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1 Introduction

The black hole information paradox has been one of the central and long-standing problems

of theoretical physics [1–5]. One of the crucial concern regarding this is to understand the

entanglement between the black hole and radiation. Particularly, to state that the black

hole plus radiation acts as a unitary quantum system, one needs to get the time evolution

of entanglement entropy to follow the Page curve (which is a characteristic feature of the

unitary quantum system) [6, 7]. In the last couple of years, this problem has been some-

what resolved courtesy of understanding geometric entanglement and quantum extremal

surface [8–11]. The resolution came from the quantum corrected version of the holographic

entanglement entropy proposal [12–14] known as the quantum extremal surfaces [15]. The

main role was played by new bulk regions called islands being included in the entanglement

wedge of the radiation starting from the Page time, resulting in bending of the growing

entanglement curve.
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The essence of these computations is as follows. One typically assumes that the Hawk-

ing radiation is being absorbed by a non-gravitational bath coupled with the asymptotic

boundary of the gravitational system containing the black hole. Then if one considers a

subregion A of this bath, the entanglement entropy for this subregion is given by,

SEE(A) = min

{

ext

islands

(

SQFT(A ∪ islands) +
A(∂(islands))

4 GN

)}

(1.1)

The equation (1.1) takes into account the entanglement entropy of quantum fields of radi-

ation subregion A together with the entanglement entropy of the gravitating subregions,

termed as islands, so that the entire functional gets minimized. At initial times, for an

evaporating black hole, (1.1) is minimized without any islands and result matches with the

Hawking’s evaluation of the entropy. But, as time grows, island contribution dominates

and it appears as a new saddle point while one minimizes (1.1) at late times. This is due

to the fact that the quanta of Hawking radiation shares an huge amount of entanglement

with the quantum fields behind the horizon. At this point, the entropy is controlled by

the black hole entropy, which appears in the second term in (1.1), and in this way, (1.1)

produces the expected Page curve. The computation of the Page curve has been done for

a variety of situations [3, 8–10, 16–65].1

In the case of an evaporating black hole, the curve comes down to zero after bending

down at Page time. On the other hand, for the eternal black hole, the entanglement growth

stops at Page time, and the curve saturates. Although the Page curve has been reproduced

successfully using the idea of the islands, the full understanding of the physics is nowhere

near completion. For example, we do not yet know the actual time evolution of the black

hole and the radiation states. The exact physics that causes the emergence of islands is a

hard nut to crack, particularly from the field theory side.

Qualitatively, for the eternal two-sided black hole, the degrees of freedom is bounded

by 2SBH where SBH is the Bekenstein-Hawking entropy of the black hole. This is a

constant for the eternal black hole and acts as an upper bound of the entanglement entropy.

The version of Hawking’s paradox for these black holes previously had an ever-growing

entropy curve, and it did not stop at 2SBH . This acts particularly as a contradiction in

understanding the entanglement entropy as the fine-grained entropy. The existence of the

islands solves this problem. The islands are purely geometric regions appearing in the

entanglement wedge of the radiation subregion starting from the Page time. Therefore, to

build a full understanding of the fine-grained entropy, it is important to look for islands

from a field-theoretic scenario. Although it is largely believed that the islands capture the

effects of quantum error correction [5] in the holographic geometries, it is not yet understood

fully from a field theory perspective. One does not know exactly how the black hole and

the radiation state evolve with time. Hence, the islands appearing in the gravitational

computations do not solve the information paradox of the black holes completely, and

most of the physics, like understanding the reason for the appearance of islands or the

exact evolution of the states of the black hole, is yet to understand.

1This list is by no means complete. Interested readers are encouraged to look into the references and

citations of these papers.
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Along these lines, another quantum information-theoretic quantity known as complex-

ity has been shown much interest by the community in the last few years. It measures

the difficulty of preparing a quantum state using a set of available quantum gates. In

the bulk proposals for the complexity of a pure state, one needs to compute maximal vol-

ume slice (CV) or the classical action of the causal (Wheeler-de Witt) patch of the slice

(CA) [66–68]. From a computational perspective, the complexity is lower bounded by the

geodesic distance in certain manifold [69, 70] and it was found that in view of counting

the total number of gates required to prepared a unitary operator, complexity naturally

scales proportionally to volume after certain optimization [71]. On the other hand, the

mixed state complexity proposal is to compute the volume between the boundary subre-

gion corresponding to the mixed state and the bulk Ryu-Takayanagi (RT) surface [72].

