wedge 2 y \leq$ $29-x) \vee(3 y \leq 38-x \wedge x \leq 15 \wedge x \geq 2 \wedge 2 y \geq 26-x \wedge 2 y \leq 27-x)\}$

Parametric Integer Linear Programming

$$
R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \leqslant \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric Integer Linear Programming

$$
R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \leqslant \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer linear programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Linear Programming

$$
R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \leqslant \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer linear programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

Parametric Integer Linear Programming

$$
R(\mathbf{s})=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A_{1} \mathbf{x}_{1}+A_{2} \mathbf{x}_{2}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Lexicographic minimum of R :

$$
\operatorname{lexmin} R=\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in R \mid \forall \mathbf{x}_{2}^{\prime} \in R\left(\mathbf{s}, \mathbf{x}_{1}\right): \mathbf{x}_{2} \leqslant \mathbf{x}_{2}^{\prime}\right\}
$$

Parametric integer linear programming computes lexmin R in the form

$$
\begin{aligned}
\operatorname{lexmin} R=\bigcup_{i}\left\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} \in \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}} \mid \exists \mathbf{z}^{\prime}\right. & \in \mathbb{Z}^{e^{\prime}}: A_{i} \mathbf{x}_{1}+B_{i} \mathbf{s} \geq \mathbf{c}_{i} \wedge \\
\mathbf{z}^{\prime} & =\left\lfloor\frac{P_{i} \mathbf{x}_{1}+Q_{i} \mathbf{s}+\mathbf{r}_{i}}{m}\right\rfloor \wedge \\
\mathbf{x}_{2} & \left.=T_{i} \mathbf{x}_{1}+U_{i} \mathbf{s}+V_{i} \mathbf{z}^{\prime}+\mathbf{w}_{i}\right\}
\end{aligned}
$$

- explicit representation of existentially quantified variables
- explicit representation of range variables

Technique: dual simplex + Gomory cuts

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    Write(a[i]);
```


PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    Write(a[i]);
```


PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    Write(a[i]);
```

Access relations:

$$
\begin{aligned}
& A_{1}=\{(i, j) \rightarrow(i+j) \mid 0 \leq i<N \wedge 0 \leq j<N-i\} \\
& A_{2}=\{(i) \rightarrow(i) \mid 0 \leq i<N\}
\end{aligned}
$$

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    Write(a[i]);
```

Access relations:
$A_{1}=\{(i, j) \rightarrow(i+j) \mid 0 \leq i<N \wedge 0 \leq j<N-i\}$
$A_{2}=\{(i) \rightarrow(i) \mid 0 \leq i<N\}$
Map to all writes: $R^{\prime}=A_{1}^{-1} \circ A_{2}=\left\{(i) \rightarrow\left(i^{\prime}, i-i^{\prime}\right) \mid 0 \leq i^{\prime} \leq i<N\right\}$

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    Write(a[i]);
```

Access relations:
$A_{1}=\{(i, j) \rightarrow(i+j) \mid 0 \leq i<N \wedge 0 \leq j<N-i\}$
$A_{2}=\{(i) \rightarrow(i) \mid 0 \leq i<N\}$
Map to all writes: $R^{\prime}=A_{1}^{-1} \circ A_{2}=\left\{(i) \rightarrow\left(i^{\prime}, i-i^{\prime}\right) \mid 0 \leq i^{\prime} \leq i<N\right\}$
Last write: $R=\operatorname{lexmax} R^{\prime}=\{(i) \rightarrow(i, 0) \mid 0 \leq i<N\}$

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for ( \(\mathrm{j}=0\); j < N - i ; ++j)
        \(a[i+j]=f(a[i+j]) ;\)
for (i = 0; i < N; ++i)
    Write(a[i]);
```

Access relations:
$A_{1}=\{(i, j) \rightarrow(i+j) \mid 0 \leq i<N \wedge 0 \leq j<N-i\}$
$A_{2}=\{(i) \rightarrow(i) \mid 0 \leq i<N\}$
Map to all writes: $R^{\prime}=A_{1}^{-1} \circ A_{2}=\left\{(i) \rightarrow\left(i^{\prime}, i-i^{\prime}\right) \mid 0 \leq i^{\prime} \leq i<N\right\}$
Last write: $R=\operatorname{lexmax} R^{\prime}=\{(i) \rightarrow(i, 0) \mid 0 \leq i<N\}$
In general: impose lexicographical order on shared iterators

