
J
H
E
P
0
2
(
2
0
2
1
)
0
3
5

Published for SISSA by Springer

Received: October 26, 2020
Accepted: December 27, 2020

Published: February 3, 2021

Island in the presence of higher derivative terms

Mohsen Alishahiha,a Amin Faraji Astanehb,c and Ali Nasehc
aSchool of Physics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran, Iran

bDepartment of Physics, Sharif University of Technology,
P.O. Box: 11155-9161, Tehran, Iran

cSchool of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran, Iran

E-mail: alishah@ipm.ir, faraji@sharif.ir, naseh@ipm.ir

Abstract: Using extended island formula we compute entanglement entropy of Hawking
radiation for black hole solutions of certain gravitational models containing higher deriva-
tive terms. To be concrete we consider two different four dimensional models to compute
entropy for both asymptotically flat and AdS black holes. One observes that the resultant
entropy follows the Page curve, thanks to the contribution of the island, despite the fact
that the corresponding gravitational models might be non-unitary.

Keywords: 2D Gravity, AdS-CFT Correspondence, Conformal Field Theory, Gauge-
gravity correspondence

ArXiv ePrint: 2005.08715

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2021)035

mailto:alishah@ipm.ir
mailto:faraji@sharif.ir
mailto:naseh@ipm.ir
https://arxiv.org/abs/2005.08715
https://doi.org/10.1007/JHEP02(2021)035


J
H
E
P
0
2
(
2
0
2
1
)
0
3
5

Contents

1 Introdunction 1

2 Island formula for entropy 2

3 Entanglement entropy for two sided black hole 5

4 Entanglement entropy for one sided black hole 10

5 Page curve for critical gravity 13

6 Discussions 16

1 Introdunction

According to Hawking’s computations the black hole’s radiation is thermal [1] which results
in black hole information paradox [2]. More precisely, being thermal, it leads to the fact
that the entanglement entropy of the radiation grows monotonically. This, in turn, implies
that the black hole generates more entropy than it has room for. It is in contrast with the
Page’s considerations [3, 4] which propose that the corresponding entropy should decrease
after the so called the Page time. This is, indeed, what is required by the unitarity of
quantum mechanics.

In the context of black hole physics it was generally believed that in order to explain
the Page curve one might need to have a better understanding of microscopic description
of black hole degrees of freedom. Nonetheless, recently, it was shown that the Page curve
could be described within the semiclassical description of gravity [5–9], at least in two
dimensions.

Indeed motivated by holographic entanglement entropy [10, 11] and introducing the
quantum extremal surface [12], a new rule for computing the fine grained black hole entropy
is proposed in [7] based on which in order to evaluate the entropy of the radiation one should
also consider a possible contribution of an island containing a part of the black hole interior.
More precisely, the generalized entropy for a region R is given by [7]

Sgen = Min
{

Ext
[
A[∂I]
4GN

+ SvN(R ∪ I)
]}

, (1.1)

where I is the island whose boundary area is denoted by A[∂I] and SvN(R ∪ I) is the von
Neumann entropy of union of the island and the region R. Then the rule is to extremize
this expression for any possible island and then take the one that results in the minimum
entropy.
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For two dimensional Jackiw-Teitelboim gravity [13, 14] the island rule has been derived
by making use of replica trick [15, 16].1 In this context the island contribution is associ-
ated with the contribution of new saddle points in the Euclidean path integral (replica
wormholes).

It was then wondering if such a prescription is a particular property of the Jackiw-
Teitelboim gravity which is conjectured to provide a gravitational description for SYK
model [18, 19] that enjoys a disorder average procedure. Actually, the island rule has
been applied for yet another interesting two dimensional gravitational model known as
CGHS [20] that admits two dimensional asymptotically flat black holes. It was shown that
for this model the entropy follows the Page curve too [21–23].

The existence of the island for higher dimensions has been investigated in [24]. More
recently, the Page curve of asymptotically flat black hole for dimensions greater than two
has been studied in [25] (see also [26]). It is then natural to pose the question whether the
island rule could be extended for gravitational models containing higher derivative terms.
Indeed, this is the aim of the present article to explore this possibility.

To be concrete in this paper we shall consider two different four dimensional gravi-
tational actions containing higher curvature terms. The first model has no cosmological
constant so that one has to deal with asymptotically flat black holes, while in the sec-
ond one there is a negative cosmological constant leading to black hole solutions that are
asymptotically AdS. Of course, in this case one has to couple the geometry to a bath where
the Hawking radiation may be collected.

By making use of the extended island formula we compute the entanglement entropy
of the Hawking radiation and observe that in both cases an island appears at late times
resulting in an entropy following the Page curve, despite the fact that both models might
be non-unitary. We will back to this point later.

The paper is organized as follows. In the next section we will present the general
procedure for evaluating the island formula for entropy in the presence of higher deriva-
tive terms. Then we use this formula to compute entanglement entropy for the Hawking
radiation for asymptotically flat two sided and one sided back holes in sections three and
four, respectively. In section five we will address the same question for four dimensional
critical gravity where the corresponding black hole solutions are asymptotically AdS. The
last section is devoted to discussions.