This is known as the holographic subregion complexity which has been argued to be dual

to the complexity of purification for the mixed state.2 In previous work [80], the complex-

ity of radiation state for an evaporating black hole-radiation system was computed in a

multiboundary wormhole model, and a subregion complexity curve corresponding to the

entanglement curve was suggested. In this work, we compute respective volumes for a

model where the entanglement curve is the Page curve for an eternal black hole. The basic

goal is to understand the time evolution of the complexity of the radiation and the eternal

black hole state in the process.

We work with a Karch-Randall (KR) brane model (a particular variant of the Randall-

Sundrum (RS) braneworlds) that was studied in [27, 81].3 We compare the left and right

modes of a conformal defect connecting two branes (one is gravitational that extends in

bulk, and another one is non-gravitational that is fixed at the conformal boundary) with

the eternal black hole and radiation combination. The corresponding degrees of freedom

are situated on the two branes. We compute the volumes dual to the left and right branes at

different times. There is indeed an appearance of island surfaces in the bulk region between

the two branes. As a result, the entanglement between the left and right modes follows

a Page curve typical of the entanglement between the eternal black hole and radiation.

Motivated by this fact, in our model, we consider the left brane to be the analogue of the

eternal black hole, whereas the right modes play the role of the radiation. We find that

there are jumps and dip in volume at Page time corresponding to the right and left branes,

respectively. We try to understand this jump or dip from the perspective of purification of

certain Hawking modes when a new region is included in the entanglement wedge of the

radiation (right modes) subsystem. It is important to keep in mind that we work with an

entanglement Page curve, and the bath (/radiation) region is considered a non-gravitating

one. Therefore, the whole idea is to understand the complexity of the eternal black hole and

the radiation states with evolving time where the crucial physical phenomenon happens at

Page time.

2For details see [73–79] and references therein.
3It is worth noting that in their paper, the authors argued that for a gravitating bath, one does not

get a Page curve and instead end up with a constant entanglement curve. Nevertheless, in a part of their

paper, the authors also show that one can get a Page curve if the entanglement between the left and right

modes of the defect, where the two gravitating branes meet, is computed.
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Figure 1. The braneworld model and the preferred RT surfaces before (HM surface) and after

(island surface) Page time.

The rest of the paper is organized as follows. In section 2, we review the model in

some details and discuss the Page curves of entanglement for d = 3 and d = 4. We review

the area computations of the Hartman-Maldacena and Island surfaces as well. In section 3,

we compute the subregion volumes corresponding to the left and the right modes of the

defect by computing volumes between the RT surface and the corresponding brane (left

and right). In section 4, we discuss our results and implications.

2 Review of left/right entanglement in RS brane model

In this section, we review the model and reproduce the main results we use in our work

from [81]. The basic goal is to model an eternal black hole and radiation system. We

consider the radiation region to be non-gravitating. However, as we will argue in conclusion,

effectively, this paper’s main results will not change much even if a gravitating bath is

considered as far as we restrict to compute the entanglement between the left and the

right brane with a pre-fixed bath region. In this model, the RS braneworld framework

plays a crucial role. We have two branes (figure 1), one of which is in the bulk of a

(d + 1)-dimensional spacetime. We call it left brane or physical brane or gravitating brane

interchangeably, whereas the other one is placed at the conformal boundary of the bulk,

which is non-gravitating and we refer it to right brane or bath brane. The point at which

these two branes meet is a conformal defect. To make the right brane gravitating, we

could take it in bulk as well. We will not consider such a situation in this paper. However,

we will briefly comment on this issue at the conclusion. Now, the degrees of freedom

corresponding to this conformal defect is situated on both the branes. The metric in bulk

is considered the metric of a (d + 1)-dimensional black string. Initially, we distinguish the

defect’s left and right modes by assuming them to be situated on the left (gravitating) and

right (non-gravitating) branes respectively. Then we compute the entanglement between

the left and the right modes. The way to do this holographically is to find the candidate

RT surfaces that start from the defect and then pick the one with the minimal area among

them, measuring the entanglement entropy. But from the perspective of the defect, there

is no strict constraint that can restrict the effective left modes to be situated only on the

left brane and the same for the right modes.

