September 15, 2010 1/34

isl: An Integer Set Library
for the Polyhedral Model

Sven Verdoolaege

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Team ALCHEMY, INRIA Saclay, France
Sven.Verdoolaege@{cs.kuleuven.be, inria. fr}

September 15, 2010

Sven.Verdoolaege@{cs.kuleuven.be, inria.fr}

Outline

a Introduction

@ Internals

e Operations
@ Set Difference
@ Set Coalescing
@ Parametric Vertex Enumeration
@ Bounds on Quasi-Polynomials

0 Conclusion

Introduction

Outline

September 15, 2010

3/34
a Introduction

Introduction September 15, 2010 4/34

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating
sets and relations of integer tuples bounded by affine constraints

~» finite unions of projections of parametric lattice polytopes

Introduction September 15, 2010 4/34

An Integer Set Library

isl is an LGPL thread-safe C library for manipulating
sets and relations of integer tuples bounded by affine constraints

~» finite unions of projections of parametric lattice polytopes

@ very similar to Omega and Omega+ libraries
@ similar to polymake, but different focus/philosophy
» integer values instead of rational values
» designed for the polyhedral model for program analysis and
transformation (but also useful for other applications)
> library (“calculator” interface is available too)
= embeddable in a compiler
» works best on sets of small dimensions (up to about 10; some
operations also work for higher dimensions)
» self-contained (apart from GMP)
» closed representation
> objects may be sets or relations (or piecewise quasipolynomials)

Introduction

Examples of Sets and Relations

September 15, 2010

5/34
S={(x,y)|1<y<x<5}

Introduction

Examples of Sets and Relations

September 15, 2010

5/34
S={(x,y)|1<y<x<5}

Ri(S)

%

Ri={(xy)= (. x)}={(xy) = (X.y)IxX =y Ay =x}

[m]

=

Introduction

Examples of Sets and Relations

September 15, 2010 5/34
S={(x,y)|1<y<x<5} Ri(S)
1
%
&
R2(S)

Ri={(xy) > (¥.,x)} ={(xy) > (X, y)IxX =yAry =x}
Ro={(x.y) > (x,y)Ix22A1<y <8}

[m]

=

Introduction September 15, 2010 6/34

Sets and Relations in the Polyhedral Model

for (i = 0; i < n; ++i)
for (j = 0; j <i; ++j)
faljlli+j102%1]);

Typical sets and relations

@ lteration domain
= set of all possible values of the iterators

n—{(i,))|0<i<nA0<j<i}

@ Access relation
= maps iteration vector to array index

(i) = (i +j.20)}

Introduction September 15, 2010 7134

Comparison to Related Libraries

@ Compared to double description based libraries (PolyLib, PPL)
» All operations are performed on constraints

Reason: objects in target application domain usually have few
constraints, but may have many vertices

» Full support for parameters

> Built-in support for existentially quantified variables

> Built-in support for relations

» Focus on integer values

Introduction September 15, 2010 7/34

Comparison to Related Libraries

@ Compared to double description based libraries (PolyLib, PPL)
> All operations are performed on constraints

Reason: objects in target application domain usually have few
constraints, but may have many vertices

» Full support for parameters

> Built-in support for existentially quantified variables

> Built-in support for relations

» Focus on integer values

@ Compared to Omega and Omega+

» All operations are performed in arbitrary integer arithmetic using GMP
> Different way of handling existentially quantified variables
» Named and nested spaces
> Parametric vertex enumeration

= useful for the barvinok counting library and for computing bounds
» Support for piecewise quasipolynomials

= results of counting problems

Introduction September 15, 2010 8/34

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

lis1| NTL | PolyLib|

|

barvinok

iscc

Introduction September 15, 2010 8/34

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

lis1| NTL | PolyLib|

|

barvinok

iscc

Future work:
@ remove dependence on PolyLib and NTL

Introduction September 15, 2010 8/34

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

barvinok

iscc

Future work:
@ remove dependence on PolyLib and NTL

Introduction September 15, 2010 8/34

Interaction with Other Libraries and Tools

barvinok: counts elements in parametric affine sets and relations
CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

barvinok

iscc

Future work:
@ remove dependence on PolyLib and NTL
@ merge barvinok into isl

Internals

Outline

September 15, 2010

9/34

@ internals

Internals

Internal Structure

September 15, 2010 10/34
core

| incremental LP solver|

| ILP solver (GBR) |

PILP solver

Internals September 15, 2010 10/ 34

Internal Structure

core

| incremental LP solver |

| ILP solver (GBR) |

PILP solver

]

| operations on sets and relations | |vertex enumeration

/

‘ operations on piecewise quasipolynomials ‘

| operations on reductions of piecewise quasipolynomials |

Internals September 15, 2010 11/34

Internal Representation

S(s)={xez%|3z€Z°: Ax+ Bs + Dz > ¢}
R(S):{X1 —>X2€Zd1 XZd2|BZEZeZA1X1+A2X2+BS+DZZC}