2 Island formula for entropy

In this section we would like to extend the island formula for the entropy to the cases
in which the gravitational action contains higher derivative terms. Let us consider the
following total action

I = Igravity + Imatter, (2.1)
where the action of gravity part may be given by

Igravity = 1
16πGN

∫
dd+1x

√
gL(Rµρνσ) . (2.2)

1Page curve for evaporating black holes in Jackiw-Teitelboim gravity has also been studied in [17].
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with L being a function constructed out of contractions of an arbitrary number of Riemann
tensors, and GN is the Newton constant. Moreover, Imatter stands for the action of quantum
matter field propagating on a classic solution of the gravity part. For the quantum matter
field we may consider the action of N scalar fields. In what follows we assume 1 � N �
rd−1
h
GN

, so that the matter contributions dominate the entanglement entropy, while at the
same time the back reaction of the scalar fields on the geometry is negligible. Here rh is
the horizon radius of the black hole solution we are considering.

Since the model under consideration has higher derivate terms, a natural proposal for
island formula is to replace the area term in the island formula (1.1) with a proper area
functional [27]. More precisely, for the gravitational action (2.2) one has

Sgen = Min {Ext [Sgravity + SvN,matter]} , (2.3)

with

Sgravity = 1
4GN

∫
Σ
dd−1y

√
h

{
− ∂L
∂Rµρνσ

εµρενσ

+
∑
α

(
∂2L

∂Rµ1ρ1ν1σ1∂Rµ2ρ2ν2σ2

)
α

2Kλ1ρ1σ1Kλ2ρ2σ2

qα + 1 (2.4)

×
[
(nµ1µ2nν1ν2 − εµ1µ2εν1ν2)nλ1λ2 + (nµ1µ2εν1ν2 + εµ1µ2nν1ν2)ελ1λ2

]}
.

Here in terms of two orthogonal unit vectors niµ to the co-dimension two hypersurface Σ,
one has

nµν = niµn
i
νgij , εµν = niµn

j
νεij , (2.5)

where εis is the usual Levi-Civita tensor. For more details and convention see [27].
In this paper, to be more concrete, we will restrict ourselves to four dimensional theories

in which the corresponding action containing higher derivative terms may be given as
follows

Igravity = 1
16πGN

∫
d4x
√
g

(
R[g] + λ1R

2[g] + λ2Rµν [g]Rµν [g] + λGBLGB[g]
)
, (2.6)

where

LGB[g] = Rµνρσ[g]Rµνρσ[g]− 4Rµν [g]Rµν [g] +R2[g], (2.7)

Indeed this is the most general four dimensional gravitation action consisting of higher
derivative terms up to order of O(R3). The Schwarzschild black hole solution of the model
is given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2, f(r) = 1− rh
r

(2.8)

that is an asymptotically flat black hole solution whose Hawking temperature is T = 1
4πrh .

On the other hand by making use of the Wald formula for the entropy one has

Sth = π

GN
(r2
h + 4λGB), (2.9)

that is the thermal entropy of the black hole.
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For this model the gravity part appearing in the island formula (2.3) is given by [27, 28].

Sgravity = A[∂I]
4GN

+ 1
4GN

∫
∂I

(
2λ1R[g] + λ2

[
Rµν [g]nµi n

ν
i −

1
2KiKi

]
+ 2λGBR[∂I]

)
. (2.10)

Here i = 1, 2 denotes two transverse directions to the co-dimension two boundary of island
I on which the two unit normal vectors are denoted by nµi . Moreover, Ki is the trace of the
second fundamental form Ki,µν = −hαµhνβ∇αn

β
i where hµν = gµν − ni,µni,ν is the induce

metric on ∂I.
As for the contribution of the matter field one needs to compute the von Neumann

entropy which in four dimensions has the following general form [29]

SvN,matter = A[∂I]
ε2

+ S̃ log ε+ SvN,fin, (2.11)

where SvN,fin is the finite part of the entanglement entropy, ε is a UV cutoff and S̃ =
AS̃Euler + CS̃Weyl with

S̃Euler = α

∫
∂I
R[∂I],

S̃Weyl = −α
∫
∂I

(
Rµναβ [g]nµi n

ν
jn

α
i n

β
j −Rµν [g]nµi n

ν
i + 1

3R[g]− TrK2 + 1
2KiKi

)
.

(2.12)

Here “α” is a finite constant number (see [29]) and A,C are the coefficients of the Euler
term and the Weyl square term in 4D conformal anomaly, respectively. These two constants
play the role of the central charges in four dimensions which are of order of N . On the
other hand by making use the Gauss-Godazzi equation,

R[g] = R[∂I]−Rµναβ [g]nµi n
ν
jn

α
i n

β
j + 2Rµν [g]nµi n

ν
i + TrK2 −KiKi, (2.13)

the von Neumann entropy (2.11) associated with the matter field may be simplified as
follows

SvN = A[∂I]
ε2

+ α

∫
∂I

(2C
3 R[g]− C

[
Rµν [g]nµi n

ν
i −

1
2KiKi

]
+ (A− C)R[∂I]

)
log ε+ SvN,fin.