– 4 –
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Therefore, we will treat all the surfaces starting from the defect and ending either on

one of the branes or another defect on the other side of the black string metric as our

candidate RT surfaces. As mentioned in [27, 81, 82], there are two candidates for RT

surfaces that are typically present in these scenarios (as shown in figure 1). The first one is

the well-known Hartman-Maldacena (HM) surface that starts from the defect and ends on

the copy of the defect on the other side of the black hole. This grows linearly with time.

Another candidate RT surface that came into the picture due to the concept of the island

is the RT surface starting from the defect and ending on the left brane. We will call it as

the island surface. When the island surface area is less than that of the HM surface, some

of the modes on the left brane effectively become right modes. This can also be understood

from the boundary perspective as those modes on the left brane become accessible to the

right brane. The point on the left brane where the island surface ends is known as the

critical anchor. In other way, we shoot surfaces from the defect and look for minimal surface

ending on the left brane. It so happens that when both the HM and the island surfaces are

compared, starting from a particular timescale, the island surfaces become smaller than

the growing HM surface (the island surface remains constant throughout the time). This

change of preferred RT surface also depends critically on the angle the left brane is placed

in the bulk with respect to the conformal boundary. It is shown in [81] that for only θ1

values upto some dimension dependent constant (θC = critical angle), the competition is

there. Whenever θ1 exceeds θC , the competition is gone, and some other surfaces known

as the tiny islands become the minimal RT for all times (entanglement becomes constant).

It is also important to note that θ1 controls the strength of the gravity on the left brane.

So, it seems that to get this competition or rather a Page curve, there is some bound on

the strength of the gravity. Nevertheless, we will be taking three constant θ1 values for our

purpose, all of which will be less than θC . Our ultimate aim is to find the complexity curve

for the situation where there is a Page curve for the entanglement between the eternal

black hole and radiation. In the following subsections, we discuss the computations of the

HM surface, island surface and the critical anchor that specifies the island surface for us.

2.1 Hartman-Maldacena and island areas (revisited)

In this section we briefly review the area of the Hartman-Maldacena (HM) and island

surfaces [81]. As already mentioned in [81] we consider the AdSd+1 black string metric

ds2 =
1

u2 sin2 µ

[

− h(u)dt2 +
du2

h(u)
+ d~x2 + u2dµ2

]

, h(u) = 1 −
ud−1

ud−1
h

, (2.1)

to be the bulk metric. Here u > 0 is the radial direction, 0 ≤ µ < 2π is the angular

coordinate and ~x is (d − 2) orthogonal directions.

2.1.1 Hartman-Maldacena area

The Hartman-Maldacena surface is located at µ = π
2 .4 Thus we only need to minimize the

area functional at µ = π
2 ,

A =

∫

dtL (2.2)

4See [81] for more details.
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Figure 2. Page curves for d = 4 and d = 3.

with the Lagrangian,

L = ud−1

√

h(u) +
u̇2

h(u)
(2.3)

In (2.3) there is no explicit time dependence in the Lagrangian thus we can write the

conservation equation,

E = u̇
∂L

∂u̇
− L (2.4)

=⇒ u̇ = ±
h(u)

E

√

E2 + u−2(d−1)h(u) (2.5)

where the sign is “+” when u < uh and “−” otherwise. The critical point ucrit upto which

we should integrate the area is determined by the relation,

E2 = −u
2(1−d)
crit h(ucrit) (2.6)

As u → ucrit, the boundary time as well as the HM area diverges. Therefore the

minimal area is,

AHM = lim
δ→0

∫ ucrit

δ

du

|u̇|ud−1

√

−h(u) +
u̇2

h(u)
(2.7)

It can be easily verified that the area in (2.7) contain a divergent piece when δ → 0.

