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An Integer Set Library

isl is an LGPL thread-safe C library for manipulating

sets and relations of integer tuples bounded by affine constraints

 finite unions of projections of parametric lattice polytopes
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An Integer Set Library

isl is an LGPL thread-safe C library for manipulating

sets and relations of integer tuples bounded by affine constraints

 finite unions of projections of parametric lattice polytopes

very similar to Omega and Omega+ libraries

similar to polymake, but different focus/philosophy

◮ integer values instead of rational values
◮ designed for the polyhedral model for program analysis and

transformation (but also useful for other applications)
◮ library (“calculator” interface is available too)

⇒ embeddable in a compiler
◮ works best on sets of small dimensions (up to about 10; some

operations also work for higher dimensions)
◮ self-contained (apart from GMP)
◮ closed representation
◮ objects may be sets or relations (or piecewise quasipolynomials)
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Examples of Sets and Relations

S = { (x, y) | 1 ≤ y ≤ x ≤ 5 }
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Examples of Sets and Relations

S = { (x, y) | 1 ≤ y ≤ x ≤ 5 }
R1(S)

R1

R2(S)

R2

R1 = { (x, y)→ (y, x) } = { (x, y)→ (x′, y′) | x′ = y ∧ y′ = x }

R2 = { (x, y)→ (x, y′) | x ≥ 2 ∧ 1 ≤ y′ ≤ 3 }
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Sets and Relations in the Polyhedral Model

for (i = 0; i < n; ++i)

for (j = 0; j < i; ++j)

f(a[j][i+j][2*i]);

Typical sets and relations

Iteration domain

⇒ set of all possible values of the iterators

n → { (i, j) | 0 ≤ i < n ∧ 0 ≤ j < i }

Access relation

⇒ maps iteration vector to array index

{ (i, j)→ (j, i + j, 2i) }
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Comparison to Related Libraries

Compared to double description based libraries (PolyLib, PPL)

◮ All operations are performed on constraints

Reason: objects in target application domain usually have few

constraints, but may have many vertices
◮ Full support for parameters
◮ Built-in support for existentially quantified variables
◮ Built-in support for relations
◮ Focus on integer values
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Comparison to Related Libraries

Compared to double description based libraries (PolyLib, PPL)

◮ All operations are performed on constraints

Reason: objects in target application domain usually have few

constraints, but may have many vertices
◮ Full support for parameters
◮ Built-in support for existentially quantified variables
◮ Built-in support for relations
◮ Focus on integer values

Compared to Omega and Omega+

◮ All operations are performed in arbitrary integer arithmetic using GMP
◮ Different way of handling existentially quantified variables
◮ Named and nested spaces
◮ Parametric vertex enumeration

⇒ useful for the barvinok counting library and for computing bounds
◮ Support for piecewise quasipolynomials

⇒ results of counting problems
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Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations

CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl NTL PolyLib

CLooG barvinok

iscc
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Interaction with Other Libraries and Tools
barvinok: counts elements in parametric affine sets and relations

CLooG: generates code to scan elements in parametric affine sets

iscc: interactive isl calculator (included in barvinok distribution)

GMP

isl

CLooG barvinok

iscc

Future work:

remove dependence on PolyLib and NTL

merge barvinok into isl
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Internal Structure

incremental LP solver

ILP solver (GBR)

PILP solver

core
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Internal Structure

incremental LP solver

ILP solver (GBR)

PILP solver

core

operations on sets and relations

operations on piecewise quasipolynomials

operations on reductions of piecewise quasipolynomials

vertex enumeration
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Internal Representation

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

“basic” types: “convex” sets and maps (relations)

◮ equality + inequality constraints
◮ parameters s
◮ (optional) explicit representation of existentially quantified variables as

integer divisions

⇒ useful for aligning dimensions when performing set operations

(e.g., set difference)

⇒ can be computed using PILP
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Internal Representation

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

“basic” types: “convex” sets and maps (relations)

◮ equality + inequality constraints
◮ parameters s
◮ (optional) explicit representation of existentially quantified variables as

integer divisions

⇒ useful for aligning dimensions when performing set operations

(e.g., set difference)

⇒ can be computed using PILP

sets and maps

⇒ (disjoint) unions of basic sets/maps

union sets and union maps

⇒ unions of sets/maps in different spaces
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Parametric Integer Linear Programming