Outline

(1) Introduction
(2) Internals
(3) Operations

- Set Difference
- Set Coalescing
- Parametric Vertex Enumeration
- Bounds on Quasi-Polynomials

Supported Operations

- Intersection

Supported Operations

- Intersection \#\#\#
- Union

Supported Operations

- Intersection $\# \# \#$
- Union 非
- Set difference

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{gathered}
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right)
\end{gathered}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\}
$$

$$
\begin{aligned}
S_{1} \backslash S_{2} & =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right) \\
& =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{aligned}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{aligned}
S_{2}(\mathbf{s}) & =\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2} & =\bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid \neg\left(\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right)\right\}\right) \\
= & \bigcup_{i}\left(S_{1} \cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right) \\
= & \bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
& \left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{aligned}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{aligned}
& S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
& S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
&\left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{aligned}
$$

isl Operation: Set Difference

$$
S(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \exists \mathbf{z} \in \mathbb{Z}^{e}: A \mathbf{x}+B \mathbf{s}+D \mathbf{z} \geq \mathbf{c}\right\}
$$

Set difference $S_{1} \backslash S_{2}$

- no existentially quantified variables

$$
\begin{gathered}
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \mid \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \geq c_{i}\right\} \\
S_{1} \backslash S_{2}=\bigcup_{i}\left(S_{1} \cap \bigcap_{j<i}\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{j}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{j}, \mathbf{s}\right\rangle \geq c_{j}\right\}\right. \\
\left.\cap\left\{\mathbf{x} \mid\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle \leq c_{i}-1\right\}\right)
\end{gathered}
$$

- with existentially quantified variables
\Rightarrow compute explicit representation

$$
S_{2}(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Z}^{d} \left\lvert\, \bigwedge_{i}\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+\left\langle\mathbf{b}_{i}, \mathbf{s}\right\rangle+\left\langle\mathbf{d}_{i},\left\lfloor\frac{\langle\mathbf{p}, \mathbf{x}\rangle+\left\langle\mathbf{q}_{i}, \mathbf{s}\right\rangle+r}{m}\right\rfloor\right\rangle \geq c_{i}\right.\right\}
$$

Supported Operations

- Intersection $\# \#$
- Union 非
- Set difference

Supported Operations

- Intersection \#\#\#
- Union
\#\#\#\#
- Set difference \#\#
- Closed convex hull ("wrapping", FLL2000)

Supported Operations

- Intersection $\# \#$
- Union
\#\#\#\#
- Set difference \#\#\#
- Closed convex hull ("wrapping", FLL2000)
- Coalescing

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

$$
S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

PolyLib way:
(1) Compute $H=$ conv.hull $\left(S_{1} \cup S_{2}\right)$
(2) Replace $S_{1} \cup S_{2}$ by $H \backslash\left(H \backslash\left(S_{1} \cup S_{2}\right)\right)$

isl Operation: Set Coalescing

After many applications of projection, set difference, union, a set may be represented as a union of many basic sets \Rightarrow try to combine several basic sets into a single basic set

$$
S_{1}=\{\mathbf{x} \mid A \mathbf{x} \geq \mathbf{c}\} \quad S_{2}=\{\mathbf{x} \mid B \mathbf{x} \geq \mathbf{d}\}
$$

PolyLib way:
(1) Compute $H=$ conv.hull $\left(S_{1} \cup S_{2}\right)$
(2) Replace $S_{1} \cup S_{2}$ by $H \backslash\left(H \backslash\left(S_{1} \cup S_{2}\right)\right)$
isl way:
(1) Classify constraints

- redundant: min $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: max $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

isl Operation: Set Coalescing

(1) Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise

isl Operation: Set Coalescing

(1) Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$ $\Rightarrow S_{2}$ can be dropped

isl Operation: Set Coalescing

(1) Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
\Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(1) Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid) \Rightarrow replace S_{1} and S_{2} by basic set with all valid constraints

isl Operation: Set Coalescing

(1) Classify constraints

- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(1) single adjacent pair of an inequality (S_{1}) and an equality $\left(S_{2}\right)$
+ other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
$\Rightarrow \operatorname{drop} S_{2}$ and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(1) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$