(2.14)
Putting both contributions given by equations (2.10) and (2.14) together, it becomes clear
that the UV divergences of von Neumann entropy of the matter field may be absorbed
by a renomalization of the Newton constant, as well as the coupling constants of higher
derivative terms. More precisely, due to the matter loops the Newton constant will be
renormalized as

1
4GN

→ 1
4GN

− 1
ε2
,

and this will cancel out the area divergent term in SvN,matter (see e.g. [30]). In a similar
way the log divergent term in SvN,matter will be dropped out by the corrections which have
root in the renormalization of the coupling constants of the higher derivative terms (λ’s
in (2.10)), so although we start with a four dimensional formula for the entropy in its full
structure form, we end up with a finite term, SvN,fin at the end of the day. This term
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R+R− I

b+b− a+a−

r0 r0

[]

Figure 1. Entanglement regions in the radiation part with the assumption that there is an island
inside the black hole. The fictitious boundaries shown by violet lines at r = r0 are the regions over
which the gravity is negligible that are the radiation regions. At early times assuming that there is
an island results in an imaginary solution for the location of island indicating that there is no island
at early times and thus the whole contributions come from the matter von Neumann entropy.

will quantify the mutual information between the regions constructed in radiation part
as well as the Island. Since this is very hard to find a universal mutual information in
four dimensions we just use the above argument about the propagation of the s-modes
to estimate the mutual information with a two dimensional formula for which we have
a closed form whose universality has already been proved. Putting things together, one
finally arrives at

Sgen(R) = Min
{
Ext

[
A[∂I]

4GN,ren

+ 1
4GN,ren

∫
∂I

(
2λ1,renR[g]+λ2,ren

2∑
i=1

[
Rµν [g]nµi n

ν
i −

1
2KiKi

]
+2λGB,renR[∂I]

)

+SvN.fin(R∪I)
]}
. (2.15)

This is, indeed, the island formula we will use to compute the entanglement entropy of the
Hawking radiation for the four dimensional asymptotically flat black hole (2.8). In fact
this should be thought of the semi-classical prescription that computes the fine grained
entropy of a black hole when higher derivative terms are also taken into account.

3 Entanglement entropy for two sided black hole

In this section we would like to compute the entanglement entropy of the Hawking radiation
for an eternal black hole solution given by (2.8) using the island formula (2.15). To be
concrete we consider subregions R+ and R− in the radiation part (see figure 1). In an
asymptotically flat black hole the radiation region is the part of the spacetime near the
null infinity where the gravity is negligible. Practically, we assume that it is above a
fictitious boundary located at r = r0 as shown in the figure 1. Typically it is few time
greater than the radius of the horizon e.g. r0 ∼ 3rh. Therefore with this assumption the
radial location of the boundary of our entangling regions denoted by b± must be greater
than 3rh.
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We note that the island formula consists of two parts: the gravity part that is associated
with a nontrivial quantum extremal surface, island, and the matter von Neumann entropy.
A periori, it is not obvious whether or not one should have such an island. Nonetheless to
proceed in what follows we will assume that there is a nontrivial island and then we will
seek for its location by extremizing the island formula. Note that since the solution we are
considering is maximally symmetric the location of a possible island is fixed by its position
in (t, r) coordinates. Thus, by extremizing the island formula one obtains a set of algebraic
equation.

If the resultant algebraic equations have real solution(s), one would get non-trivial
island, otherwise one could conclude that there is, indeed, no island and thus the whole
contribution to the entropy comes from the matter von Neumann entropy.

To proceed, let us consider the contribution of the gravity part to the entanglement
entropy of the Hawking radiation assuming that there is an island, I, whose location
is denoted by a± in figure 1. As we already mentioned, due to the symmetry of the
solution (2.8) the location of island is give by its position in (t, r) coordinates. Therefore
the corresponding normal vectors n1 and n2 associated with the co-dimension two boundary
of the island, ∂I, are given by

nt1 = 1√
f(r)

, nr2 =
√
f(r). (3.1)

It is then straightforward to compute the trace of the extrinsic curvature tensors in two
normal directions

K1 = 0, K2 = −2
r

√
f(r). (3.2)

We have, now, all ingredients to compute the gravity part of the entropy. Parametrizing
the location of the end points of the island by a+ : (ta, a) and a− : (−ta + iβ2 , a) where β
is the inverse of the Hawking temperature, one has

K1K1 = 0 , K2K2 = 4
a2

(
1− rh

a

)
. (3.3)

Moreover taking into account that for the solution (2.8) one has Rµν [g] = 0 and R[∂I] =
2/a2, the gravitational part of the entanglement entropy of the radiation reads

Sgravity = 2π
GN,ren

(
a2 − 2λ2,ren

(
1− rh

a

)
+ 4λGB,ren

)
. (3.4)

Now one should compute the matter von Neumann entropy SvN.fin. Actually, in gen-
eral, it is not an easy task to compute entanglement entropy for several intervals in four
dimensions. It is, however, worth noting that we are, actually, interested in evaluating the
entanglement entropy of quantum fields on a maximally symmetric background containing
a 2-sphere. Thus we can expand the quantum fields in terms of the spherical harmonics.
Reducing to two dimensions one gets a tower of Kaluza-Klein modes whose masses are given
by the angular moment along the 2-sphere. On the other hand since we are interested in
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entangling regions that are far farm each other, one would expect that the main contribu-
tion to the von Neumann entropy comes from entanglement between massless modes; the
s-wave configuration [5, 25]. In other words, from two dimensional point of view we are
throwing away the contributions of massive Kaluza-Klein modes from the entanglement
entropy.