@ “basic” types: “convex” sets and maps (relations)

> equality + inequality constraints
> parameters s
» (optional) explicit representation of existentially quantified variables as
integer divisions
= useful for aligning dimensions when performing set operations
(e.g., set difference)
= can be computed using PILP

Internals September 15, 2010 11/34

Internal Representation

S(s)={xez%|3z€Z°: Ax+ Bs + Dz > ¢}
R(S):{X1 —>X2€Zd1 XZd2|BZEZeZA1X1-I-Ang-l—BS-I—DZZC}

@ “basic” types: “convex” sets and maps (relations)

> equality + inequality constraints
> parameters s
» (optional) explicit representation of existentially quantified variables as
integer divisions
= useful for aligning dimensions when performing set operations
(e.g., set difference)
= can be computed using PILP

@ sets and maps
= (disjoint) unions of basic sets/maps

Internals September 15, 2010 11/34

Internal Representation

S(s)={xez%|3z€Z°: Ax+ Bs + Dz > ¢}
R(S):{X1 —>X2€Zd1 XZd2|BZEZeZA1X1-I-Ang-l—BS-I—DZZC}

@ “basic” types: “convex” sets and maps (relations)

> equality + inequality constraints
> parameters s
» (optional) explicit representation of existentially quantified variables as
integer divisions
= useful for aligning dimensions when performing set operations
(e.g., set difference)
= can be computed using PILP

@ sets and maps
= (disjoint) unions of basic sets/maps

@ union sets and union maps
= unions of sets/maps in different spaces

Internals September 15, 2010 12/34

Parametric Integer Linear Programming

R(s) = {Xy — X2 € Z% xZ% | 3z € Z° : A1X1 + ApXz2 + Bs + Dz > ¢}

Lexicographic minimum of R:

lexmin R = {X1 = X2 € R| VX, € R(S,X1) : X2 <X, }

Internals

September 15, 2010

13/34

Parametric Integer Linear Programming Example
y

X
R={x—->y|3y>831-xA2y<29-xA3y<38-xA2y>26-x}

Internals

Parametric Integer Linear Programming Example
y

September 15, 2010

13/34

X
R={x—->y|3y>831-xA2y<29-xA3y<38-xA2y>26-x}

lexminR ={x > y|(x<25AXx>16A3y >31 —x A3y <33—xA2y<
29-Xx)V(By <38—-xAXx<15AX>2A2y>26—-x A2y <27 -X

=] 5

AL

Internals September 15, 2010 14 /34

Parametric Integer Linear Programming

R(s) = {Xy — X2 € Z% xZ% | 3z € Z° : A1X1 + ApXz2 + Bs + Dz > ¢}

Lexicographic minimum of R:

lexmin R = {X1 = X2 € R| VX, € R(S,X1) : X2 <X, }

Internals September 15, 2010 14/34

Parametric Integer Linear Programming

R(s) = {Xy — X2 € Z% xZ% | 3z € Z° : A1X1 + ApXz2 + Bs + Dz > ¢}

Lexicographic minimum of R:

lexmin R = {xy = Xo € R| VX, € R(S,X1) : X2 < X5}

Parametric integer linear programming computes lexmin R in the form

lexmin R = U X1 > X €Z% x7% |32 € Z¢ : Axy + Bis > ¢ A
, \‘PIX1+QIS+I‘I‘|
7 = |- 2L T A
m
Xo = Tixq + Us + Viz/ +w;}

@ explicit representation of existentially quantified variables
@ explicit representation of range variables
Technique: dual simplex + Gomory cuts

Internals September 15, 2010 14 /34

Parametric Integer Linear Programming

R(s) = {Xy — X2 € Z% xZ% | 3z € Z° : A1X1 + ApXz2 + Bs + Dz > ¢}

Lexicographic minimum of R:

lexmin R = {X1 = X2 € R| VX, € R(s,X1) : X2 <X, }

Parametric integer linear programming computes lexmin R in the form

lexminR:U{x1—>x2€Zd‘de2|EIz’€Ze,:A,-X1+B,-SZC,-/\
i , {Pix1+OiS+YiJ
Z = | ———|A
m
Xo = Tixq + Us + Viz/ +w;}

@ explicit representation of existentially quantified variables
@ explicit representation of range variables
Technique: dual simplex + Gomory cuts

Internals September 15, 2010 14 /34

Parametric Integer Linear Programming

R(s) = {Xy — X2 € Z% xZ% | 3z € Z° : A1X1 + ApXz2 + Bs + Dz > ¢}

Lexicographic minimum of R:

lexmin R = {xy = Xo € R| VX, € R(S,X1) : X2 < X5}

Parametric integer linear programming computes lexmin R in the form

lexmin R = U (X1 > Xo €Z% x 7% |32 € Z¢ : Axy + Bis > ¢ A
, \‘PIX1+QIS+I‘I‘|
7 = |- 2L T A
m
Xo = Tixq + Us + Viz/ +w;}