+ other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
\Rightarrow drop S_{2} and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(1) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$

+ other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
\Rightarrow drop S_{2} and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(1) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$

+ other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
\Rightarrow drop S_{2} and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(1) single adjacent pair of an inequality (S_{1}) and an equality (S_{2})

+ other constraints of S_{1} are valid
+ constraints of S_{2} valid for facet of relaxed inequality
\Rightarrow drop S_{2} and relax adjacent inequality of S_{1}

isl Operation: Set Coalescing

- Classify constraints
- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(4) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(5) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + other constraints of S_{1} are valid
+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + other constraints of S_{1} are valid

+ inequality and equality can be wrapped to include union
\Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

- Classify constraints
- redundant: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over remaining constraints
- valid: $\min \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle>c_{i}-1$ over S_{2}
- separating: $\max \left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle<c_{i}$ over S_{2} special cases:
\star adjacent to equality: $\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle=c_{i}-1$ over S_{2}
\star adjacent to inequality: $\left\langle\left(\mathbf{a}_{i}+\mathbf{b}_{j}\right), \mathbf{x}\right\rangle=\left(c_{i}+d_{j}\right)-1$ over S_{2}
- cut: otherwise
(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(4) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(5) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(6) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(6) single adjacent pair of an inequality (S_{1}) and an equality (S_{2}) + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality (S_{2}) + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(6) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

isl Operation: Set Coalescing

(2) Case distinction
(1) non-redundant constraints of S_{1} are valid for S_{2}, i.e., $S_{2} \subseteq S_{1}$
(2) no separating constraints and cut constraints of S_{2} are valid for cut facets of S_{1} (similar to BFT2001)
(3) single pair of adjacent inequalities (other constraints valid)
(9) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + constraints of S_{2} valid for facet of relaxed inequality
(0) single adjacent pair of an inequality $\left(S_{1}\right)$ and an equality $\left(S_{2}\right)$ + inequality and equality can be wrapped to include union
(0) S_{2} extends beyond S_{1} by at most one and all cut constraints of S_{1} and parallel slices of S_{2} can be wrapped to include union \Rightarrow replace S_{1} and S_{2} by valid and wrapping constraints

Supported Operations

- Intersection \#\#\#
- Union
\#\#\#\#
- Set difference \#\#\#
- Closed convex hull ("wrapping", FLL2000)
- Coalescing

Supported Operations

- Intersection $\# \#$
- Union
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization

Supported Operations

- Intersection 莯
- Union
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection

Supported Operations

- Intersection $\#$ \#
- Union
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection

Supported Operations

- Intersection \#\#
- Union
- Set difference
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR)

Supported Operations

- Intersection \#\#
- Union
- Set difference
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR)

Supported Operations

- Intersection \#\#
- Union \#\#
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR) \#
- Integer affine hull (GBR)

Supported Operations

- Intersection \#\#
- Union \#\#
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR)
- Integer affine hull (GBR) 洊
- Transitive closure (approx.)

$$
\{x \rightarrow y \mid 0 \leq x<y \leq 4\}
$$

Supported Operations

- Intersection $\# \#$
- Union \#\#
- Set difference
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR) \#
- Integer affine hull (GBR) 萑
- Transitive closure (approx.) -
- Parametric vertex enumeration

\mathcal{H}-Parametric Polytopes and their Vertices

Polytopes described by hyperplanes that depend linearly on parameters

$$
P(\mathbf{s})=\left\{\mathbf{x} \in \mathbb{Q}^{d} \mid A \mathbf{x}+B \mathbf{s} \geq \mathbf{c}\right\}
$$

Example:

$$
P(N)=\{(i, j) \mid i \geq 1 \wedge i \leq N \wedge j \geq 1 \wedge j \leq i\}
$$

Parametric vertices:

$$
P=\text { conv.hull }\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
N \\
1
\end{array}\right],\left[\begin{array}{l}
N \\
N
\end{array}\right]\right\}
$$