In this case, effectively, one might only consider those modes that propagate in two
dimensions parametrized by (t, r) coordinates. As a result we could compute the corre-
sponding entanglement entropy between several entangling regions using two dimensional
techniques (see for example [31]). To proceed it is useful to work within the Kruskal
coordinates

U = −
√
r − rh
rh

e
− t−(r−rh)

2rh , V =
√
r − rh
rh

e
t+(r−rh)

2rh , (3.5)

by which the corresponding two dimensional part of the metric (2.8) reads

ds2 = −ω−2dUdV, ω =
√

r

4r3
h

e
r−rh
2rh . (3.6)

In this two dimensional theory the finite part of the entanglement entropy of the regions
R+, R− and the island I is given by [31]

SvN,fin(R ∪ I) = A

3 log
(
d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)

d(a+, b−)d(a−, b+)

)
, (3.7)

where d(`1, `2) denotes the geodesic length between two-points `1 and `2 that in the above
coordinate system reads

d(`1, `2) =

√(
U(`2)− U(`1)

)(
V (`1)− V (`2)

)
ω(`1)ω(`2) . (3.8)

To write the above expression for finite part of the entanglement entropy we have used
the fact that the whole system represents a pure state and therefore from two dimensional
point of view the desired entanglement entropy is the same as that of two disjoint intervals
[b−, a−] ∪ [a+, b+].

Using this expression the finite part of the entanglement entropy, equation (3.7)
reads [25]2

SvN,fin(R ∪ I) = A

6 log
[

256(a− rh)(b− rh)r4
h

ab
cosh2 ta

2rh
cosh2 tb

2rh

]

+A

3 log

 1
2

√
a−rh
b−rh e

a−b
2rh + 1

2

√
b−rh
a−rh e

b−a
2rh − cosh

(
ta−tb
2rh

)
1
2

√
a−rh
b−rh e

a−b
2rh + 1

2

√
b−rh
a−rh e

b−a
2rh + cosh

(
ta+tb
2rh

)
 , (3.9)

2Actually this part of computation is almost the same as that presented in [25].
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which could be further simplified into the following form assuming that a ≈ rh3

SvN,fin(R ∪ I) = A

6 log
[

256(a− rh)(b− rh)r4
h

ab
cosh2 ta

2rh
cosh2 tb

2rh

]

+A

3 log

 1
2

√
b−rh
a−rh e

b−a
2rh − cosh

(
ta−tb
2rh

)
1
2

√
b−rh
a−rh e

b−a
2rh + cosh

(
ta+tb
2rh

)
 . (3.10)

Let us first focus on this expression at early times in which Tta, T tb � 1. Then, the above
expression may be further simplified as follows

SvN,fin(R ∪ I) = A

6 log
[

256(a− rh)(b− rh)r4
h

ab
cosh2 ta

2rh
cosh2 tb

2rh

]

−4A
3

√
a− rh√
b− rh

e
a−b
2rh cosh ta

2rh
cosh tb

2rh
. (3.11)

Plugging the contributions of gravitational part and the above matter part into the gener-
alized entanglement entropy (2.15) one finds

Sgen = 2π
GN,ren

(
a2 − 2λ2,ren

(
1− rh

a

)
+ 4λGB,ren

)
− 4A

3

√
a− rh√
b− rh

e
a−b
2rh cosh ta

2rh
cosh tb

2rh

+A

6 log
[

256(a− rh)(b− rh)r4
h

ab
cosh2 ta

2rh
cosh2 tb

2rh

]
, (3.12)

that should be extremized with respect to the location of the island, i.e. with respect to a
and ta. Actually from the extremization with respect to a one gets

a = rh +
A2G2

N,ren
36π2

r2
he

1− b
rh

(b− rh)(r2
h − λ2)2 cosh2 ta

2rh
cosh2 tb

2rh
. (3.13)

Substituting back this value of a into (3.12) and then extremizing with respect ta one finds
that the resultant equation does not have a real solution indicating that there is no island
at early times.

As a result, in order to compute the entanglement entropy of the Hawking radiation
at early times one only needs to consider the contribution of the von Neumann entropy of
the matter field. More explicitly, assuming there is no island one has

Sgen = SvN,fin(R+ ∪R−) = A

3 log d(b+, b−) = A

6 log
(
U(b−)− U(b+)

)(
V (b+)− V (b−))

W (b+)W (b−
) ,

(3.14)
which yields

Sgen = A

6 log
(

16r2
h(b− rh

b
) cosh2 tb

2rh

)
. (3.15)

3Actually since we are dealing with large N limit and moreover the entangling regions in the radiation
parts almost cover the whole space, one would expect that the location of island to be in the vicinity of the
horzion [8].
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Note that to write the above expression for entropy we have again used the fact that the
whole system is in a pure state and to find the desired entropy one just need to evaluate the
entanglement entropy of a signal interval [b−, b+] in two dimensions. Form this expression
one finds that at early times it exhibits O(t2) growth, while at the late times the entropy
grows linearly

Sgen ∼
A

6
tb
rh
, (3.16)

that leads to information paradox as proposed by Hawking. It is important to note that
the above computations were based on an assumption that the no-island scenario remains
valid all the way from early to late times. As we will see this is, actually, not the case.