R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }
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Parametric Integer Linear Programming Example

x

y

R = { x → y | 3y ≥ 31 − x ∧ 2y ≤ 29 − x ∧ 3y ≤ 38 − x ∧ 2y ≥ 26 − x }
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Parametric Integer Linear Programming Example

x

y

R = { x → y | 3y ≥ 31 − x ∧ 2y ≤ 29 − x ∧ 3y ≤ 38 − x ∧ 2y ≥ 26 − x }

lexmin R = { x → y | (x ≤ 25 ∧ x ≥ 16 ∧ 3y ≥ 31 − x ∧ 3y ≤ 33 − x ∧ 2y ≤

29 − x) ∨ (3y ≤ 38 − x ∧ x ≤ 15 ∧ x ≥ 2 ∧ 2y ≥ 26 − x ∧ 2y ≤ 27 − x) }
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R(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c }

Lexicographic minimum of R:

lexmin R = { x1 → x2 ∈ R | ∀x′2 ∈ R(s, x1) : x2 4 x′2 }

Parametric integer linear programming computes lexmin R in the form

lexmin R =
⋃

i

{ x1 → x2 ∈ Z
d1 × Zd2 | ∃z′ ∈ Ze′ : Aix1 + Bis ≥ ci ∧

z′ =

⌊

Pix1 + Qis + ri

m

⌋

∧

x2 = Tix1 + Uis + Viz
′ + wi }

explicit representation of existentially quantified variables

explicit representation of range variables

Technique: dual simplex + Gomory cuts
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PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to

the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);
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PILP Example: Dataflow Analysis

Given a read from an array element, what was the last write to

the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

Write(a[i]);

Access relations:

A1 = {(i, j)→ (i + j) | 0 ≤ i < N ∧ 0 ≤ j < N − i}

A2 = {(i)→ (i) | 0 ≤ i < N}

Map to all writes: R ′ = A1
−1 ◦ A2 = {(i)→ (i′, i − i′) | 0 ≤ i′ ≤ i < N}

Last write: R = lexmax R ′ = {(i)→ (i, 0) | 0 ≤ i < N}

In general: impose lexicographical order on shared iterators
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isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩ { x | ¬(〈ai , x〉+ 〈bi , s〉 ≥ ci) })
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isl Operation: Set Difference

S(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c }

Set difference S1 \ S2

no existentially quantified variables

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉+ 〈bi , s〉 ≥ ci }

S1 \ S2 =
⋃

i

(S1 ∩
⋂

j<i

{ x |
〈

aj , x
〉

+
〈

bj , s
〉

≥ cj }

∩ { x | 〈ai , x〉+ 〈bi , s〉 ≤ ci − 1 })

with existentially quantified variables

⇒ compute explicit representation

S2(s) = { x ∈ Z
d |

∧

i

〈ai , x〉+ 〈bi , s〉+

〈

di ,

⌊

〈p, x〉+ 〈qi , s〉+ r

m

⌋〉

≥ ci }
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isl Operation: Set Coalescing
After many applications of projection, set difference, union,

a set may be represented as a union of many basic sets

⇒ try to combine several basic sets into a single basic set
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2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut

facets of S1 (similar to BFT2001)
3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and

parallel slices of S2 can be wrapped to include union

⇒ replace S1 and S2 by valid and wrapping constraints



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization

x

y



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection

x

y



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection

x

y



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)

{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }



Operations Set Coalescing September 15, 2010 21 / 34

Supported Operations
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Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration
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H-Parametric Polytopes and their Vertices

Polytopes described by hyperplanes that depend linearly on parameters

P(s) = { x ∈ Qd | Ax + Bs ≥ c }

Example:

P(N) = { (i, j) | i ≥ 1 ∧ i ≤ N ∧ j ≥ 1 ∧ j ≤ i }

Parametric vertices:

P = conv.hull

{[

1

1

]

,

[

N

1

]

,

[

N

N

]}

In general: different (active) vertices on different parts of the parameter

space (chamber decomposition)
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Parametric Vertex Enumeration

Vertex computation

◮ Consider all combinations of d inequalities

⇒ using backtracking and incremental LP solver

◮ Turn them into equalities
◮ Record vertex and activity domain if non-empty

⇒ only record for lexmin inequalities

Chamber decomposition (note: only full-dimensional chambers)

PolyLib:

◮ iterate over all activity domains
◮ compute differences and intersections with previous activity domains

isl:

◮ compute initial chamber (intersection of activity domains)
◮ pick unhandled internal facet
◮ intersect activity domains that contain facet and other side