@ explicit representation of existentially quantified variables
@ explicit representation of range variables
Technique: dual simplex + Gomory cuts

Internals September 15, 2010 15/34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)
for (j =0; j <N - i; ++3j)
ali+j]l = f@ali+j1);
for (i = 0; i < N; ++i)
Write(a[i]);

Internals September 15, 2010 15/34

PILP Example: Dataflow Analysis
Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)
for (j =0; j <N - i; ++3j)
ali+j]l = f@ali+j1);
for (i = 0; i < N; ++i)
Write(a[i]);

Internals September 15, 2010 15/34

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)
for (j =0; j <N - 1i; ++j)
ali+j]l = f@ali+j1);
for (i = 0; i < N; ++i)
WriteCa[il);
Access relations:
Al ={(i,j)) = (i+))I0<i<NAO<j<N-I}
Ax ={(i) > ()10 <i< N}

Internals

PILP Example: Dataflow Analysis

September 15, 2010

Given a read from an array element, what was the last write to

the same array element before the read?
Simple case: array written through a single access

for (i = 0; i < N; ++i)
for (j =0; j <N - i; ++3j)
ali+j] = f@@li+jil);
for (i = 0; i < N; ++i)
Write(a[i]);
Access relations:

Al ={(i,)) > (i+))I0<i<NAO<j<N=-i
A ={(i) = (i)]0<i<N}

Map to all writes: R" = Ay =1 o Ay = {(i) = (",i— ") |0 <" <i< N}

15/34

Internals September 15, 2010

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)
for (j =0; j <N - i; ++3j)
ali+j]l = f@ali+j1);
for (i = 0; i < N; ++i)
Write(a[i]);

Access relations:

Al ={(i,j)) = (i+))I0<i<NAO<j<N-I}

Ax ={(i) > ()10 <i< N}

Map to all writes: R" = Ay =1 o Ay = {(i) = (",i— ") |0 <" <i< N}
Last write: R = lexmax R’ = {(i) — (i,0) | 0 < i < N}

15/34

Internals September 15, 2010

PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (3 =0; j <N - i; ++])

ali+j] = f(ali+jD);

for (i = 0; i < N; ++i)

Write(a[il);
Access relations:
Ar={(i)) > (i+j)I0<i<NAO<j<N-I}
Ax ={(i) > ()10 <i< N}
Map to all writes: R" = Ay =1 o Ay = {(i) = (",i— ") |0 <" <i< N}
Last write: R = lexmax R’ = {(i) — (i,0) | 0 < i < N}
In general: impose lexicographical order on shared iterators

15/34

Operations September 15, 2010 16/34

Outline

e Operations
@ Set Difference
@ Set Coalescing
@ Parametric Vertex Enumeration
@ Bounds on Quasi-Polynomials

Supported Operations

September 15, 2010
@ Intersection

17 /34

Ha v

Operations

September 15, 2010
Supported Operations
o Intersection [~

17 /34

Operations

Supported Operations

o Intersection [~
o UnIOn %*g

e Set difference

September 15, 2010

17 /34

Operations Set Difference September 15, 2010 18/34

is1 Operation: Set Difference

S(s)={xeZz%|3ze€Z®: Ax+Bs+Dz>c)

Set difference S1 \ S
@ no existentially quantified variables

Sao(s) = (x €z A\ (@, %) + (bi,8) >)

Si\ S = | J(Sinix1=((@i. % + (bi,s) = ¢))})

1

Operations Set Difference September 15, 2010 18/34

is1 Operation: Set Difference

S(s)={xeZz%|3ze€Z®: Ax+Bs+Dz>c)

Set difference S1 \ S
@ no existentially quantified variables

Sao(s) = (x €z A\ (@, %) + (bi,8) >)

Si\ S = | J(Sinix1=((@i. % + (bi,s) = ¢))})

= Jsinixic@.x) + bi.s) < ci - 11)

Operations Set Difference September 15, 2010 18/34

is1 Operation: Set Difference

S(s)={xeZz%|3ze€Z®: Ax+Bs+Dz>c)

Set difference S1 \ S
@ no existentially quantified variables

Sao(s) = (x €z A\ (@, %) + (bi,8) >)

Si\ S = | J(Sinix1=((@i. % + (bi,s) = ¢))})

- U(s1 N{x|{a,x)+(b,sy<ci—1})

—US1nﬂx|a,, b,,>>cj}

j<i

N{x|aj,x)+(bj,s) <ci—1})

Operations Set Difference September 15, 2010 18/34

is1 Operation: Set Difference

S(s)={xeZz%|3ze€Z®: Ax+Bs+Dz>c)

Set difference S1 \ S
@ no existentially quantified variables

Sao(s) = (x €z A\ (@, %) + (bi,8) >)

i\ S = Jsin[ixI (ax) + (br.5) = ¢}

i j<i

N{x|(a,x)+<bj,s)y<ci—1})

Operations Set Difference September 15, 2010 18/34

is1 Operation: Set Difference

S(s)={xeZz%|3ze€Z®: Ax+Bs+Dz>c)

