Island Hopping: Efficient Mobility-Assisted Forwarding
in Partitioned Networks

Natasa Sarafijanovic-Djukic, Michat Pidrkowski, and Matthias Grossglauser
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract— Mobile wireless ad hoc and sensor networks can
be permanently partitioned in many interesting scenarios. This
implies that instantaneous end-to-end routes do not exist. Never-
theless, when nodes are mobile, it is possible to forward messages
to their destinations through mobility.

We observe that in many practical settings, spatial node
distributions are very heterogeneous and possess concentration
points of high node density. The locations of these concentration
points and the flow of nodes between them tend to be stable over
time. This motivates a novel mobility model, where nodes move
randomly between stable islands of connectivity, where they are
likely to encounter other nodes, while connectivity is very limited
outside these islands.

Our goal is to exploit such a stable topology of concentration
points by developing algorithms that allow nodes to collaborate
to discover this topology and to use it for efficient mobility
forwarding. We achieve this without any external signals to nodes,
such as geographic positions or fixed beacons; instead, we rely
only on the evolution of the set of neighbors of each node.

We propose an algorithm for this collaborative graph discovery
problem and show that the inferred topology can greatly improve
the efficiency of mobility forwarding. Using both synthetic and
data-driven mobility models we show through simulations that
our approach achieves end-to-end delays comparable to those
of epidemic approaches, while requiring a significantly lower
transmission overhead.

Keywords: delay-tolerant networks; partitioned networks; mo-
bility; routing.

I. INTRODUCTION

In many applications of wireless ad hoc and sensor net-
works, the network is frequently or permanently partitioned,
i.e., end-to-end routes between some pairs of nodes do not ex-
ist. Such scenarios include large-scale emergency and military
deployments without fallback infrastructure, environmental
monitoring [1], transportation networks [2], self-organized
“pocket-switched” networks [3], etc. These networks may
be partitioned because of subcritical node density, channel
fluctuations (shadowing and fading) and node mobility.

Although instantaneous end-to-end routes do not always
exist, it is often the case that a message can nevertheless be
delivered over time, where the message has to be temporarily
buffered at intermediate nodes to wait for the availability of
the next link towards the destination. The problem of finding a
route over time amounts to finding a sequence of mobile nodes
that physically carry the message towards the destination. This
approach has been referred to as mobility-assisted forwarding,
or also as store-carry-forward [4], [5]. Finding such routes
through space and time is obviously a complex problem in
general, and depends heavily on the joint statistics of link
availability [6].

In this paper, we are interested in the case where network
partitions arise because the distribution of nodes in space
is heterogeneous. Specifically, we assume that the network
possesses concentration points (CPs), i.e., regions where the

node density is much higher than on average, and where
nodes have therefore a much better chance of being connected
to other nodes than on average. We believe that many real
networks possess such concentration points, even though most
network models assume homogeneous node distributions for
convenience and tractability [7], [8].

Furthermore, we argue that the CPs, and the average flows
of nodes between CPs, typically remain stable over relatively
long time-scales. This is because they depend on features of
the natural or constructed environment, which change over
time-scales much longer than the delivery time of messages.

Our goal is to develop efficient schemes for mobility-
assisted forwarding that take explicit advantage of the pres-
ence of stable concentration points. To achieve this goal,
we make three distinct, but strongly related contributions:
(i) we introduce a mobility model that explicitly embodies
CPs, and justify it through an analysis of a large mobility
trace; (ii) we describe the Island Hopping (IH) algorithm that
forwards messages through mobility; and (iii) we describe
how a collection of mobile nodes can infer the CP topology
without any explicit signals from the environment, such as
GPS coordinates or beaconing signals. Finally, we summarize
these three contributions.

A. Mobility Model with Stable Concentration Points (CPs)

Our first contribution is a new mobility model that embodies
the presence of stable CPs. This model is pessimistic, in the
sense that we assume that nodes are only able to communicate
with other nodes at the same CP; outside these islands of
connectivity, they are not able to communicate. We therefore
view the network as a graph G(V, E), where the vertex set
V represents the CPs, and the edge set E represents flows of
mobile nodes between the CPs. Two nodes can communicate
with each other only if they are at the same vertex.

Note that the only assumption we make about the set
of nodes within a same CP is that they form a connected
subgraph, i.e., that each node can reach each other node.
If all the nodes are within radio range of each other, then
this is straightforward; if not, then a message sent between
two nodes at a same CP may have to traverse multiple
intermediate hops. Our routing and graph discovery algorithms
rely on simple broadcast primitives within a CP. They can
be implemented through physical-layer broadcast, or through
flooding algorithms.

Results from Large Mobility Trace. We provide some
evidence from a large-scale dataset to justify the validity of
our mobility model. We analyze a trace of the movements
of n ~ 800 taxis over a three-month period in the city of
Warsaw, Poland. We find that in some areas of the city the
expected number of cars within radio range of each other is
much higher than elsewhere. Furthermore, we find that these

areas are stable over time, in the sense that an area that sees a
high density of cars on a particular day is likely to see a high
density on another day as well. This justifies our assumption
of a stable topology of CPs in one realistic scenario.

B. Mobility-Assisted Forwarding in the CP Model

Our second contribution is a novel mobility-assisted for-
warding algorithm called Island Hopping (IH). This algorithm
explicitly exploits knowledge of the CP graph. It forwards a
message through a sequence of CPs to its destination. Each CP
represents an opportunity to pass the message to other nodes.

The key question is how to pass a message from one CP
to the next CP through nodes whose future movements are
random and unpredictable. If the future movements of nodes
were known, we could pass the message to a single node that
would move in the right direction, i.e., to a CP closer to the
destination in G(V, E). However, given that future movements
are unpredictable, the TH algorithm makes a small number of
copies of a message at each CP, in the hope that at least one
copy will move to the intended next CP and the other other
copies will be discarded. The process repeats at the next CP,
until the message reaches its destination. The key challenges
are to (i) not lose the message completely, and (ii) to avoid
that an unnecessarily large number of copies are generated.