⇒ new chamber
◮ repeat while there are unhandled internal facets

⇒ much faster than PolyLib; similar to TOPCOM 0.16.2



Operations Parametric Vertex Enumeration September 15, 2010 29 / 34

Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration
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Supported Operations

Intersection

Union

Set difference

Closed convex hull (“wrapping”, FLL2000)

Coalescing

Lexicographic minimization
x

y

Integer projection
x

y

Sampling (GBR)

Scanning (GBR)

Integer affine hull (GBR)

Transitive closure (approx.)
{ x → y | 0 ≤ x < y ≤ 4 }

{ x → x + 1 | 0 ≤ x ≤ 3 }

Parametric vertex enumeration

Bounds on quasipolynomials (approx.)
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V-Parametric Polytopes and Bounds on Polynomials

V-parametric polytopes

P : D → Qn :

q 7→ P(q) =
{

x | ∃αi ∈ Q : x =
∑

i αivi(q), αi ≥ 0,
∑

i αi = 1
}

D ⊂ Qr : parameter domain

vi(q) ∈ Q[q] arbitrary polynomials in parameters

vi(q) are generators of the polytope

Note: V-parametric polytope can be computed from H-parametric polytope

through parameter vertex enumeration + chamber decomposition
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V-Parametric Polytopes and Bounds on Polynomials

V-parametric polytopes

P : D → Qn :

q 7→ P(q) =
{

x | ∃αi ∈ Q : x =
∑

i αivi(q), αi ≥ 0,
∑

i αi = 1
}

D ⊂ Qr : parameter domain

vi(q) ∈ Q[q] arbitrary polynomials in parameters

vi(q) are generators of the polytope

Bounds on quasipolynomials (CFGV2009)

Input: Parametric polytope P and quasipolynomial p(q, x)
Output: Bound B(q) on quasipolynomial over polytope

B(q) ≥ max
x∈P(q)

p(q, x)

Note: V-parametric polytope can be computed from H-parametric polytope

through parameter vertex enumeration + chamber decomposition
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Bounds on Quasipolynomials: Example

p(x1, x2) =
1

2
x2

1 +
1

2
x1 + x2 P = conv.hull{(0, 0), (N, 0), (N,N)}

To compute:

M(N) = max
(x1,x2)∈P

p(x1, x2)
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Bounds on Quasipolynomials: Example

p(x1, x2) =
1

2
x2

1 +
1

2
x1 + x2 P = conv.hull{(0, 0), (N, 0), (N,N)}

To compute:

B(N) ≥ M(N) = max
(x1,x2)∈P

p(x1, x2)

How? ⇒ Bernstein expansion

Express x ∈ P as convex combination of vertices

(x1, x2) = α1(0, 0) + α2(N, 0) + α3(N,N), αi ≥ 0,
∑

i

αi = 1

p(α1, α2, α3) =
1

2
N2
α

2
2 + N2

α2α3 +
1

2
N2
α

2
3 +

1

2
Nα2 +

3

2
Nα3

Express p(x) as convex combination of polynomials in parameters
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Bounds on Quasipolynomials: Example

p(α) =
N2

2
α

2
2 + N2

α2α3 +
N2

2
α

2
3 +

N

2
α2 +

3N

2
α3 αi ≥ 0,

∑

i

αi = 1

Express p(x) as convex combination of polynomials in parameters

p(x) =
∑

Bj(α)bj(N)
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2

(

N2 + N

2

)

+ α2
3

(

N2 + 3N

2
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+ (2α1α2)
N

4
+ (2α1α3)

3N

2
+ (2α2α3)

N2 + 2N
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Conclusion

isl: a relatively new integer set library
currently used in
◮ equivalence checking tool
◮ barvinok
◮ CLooG

explicit support for parameters and existentially quantified variables

all computations in exact integer arithmetic using GMP

built-in incremental LP solver

built-in (P)ILP solver

released under LGPL license

available from http://freshmeat.net/projects/isl/

http://freshmeat.net/projects/isl/
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Conclusion

isl: a relatively new integer set library
currently used in
◮ equivalence checking tool
◮ barvinok
◮ CLooG

explicit support for parameters and existentially quantified variables

all computations in exact integer arithmetic using GMP

built-in incremental LP solver

built-in (P)ILP solver

released under LGPL license

available from http://freshmeat.net/projects/isl/

Future work: port barvinok to isl; now uses

PolyLib: GPL, . . .

⇒ isl already supports operations provided by PolyLib, but a lot of code

still needs to be ported

NTL: not thread-safe, C++

⇒ isl needs LLL

http://freshmeat.net/projects/isl/
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