In general: different (active) vertices on different parts of the parameter space (chamber decomposition)

Chamber Decomposition

$$
\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}
$$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
- Turn them into equalities
- Record vertex and activity domain if non-empty

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities
- Chamber decomposition (note: only full-dimensional chambers) PolyLib:
- iterate over all activity domains
- compute differences and intersections with previous activity domains

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities
- Chamber decomposition (note: only full-dimensional chambers) PolyLib:
- iterate over all activity domains
- compute differences and intersections with previous activity domains isl:
- compute initial chamber (intersection of activity domains)
- pick unhandled internal facet
- intersect activity domains that contain facet and other side \Rightarrow new chamber
- repeat while there are unhandled internal facets

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Chamber Decomposition

$\left\{\mathbf{t} \in \mathbb{Q}^{2} \mid-s_{1}+2 s_{2}+t_{1}-2 t_{2} \geq 0 \wedge s_{1}-s_{2}-t_{1}+t_{2} \geq 0 \wedge t_{1} \geq 0 \wedge t_{2} \geq 0\right\}$

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities
- Chamber decomposition (note: only full-dimensional chambers) PolyLib:
- iterate over all activity domains
- compute differences and intersections with previous activity domains isl:
- compute initial chamber (intersection of activity domains)
- pick unhandled internal facet
- intersect activity domains that contain facet and other side \Rightarrow new chamber
- repeat while there are unhandled internal facets

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities
- Chamber decomposition (note: only full-dimensional chambers) PolyLib:
- iterate over all activity domains
- compute differences and intersections with previous activity domains isl:
- compute initial chamber (intersection of activity domains)
- pick unhandled internal facet
- intersect activity domains that contain facet and other side \Rightarrow new chamber
- repeat while there are unhandled internal facets

Parametric Vertex Enumeration

- Vertex computation
- Consider all combinations of d inequalities
\Rightarrow using backtracking and incremental LP solver
- Turn them into equalities
- Record vertex and activity domain if non-empty
\Rightarrow only record for lexmin inequalities
- Chamber decomposition (note: only full-dimensional chambers) PolyLib:
- iterate over all activity domains
- compute differences and intersections with previous activity domains isl:
- compute initial chamber (intersection of activity domains)
- pick unhandled internal facet
- intersect activity domains that contain facet and other side \Rightarrow new chamber
- repeat while there are unhandled internal facets
\Rightarrow much faster than PolyLib; similar to TOPCOM 0.16.2

Supported Operations

- Intersection $\# \#$
- Union \#\#
- Set difference $\# \#$
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR) \#
- Integer affine hull (GBR) \#
- Transitive closure (approx.) =
- Parametric vertex enumeration

Supported Operations

- Intersection \#\#
- Union
- Set difference
- Closed convex hull ("wrapping", FLL2000)
- Coalescing
- Lexicographic minimization
- Integer projection \square
- Sampling (GBR) \#\#
- Scanning (GBR)
- Integer affine hull (GBR) 洊
- Transitive closure (approx.) -
- Parametric vertex enumeration \#\#
- Bounds on quasipolynomials (approx.)

\mathcal{V}-Parametric Polytopes and Bounds on Polynomials

- \mathcal{V}-parametric polytopes

$$
\begin{aligned}
P: D & \rightarrow \mathbb{Q}^{n}: \\
\quad \mathbf{q} & \mapsto P(\mathbf{q})=\left\{\mathbf{x} \mid \exists \alpha_{i} \in \mathbb{Q}: \mathbf{x}=\sum_{i} \alpha_{i} \mathbf{v}_{i}(\mathbf{q}), \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}
\end{aligned}
$$

$D \subset \mathbb{Q}^{r}:$ parameter domain
$\mathbf{v}_{i}(\mathbf{q}) \in \mathbb{Q}[\mathbf{q}]$ arbitrary polynomials in parameters
$\mathbf{v}_{i}(\mathbf{q})$ are generators of the polytope

Note: \mathcal{V}-parametric polytope can be computed from \mathcal{H}-parametric polytope through parameter vertex enumeration + chamber decomposition