C. Collaborative Graph Discovery (COGRAD)

Our third contribution is a distributed algorithm that allows
the nodes to collaboratively discover the CP graph, in the
absence of any signal from the environment, such as GPS
coordinates or fixed beacons. This is important, because it
would be unrealistic to assume that the graph of CPs and
the flows of mobile nodes between CPs is known a-priori.
Instead, we assume that the only information that nodes have
available is the set of other nodes that they can reach (either
directly or over multiple hops), which can be discovered in a
straightforward manner (hello messages, flooding, etc.)

In a nutshell, the COGRAD algorithm achieves this in two
phases: vertex labeling and edge discovery.

Vertex Labeling. The goal of this phase is to generate a
label, i.e., a unique identifier, for each vertex of V, that will
remain stable over time, even though nodes move in and out of
each vertex. Suppose that at a given time the nodes currently
located at the same CP agree on a label for this vertex. Now
another node ¢ arrives at this vertex. Node ¢ has not received
any explicit clue from the environment that it has moved, and
the other nodes have not received a clue that they have not
moved. However, node 7’s set of neighbors has changed rather
markedly, whereas the other nodes’ neighbor set has only seen
the addition of ¢. These nodes can therefore decide jointly that
it is likely that node ¢ has moved, and the other nodes have
not; node ¢ therefore accepts the label of this vertex.

This process associates labels with vertices. The labels
remain stable even though the set of nodes at a vertex changes
all the time. Although errors can occur in this process (e.g., if
a vertex becomes completely empty for a while), this does not
affect the performance of the routing algorithm if this occurs
rarely.

Edge discovery. Once we have associated a label with each
island, a node discovers the edges of the CP graph as it moves
from island to island. We also let nodes exchange edges they
have discovered through a gossip protocol. This ensures that
each node learns the entire graph, even though it may only visit

part of the graph. Also, this ensures that outdated information
(labels that have become invalid after errors) is flushed out.

To summarize, we argue that stable concentration points are
prevalent, and that they can be exploited for efficient mobility-
assisted forwarding. We present evidence to this effect, and a
mobility model embodying CPs, in Section III. In Section IV,
we then describe the routing algorithm for mobility-assisted
forwarding in the presence of stable CPs. For simplicity of
presentation, we describe this algorithm assuming that the CP
graph, and node positions on the graph, are known. In Section
V, we describe collaborative graph discovery (COGRAD),
a distributed algorithm that infers the CP graph from each
node’s dynamic neighborhood set. This allows the routing
algorithm to operate without any explicit clue to nodes about
their location and movement. In Section VI, we show extensive
simulation results on synthetic graphs, as well as on the graph
derived from our traffic dataset described earlier. We show
that our TH algorithm in conjunction with COGRAD results
in a scheme that achieves delay of the order of much more
aggressive flooding-based schemes, while requiring a much
smaller number of copies of each message. We conclude the
paper in Section VIIL.

II. RELATED WORK

Routing in partitioned networks has been investigated in
two scenarios: 1) when the dynamics of connectivity between
nodes is known in advance ([6]), and 2) when it is unpre-
dictable ([5], [9], [10], [11], [12], [13]).

The latter can be further classified as controlled mobility
and random mobility. Under controlled mobility [5], node
trajectories can be controlled and adapted.

Forwarding algorithms for random mobility are usually
based on some form of flooding. For example, in epidemic
routing (ER) [9], when two nodes meet they exchange all
messages that only one of them has a copy of. In this way, a
message is essentially flooded to all nodes, which ensures that
it will reach the destination. This flooding can be constrained
by taking into account mobility history of nodes, e.g., patterns
of encounters of nodes, but also other parameters, such as the
energy left at the node.

PROPHET [10] is based on ER, where message exchanges
between nodes take into account a probability that a node will
meet the destination of a message in the future. This requires
the exchange of vectors of estimated probabilities. In DTC
[11] a node carrying a message checks periodically whether
to transfer the message. The message is transferred if in the set
of nodes (possible via multihop) connected to this node there
is a node “closer” to the destination. “Closeness” depends
on mobility history, system parameters, and future mobility
(if available). A mathematical framework for calculating this
“closeness” based on utility functions is given in [12]. In
MDDV [13], forwarding decisions in a vehicular network are
made based on knowledge of the road map, where nodes are
equipped with GPS receivers.

In the Spray and Wait algorithm by Spyropoulos et al. [14],
the number of transmissions of a message is constrained by
letting only a fixed number L of copies of a message to be
“sprayed” into the network. Then these copies “wait” until they
meet the destination. The authors show that the parameter L
controls the tradeoff between end-to-end delay and overhead.

Our approach considers random unpredictable mobility and
distinguishes itself in that we explicitly infer and use spatial
information of node mobility to limit flooding.

Most mobility models give rise to homogeneous node
distributions over a two-dimensional area [7]. These models
lack an important feature of realistic mobility patterns, the
fact that nodes often cluster around preferred areas [15]. Hsu
et al. [16] propose a realistic Weighted Way Point (WWP)
mobility model that incorporates the fact that destinations
are not uniformly selected from the simulation area. The
authors designed the WWP model as a time-varying Markov
model, fitted to data from a survey on the USC campus. Tang
and Baker in [17] analyze mobile traces with 24773 radios
in a metropolitan-area network. They observe a significant
clustering of radios in some areas, e.g., a financial district;
however, they do not attempt to model user mobility.

III. A MOBILITY MODEL FOR HETEROGENEOUS
PARTITIONED NETWORKS

In this section, we introduce and motivate a new mobility
model for partitioned networks. In particular, we focus on one
feature that appears to be quite ubiquitous in real mobility
processes: concentration points (CPs), i.e., regions where
mobile nodes have a much higher chance of encountering other
nodes than elsewhere. Examples of CPs include:

o People in urban environments: workplace, restaurants,
public transportation (train stations, airports), movie the-
aters, etc.

o Wildlife monitoring: watering holes, clearings, oases, etc.

o Office buildings: cafeterias, conference rooms, water
coolers, hallways, etc.

o Road traffic: intersections, parking lots, gas stations,
traffic lights, etc.

o Military: bases, camps, forts, ports, etc.