This divergent term is 1
(d−2)δd−2 as δ → 0. Therefore we can regularise the HM area by

subtracting this divergent term,

Areg
HM(tdiff) = lim

δ→0

[

−
1

(d − 2)δd−2
+

∫ ucrit

δ

du

|u̇|ud−1

√

−h(u) +
u̇2

h(u)

]

(2.8)

On the other hand tdiff is given by,

tdiff =

∫ ucrit

0
t′(u)du = lim

ǫ→0

∫ uh−ǫ

0

du

u̇
+

∫ ucrit

uh+ǫ

du

u̇
(2.9)

By varying the ucrit we can find the regularised Hartman-Maldacena area as a function

of tdiff.
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2.1.2 Island area

If and when there is some surface present starting from the defect and ending on one of

the branes with a lesser surface area than the HM surface, it can become the preferred RT

surface. We call such a surface the island surface. As shown in [27, 81], the island surface

ends on the brane, which is more gravitating among the two. Therefore, in our case, we

search for the island surface on the left brane. The island surfaces are time-independent

surface because, unlike the HM surface, the embedding function is found by solved with a

timeslice and considering u = u(µ) embedding. In d = 4 to compute the island area we

need to minimize the area functional given by

A =

∫

dµ

(u sin µ)3

√

u(µ)2 +
u′(µ)2

h(u)
(2.10)

Practically what one does to find the critical anchor (the point on the left brane where

the island surface ends) is to start from different points on the left brane and solving the

embedding function by taking different boundary conditions u(θ1) = u1/, and u′(θ1) = 0.

Then the job is to check if the surface satisfying the equation of motion can reach the

conformal defect at µ = π
2 . This is mentioned briefly in the following section 2.1.3.

After finding out the critical anchors and hence, the island surfaces for different physical

brane angles, we regularize both the HM and island surfaces. We discuss the regularization

of island surface area in appendix A. The HM and island areas are plotted for d = 3, 4 in

figure 2.5 As can be seen from the figures, there is a crossover between the HM and island

areas at some point in time. This time is different for different brane angles and spacetime

dimension. This time is known as the Page time (tPage = tPage(θ1, d)) where the RT surface

area changes from the time dependent to the time independent one. For d = 4, the Page

times are ≈ 11.87, ≈ 6.03 and ≈ 3.71 for θ1 = π
10 , 1.5π

10 and 2π
10 respectively (figure 2(a)).

For d = 3, the Page times are ≈ 7.3, ≈ 6.07 and ≈ 5.1 for θ1 = π
10 , 1.5π

10 and 2π
10 respectively.

For a constant d, tPage decreases with increasing physical brane angle θ1.

2.1.3 Critical anchor at d = 4 and d = 3

The embedding action for the black string metric in d = 4 is given by eq. (2.10)

A =

∫ π−θ2

θ1

dµ

(u sin µ)3

√

u(µ)2 +
u′(µ)2

h(u)
(2.11)

As mentioned before, we fix the physical (left) brane at three different angles θ =

π/10, θ = 1.5 π/10 and θ = 2π/10. Extremizing the action with the boundary condition

imposed as u(mπ/10) = u1 and u′(mπ/10) = 0 with m = 1, 1.5, 2 respectively, where the

derivative vanishes according to the Neumann boundary condition [81].

We see that there exists a cut off of u on the physical brane where the geodesics reach

the defect (figure 3). The values of the u1 is chosen by choosing different u1’s within a

range of values and look for the surface that reaches µ = π
2 (defect), but does not reach

5In figure 2, we plotted Area(γ)
4

in the y axis using the RT formula SLR =

Area(γ)
4Gd+1

[12]. γ is the minimal

surface.
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Figure 3. Critical anchor at d = 4 for different values of physical (left) brane angle.
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Figure 4. Critical anchor at d = 3 for different values of physical (left) brane angle.