To explore this point better let us redo the same extrimazation procedure when one
is approaching the late times. In this case, assuming Ttb, T ta � 1, the equation (3.10)
reduces to

SvN,fin(R ∪ I) = A

6 log

16r4
h

(b− rh)2e
b−a
rh

ab

− 2A
3

√
a− rh
b− rh

e
a−b
2rh cosh

(
ta − tb

2rh

)
. (3.17)

Therefore, in this case the generalized entropy reads

Sgen = 2π
GN,ren

(
a2 − 2λ2,ren

(
1− rh

a

)
+ 4λGB,ren

)
+ A

6 log

16r4
h

(b− rh)2e
b−a
rh

ab


−2A

3

√
a− rh
b− rh

e
a−b
2rh cosh

(
ta − tb

2rh

)
. (3.18)

From the exterimazation of the generalized entropy one gets

∂Sgen
∂a

= − Ae
rh−b
2rh

3
√
b− rh

cosh
(
ta − tb

2rh

) 1√
a− rh

+ 12π(r2
h − λ2)−AGN,ren

3rhGN,ren
+O(

√
a− rh) = 0,

(3.19)
that may be solved to find

a = rh +
A2r2

hG
2
N,ren

144π2(r2
h − λ2)2

e
rh−b
rh

(b− rh) cosh2
(
ta − tb

2rh

)
. (3.20)

Here we have used the fact that at leading order one has 12π(r2
h−λ2)−AGN,ren ≈ 12π(r2

h−
λ2). Substituting the above value of a in (3.18) and extremizing the result with respect
to ta one finds that ta = tb is a solution. Thus, one gets nontrivial real solution for the
parameters of island indicating that the island shows up at late times when Ttb � 1.
Actually for this solution the generalized entropy (3.18) at late times reads

Sgen = 2Sth + A

6 log
(

16r3
h

(b− rh)2

b
e

(b−rh)
rh

)
+O(GN,ren), (3.21)

where Sth is black hole thermal entropy (2.9). It is also worth noting that the contribution
of λ2 term appears in order G2

N,ren. From this result it is then clear that the appearance
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[

R
I

b
a

r0

Figure 2. Entanglement regions in the radiation part with the assumption that there is an island
inside the black hole. The fictitious boundary shown by violet lines at r = r0 specifies the region
over which the gravity is negligible, i.e. the radiation region.

of the island results in the saturation of entanglement entropy at late times in agreement
with Page’s proposal.

It is also possible to estimate the time when the entropy stops growing that is known
as the Page time. Indeed, this can be done by equating the entropy growth without
island (3.15) with the saturation value at late times. Doing so, one arrives at

log
(

cosh tPage
2rh

)
= 6Sth

A
+ 1

2 log
(
rh(b− rh)e

(b−rh)
rh

)
. (3.22)

Tending to the late time limit Ttb � 1, the above equation may be simplified as follows

tPage = 12Sth
A

rh + rh log
(
rh(b− rh)e

(b−rh)
rh

)
. (3.23)

4 Entanglement entropy for one sided black hole

In this section we would like to study entanglement entropy of the Hawking radiation of
an asymptotically flat one sided black hole when the corresponding gravitational action
contains higher curvature terms. We will consider an entangling region, R, in the radiation
part of the black hole that is the part near null infinity behind a fictitious boundary over
which the gravity is negligible (see figure 2).

Actually the aim is to evaluate the island formula for this configuration. To do so, one
needs to compute the generalized entropy assuming that there is an island whose location
can be obtained by extreminzing the generalized entropy (2.15). It is important to note
that while in two sided black hole the position of the island was outside the horizon, in the
present case it is believed that the island is located inside the event horizon [5–8]. Having
this point in mind the gravity contribution to the generalized entropy is found to be

Sgravity = π

GN,ren

(
a2 + 2λ2,ren

(
1− rh

a

)
+ 4λGB,ren

)
. (4.1)
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To find the von Neumann entropy of the matter part, following the procedure we used
in the previous section, one may consider entanglement entropy of a two dimensional space
given by the metric (3.6). Of course, since the black hole and radiation union is in a pure
state, in order to compute the entanglement entropy of radiation and island one just needs
to compute the entanglement entropy of an interval [a, b] in two dimensions that is given by

SvN,fin = A

3 log d(a, b) (4.2)

where d(a, b) is the geodesic distance between a and b as depicted in the figure 2. To
compute the corresponding distance one should use the equation (3.8). It is, however,
important to note that since the island is located behind the horizon one should properly
define the Kruskal coordinates in this case. More precisely one has

U = −e−
t−r∗
2rh , V = e

t+r∗
2rh , outside the horizon,

U = e
− t−r

∗
2rh , V = e

t+r∗
2rh , inside the horizon, (4.3)

where the tortoise coordinate, r∗, is given by

r∗ = r − rh + rh log
( | r − rh |

rh

)
. (4.4)

By making use of this notation and utilizing the equation (3.8) one finds

SvN,fin = A

6 log
[
(a− rh)e

a−b
2rh + (b− rh)e

b−a
2rh − 2

√
(b− rh)(rh − a) sinh

(
ta − tb

2rh

)]

+A

6 log
[ 4r2

h√
ab

]
(4.5)

To find the location of the island and then the entanglement entropy of the radiation
one needs to extremize the generalized entropy with respect to the location of the island.
Indeed extremizing the generalized entropy with respect to a,

∂Sgen
∂a

= ∂

∂a
(Sgravity + SvN,fin) = 0, (4.6)

and defining X =
√

rh−a
rh

one arrives at

12π(r2
h+λ2,ren)−AGN,ren

GN,ren
+ rhA

(b−rh)

e rh−brh cosh
(
ta−tb
rh

)
+e

rh−b
2rh

√
b−rh
rh

sinh
(
ta−tb
2rh

)
X


+O

(
X sinh

(
ta−tb
2rh

))
= 0. (4.7)