\mathcal{V}-Parametric Polytopes and Bounds on Polynomials

- \mathcal{V}-parametric polytopes

$$
\begin{aligned}
& P: D \rightarrow \mathbb{Q}^{n}: \\
& \mathbf{q} \mapsto P(\mathbf{q})=\left\{\mathbf{x} \mid \exists \alpha_{i} \in \mathbb{Q}: \mathbf{x}=\sum_{i} \alpha_{i} \mathbf{v}_{i}(\mathbf{q}), \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}
\end{aligned}
$$

$D \subset \mathbb{Q}^{r}:$ parameter domain
$\mathbf{v}_{i}(\mathbf{q}) \in \mathbb{Q}[\mathbf{q}]$ arbitrary polynomials in parameters
$\mathbf{v}_{i}(\mathbf{q})$ are generators of the polytope

- Bounds on quasipolynomials (CFGV2009)

Input: Parametric polytope P and quasipolynomial $p(\mathbf{q}, \mathbf{x})$
Output: Bound $B(\mathbf{q})$ on quasipolynomial over polytope

$$
B(\mathbf{q}) \geq \max _{\mathbf{x} \in P(\mathbf{q})} p(\mathbf{q}, \mathbf{x})
$$

Note: \mathcal{V}-parametric polytope can be computed from \mathcal{H}-parametric polytope through parameter vertex enumeration + chamber decomposition

Bounds on Quasipolynomials: Example

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{1}+x_{2} \quad P=\operatorname{conv} \cdot h u l l\{(0,0),(N, 0),(N, N)\}
$$

To compute:

$$
M(N)=\max _{\left(x_{1}, x_{2}\right) \in P} p\left(x_{1}, x_{2}\right)
$$

Bounds on Quasipolynomials: Example

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{1}+x_{2} \quad P=\operatorname{conv} \cdot h u l l\{(0,0),(N, 0),(N, N)\}
$$

To compute:

$$
B(N) \geq M(N)=\max _{\left(x_{1}, x_{2}\right) \in P} p\left(x_{1}, x_{2}\right)
$$

Bounds on Quasipolynomials: Example

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{1}+x_{2} \quad P=\operatorname{conv} \cdot h u l l\{(0,0),(N, 0),(N, N)\}
$$

To compute:

$$
B(N) \geq M(N)=\max _{\left(x_{1}, x_{2}\right) \in P} p\left(x_{1}, x_{2}\right)
$$

How? \Rightarrow Bernstein expansion

- Express $\mathbf{x} \in P$ as convex combination of vertices

$$
\begin{gathered}
\left(x_{1}, x_{2}\right)=\alpha_{1}(0,0)+\alpha_{2}(N, 0)+\alpha_{3}(N, N), \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1 \\
p\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\frac{1}{2} N^{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{1}{2} N^{2} \alpha_{3}^{2}+\frac{1}{2} N \alpha_{2}+\frac{3}{2} N \alpha_{3}
\end{gathered}
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

Bounds on Quasipolynomials: Example

$$
p(\boldsymbol{\alpha})=\frac{N^{2}}{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{N^{2}}{2} \alpha_{3}^{2}+\frac{N}{2} \alpha_{2}+\frac{3 N}{2} \alpha_{3} \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

$$
p(\mathbf{x})=\sum B_{j}(\alpha) b_{j}(\mathbf{N})
$$

Bounds on Quasipolynomials: Example

$$
p(\alpha)=\frac{N^{2}}{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{N^{2}}{2} \alpha_{3}^{2}+\frac{N}{2} \alpha_{2}+\frac{3 N}{2} \alpha_{3} \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

$$
\min _{j} b_{j}(\mathbf{N}) \leq p(\mathbf{x})=\sum B_{j}(\alpha) b_{j}(\mathbf{N}) \leq \max _{j} b_{j}(\mathbf{N})
$$

Bounds on Quasipolynomials: Example

$$
p(\boldsymbol{\alpha})=\frac{N^{2}}{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{N^{2}}{2} \alpha_{3}^{2}+\frac{N}{2} \alpha_{2}+\frac{3 N}{2} \alpha_{3} \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

$$
\begin{gathered}
\min _{j} b_{j}(\mathbf{N}) \leq p(\mathbf{x})=\sum B_{j}(\alpha) b_{j}(\mathbf{N}) \leq \max _{j} b_{j}(\mathbf{N}) \\
1=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+2 \alpha_{1} \alpha_{2}+2 \alpha_{3} \alpha_{3}+2 \alpha_{3} \alpha_{1}
\end{gathered}
$$