In the next subsection we use a large data set of GPS
coordinates of a taxi fleet collected during a three-month
period to verify the presence and the stability of CPs.

A. Stable Concentration Points in a Mobility Trace

Here we analyze the mobility traces of taxi cabs from the
MPT Radio Taxi company from Warsaw, Poland.! This data
set contains GPS coordinates of 825 taxis collected over 92
days in an area of 60 x 48 [km]. Each taxi sends a location
update (timestamp, identifier, GPS coordinates) to a central
server. Updates are not periodic but irregular - they can be as
frequent as a few per hour but also as a few per day.

We want to check whether this data set confirms the
existence of stable CPs. We divide the whole area into a grid
of cells of equal size. For each day d and each cell (z,y) we
find the normalized taxi population - f(x,y;d), interpreted as
the empirical probability that a random update falls into the
cell (x,y) on day d (cf. Figure 1). We look at two different
sizes of a cell cell is possible using the 802.11-like wireless
device. within which a direct radio communication is possible.
Based on statistical analysis of the data set we conclude that:

1) Spatial distribution is heavy tailed: Figure 2 shows
the empirical complementary cumulative distribution function
(CCDF) of f(x,y;d) for the entire data set. This distribution
has a heavy tail, which implies that some cells have population
density much above the average. We show later in this paper
(Section VI) that our new routing scheme requires that the
average number of nodes at a CP is at least 15 or so. The
heavy-tailed distribution in Figure 2 also implies that the

'http://www.taximpt.com.pl

Fig. 1. The red dots represent superimposed location updates of 825 taxis
over 92 days taken from the data set. The black circles represent 79 CPs
and black lines show taxi flows between these CPs. Both CPs and flows are
extracted from the data set.

number of CPs satisfying this requirement will vary relatively
slowly with the total number n of nodes. For example, if we
scale up our data set, assuming a total of 3 million different
vehicles (private cars, public transportation, company vehicles,
trucks, etc.) in this city, we estimate that there are about 89
different cells of size 480x480 meters for which the expected
number of vehicles per day is larger than 15.

2) Spatial distribution is stable over time: We expect that
the high population cells remain stable over time. Figure 2
inset shows also a scatter plots of f(x,y;d) for one randomly
chosen pair of days (d1,ds). We observe significant clustering
along the diagonal, which means that the spatial distribution
on different days tends to be strongly correlated. Furthermore,
we observe that the more densely populated cells (upper-right
quadrant) tend to be particularly close to the diagonal, which
is a good visual confirmation of our hypothesis. In addition
to this visual test, we also apply the Kruskal-Wallis statistical
test [18] to verify whether the normalized taxi populations for
each cell on different days come from the same distribution?.
This is a non-parametric test that makes no assumptions about
the distribution of the data. We find that the p-value of the test
is 0.04. For the size of test « = 0.01 this results in a high
confidence in our hypothesis.

B. CP Graph

Given the above observations, we now define a mobility
model that embodies CPs. The network topology is given
by a directed connected graph G(V, FE) whose vertex set V
represents the CPs, and whose edges describe the possible
movements of nodes between CPs. There are n nodes that
move on this graph. At every time ¢, every node i is either
located at one CP, or is en-route between two CPs u and v.
We denote the current position of node i by X;(¢). We assume
that time is continuous. We call B;(t) the set of neighbors of
node ¢ at time ¢ (including itself), i.e., the set of nodes located
at the same CP as i. If a node is en-route between two CPs

then B;(t) = {i}.

2We exclude from the data set all Fridays and Sundays because we observe
that these days differ much from the other days. This is probably due to people
moving out from the city for the weekends.

, Empirical CCDF of the normalized taxi population in cels for the entire period of 3 months
0 T T T

T
—=— cell size: 120x120 [m]
—&A— cell size: 480x480 [m]

Comparison of two different f(x,y:d)

0t 10 12 10! 10
day 41

" fxyid)

Fig. 2. Empirical CCDF of f(x,y;d) for the entire period for two levels of
discretization. Inset shows the scatter plot of f(z,y;d) on two random days
- each point on the plot corresponds to a density in a cell (x,y) at days di2
and dg1.

Fig. 3. Nodes move on a graph G(V, E), which describes the network
topology in terms of its CPs and the ways nodes can move between them.

We assume that nodes located at the same CP can commu-
nicate with each other (either directly or through multi-hop),
whereas nodes at different CPs cannot. We assume that the
only observation available to a node about its environment is
the set B;(t), which the node can obtain by communicating
with other nodes.

C. Inferring the CP Graph from Mobility Trace

In this section we describe our heuristic to extract a CP
graph from the mobility trace.

1) Concentration Points: In order to find CPs we first define
a cluster at day d as a cell for which f(z,y;d) > 5%. The
reason we choose 5% as the threshold is to ensure that in
every CP there are at least 15 vehicles (see III-A.1). Using
such a small threshold allows us to identify clusters that would
be more visible for regular and frequent location updates. We
identify 174 clusters. Here we define a CP as a cluster that is
present for more than 20 days (see I1I-A.2). In result we find
79 CPs within the whole city (cf. Figure 1).

2) Stable Flows: Inferring stable flows between CPs from
such data set is not trivial because of very irregular and
infrequent location updates. Suppose a taxi goes from u to
v only through w and it sends only two updates: at time ¢;
from u and at time ¢ from v. Thus by looking only at the
travel time 7(u,v) = to — t1 we could conclude that there
is a direct edge from u to v, which is not true. This would
lead to a CP graph that does not reflect the topology of the
city. In this section we propose a heuristic that solves this
problem. First, we enumerate the entire data set looking for
the minimum travel time for each pair of CPs: 7y, (u,v). If
Tmin(u,v) > 0 then the flow between u and v exists, i.e.,
e = (u,v) € E. In result we get a CP graph that is close

to fully connected. In order to prune the unrealistic edges we
use the following heuristic: if Ip(u,v) = (u, w1, ws,...,v)
S.L. Timin (Us V) > D7 ¢ p(u,0) Tmin(€) then (u,v) ¢ E, where
p(u,v) is the path between u and v. Instead of almost fully
connected graph, we get a graph for which the average vertex
degree is 3.2.