µ = π (conformal boundary). This happens for the orange plots in figure 3 (for d = 4)

and figure 4 (for d = 3). The u1 values for d = 4 are ≈ 0.9991, ≈ 0.9940 and ≈ 0.975 for

θ1 = π
10 , 1.5π

10 and 2π
10 respectively.

We find that while increasing the angle of the physical brane, the critical anchor

value decreases. This implies as gravity gets stronger on the physical brane, the geodesics

corresponding to the RT surface start from smaller numerical values, i.e., the volume of

RT surfaces will decrease with the increase of gravity on the physical brane consistent with

the expectation. The critical anchor’s behaviour in d = 3 will also follow the same pattern

(figure 4). Note that the physical brane must be placed at an angle lower than the critical

angle corresponding to that specific dimension for all the cases.

3 Volume subregion complexity

In this section, we apply the proposal of [72] to compute the volume below the RT surface

at different times. The proposal introduced in [72] states that the volume below the RT

surface gives the subregion complexity of a mixed state in AdS/CFT at that given time.

To be precise, the proposal deal with static scenarios. Therefore, no change in the RT

surface was considered there. Given a RT surface, the proposal, therefore, states that the

volume subregion complexity (CA) for a subregion mixed state A is defined as

CA =
V
(

γRT (AAC)

)

8πℓGN
, (3.1)
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where the denominator is a particular normalization involving the bulk Newton’s constant

GN and the AdS length scale ℓ, here γRT (AAC) is the RT surface that divides the bulk cor-

responding to boundary subregions A and AC (compliment of A) into two bulk subregions.

In a further study, we will suppress this normalization in the denominator of eq. (3.1) as

well as the constant factor in the numerator coming from the extra dimensions. Hence, in

a way, what we compute is the renormalized volume subregion complexity density.

The covariant proposal of volume subregion complexity [83] for time-dependent cases

is a combination of the “Complexity= Volume” proposal [66, 67] and Subregion complexity

proposal for static cases [72]. The proposal goes as follows. Given a time-dependent metric,

we have a time-dependent RT surface, also known as the Hubeny-Rangamani-Takayanagi

(HRT) surface [14]. At a given boundary time t0 and a boundary subsystem A(t0), let us

say the HRT surface is γ(t0, t) (here we emphasize the fact that the RT surface is generally

time-dependent and it does not necessarily stay at the bulk slice t = t0). Then according

to the covariant proposal of subregion volume complexity, one should look for co-dimension

one bulk slices ΣA(t0, t) which has boundary ∂ΣA(t0, t) = A(t0) ∪ γ(t0, t). Then there is

supposed to be an infinite number of such slices ΣA, and we take the one with the maximal

volume. This can also be simply stated as finding the maximal volume Cauchy slice of

the entanglement wedge. It is important to remember at this point that the definition of

the entanglement wedge is the bulk domain of dependence, bounded by ∂ΣA(t0, t). This

proposal involves complicated computations in general but is self-consistent and works for

any subsystem A. This also boils down to Alishahiha’s proposal [72] if we take a time-

independent scenario, where the t dependence of ΣA(t0, t) is not there anymore, and there

is a single choice of volume to compute.

CAcov(t) = MaxΣA(t0,t)

[

V (ΣA (t0, t))

8πℓGN

]

. (3.2)

In our model, the situation is non-static. Hence, ideally, we should be following the

covariant proposal of subregion complexity. However, as mentioned previously, technically,

it is extremely nontrivial and hard to find the maximal volume slice explicitly among all

possible volume slices. We, therefore, resolve to a different path. We follow Alishahiha’s

proposal [72] instead of the covariant one. We consider volume below the HRT surface,

which has the minimal area at a given time, to be the subregion complexity at that par-

ticular time. We therefore compute the volume corresponding to the boundary time t0

for different times t0. However as we argue later in the paper, the qualitative nature of

our study will remain unchanged for the covariant proposal as well. With this, let us now

discuss the volume computation in the model we are interested.6

As mentioned in the previous section, the left and right modes of the defect play

the role of the eternal black hole and radiation respectively in our model. Therefore, the

6The covariant prescription of volume subregion complexity was used in [84]. In our proposal, we fix the

time coordinate as the boundary time and compute volumes for different times in a similar spirit to what

was done in [85]. In a time-dependent case, it is somewhat similar to taking different snapshots taken from

the boundary time and computing volumes enclosed by the HRT and the boundary subregion as seen by

an observer sitting on the boundary. However, it will be interesting to study subregion complexity using

maximal volumes. We hope to explore this direction in future.
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(a) Volume between physical brane and HM sur-

face.