Set difference S1 \ S
@ no existentially quantified variables

Sao(s) = (x €z A\ (@, %) + (bi,8) >)

i\ S = Jsin[ixI (ax) + (br.5) = ¢}

i j<i
N{x|(a,x)+<bj,s)y<ci—1})

@ with existentially quantified variables
= compute explicit representation

So(s) = (xeZ?| \ (@i.x) + (bj.8) + <d,-, Vp’ 0 +1(9,8 + rJ> > i)

m

Operations

Supported Operations

o Intersection [~
o UnIOn %*g

e Set difference

Set Difference

September 15, 2010

19/34

Operations Set Difference September 15, 2010 19/34

Supported Operations

o Intersection [~~~

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000)

u]
)
i
i
it

Operations Set Difference September 15, 2010 19/34

Supported Operations

o Intersection [~~~

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing

_—

Operations Set Coalescing

is1 Operation: Set Coalescing

After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
= try to combine several basic sets into a single basic set

September 15, 2010 20/34

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
= try to combine several basic sets into a single basic set

Sy

{x| Ax >c} So={x|Bx>d}
PolyLib way:
@ Compute H = conv.hull(Sy U Sp)

Q Replace S1US by H\ (H\ (S1 U Sg))

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

After many applications of projection, set difference, union,
a set may be represented as a union of many basic sets
= try to combine several basic sets into a single basic set

Si={x|Ax>c} S={x|Bx>d}
PolyLib way:
@ Compute H = conv.hull(Sy U Sp)
© Replace S{US; by H\ (H\ (S1U Sy))
isl way:
@ Classify constraints
» redundant: min (a;, X) > ¢; — 1 over remaining constraints
» valid: min(a;,x) > ¢; — 1 over S,
» separating: max<(a;,X) < ¢; over S,
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,

* adjacent to inequality: <(af + b,-),x} = (ci+d)—1overS;
> cut: otherwise

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Classify constraints
» redundant: min {(a;, X) > ¢; — 1 over remaining constraints
» valid: min(a;,x) > ¢; — 1 over S,
» separating: max(a;, X) < c; over Sy
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(af + b,-),x) =(ci+d)—1overS;
» cut: otherwise

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Classify constraints
» redundant: min {(a;, X) > ¢; — 1 over remaining constraints
» valid: min(a;,x) > ¢; — 1 over S,
» separating: max(a;, X) < c; over Sy
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(af + b,-),x) =(ci+d)—1overS;
» cut: otherwise
@ Case distinction
@ non-redundant constraints of Sy are valid for S,, i.e., S, C Sy
= S, can be dropped

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction
@ non-redundant constraints of Sy are valid for S,, i.e., S, C Sy
= S, can be dropped

Operations Set Coalescing
is1 Operation: Set Coalescing

September 15, 2010

20/34
|

@ Case distinction

@ non-redundant constraints of Sy are valid for S,, i.e., S, C Sy
= S, can be dropped

Operations Set Coalescing September 15, 2010

20/34

is1 Operation: Set Coalescing

@ Classify constraints
» redundant: min {(a;, X) > ¢; — 1 over remaining constraints
» valid: min(a;,x) > ¢; — 1 over S,
» separating: max<(a;,X) < ¢; over S,
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(af + b,-),x) =(ci+d)—1overS;
» cut: otherwise
@ Case distinction
@ non-redundant constraints of Sy are valid for S,, i.e., S, C Sy
@ no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)
= replace S; and S, by basic set with all valid constraints

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

T
[}
1
[}
> [}
1
[}
[}
|
[}

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

’
.
’

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

/

~ i

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Classify constraints
» redundant: min {(a;, X) > ¢; — 1 over remaining constraints
» valid: min(a;,x) > ¢; — 1 over S,
» separating: max<(a;,X) < ¢; over S,

special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(af + b,-),x) =(ci+d)—1overS;

> cut: otherwise
@ Case distinction

(1]
Q

o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

= replace S; and S, by basic set with all valid constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Classify constraints
» redundant: min {(a;, X) > ¢; — 1 over remaining constraints
» valid: min{a;,x) > ¢; — 1 over S,
» separating: max<(a;,X) < ¢; over S,
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(a,- + b,-),x> =(ci+d)—1overS;
» cut: otherwise
@ Case distinction
@ non-redundant constraints of S; are valid for S,, i.e., So C S;
@ no separating constraints and cut constraints of S, are valid for cut
facets of Sy (similar to BFT2001)
@ single pair of adjacent inequalities (other constraints valid)
@ single adjacent pair of an inequality (S1) and an equality (S5)
+ other constraints of S; are valid
+ constraints of S, valid for facet of relaxed inequality
= drop S, and relax adjacent inequality of S;

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

Q
(5]
(4]

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (S,)

+ other constraints of S; are valid

+ constraints of S, valid for facet of relaxed inequality

= drop S, and relax adjacent inequality of S;

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

Q
(5]
(4]

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (S,)