It is easy to see that at early times when ta ∼ tb and Ttb � 1 the above equation has
no solution and therefore one may conclude that at early times there is no island. Thus
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the whole contribution to the generalized entropy comes from the matter von Neumann
entropy. More precisely, in this case one gets

Sgen = A

6 log
[4r2

h√
b

(
(b− rh)e

b
2rh − rhe

−b
2rh + 2

√
(b− rh)rh sinh( tb2rh

)
)]
, (4.8)

that results in the following linear growth at early times

Sgen ∼
A

6

√
(b− rh)rh

rh

(
(b− rh)e

b
2rh − rhe

−b
2rh

) tb . (4.9)

Assuming to have no island all the time from early to late times one observes that the
entropy increases monotonically, that is consistent with Hawking’s proposal. Of course
this is not the case as we will see.

Indeed at late times when Ttb � 1 the equation (4.7) admits a solution that is given by

X = −
AGN,rene

rh−b
2rh

√
rh
(
b− rh

)
sinh

(
ta−tb
2rh

)
((
b− rh

)(
12πr2

h + 12πλ2,ren −AGN,ren
)

+AGN,rene
1− b

rh rh cosh
(
ta−tb
rh

)) . (4.10)

Note that since by definition the quantity X is a positive number, the above expression
leads to a solution if ta < tb. In other words the location of the island should be in the past
of the location of the entangling region R. Moreover, from the extremization with respect
to ta one finds that4

∂Sgen
∂ta

= AGN,rene
b
rh

(b−rh)(r2
h+λ2,ren)

sinh
(
ta−tb
rh

)
(4.11)

×
((
b−rh

)(
AGN,ren+12π(r2

h+λ2,ren)
)
+AGN,rene

1− b
rh rh

(
1−2cosh

(
ta−tb
rh

)))
= 0,

which can be solved to find (note that ta < tb)

ta = tb − rh logSth − rh log

12e
b
rh
−1(b− rh)(r2

h + λ2,ren)
Arh(r2

h + λGB,ren)

+O(GN,ren). (4.12)

By making use of the definition of the tortoise coordinates the above equation may be
recast into the following form

v(a, ta)− v(b, tb) ∼ −rh logSth +O(G0
N,ren) ∼ − tscr2 , (4.13)

where v = t + r∗ and tscr is the scrambling time. This is, indeed, a realization of the
Hayden-Preskill decoding criterion [32]. Namely, if one throws a quantum q-bit into the
black hole after the Page time, it can be decoded from the Hawking radiation just after
waiting for a time of order of the scrambling time.

4Here we have used the approximation 12πr2
h + 12πλ2,ren −AGN,ren ≈ 12πr2

h + 12πλ2,ren.
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Finally using this result one may find the generalized entropy at late times when both
contributions of island and matter field should be taken into account

Sgen = Sth −
A

12

1− log
[16e

b
rh (b− rh)2r3

h

b

]+O(GN,ren). (4.14)

To conclude this section we note that although at early times one has a linear growth,
the island comes to rescue the unitarity at late times in agreement with the Page curve.
In the present case the Page time at leading order is

tPage ∼
6Sth
A

rh. (4.15)

5 Page curve for critical gravity

In this section we will explore the behavior of the Page curve for the black hole solutions of
yet another interesting gravitational theory containing higher derivative terms. The model
we will be considering is “critical gravity” of which the action in four dimensions is [33]

Icritical = 1
16πG

∫
M
d4x
√
−g

[
R− 2Λ− 1

m2

(
RµνRµν −

1
3R

2
)]

, (5.1)

where m is a dimensionful parameter. This model admits several solutions including AdS
and AdS black holes with radius `2 = − 3

Λ . It is known that at the critical point where
m2 = 8

`2 the model degenerates yielding to a log-gravity [34]. Of course in what follows we
will study the model away from the critical point, i.e. m2 6= 8

`2 .
It is easy to see that the equations of motion obtained from the action (5.1) admits

the AdS-Schwarzschild black hole whose metric may be written as follows

ds2 = dr2

f(r) − f(r)dt2 + r2dΩ2
2, f(r) = r2

`2
+ 1− 4GM

r
. (5.2)

where M is a parameter of the solution (not the physical mass).
For our purpose one needs to couple the above gravitational model to a quantum field

that propagate in the above geometry. It is important to note that unlike the solutions
we have considered in the previous section, the above metric represents a geometry that is
asymptotically AdS. The main difference between asymptotically AdS and asymptotically
flat black holes is that, in the former case one usually has reflecting boundary condition
on bulk fields at the boundary of spacetime. This will eventually cause the termination of
the black hole evaporation due to the equilibrium between the emission and the absorption
processes.

To overcome this problem and to have a fully evaporating system, following [5, 6],
one should impose transparent boundary condition for the matter field while the boundary
condition for the gravitational field remains unchanged. In other words, one should couple
the gravitational theory to an external bath constructed of the same quantum matter field
propagating in the flat space. So that the bath is a flat spacetime with no gravity where the
Hawking radiation could be collected. Therefore altogether we have a system consisting
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Figure 3. The AdS black hole+Bath system. The bath (colored region) plays the role of the
environment around the evaporating black hole. This is necessary to include this environment since
the boundary of AdS is reflecting and as a result of that the evaporation will be terminated at some
point due to the expected equilibrium between the emission and the absorption processes.

of gravity confined in the AdS geometry and a quantum field that propagate both in AdS
and flat spaces with transparent boundary condition at the boundary of the AdS geometry.
For quantum matter field one may take the action of N scalar fields, see figure 3.