(b) Volume under island on physical brane.

Figure 5. Left (physical/gravitating) brane volumes before and after the Page time are shown.

Before Page time, HM surface u = u(t) is the RT surface whereas after Page time, the preferred

RT surface is the Island surface u(µ) specified by the critical anchor. Correspondingly volumes on

the left brane become (5(a)) before Page time and (5(b)) after Page time.

degrees of freedom contributing to the entanglement between left and right modes on the

left brane decrease in number after the Page time. Similarly, the decreased degrees of

freedom result in the increase in the effective degrees of freedom corresponding to the right

brane. Starting from the Page time, part of the degrees of freedom on the left (gravitating)

brane belong to the right modes of the defect, which results in saturation of the Page curve.

In the following, we compute volumes corresponding to both the left and the right branes

to get an idea about the subregion complexity of the evolving left and right modes (eternal

black hole and radiation).

3.1 Volumes corresponding to left brane (eternal black hole)

For the volume between the RT surface and the left brane, the protocol is following. We

compute the volume between the HM surface and the complete left brane until Page time.

After Page time, as the island surface appears to be the preferred RT surface, the subregion

complexity of the left modes is given by the volume between the island surface and the

left brane.

3.1.1 Hartman-Maldacena volume

Here we compute the d-dimensional volume between HM surface and the left brane, which

is the marked region in figure (5(a)). To do that we again start with AdSd+1 black

string metric,

ds2 =
1

u2 sin2 µ

[

−h(u)dt2 +
du2

h(u)
+ d~x2 + u2dµ2

]

(3.3)

where, blackening factor h(u) = 1 − ud−1

ud−1
h

. As discussed in earlier section the embedding

function u(µ, t) is only function of t and not of µ for Hartman-Maldacena surface. There-
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fore, we only consider the metric for constant µ value,

ds2|µ=constant =
1

u2 sin2 µ

[

−h(u)dt2 +
du2

h(u)
+ d~x2

]

(3.4)

=
1

u2 sin2 µ

[(

−h(u) +
u̇2

h(u)

)

dt2 + d~x2

]

(3.5)

Now we compute the area for each constant µ slices and minimize it. After the min-

imization, we can choose the same embedding function u(t) for every constant µ value.

Therefore, d-dimensional volume should be just the area multiplied by a factor that de-

pends on the angle of the physical (left) brane,

VL−HM(θ1, tdiff) = C1I(θ1)Areg
HM(tdiff) (3.6)

I(θ1) =

∫ π
2

θ1

dµ

sind µ
(3.7)

Areg
HM(tdiff) = lim

δ→0

[

−
1

(d − 2)δd−2
+

∫ ucrit

δ

du

|u̇|ud−1

√

−h(u) +
u̇2

h(u)

]

(3.8)

where C1(=
∫

d~x) is the constant volume factor contributed by the transeverse directions.

It is worth noting that this factor was also present but suppressed in case of the HM area.

Now, we know from our entanglement study that the regularized area Areg
HM is a mono-

tonically increasing function of tdiff. Hence, asymptotically the volume VL−HM also goes

linearly with tdiff. However, the volume depends on the angle the physical brane makes

with the conformal boundary due to the I(θ1) factor.