The inferred CP graph is shown on Figure 1. The resulting
topology resembles a spider net, which is consistent with the
topology of the city of Warsaw, where most of the important
institutions and centers of activity are located downtown.
Moreover, knowing the real distances between all CPs and
the Tpnin(e), we find that the median value of the maximum
speeds found over the edges of the CP graph is 58.1 km/h,
which is a reasonable value.

IV. ISLAND HOPPING (IH) ALGORITHM

Island Hopping (IH) is a mobility-assisted forwarding algo-
rithm in which a node makes forwarding decisions, i.e., when
to pass a copy of a message to other nodes and when to discard
it, by using the knowledge of:

1) the CP graph, and its own position in that graph, and

2) the destination’s position in the CP graph.

The design goals are to minimize the number of copies
made of a message, to minimize the end-to-end delay, and
to maximize the delivery rate.

In this section we describe our IH scheme under the assump-
tion that a node has knowledge of the CP graph G and its own
position in G at all times. Inferring this knowledge in scenarios
where nodes have external signals from the environment (such
as GPS coordinates or signals from fixed beacons) is easier
than in the case where no such external information exists.
In Section V, we show how nodes can infer this knowledge
without such external signals.

A. Message Progression Towards a Fixed Destination

In this subsection, we show the main ideas of IH under the
further simplifying assumption that nodes know the position
in G of a message’s destination. In the next subsection, we
then show how nodes can locate the destination.

Our IH scheme uses the following three ideas, which we
illustrate in Figure 4.

1) Routing a Message through a Sequence of CPs: Assume
that a node ¢, currently located at vertex u € V/, has a message
m with destination node D located at vertex w € V. The key
is for node ¢ to decide which vertex v should be the next hop
in V' for message m in order to make progress towards the
destination. This desired next hop v is stored in the message
in the field m.next_hop. We choose this next hop v as a
neighboring vertex on the shortest path between vertices u
and w in the CP graph.

The next move of node ¢ is in general not yet known. If
node ¢ happens to move to the desired next hop v, then node
i keeps m, and generates new copies in other nodes. If node
7 moves to another vertex v’ # v, node ¢ discards m.

In Figure 4(a), node S at vertex 1 originates a message
m to node D at vertex 4. Node S makes several copies of
m with m.next_hop := 2. Figure 4(b) shows what happens
when these copies move to neighbouring vertices. The node
with the copy that moves to vertex 3 discards m because
m.next_hop # 3, whereas the node with the copy that moves
to vertex 2 makes new copies of m with m.next_hop := 4.
This process continues until the message reaches node D at
vertex w.

2) At Least One Copy Moves to the Next-hop CP: If none
of the copies of message m move to m.next_hop, then all
these copies of m will be eventually discarded, and m will
be lost. To boost the probability that at least one copy of
m progresses towards the next-hop vertex, we introduce a
“one-hop”” acknowledgement (ACK) scheme. The goal of this
scheme is to piggyback one-hop delivery information about
message m through nodes moving in the reverse direction,
and to generate additional copies if needed.

Assume that there exist copies of m at vertex u with
m.next_hop = v. Nodes at vertex u should be informed when
a copy of m has reached v. When a node with m arrives at v,
it broadcasts this fact to all nodes at v. If one of these nodes
then moves to u, it broadcasts an ACK for m. All nodes at
u can then discard m. But if a node at v holding m has not
received an ACK by the time where only a small number c;
of copies of m are left, it generates additional copies of m.
This process repeats for at most c times.

In Figure 4(b), a node with m moves from vertex 1 to vertex
2, where it generates new copies, and broadcasts to all nodes
the identity of m. In Figure 4(d), one of these nodes arrives
at vertex 1 and broadcasts an ACK for m. Then all copies of
m at vertex 2 are discarded.

3) Only One Copy Survives to the Next-hop CP: If more
than one copy of m with m.next_hop = v moves into vertex
v, then new copies of m can be generated at v several times.
This could lead to an exponential increase of the number of
copies. We include a mechanism to suppress additional rounds
of copying. If node ¢ moves to v, it makes new copies only if
none of the nodes currently at v have seen an earlier copy of
m arrive at v.

Figure 4(c) shows what happens when a second copy of m
arrives at vertex 2 from vertex 1. Even if m.next_hop = 2,
the copy is discarded, because m has already been at vertex
2.

B. Dynamically Locating Destination through Last Encounter
Routing

So far, we have assumed that the location of the destination
is fixed and known to the message, which is unrealistic.
To discover the location of the destination of a message,
we cannot resort to the classical methods such as flooding,
because the network is partitioned.

To solve this problem, we borrow an approach from [19]
called Last Encounter Routing (LER), where a node maintains
a Last Encounter Table (LET), with an entry for every other
node. An entry consists of the time and location of its last
encounter with the node. In [19], the location of the node is
its geographic location. We adapt this to our setting, where the
location of last encounter is a vertex: each node remembers
for each other node the last time they were located at the same
vertex, and therefore connected.

The LETs are used by a message to continually obtain more
recent information about the location of the destination, as
follows. Assume again that a node ¢ at a vertex u has a
message m destined for a node D. As we saw in Section
IV-A, node ¢ needs to determine the next-hop vertex for m.
Before doing so, node 7 searches all nodes at u for the most
recent LET entry for node D. This location is then used as
an estimate of the position of node D to determine the next-
hop vertex. The message remembers this estimate in a field
m.le. As the message gets closer, it tends to find more recent
information, “zeroing in” on the destination.

message
was here

(c) Node with a copy of m moves to a vertex where m has already
been observed.

(d) One-hop acknowledgment.

Fig. 4. Island hopping - example.

Small dots - nodes without a copy of m; large dots - nodes with a copy of
m; empty dots at a vertex - nodes without a copy of m, but that know that
m was at this vertex.

V. COLLABORATIVE GRAPH DISCOVERY (COGRAD)

We now specify how collaborative graph discovery
(COGRAD) infers the CP graph from changes in neighborhood
sets, without any other signal from the environment. Note that
a single node would obviously be unable to find out anything
about the network topology; a COGRAD protocol is necessar-
ily collaborative. More formally, the goal of COGRAD is:

o for every node to learn the CP graph G(V, E);
o for every node ¢ to know its current position X;(¢) at all
times t.