+ other constraints of S; are valid

+ constraints of S, valid for facet of relaxed inequality

= drop S, and relax adjacent inequality of S;

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

Q
(5]
(4]

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (S,)

+ other constraints of S; are valid

+ constraints of S, valid for facet of relaxed inequality

= drop S, and relax adjacent inequality of S;

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

Q
(5]
(4]

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (S,)

+ other constraints of S; are valid

+ constraints of S, valid for facet of relaxed inequality

= drop S, and relax adjacent inequality of Sy

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing
@ Classify constraints

>

redundant: min{a;, x) > ¢; — 1 over remaining constraints

» valid: min{a;,x) > ¢; — 1 over S,

>

separating: max(a;, X) < ¢; over S,
special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(a,- + b,-),x> =(ci+d)—1overS;

> cut: otherwise
@ Case distinction

O 60 0o

non-redundant constraints of S; are valid for S,, i.e., So C S;

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (S,)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

I S R N S N L ’

T T T T (J

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

I S R N S N L ’

NS
\

>
T T T T

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

O 60 0o

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ other constraints of Sy are valid

+ inequality and equality can be wrapped to include union

= replace S; and S, by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Classify constraints

» redundant: min {(a;, X) > ¢; — 1 over remaining constraints

» valid: min{a;,x) > ¢; — 1 over S,

» separating: max (aj, X) < ¢; over S,

special cases:
* adjacent to equality: (a;,x) = ¢; — 1 over S,
* adjacent to inequality: <(a,- + b,-),x> =(ci+d)—1overS;

» cut: otherwise
@ Case distinction
non-redundant constraints of S; are valid for S,, i.e., So C S;
no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)
single pair of adjacent inequalities (other constraints valid)
single adjacent pair of an inequality (S;) and an equality (S,)
+ constraints of S, valid for facet of relaxed inequality
single adjacent pair of an inequality (S1) and an equality (S;)
+ inequality and equality can be wrapped to include union
S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union
= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

R T Y S N

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010

is1 Operation: Set Coalescing

@ Case distinction

© 0 60 oo

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

20/34

Operations Set Coalescing September 15, 2010 20/34

is1 Operation: Set Coalescing
I N N A U R

@ Case distinction

non-redundant constraints of Sy are valid for S, i.e., S, C S

no separating constraints and cut constraints of S, are valid for cut
facets of S; (similar to BFT2001)

single pair of adjacent inequalities (other constraints valid)

single adjacent pair of an inequality (S;) and an equality (Sz)

+ constraints of S, valid for facet of relaxed inequality

single adjacent pair of an inequality (S1) and an equality (S;)

+ inequality and equality can be wrapped to include union

S, extends beyond S; by at most one and all cut constraints of S; and
parallel slices of S, can be wrapped to include union

= replace S; and S; by valid and wrapping constraints

© 0 60 oo

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~~~

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing

_—

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~ =

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing g

@ Lexicographic miniryization

R

i

u]
)
I
i
it

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~ =
@ Union == =

o Set difference [©
@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing g

@ Lexicographic miniryizatio

@ Integer projection

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~ =
@ Union == =

o Set difference [©
@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing g

@ Lexicographic miniryizatio

@ Integer projection

i

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~~~
@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH
@ Coalescing g
@ Lexicographic mini

ization

@ Integer projection
@ Sampling (GBR)

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~~~

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH

Coalescing g

Lexicographic mini

ization

Integer projection
Sampling (GBR) 7~
Scanning (GBR)

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~~~

@ Union == =

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH

Coalescing g

Lexicographic mini

ization

Integer projection
Sampling (GBR) 7~
Scanning (GBR) 7!
Integer affine hull (GBR)

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

o Intersection [~~~

e Union = 1=

o Set difference [©

@ Closed convex hull (“wrapping”, FLL2000) EH

Coalescing g

Lexicographic mini

ization

°
@ Integer projection

e Sampling (GBR) ——o—e—e——o
°

°

°

Scanning (GBR) ! (x >x+1]0<x<3}
Integer affine hull (GBR) /"

Transitive closure (approx.) '@%

{(x=>y|0<x<y<4}

Operations Set Coalescing September 15, 2010 21/34

Supported Operations

Intersection %ﬁ

Union = 1=

Set difference 7

Closed convex hull (“wrapping”, FLL2000) =

Coalescing g

Lexicographic minimizatio

Integer projection
Sampling (GBR)
Scanning (GBR) !
Integer affine hull (GBR) o
Transitive closure (approx.) —

Parametric vertex enumeration

Operations Parametric Vertex Enumeration September 15, 2010

JH-Parametric Polytopes and their Vertices

Polytopes described by hyperplanes that depend linearly on parameters

P(s) ={xeQ?| Ax+ Bs >c}

Example:
P(N) ={(i,j))liz1AI<NAj21Aj<I}

oo][]

In general: different (active) vertices on different parts of the parameter
space (chamber decomposition)

Parametric vertices:

22/34

Operations Parametric Vertex Enumeration
Chamber Decomposition

September 15, 2010

23/34

{t€Q2|—31+282+t1—2t220/\S1—82—t1+t220/\t1ZOAtzZO}

S

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{t€Q2|—81 +28 +t—2Lb>0AS1—So—H+H>0AH ZOATQZO}

S2
Cy

S1

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{t€Q2|—81 +28 +t—2Lb>0AS1—So—H+H>0AH ZOATQZO}

t Vg .7 JRERERE
V4
- 82
Vs !
oo vs e t G C
va 7] e
1
1
1
R —(O===============
Co
51

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{t€Q2|—81 +28 +t—2Lb>0AS1—So—H+H>0AH ZOATQZO}

Ve o7 .
t 6 o
Vi
-V So |
el VE C . C
.-~ vz_-TV2 t 3 o 1
& [J
Va7] .
e
1
1 1
o 4 e ® - @ — — — — — -~ __
vg Lo ¢ [} [}
V4 C2
e i
- 4 —_ p—
| = \ /N TVZ—V3—V5 31

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{t€Q2|—S1 +25 +H-2b>0AS1—-S2-th +b>0AH ZOAtZZO}

Vg .7 ...
t2 6 7. P
V1
- Vs S2 |
Phe 1
-7 Vs -IV2 t Cs ", 1 Cq
& []
Va7] .
|
1
1 1
o AT N e - @— — — — — — — — — — ——__ _
Ve - I8 [] []
Vl C2
el b -
-7V, Tva=v3=Vv
B 4 ,7[V2=V3=V5 $1
L
to Vg .7
v
\' 1, t
_-" V2 7"V3
-7 Vs

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{t€Q2|—S1 +25 +H-2b>0AS1—-S2-th +b>0AH ZOAtZZO}

t Vg .7 JRERERE
V4
B
S
Lo T T ¢ : c
.-~ vz_-TV2 b 3 S 1
[J
Va7] B
ol
]
1 |
o AT N e - @— — — — — — — — — — ——__ _
vg Lo ¢ [} [}
Vl C2
-
2 t -
- —_ —_ . -
-7 V4 ,/[V2=V3=V5 S
% a
to Ve .7 to Ve 2
V4
Vg t V{=Vo=Vy ty
_-7 V2l V3 ”/’ ,7 V3
”’ // v5 ”/ 7
7 - ,71Vs

Operations Parametric Vertex Enumeration September 15, 2010 23/34

Chamber Decomposition
{tEQ2|—S1 +25 +H-2b>0AS1—-S2-th +b>0AH ZOAtZZO}

t Ve .~ ...
Vi
PR S2 |
20 E C o L C
.-~ vz_-TV2 t 3 o 1
& [J
Va7] .
e
1
[|
o AT N e - @— — — — — — — — — — ——__ _
Ve - I8 [] []
V1 C2
-7 4]
- 4 —_ p—
| = \ /N TVZ—V3—V5 31
N v v
to Vg .7
\'
\' 1, t

Operations Parametric Vertex Enumeration September 15, 2010 24/34

Parametric Vertex Enumeration
@ Vertex computation
» Consider all combinations of d inequalities

» Turn them into equalities
» Record vertex and activity domain if non-empty

Operations Parametric Vertex Enumeration September 15, 2010 24/34

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty

Operations Parametric Vertex Enumeration September 15, 2010 24/34

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

Operations

Parametric Vertex Enumeration

Chamber Decomposition
{tEQ2|—S1 +28 +t—2b>0AS1—So—tH+H>0AH 20/\1'220}

.
-7 v /v ty

September 15, 2010

25/34

Operations

Parametric Vertex Enumeration

Chamber Decomposition
{t€Q2|—81 +28 +t—2Lb>0AS1—So—H+H>0AH ZOATQZO}

.
-7 vz /]Vve ty

September 15, 2010

25/34

Operations

Parametric Vertex Enumeration

Chamber Decomposition
{tEQ2|_S1 +28 4+t —2bb>0AS =S -+ >0AH ZOATQZO}

.
-7 vz Ve ty

September 15, 2010

25/34

Operations Parametric Vertex Enumeration September 15, 2010 26/34

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

Operations Parametric Vertex Enumeration September 15, 2010 26/34

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

@ Chamber decomposition (note: only full-dimensional chambers)
PolyLib:

> iterate over all activity domains
» compute differences and intersections with previous activity domains

Operations Parametric Vertex Enumeration September 15, 2010

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

@ Chamber decomposition (note: only full-dimensional chambers)

PolyLib:

> iterate over all activity domains

» compute differences and intersections with previous activity domains
isl:

» compute initial chamber (intersection of activity domains)