3.1.2 Volume after Page time

Now let us focus on the island volume computation. For island the embedding function u

only depends on µ. At t = 0 metric is,

ds2
g̃ =

1

u2 sin2 µ

[

du2

h(u)
+ d~x2 + u2dµ2

]

(3.9)

Therefore the volume between the island and the left brane is,

VL−IS(θ1) =

∫

√

g̃ ddx (3.10)

= C1

(

∫

du dµ
√

h(u)ud−1 sind µ

)

(3.11)

= C1 lim
δ→0

∫ π
2

θ1

(

∫ u(µ)

δ

du
√

h(u)ud−1

)

dµ

sind µ
, (3.12)

As mentioned previously, we suppress this factor to plot the subregion complexity density.

One can check that the divergence of the island volume comes from the u integration.

Therefore, we only need to introduce a cut-off there. The regularized volume is,

V reg
L−IS(θ1) = lim

δ→0

∫ π
2

θ1

(

∫ u(µ)

δ

(

du
√

h(u)ud−1
−

1

(d − 2)δd−2

))

dµ

sind µ
(3.13)
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Figure 6. Volume vs. time plot corresponding to the left brane for d = 4. The blue, green and

red plots correspond to the volumes for physical branes with brane angles θ1 = π

10
, 1.5π

10
and 2π

10

respectively. For all the three cases, initially the linearly growing plots are favoured (volume dual

to HM surface on left brane). After the Page time, which depends on the brane angle for each case,

the constant straight line curves are favoured as island surfaces become the preferred RT surfaces.

So the divergence is of the form − I(θ1)
(d−2)δd−2 . An important point to remember here

is that we have used two different kinds of foliations for the HM volume (u(t)) and the

volume between island and the left brane (u(µ)). However, similar to the length of the

HM and island surfaces, the divergence of the volumes for the two cases also cancel each

other. Therefore, at least for our case, it seems that different foliations do not play a very

nontrivial role in this picture. Also, when we look at the plots for the two volumes with

time in figure 6, we find that the volume between the island and the left brane (constant)

computed using this embedding is less than the HM volume at t = 0. This is also something

we expect ideally from figure 5(b) as pointed out.

3.1.3 General discussion on left brane volumes

Here, we will argue how our computation of volume for left brane compares to the covariant

maximal subregion complexity proposal. For the left brane, the HM surface is a time

dependent surface. Therefore it is possible that the HM volume we computed in this paper

(let’s call this VL−HM(t)) is not the maximal one (VL−HM(max)(t)). However the maximal

HM volume will always folow the relation VL−HM(max)(t) ≥ VL−HM(t).

However, the island surface is a time independent surface. In this case, the volume

between the island surface and the left brane also is a time independent volume. Hence,

eq. (3.2) reduces to eq. (3.1) for the island volume (VL−IS (t) = VL−IS (t) = constant). Now

we know that the island volume VL−IS for the left brane is less than HM volume VL−HM(t)

at t = 0. We also know that VL−HM(t) grows with time. Hence, the following inequality is

followed for all times,

VL−HM(max)(t) ≥ VL−HM(t) > VL−IS. (3.14)
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(a) Volume between HM surface and right

brane.

(b) Volume added to right brane after Page

time.

Figure 7. Volumes on the right brane corresponding to different RT surfaces are shown. Before

Page time, it is the HM volume as shown in 7(a). After Page time, a new bulk region gets added to

the entanglement wedge of the right brane. This new region is contributes to the jump of volume

at Page time and is shown in 7(b).

Eq. (3.14) ensures the fact that at Page time the complexity jumps at a smaller value

even if one follows the covariant subregion complexity proposal. Then for the left brane

we are good with the complexity growing initially jumping to smaller constant value at

Page time.

3.2 Volumes corresponding to right brane (radiation)

In this section we follow the same protocol as described in the previous section with the

modification that now we consider region between HM (/island) surface and the right

brane. The right brane mimics the role of the non-gravitational bath in this model and

therefore this volume is supposed to provide us with some understanding about how the

complexity of the mixed radiation state evolves with time. From the previous study of left

brane volumes, we expect the opposite phenomenon in case of the right brane volume, i.e.,

a jump at Page time.