As we mentioned in Section I, COGRAD achieves this
by having the nodes running two algorithms: vertex labeling
and edge discovery. The vertex labeling algorithm decides for
each node if this node is currently on an edge (i.e., in transit
between two vertices) or at a vertex (CP); in the latter case,
it also identifies the CP through a label. The node then uses
the output of this algorithm as input into the edge discovery
algorithm. The edge discovery algorithm estimates the edge set
E of the CP graph. We next describe these two algorithms.

A. Vertex Labeling

We have assumed that if node ¢ is at an edge, then its
neighborhood set is B;(t) = {i}; at a vertex, the neighborhood
set includes the other nodes present at the same vertex. Using
this assumption, a node ¢ can decide whether it is at an edge
or at a vertex: if | B;(¢)| = 1, it concludes that it is at an edge,
otherwise it concludes that it is at a vertex®.

If a node is at a vertex, it decides on a label for this vertex.
Let us now see how nodes label vertices. At startup, nodes
that are at a vertex agree on a label for this vertex, e.g., by
taking a random number from a large alphabet, or by taking the
minimum node identifier of nodes at the vertex. This ensures
an initial set of unique vertex labels.

As a node moves from a vertex u through an edge to another
vertex v, it should accept the label of the new vertex v as its
new location. Assume that node ¢ arrives at v at time ¢. Let
us denote with ¢~ the time immediately before ¢. If nodes at
v at time ¢~ have already decided on a label, then node i
simply accepts this label (cf. Figure 5(a)). If not, then node ¢
randomly generates a new label (cf. Figure 5(b)).

Algorithm 1 formally describes the vertex labeling scheme
described above. A node runs the algorithm every time its
neighborhood set changes. With Y;(t) we denote node i’s
position in the CP graph obtained by the algorithm at time
t, where Y;(t) = edge if node 4 thinks it is at an edge, and
Y;(t) = vertex y if node i thinks it is at vertex with label y.
With random we denote a large random integer.

Algorithm 1: Labeling - event: B;(t~) # B;(t), t >0
1 If | B;(¢)| = 1 then /* node ¢ alone */
2 Yi(t) = edge
3 Else /* node 7 not alone */
4 If |B;(t~)| = 1 then /* node ¢ alone before */
5 If | B;(t)| > 2 then /* at least 2 other nodes at this CP /*
6 Yi(t) = Y;(t™), for some j € B;(t) /* accept new
label */
7 Else /* only 1 other node at this CP */
8 Yi(t) = vertex random /* relabel this CP */
9 End if
10 Elseif /* node 4 not alone before */

3Note that the assumption that a node is alone if it is at an edge can be
relaxed in a realistic setting by adding a threshold for the size of the set of
neighbors when a CP becomes a vertex in the CP graph.

11 Yi(t) = Yi(t™) /* keep current label */
12 End if

13 End if

y(r) = edge Y,t) = Y;(t) = vertez v «y)

edge)([vertex w
= edge

at time
w - random integer
i

at time ¢ at time ¢

= vertexr v = = vertexr v

Yi(t) = vertex w

at time ¢

at time ¢

{

at time ¢

Fig. 5. Vertex labeling when a node arrives at a vertex. With Y;(¢) we denote
node 4’s position in the CP graph obtained by the vertex labeling algorithm
at time ¢.

Relabeling Errors. Once a vertex is labeled, nodes at this
vertex keep the same label, until there is only one node left
at the vertex. Then this remaining node falsely decides that
it is at an edge. The next time two nodes are present at this
vertex, the vertex is relabeled. Therefore, a vertex changes its
label every time the number of nodes drops below two. If this
occurs rarely, then the vertex labeling algorithm manages to
maintain stable vertex labels over relatively long periods of
time.

B. Edge Discovery

As a node moves on the graph, it observes the label of every
vertex it visits, as described in the previous section. If a node
moves directly from vertex v with label y, to vertex v with
label y,, then this indicates the existence of a labeled edge
(Yu, yv), and we say that the node directly observes this edge.

To discover the edge set E, it would be possible for each
node to rely only on its own observations of the edges it tra-
verses. However, this approach has the following drawbacks.
First, if node mobility is such that a node does not visit the
entire graph, then this node will never discover some parts
of the graph, which can result in poor forwarding decisions.
Second, even if a node moves over the entire graph, the
discovery process would be rather slow, and the transient time
(until every node knows most of the CP graph) would be
excessively long.

We therefore would like to accelerate the dissemination of
edge information to allow every node to learn the entire graph.
One approach is for nodes to exchange labeled edges through
a gossip protocol. This allows nodes to learn the entire CP
graph more quickly.

Note however that a node’s view of the CP graph may
change over time because of relabeling errors. If the label
of a vertex u changes from y,, to y/,, then all edges with label
1., become obsolete. We use an aging mechanism to eliminate
such obsolete edges.

More precisely, in our gossiping scheme, node 7’s view of
the CP graph, G, is represented by the set of pairs (e, tops),
where t,ps is the time when edge e was directly observed.
Node ¢ has edge e in G; either if it has directly observed e,
or if it has received e through gossiping from other nodes.

Every node, upon arrival at a vertex, gossips a constant
number (n.) of randomly chosen entries (e, tops) from its view
of the graph G; to all nodes at this vertex.

Therefore, node ¢ updates GG; either when it directly ob-
serves an edge, or when it receives a gossip message from
another node. When node ¢ directly observes edge e at time
t, it adds (e, t) to G; and deletes the old entry for e from G;
if it exists. When node i receives (e, t,p5) through gossiping,
it does the following. If it does not have an entry for e in G;

yet, then it adds (e, tops) to G;. If it already has an entry for
e, (e, %)), and if tops > t!, ., then it replaces (e,t’,.) in G;
with (e, tops)-

In addition to the process of learning edges, a node removes
an edge from the graph if the edge grows too old. More
precisely, a node removes entry (e, tops) from its graph at time

tobs + Tage, where T, 4. is a fixed constant for all nodes.