» pick unhandled internal facet

> intersect activity domains that contain facet and other side

= new chamber
» repeat while there are unhandled internal facets

Operations

Parametric Vertex Enumeration
Chamber Decomposition

September 15, 2010 27/34

{t€Q2|—S1+232+t1—2t220/\31—82—t1+t220/\t120/\t220}

S2

Cy

S1

Operations

Parametric Vertex Enumeration
Chamber Decomposition

September 15, 2010 27/34

{te@®|-si+25+1-220A81 -5~ ti + 1, 20Al 20N 20}

S2

Cy

S1

Operations

Parametric Vertex Enumeration
Chamber Decomposition

September 15, 2010 27/34

{te@®|-si+25+1-220A81 -5~ ti + 1, 20Al 20N 20}

S2

Cy

Co

S1

Operations Parametric Vertex Enumeration September 15, 2010 27/34

Chamber Decomposition
{te@®|-si+25+1-220A81 -5~ ti + 1, 20Al 20N 20}

S2
Cy

Co

S1

Operations Parametric Vertex Enumeration September 15, 2010 27/34

Chamber Decomposition
{te@®|-si+25+1-220A81 -5~ ti + 1, 20Al 20N 20}

S
C3 C1

Co

S1

Operations Parametric Vertex Enumeration September 15, 2010

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

@ Chamber decomposition (note: only full-dimensional chambers)

PolyLib:

> iterate over all activity domains

» compute differences and intersections with previous activity domains
isl:

» compute initial chamber (intersection of activity domains)

» pick unhandled internal facet

> intersect activity domains that contain facet and other side

= new chamber
» repeat while there are unhandled internal facets

Operations Parametric Vertex Enumeration September 15, 2010

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver

» Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

@ Chamber decomposition (note: only full-dimensional chambers)

PolyLib:

> iterate over all activity domains

» compute differences and intersections with previous activity domains
isl:

» compute initial chamber (intersection of activity domains)

» pick unhandled internal facet

> intersect activity domains that contain facet and other side

= new chamber
» repeat while there are unhandled internal facets

Operations Parametric Vertex Enumeration September 15, 2010

Parametric Vertex Enumeration

@ Vertex computation
» Consider all combinations of d inequalities
= using backtracking and incremental LP solver
> Turn them into equalities
» Record vertex and activity domain if non-empty
= only record for lexmin inequalities

@ Chamber decomposition (note: only full-dimensional chambers)

PolyLib:

> iterate over all activity domains

» compute differences and intersections with previous activity domains
isl:

» compute initial chamber (intersection of activity domains)

» pick unhandled internal facet

> intersect activity domains that contain facet and other side

= new chamber
> repeat while there are unhandled internal facets

= much faster than PolyLib; similar to TOPCOM 0.16.2

Operations Parametric Vertex Enumeration September 15, 2010 29/34

Supported Operations

Intersection %ﬁ

Union = 1=

Set difference 7

Closed convex hull (“wrapping”, FLL2000) =

Coalescing g

Lexicographic minimizatio

Integer projection
Sampling (GBR)
Scanning (GBR) !
Integer affine hull (GBR) o
Transitive closure (approx.) —

Parametric vertex enumeration

Operations Parametric Vertex Enumeration

Supported Operations

Intersection %ﬁ

Union = 1=

Set difference 7

Closed convex hull (“wrapping”, FLL2000) =

Coalescing g

Lexicographic minimizatio

Integer projection
Sampling (GBR) 7~

Scanning (GBR) 7!

Integer affine hull (GBR)
Transitive closure (approx.) ==
Parametric vertex enumeration
Bounds on quasipolynomials (approx.)

September 15, 2010

29/34

Operations Bounds on Quasi-Polynomials September 15, 2010 30/34

V-Parametric Polytopes and Bounds on Polynomials
@ V-parametric polytopes
P:D—-Q":
q- P(q) ={x|JaieQ:x=Y;avi(q),a 20, Y;a =1}

D c Q": parameter domain
vi(q) € Q[q] arbitrary polynomials in parameters
vi(q) are generators of the polytope

Note: V-parametric polytope can be computed from HH-parametric polytope
through parameter vertex enumeration + chamber decomposition

Operations Bounds on Quasi-Polynomials September 15, 2010 30/34

V-Parametric Polytopes and Bounds on Polynomials

@ V-parametric polytopes

P:D—-Q":
q— P(q)={x]3eeQ:x=Y;avi(q),a>0,%a;=1}

D c Q": parameter domain
vi(q) € Q[q] arbitrary polynomials in parameters
vi(q) are generators of the polytope
@ Bounds on quasipolynomials (CFGV2009)
Input: Parametric polytope P and quasipolynomial p(q, x)
Output: Bound B(q) on quasipolynomial over polytope

B > max ,X
() = max p(q, x)

Note: V-parametric polytope can be computed from HH-parametric polytope
through parameter vertex enumeration + chamber decomposition

31/34

Operations Bounds on Quasi-Polynomials September 15, 2010

Bounds on Quasipolynomials: Example

1 1
p(x1,X) = §x12 +5%+x P =convhull{(0,0),(N0),(N.N)}
To compute:
M(N) = max _p(xi,xz)