Here the main subtlety is the way the boundary conditions should be imposed so
that the whole system (gravity+bath) becomes a consistent model. The corresponding
procedure for two dimensional Jackiw-Teitelboim gravity has been carefully worked out in
the literature (see e.eg [5–8]), though its generalization to higher dimensions has not been
fully studied yet. Nonetheless in general one would expect that the similar analysis could
be done for higher dimensions too.

As far as the gravitational part of the island formula is concerned, it is straightforward
to evaluate the corresponding contribution in arbitrary dimensions, though for the matter
field it is crucial to have the proper conditions under which the bath is connected to the
asymptotic AdS boundary. Motivated by the results of the previous section we note that
since the main contribution to the entanglement entropy comes from the s-wave modes
of the quantum field, one may effectively work within a two dimensional theory obtained
by dimensional reduction from the original four dimensional metric. Therefore one would
expect that the same boundary conditions as those in two dimensions may be used here.
Actually this is the fact we assume in what follows and accordingly we will use the same
procedure as before to compute the finite part of the entanglement entropy.

For a technical simplicity reason in what follows we will consider the case where the
radius of curvature is much larger than the radius of horizon so that we could essentially
work with a black brane solution whose metric is the same as that in (5.2) with

f(r) = r2

`2

(
1− r3

h

r3

)
. (5.3)

It is then easy to evaluate the contribution of gravitational part to the island formula.
Actually by making use of the fact that in the present case one has5

K1 = 0, K2 = 2
r

√
f(r), R[g] = −12

`2
,

∑
i

Rµνn
µ
i n

ν
i = 0, (5.4)

5We are using the same notation as that in the section three. See also figure 3.
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the gravitational part reads

Sgravity = V2
2GN,ren

a2

`2

(
1− 8

`2m2 + 2
`2m2 (1− r3

h

a3 )
)
, (5.5)

where V2 is the regularized volume of two dimensional transverse space. As for the matter
part, using the Kruskal coordinate

U = −e−
β

2π (t−r∗), V = e
β

2π (t+r∗) (5.6)

the corresponding reduced two dimensional metric is

ds2 = −ω−2dUdV , ω =

4π2e
4πr∗
β

β2f(r)


1
2

, (5.7)

where β = 4π
f ′(rh) is the inverse of the Hawking temperature and r∗ =

∫
dr/f(r) is the

tortoise coordinate. Then the finite part of the entanglement entropy will be still obtained
from the equation (3.7). It is, however, important to note that in order to compute the
geodesic distances one should keep in mind that the whole system (BH+bath) should
parametrized with the same coordinate system as above, thought in the bath one should
set f(r) = 1. This technical procedure guarantees that we are dealing with a state that is
the Minkowski vacuum in the whole system.

Going through the same computations as those in the section three one finds that
at early times, Ttb � 1, there is no island and the whole contribution to the general-
ized entropy comes from the matter part. Assuming that there is no island at all, the
corresponding generalized entropy becomes

Sgen = A

3 log d(b−, b+) = A

6 log
(
β2

π2 cosh2
(2πtb

β

))
, (5.8)

that at early times results in Sgen ∼ const.+ 2π2A
3β2 t

2
b , whereas at late times where it keeps

growing linearly as follows

Sgen ∼
2πA
3β tb. (5.9)

On the other hand assuming to have an island at late times one would have to extremize
the generalized entropy when both the gravitational part and matter entanglement entropy
are taken into count. In this case using the equation (3.7) one arrives at

SvN,fin = −4πA
3β

(
ta + tb

)
+ A

3 log
(
β2

4π2

√
f(a)(1 + e

4πta
β )(1 + e

4πtb
β )
)

−A3 log


(
e

2π
β

(
ta+r∗(a)

)
+ e

2π
β

(
−tb+b

))(
e

2π
β

(
−ta+r∗(a)

)
+ e

2π
β

(
tb+b

))
(
e

2π
β

(
tb+r∗(a)

)
− e

2π
β

(
ta+b

))(
e

2π
β

(
ta+r∗(a)

)
− e

2π
β

(
tb+b

))
, (5.10)
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which at late times, ta, tb � β, reads

SvN,fin = −2πA
3β

(
ta + tb + r∗(a) + b

)
+ A

3 log
(
β2√f(a)

4π2

)

+A

3 log
((
e

2π
β

(tb+b) − e
2π
β

(ta+r∗(a))
) (
e

2π
β

(ta+b) − e
2π
β

(tb+r∗(a))
))
. (5.11)

Therefore one has to extremize the following expression of the generalized entropy

Sgen = V2
2GN,ren

a2

`2

(
1− 8

`2m2 + 2
`2m2 (1− r

3
h

a3 )
)
− 2πA

3β

(
ta+tb+r∗(a)+b

)

+A

3 log
(
β2√f(a)

4π2

)
+A

3 log
((
e

2π
β

(tb+b)−e
2π
β

(ta+r∗(a))
)(
e

2π
β

(ta+b)−e
2π
β

(tb+r∗(a))
))
.