C. IH and COGRAD

In the previous section, we had described the IH algorithm
as operating on top of a topological oracle that reveals the CP
graph G to every node. We now describe how IH operates on
top of COGRAD, where the CP graph G, and each node’s
position on the graph, are obtained through COGRAD, and
therefore subject to some errors, as described.

As we saw in Section IV, a node 7 located at vertex wu
chooses the next hop for a message m with the destination
at w as the next vertex on the shortest path u — w in its
view of the CP graph. We have not specified which next-hop
is chosen if several shortest paths, and thus several possible
next-hops, exist. In this case, we use the age of edges obtained
by COGRAD in the edge discovery part to choose between
these possible next-hops. We choose the next-hop with the
smallest age of its incoming edge from u, i.e., the vertex v
whose entry ((u,v),t) is most recent.

We discuss two other error conditions that can arise in IH
due to errors in the underlying graph discovery algorithm. The
first situation arises when node 7 makes the next-hop decision
for a message, but cannot find a shortest path to w. This can
happen when in i’s view of the graph G;, (i) w is not known,
or (ii) a path v — w does not exist in G;, possibly because u
has no outgoing edges in G;. The second situation arises when
the destination location (obtained by the last encounter tables
as described in Section IV) is the current node’s location u,
but the destination is elsewhere.

We resolve these situations as follows. In the case where
a node is not aware of any outgoing edges from the current
vertex u, then this node simply keeps the message and waits
until it moves to another vertex v, where it then tries again
to find a path. Otherwise, the node chooses as next hop the
vertex v for which it has the most recent entry ((u,v),t) in
its edge cache.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the ITH
algorithm, both in combination with an oracle that reveals the
true vertex or edge identity to each node, and in combination
with the COGRAD algorithm that discovers the CP graph
and node locations from each node’s neighborhood set B;(¢),
as described in Section V. For this purpose, we developed a
custom simulator implementing the CP graph-based mobility
model, and the IH and COGRAD algorithms.

We compare our algorithm with ER [9] and PROPHET [10].
We also compare the delay of our algorithm with the scheme
where a source transmits a message only to the destination (no
routing algorithm is used). We denote this scheme as “no R”.

A. Simulation Set-up

We present simulation results for both synthetic topologies
and for the city traffic topology we have inferred in Section
III. The synthetic topology we use is the 2-dimensional k£ X k
grid, where we vary k from 3 to 10, i.e., |[V| =9,...,100.

For both the synthetic and the city topology we assume
that we have n = ¢|V| nodes performing independent random
walks on the graph, with ¢ > 0 a parameter controlling the
mean number of nodes per vertex. Note that the random walk
is the most challenging mobility process for our purposes,
for the following reason. When a node performs a random
walk, its future movements are independent of the entire past.
In other words, even if a node accumulates statistics about
its past movements, this will not help predict the future. As
such, all the nodes located at a vertex v at a given time ¢ are
statistically equivalent, and no information about the past (e.g.,
keeping track of when a node has last seen the destination, as
in PROPHET) can be used to predict where a node will go in
the future.

The location of a node is either a vertex v € V' (which
implies that the node can communicate with all other nodes
currently located at the same vertex v), or on an edge ¢ =
(u,v) € E (which implies that the node is en route from
island u to island v, and is not able to communicate with any
other node).

Each node spends an exponentially distributed time with
mean 7y at a vertex, and an exponentially distributed time T
at an edge, where we set Ty = 107g. All the delay results
we report, as well as all time scales, are normalized by setting
Ty + Tk = 1, i.e.,, we normalize to unity the average speed
at which a node advances from vertex to vertex.

So far, the only assumption we make about the set of nodes
within a same CP is that each node can reach other nodes
(either because they are in direct radio range of each other, or
because they can form a connected ad hoc network). However,
for the purpose of simulations we do assume for simplicity that
nodes within a CP are directly connected. This assumption is
favorable for both our algorithms and for the epidemic-based
algorithms ([9],[10]) we compare with, because it makes it
possible to transmit a message to all nodes at a CP in a single
broadcast. If nodes at a CP were not directly connected, then
the broadcast function would have to be replaced by a flooding
primitive.

Other fixed parameters in our simulations are: ¢; = 3 and
co = 2 in IH (cl and ¢2 are defined in Section IV), and
maximum hop — count = 1000 in ER and PROPHET.

Each simulation we report is preceded by a warm-up phase,
which is needed to populate the last encounter tables (LETS).
The warm-up phase terminates if 80% of the node pairs
have encountered each other at least once; note that this is
conservative in that the LE tables are asymptotically fully
populated.

We use the following metrics:

o delivery rate - the number of messages delivered to
destinations divided by the total number of messages sent
by sources

o delay - the normalized delay for the delivered messages

o number of transmissions per message - how many times
a message is transmitted until there are no more copies
of this message in the network.

We find these metrics by averaging over a number of
randomly chosen source-destination pairs, where for each
pair a source sends a single message to its destination. In
simulation results we show the mean values of these metrics
with 95% confidence intervals.

Note that the number of transmissions per message includes
only the transmissions of actual messages, not the control

messages generated by TH and COGRAD. We justify this as
follows. First, in the IH algorithm, control messages result
only when a traffic message is to be transmitted. Therefore,
the IH control overhead should be considered relative to the
overhead to transmit messages. Usually, data messages tend to
be orders of magnitude larger than control messages. This is in
compliance with the proposed architecture for delay tolerant
networks in [4]. Therefore, the IH overhead per data message
can be neglected. Second, in the COGRAD vertex labeling
algorithm, control overhead accrues when a node discovers its
neighborhood set B;(t), and this type of control overhead is
also present in ER and PROPHET. Third, in the COGRAD
edge discovery algorithm, control overhead accrues when a
node arrives at a vertex and broadcasts a small number of
edges. In comparison, ER and PROPHET exchange a summary
vector and predictability vectors whenever a node meets a
new node, which in our setting means the broadcast of these
vectors per each node’s arrival at a vertex. Therefore, the
control overhead in our scheme is comparable to that in ER
or PROPHET, and small compared to data messages except
when the network is very lightly loaded. Hence, we consider
only traffic messages in our simulation results and we leave a
detailed analysis of the control overhead for future work.