(X1 ,Xz)EP

31/34

Operations Bounds on Quasi-Polynomials September 15, 2010

Bounds on Quasipolynomials: Example

1 1
p(x1,X) = §x12 +5%+x P =convhull{(0,0),(N0),(N.N)}
To compute:
B(N) > M(N) = max _p(x1,X2)

(X1 ,Xz)EP

Operations Bounds on Quasi-Polynomials September 15, 2010

31/34

Bounds on Quasipolynomials: Example

1 1
p(x1,X) = §x12 +5%+x P =convhull{(0,0),(N0),(N.N)}

To compute:
B(N) 2 M(N) = max_p(x1, x)

(x1,x2)eP
How? = Bernstein expansion

@ Express x € P as convex combination of vertices

(x1,%2) = @1(0,0) + @2(N,0) + ag(N, N), >0, > aj=1
i

1 1 1 3
p(at,ag,a3) = §N2a/§ + NPasas + §N2a§ + ENozg + ENa:;

@ Express p(x) as convex combination of polynomials in parameters

Operations Bounds on Quasi-Polynomials September 15, 2010 32/34

Bounds on Quasipolynomials: Example
N? N2 N 3N
p(a) = 7&3 + Nzafzafs + ?ag + Eaz + ?03 a; >0, Zi:a,- =1

@ Express p(x) as convex combination of polynomials in parameters

p(x) = > Bi(e)by(N)

Operations Bounds on Quasi-Polynomials September 15, 2010 32/34

Bounds on Quasipolynomials: Example

N? N? N 3N
p(a) = 7a§ + N2a/2a/3 + ?ag + Eaz + ?03 a; >0, Za,- =1
j

@ Express p(x) as convex combination of polynomials in parameters

mlln b;j(N ZB, a)bj(N) < mjaxbj(N)

Operations Bounds on Quasi-Polynomials September 15, 2010 32/34

Bounds on Quasipolynomials: Example

N? N? N 3N
p(a) = 7a§ + N2a/2a/3 + ?ag + Eaz + ?03 a; >0, Za,- =1
j

@ Express p(x) as convex combination of polynomials in parameters

mlln b;j(N ZBJ a)bj(N) < mjaxbj(N)

1= (a1 +a2+ cx3)2 = a? + ag + cx§ + 2aqao + 2a3as + 2asaq

Operations Bounds on Quasi-Polynomials September 15, 2010 32/34

Bounds on Quasipolynomials: Example

N? N2 N 3N
p(a/) = ?ag + Nza/za/g + ?ag + Eaz + ?03 aj >0, Zai =1
i

@ Express p(x) as convex combination of polynomials in parameters

mlln b;j(N ZBJ a)bj(N) < mjaxbj(N)

1= (a1 +a2+ cx3)2 = a? + ag + a§ + 2aqao + 2a3as + 2asaq

N2 + N N? + 3N

pat, @z, as) = @40 + a5 (M X +ai|——
2 2

N? + 2N

N 3N
+ (20!1 a'g) Z + (2&10’3) ? + (2(1’20/3) >

Operations Bounds on Quasi-Polynomials September 15, 2010 32/34

Bounds on Quasipolynomials: Example

N? N2 N 3N
p(a/) = ?ag + Nzcyzalg + ?ag + Eaz + ?03 aj >0, Zai =1
i

@ Express p(x) as convex combination of polynomials in parameters

mjm b;j(N ZBJ a)bj(N) < maxb,(N)

1= (a1 +a2+ cx3)2 = a? + ag + a§ + 2aqao + 2a3as + 2asaq

N2 + N N? + 3N

ploa.05) = o+ a2 1) (M 22N)
2 2

N? + 2N

N 3N
+ (20!1 a'g) Z + (2&1()’3) ? + (2(1’20/3) >

Conclusion

Outline

September 15, 2010

33/34

@ Conclusion

Conclusion September 15, 2010 34/34

Conclusion

@ isl: arelatively new integer set library
@ currently used in

> equivalence checking tool

» barvinok

> CLooG

explicit support for parameters and existentially quantified variables
all computations in exact integer arithmetic using GMP

built-in incremental LP solver

built-in (P)ILP solver

released under LGPL license

available from http://freshmeat.net/projects/isl/

http://freshmeat.net/projects/isl/

Conclusion September 15, 2010 34/34

Conclusion

@ isl: arelatively new integer set library
@ currently used in

> equivalence checking tool

» barvinok

> CLooG

explicit support for parameters and existentially quantified variables
all computations in exact integer arithmetic using GMP

built-in incremental LP solver

built-in (P)ILP solver

released under LGPL license

available from http://freshmeat.net/projects/isl/

Future work: port barvinok to isl; now uses
@ PolyLib: GPL, ...
= 1isl already supports operations provided by PolyLib, but a lot of code
still needs to be ported
@ NTL: not thread-safe, C++
= 1isl needs LLL

http://freshmeat.net/projects/isl/

	Introduction
	Internals
	Operations
	Set Difference
	Set Coalescing
	Parametric Vertex Enumeration
	Bounds on Quasi-Polynomials

	Conclusion