(5.12)

Actually It is straightforward to show that at late times the equation

∂Sgen
∂ta

= 0, (5.13)

implies ta = tb, while from the equation

∂Sgen
∂a

= 0, (5.14)

one finds

a = rh +
A2`8m4G2

N,ren

9
√

3r3
h (`2m2 − 5)2 V 2

2
e
π√

3
− 3brh

l2 . (5.15)

Plugging this result into the expression of generalized entropy one arrives at

Sgen = V2r
2
h

2`2GN,ren

(
1− 8

`2m2

)
+ A

6

(
3brh
`2
− π√

3
+ log

(
16`6

9
√

3r2
h

))
+O(GN,ren). (5.16)

that is

Sgen = 2Sth + A

6

(
3brh
`2
− π√

3
+ log

(
16`6

9
√

3r2
h

))
+O(GN,ren). (5.17)

Therefore we find the Page curve for the fine grained entropy for the black brane solution
in the critical gravity, despite the fact the model is believed to be non-unitary. Note that
in this case the Page time is also given by tPage ∼ 12Sth

A rh.

6 Discussions

In this paper we have extended the island formula to general gravitational theories con-
taining higher derivative terms in diverse dimensions. Although we could have done our
explicit computations in general dimensions, in order to be concrete, we have restricted our-
selves to four dimensional theories with curvature squared terms with and without negative
cosmological constant.
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For the model without cosmological constant we have evaluated entanglement entropy
of the Hawking radiation for both two sided and one sided asymptotically flat black holes.
Whereas for the case with the negative cosmological constant we have only considered the
two sided black holes that are asymptotically AdS. Although for the asymptotically flat
case there was a natural region to collect the Hawking radiation, for the asymptotically
AdS case we had to couple the system to a bath.

It both cases, under certain reasonable assumptions, we have found that the generalized
entropy follows the Page curve, despite the fact that both model are non-unitary. The Page
curve appears due to the non-trivial contribution from island.

It is important to mention that our results rely on the certain assumptions. For
asymptotically flat black holes we have assumed that there is a fictitious surface over which
the gravity is negligible and essentially we have Hawking radiation with no gravitational
interaction. For asymptotically AdS black hole we have assumed that the geometry can
be consistently coupled to a flat bath with the transparent boundary condition on the
quantum matter.

On top of it we have assumed that the main contribution to the matter von Neumann
entropy comes from the entanglement between s-wave modes of the quantum field that has
no dependence on the 2-sphere. Therefore one might reduce the theory into two dimensions
in which one could use two dimensional conformal field theory techniques to compute the
finite term of the corresponding entanglement entropy. Indeed since we are dealing with
a spherical symmetric geometry the classical maximin surface (and the eventual quantum
extremal surface) should be rotationally symmetric. On the other hand each angular
momentum mode acts as an independent free field in an effective two-dimensional theory,
with a Kaluza-Klein mass proportional to inverse of the radius of sphere which can be
ignored at the lengthscales of interest. More precisely in order to rely on this assumption
one has to consider cases where the geodesic distances between different entangling intervals
are grater than the correlation length of the massive Kaluza-Klein modes ( see [5] for
discussions on this point).

An intuitive argument supporting the above assumption may be given by studying the
scattering amplitude of a scalar field off the black hole. Actually, one can see that due to
the presence of the black hole each angular momentum mode which acts as an independent
free field feels a repulsive potential given by [35]

V`(r∗) = r − rh
r

(
`(`− 1)
r2 + rh

r3

)
, (6.1)

where r∗ = r + rh log(r − rh) and ` is the angular momentum along the sphere. For
r � rh the potential is repulsive and when one is very close to the horizon the potential
is attractive that pulls a wave packet toward the horizon. The height of potential depends
on the angular momentum along the sphere and the lowest height is associated with the
s-wave. More precisely, one has [35]

V max
0 ≈ 0.1 1

r2
h

, V max
` ≈ 0.15 `2

r2
h

(6.2)
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for large `. Therefore while the s-wave modes could propagate almost freely the higher
modes feel a barrier. Therefore it is natural to assume that the main contribution to the
entanglement entropy comes from the s-wave.

Note also that assuming the fact that the s-wave is responsible for generating entangle-
ment entropy the desired boundary condition to attach the asymptotically AdS geometry
to a flat bath may reduce to that of the two dimensional theory.

With these conditions we have shown that the proposed island formula for entropy
offers an expression for the fine grained entropy that follows the Page curve. It is important
to note that this result has nothing to do with holography and having obtained the Page
curve is a general feature of any gravitational theory, despite the fact the island formula is
originally motivated in the context of AdS/CFT correspondence.

Actually another way to think of the island formula is that it is the correct formula
to compute fine grained entropy of a black hole imposing the Page curve as a guiding
principle. In fact this is the point Hawking missed in his original computations of radiation
entanglement entropy. Indeed this is reminiscent of coarse grained entropy of a black hole
in which imposing to have the second law of thermodynamics leads us to define generalized
entropy for black holes.

Thinking in this way, it is then evident (as it is anticipated in the literature) that
obtaining the Page curve is not the full story to resolve the black hole information paradox.
It is just one step forward to make it precise how to compute entanglement entropy for a
system involving gravitational interaction. In fact full resolution of information paradox
requires better understanding of the quantum state of Hawking radiation and the dynamics
of the system.
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