B. Simulation Results

First, we show in Figures 6 and 7 how these metrics depend
on the two parameters of the COGRAD algorithm (n. and
T,ge, c.f. Section V). Recall that the parameter n. represents
the number of edges that each node gossips upon its arrival at
a vertex, and the parameter 77,4, is the age threshold fixed for
all nodes upon which an edge is removed from the CP graph.

We see that the results are not very sensitive to T4, i.€.,
that in the broad range of T}, 4. from 50(Ty + 1) to 100(Tv +
Tg) the results vary little. We also see that the good results
are achieved with a relatively small number of gossiped edges
(ne = 4), especially in the case of the grid topology. In the
simulation results reported below we set T, 4. = 70(Tv +Tg)
and n. = 4 unless stated otherwise.

In the case of the taxi graph, we have a slight drop in the
delivery rate (85%-95% depending on n.). This is because
the taxi graph consists of a number of vertices with a small
degree (1 and 2), which results in a small mean number of
nodes in a stationary regime (less than 4 and 8, respectively)
and thus frequent relabeling errors occur in these vertices. This
suggests that we could obtain better results if the CPs with a
small mean number of nodes were actually considered edges
in the CP graph. This is a question for future investigation.

Second, we show in Figure 8, the performance metrics for
the grid topology as a function of the square root of the grid
size k, for ¢ = 15. Figure 8(a) shows the delivery rate. We
notice that the delivery rate of the flooding-based approaches
(ER, PROPHET) is essentially 100%. The delivery rate of IH
drops slightly, but remains very close to 1. This slight drop-off
is due to relabeling errors in COGRAD, as described earlier.

Figure 8(b) shows the end-to-end delivery delay. Although
the delay of IH is higher than that of flooding-based ap-
proaches (around 1.5 times higher), the figure suggests that
it is only a small constant factor higher than ER/PROPHET
as a function of network size.

Figure 8(c) shows clearly the main advantage of our scheme:
it requires a significantly lower overhead per message than
ER/PROPHET.

Third, we show simulations based on the inferred city graph
in Section III. In these simulations, we vary the parameter c to
explore the sensitivity of IH+FCOGRAD to small values of c.
We see in Figure 9(b) that small values of ¢ are problematic;
this is because vertices empty too frequently, leading to a high
packet drop rate due to relabeling errors.

Finally, Figures 9(b) and 9(c) confirm our finding that
IH+COGRAD achieves a very favorable tradeoff, with a delay
close to that of flooding-based approaches that are essen-
tially the lowest possible delay, with much lower transmis-
sion overhead, which implies that a network operating under
IH+COGRAD has a capacity gain of more than an order of
magnitude over ER/PROPHET for the scenarios considered
here.

This favorable tradeoff is possible because our scheme
tightly controls the copies of a message en route, immediately
killing any message that strays from the shortest path towards
the destination. In flooding-based approaches, messages dif-
fuse throughout the network; in particular, it is difficult in
these approaches to ensure that all copies of a message get
discarded after one copy of the message has been delivered to
the destination. This problem does not arise in IH.

VII. DISCUSSION AND CONCLUSION

We have argued in this paper that node distributions that are
heterogeneous in space and relatively stable over time provide
an opportunity for mobility-assisted forwarding in partitioned
networks, because the underlying topology of concentration
points (CPs) and flows of nodes between the resulting islands
of connectivity can be learned and used to make progress
towards the destination without flooding the network with too
many copies of a message.

We have shown that in the presence of stable CPs, our
approach significantly outperforms approaches where copies
of messages are made without the benefit of an underlying
topology. Our approach achieves end-to-end delays of the
same order as aggressive flooding-based approaches, but with
up to an order of magnitude fewer transmissions per message.
This benefit comes from the ability to decide, at every vertex,
whether a particular copy of a message has made progress
towards the destination or not; we can realize this benefit
even if the mobility process is not predictable (random walk),
and even if the CP graph is not known a-priori (thanks to
COGRAD).

To do this, we had to take a significant detour, and first
develop a scheme to discover this topology. We have shown
that under the assumptions of our mobility model, it is -
somewhat surprisingly - possible to achieve this by processing
the changing set of neighbors of each node, without relying
on any explicit signal from the environment or from dedicated
infrastructure.

Once we inferred have the CP graph, we can try to for-
ward messages along the shortest path of islands towards
the destination. Although we cannot, of course, control the
movement of individual nodes, we can nevertheless make
progress towards the destination by making a few copies, and
letting only those copies survive that go in the right direction.

For this to work, a message has to be able to locate the
destination in the CP graph; for this, we have adopted the
idea of last encounter routing described in [19], but here
locations are vertex labels rather than geographic coordinates.
This allows a message to have an estimate of its destination’s

Delivery rate

——grid 9x9
- - —city graph

- v w s 0 e N ® ©

50

&\ |
B e e e e

Delay Number of transmissions

id 9x9 d 9x9
- - ~city graph \ - - —city graph

S

100 150 50

T
age

Fig. 6.
of transmissions.

Delivery rate

The grid 9 x 9 and the city CP graph; as a function of the COOGRAD parameter Ty ge; ne = 4, ¢ = 15

Delay

T T
age age

. (a) Delivery rate, (b) delay, (c) number

Number of transmissions

Fig. 7. The grid 9 x 9 and the city CP graph;

as a function
(c) number of transmissions.

Delivery rate

—— IH+COGRAD
—+— IH+oracle
---ER

- & -PROPHET

Delay

of the COGRAD parameter ne; Tuge = 70(Tyv + TE), ¢ = 15. (a) Delivery rate, (b) delay,

Number of transmissions
140

—— IH+COGRAD
—+— IH+oracle
---ER

- e -PROPHET

120

——IH+COGRAD
—+— IH+oracle
---ER

- -PROPHET

- noR

100

80

60

40

6
Grid size

Fig. 8.

current location; the precision of this estimate tends to improve
as the message approaches the destination.