Bounds on Quasipolynomials: Example

$$
p(\boldsymbol{\alpha})=\frac{N^{2}}{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{N^{2}}{2} \alpha_{3}^{2}+\frac{N}{2} \alpha_{2}+\frac{3 N}{2} \alpha_{3} \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

$$
\begin{gathered}
\min _{j} b_{j}(\mathbf{N}) \leq p(\mathbf{x})=\sum B_{j}(\alpha) b_{j}(\mathbf{N}) \leq \max _{j} b_{j}(\mathbf{N}) \\
1=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+2 \alpha_{1} \alpha_{2}+2 \alpha_{3} \alpha_{3}+2 \alpha_{3} \alpha_{1} \\
p\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha_{1}^{2} 0+\alpha_{2}^{2}\left(\frac{N^{2}+N}{2}\right)+\alpha_{3}^{2}\left(\frac{N^{2}+3 N}{2}\right) \\
+\left(2 \alpha_{1} \alpha_{2}\right) \frac{N}{4}+\left(2 \alpha_{1} \alpha_{3}\right) \frac{3 N}{2}+\left(2 \alpha_{2} \alpha_{3}\right) \frac{N^{2}+2 N}{2}
\end{gathered}
$$

Bounds on Quasipolynomials: Example

$$
p(\boldsymbol{\alpha})=\frac{N^{2}}{2} \alpha_{2}^{2}+N^{2} \alpha_{2} \alpha_{3}+\frac{N^{2}}{2} \alpha_{3}^{2}+\frac{N}{2} \alpha_{2}+\frac{3 N}{2} \alpha_{3} \quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i}=1
$$

- Express $p(\mathbf{x})$ as convex combination of polynomials in parameters

$$
\begin{gathered}
\min _{j} b_{j}(\mathbf{N}) \leq p(\mathbf{x})=\sum B_{j}(\boldsymbol{\alpha}) b_{j}(\mathbf{N}) \leq \max _{j} b_{j}(\mathbf{N}) \\
1=\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{2}=\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}+2 \alpha_{1} \alpha_{2}+2 \alpha_{3} \alpha_{3}+2 \alpha_{3} \alpha_{1} \\
p\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\alpha_{1}^{2} 0+\alpha_{2}^{2}\left(\frac{N^{2}+N}{2}\right)+\alpha_{3}^{2}\left(\frac{N^{2}+3 N}{2}\right) \\
+\left(2 \alpha_{1} \alpha_{2}\right) \frac{N}{4}+\left(2 \alpha_{1} \alpha_{3}\right) \frac{3 N}{2}+\left(2 \alpha_{2} \alpha_{3}\right) \frac{N^{2}+2 N}{2}
\end{gathered}
$$

Outline

(1) Introduction

(2) Internals
(3) Operations

- Set Difference
- Set Coalescing
- Parametric Vertex Enumeration
- Bounds on Quasi-Polynomials

Conclusion

- isl: a relatively new integer set library
- currently used in
- equivalence checking tool
- barvinok
- CLooG
- explicit support for parameters and existentially quantified variables
- all computations in exact integer arithmetic using GMP
- built-in incremental LP solver
- built-in (P)ILP solver
- released under LGPL license
- available from http://freshmeat.net/projects/isl/

Conclusion

- isl: a relatively new integer set library
- currently used in
- equivalence checking tool
- barvinok
- CLooG
- explicit support for parameters and existentially quantified variables
- all computations in exact integer arithmetic using GMP
- built-in incremental LP solver
- built-in (P)ILP solver
- released under LGPL license
- available from http://freshmeat.net/projects/isl/

Future work: port barvinok to isl; now uses

- PolyLib: GPL, ...
\Rightarrow isl already supports operations provided by PolyLib, but a lot of code still needs to be ported
- NTL: not thread-safe, C++
\Rightarrow isl needs LLL