Our simulation results show that our approach significantly
outperforms schemes that do not explicitly exploit topological
information. Of course, this advantage depends on the presence
of a stable topology of concentration points; otherwise, it is
probably hard to achieve significantly better performance than
schemes such as ER and PROPHET. However, we believe
that heterogeneous and stable node distributions tend to be
the norm rather than the exception, and we hope to establish
this claim through further study of a diverse and representative
set of mobility traces. The key point we make in this paper is
that stable heterogeneity is beneficial, as it provides structural

clues that can be exploited by routing and mobility-assisted
forwarding algorithms.

Many questions remain open, and the possible extensions
of this work are plentiful. For example, the model of the
CP graph, where each vertex is a CP a-priori, and where
nodes en-route between CPs cannot communicate with any

6
Grid size

6
Grid size

The grid topology; as a function of k (grid size k X k); ¢ = 15. (a) Delivery rate, (b) delay, (c) number of transmissions.

other node, is certainly somewhat of an exaggeration. We
believe, however, that IH and COGRAD can be made more
robust so that they will operate even if these assumptions are
relaxed. For example, there may be a spectrum of CPs with
very different node densities; we envision that a CP that is
populated too sparsely, i.e., empties too frequently, should not

“qualify” as a vertex in the CP graph, as frequent relabelings
are problematic.

Another assumptions concerns our mobility model. It can
be expected that COGRAD performance would suffer in the
presence of much group mobility, i.e., a set of nodes traveling
together for a period of time. Such a group of nodes could
“overpower” other nodes when they arrive at a vertex, and
impose their label, although they have moved. We think
that this is an interesting direction for further research. In
particular, it should be possible to improve COGRAD by using
history; for example, it may be possible to repair labels upon
such errors instead of simply relabeling, using history in nodes.

Delivery rate
- g 2

0.9

0.8

0.7

0.6

—— IH+COGRAD| Loo:
—+— IH+oracle
---ER

- & - PROPHET

S

o L

0.5

---IC Se-ee oo g

Delay

Number of transmissions
150

I

—IH+COGRAD T

—+— IH+oracle ---F

-—-ER o _/,«-}‘*%”éﬁ”ﬂ}
- - PROPHET bo-----%&
- - noR

——IH+COGRAD)|
—+— IH+oracle
---ER

50 - -PROPHET

18 20

Fig. 9. The city CP graph; as a function of c. (a)

ACKNOWLEDGMENTS

The authors would like to thank Henri Dubois-Ferriére,
Daniel R. Figueiredo, Maciej Kurant, Hung Nguyen, and
Dominique Tschopp for valuable feedback and discussions on
this paper. We also thank Holly Cogliati for help in improving

the

manuscript. We are indebted to the MPT Radio Taxi

company in Warsaw, Poland, for making the GPS database
available to us.

The work presented in this paper has been supported (in
part) by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science
Foundation under grant number 5006-67322.

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S.Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” in Proc. ASPLOS-X 02, San Jose, CA,
October 2002.

“UMassDieselNet: A Bus-based Disruption Tolerant
http://prisms.cs.umass.edu/diesel/.

P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket Switched Networks and Human Mobility in Conference En-
vironments,” in WDTN ’05: Proceeding of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking. New York, NY, USA: ACM
Press, 2005, pp. 244-251.

K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proc. SIGCOMM 03, August 2003.

W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proc. ACM Mobihoc
’04, Tokyo Japan, May 2004.

S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant networking,”
in Proc. SIGCOMM °04, August/September 2004.

T. Camp, J. Boleng, , and V. Davies, “A Survey of Mobility Models
for Ad Hoc Network Research,” Wireless Communication & Mobile
Computing (WCMC): Special issue on Mobile Ad Hoc Networking:
Research, Trends and Applications, vol. 2, no. 5, pp. 483-502, 2002.
D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc Wireless
Networks,” Mobile Computing (Tomasz Imielinski and Hank Korth,
eds.), pp. 153-181, 1996.

A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks technical report cs-200006,” Duke University, Tech. Rep.,
April 2000.

A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in inter-
mittently connected networks,” Mobile Computing and Communications
Review, July 2003.

X. Chen and A. L. Murphy, “Enabling disconnected transitive commu-
nication in mobile adhoc networks,” in Proc. Workshop on Principles of
Mobile Computing '01, August 2004.

M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive routing for in-
termittently connected mobile ad hoc networks,” in Proc. IEEE 6th
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WOWMOM’05), June 2005.

H. Wu, R. Fujimoto, R. Guensler, and M. Hunter, “Mddv: A mobility-
centric data dissemination algorithm for vehicular networks,” in Proc.
ACM Workshop on Vehicular Ad Hoc Networks (VANET), October 2004.
T. Spyropoulos, K. Psounis, and C. Raghavendra, “Spray and Wait: an
efficient routing scheme for intermittently connected mobile networks,”
in Proc. Workshop on delay tolerant networking and related networks
(WDTN-05), August 2005.

Network,”

20 20

Delivery rate, (b) delay, (c) number of transmissions.

[15]

[16]

[17]

(18]
[19]

J. Kang, B. Steward, W. Welbourne, and G. Borriello, “Extracting a
Places from Traces of Locations,” in WMASH’04: Proceeding of the
2nd ACM international workshop on Wireless Mobile Applications and
Services on WLAN Hotspots, 2004.

W. Hsu, K. Merchant, H. Shu, C. Hsu, and A. Helmy, “Preference-based
Mobility Model and the Case for Congestion Relief in WLANSs using Ad
Hoc Networks,” in VT'C2004-Fall: Proceeding of the 60th IEEE VTC,
2004.

D. Tang and M. Baker, “Analysis of a Metropolitan-Area Wireless
Network,” Wireless Networks, vol. 9, pp. 107-120, 2002.

J. Dickinson, Gibbons, and S. Chakrabort, Nonparametric Statistical
Inference. Marcel Dekker, March 2003.

M. Grossglauser and M. Vetterli, “Locating Mobile Nodes with EASE:
Learning Efficient Routes from Encounter Histories Alone,” IEEE/ACM
Trans. on Networking, vol. 14, no. 3, June 2006.