3.2.1 Hartman-Maldacena volume

Until Page time, the right brane accesses the volume shown in figure 7(a). This region

enclosed by the HM surface and the right brane also includes interior of black hole horizon

and expected to grow with time similar to the area of the HM surface. We call this volume

the HM volume for right brane.

This part goes same as HM volume computation for the left brane. We take the AdSd+1

black string metric (mentioned in eqs. (3.3) and (3.4)) and following the same argument

as in subsection 3.1.1, we find the volume between the HM surface and right brane,

VR−HM(tdiff) = IdAreg
HM(tdiff) (3.15)

Id = lim
δ→0

∫ π−δ

π
2

dµ

sind µ
≈

δ1−d

d − 1
+ O(δ3−d) (3.16)

Areg
HM(tdiff) = lim

δ→0

[

−
1

(d − 2)δd−2
+

∫ us

δ

du

|u̇|ud−1

√

−h(u) +
u̇2

h(u)

]

(3.17)

– 13 –



J
H
E
P
0
5
(
2
0
2
1
)
1
3
5

θ= π
10

θ= 1.5 π
10

θ= 2π
10

0 2 4 6 8 10 12

0

20

40

60

80

t

ΔV(t
)

 

Figure 8. Volume vs. time plot corresponding to right brane for d = 4. As mentioned in the

main text, we take the HM volume as the reference in this plot. Until the Page time, subregion

complexity curve follows the HM volume and therefore it is zero in the plot. At Page time, for all

the three physical brane angles, there is a volume that gets added due to the islands and this new

volume grows with time.

The factor Id is a purely divergent quantity by itself therefore at the end VR−HM will be

divergent.7 But our motivation is to capture the growth of VR−HM at late time hence the

value of Id is not essential.

Now, we know that Areg
HM is a monotonically increasing function of tdiff. Hence, asymp-

totically the volume VR−HM also goes linearly with tdiff.

3.2.2 Island volume

The volume between the island surface and right brane after Page time is denoted by the

island volume. This region encloses the HM volume as well as a new volume bounded by

the island surface, part of the left brane and the HM surface. This newly added region

(shown in figure 7(b)) also includes a part of the black hole interior and hence, we expect

the change of volume at Page time to grow with time. This in general would mean that

the slope of the complexity growth curve increases after the Page time.

The computation of volume between the island surface and the right brane is tricky.

We cannot foliate the whole region between the island surface and the right brane by island

surfaces. Thus we resolve this issue by first computing the volume between the Island and

HM surface and then adding the volume VR−HM to it.

VR−IS = (I(θ1) + Id) Areg
HM(t) − VL−IS (3.18)

7This factor becomes finite if we take the right brane in the bulk and not in the conformal boundary.

In that case, the model remains valid only if we fix the right brane, which is also gravitational, to be the

gravitating bath region instead of considering dynamical bath region as done in [81].
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Figure 9. Volume plot for the case where fixed radiation is taken in the bulk. The black curve

shows the HM volume whereas the red curve denotes the volume including the newly added volume

(jump shown in the inset).

We define the difference between the two volumes as,

∆V (t) = VR−IS Θ(t − tPage) + VR−HM Θ(tPage − t) − VR−HM

= (I(θ1) Areg
HM(t) − VL−IS) Θ(t − tPage) (3.19)

The plot between ∆V (t) and t is given shown in figure 8.

It is important to note that ∆V is the difference between the chosen volume at a

particular time and the volume between the HM surface and the right brane. Before Page

time, this difference is always zero since HM surface is the preferred RT surface. Since we

plot the difference ∆V remains zero until Page time. However, in fact, this reference volume

between the HM surface and the right brane itself keeps growing linearly with time. Our

reference volume is therefore itself a growing volume. After the Page time, island surface

is the preferred RT surface and a volume gets added to the volume corresponding to right

brane. This newly added volume makes ∆V nonzero starting from Page time. As we can

see in figure 8, there is a jump in y axis at the Page time. Another important point to

note here is that the volume being added at Page time also grows linearly manifest through

our plot. Therefore, had we plotted the actual volumes throughout instead of taking the

primarily growing HM volume as the reference volume, the slope of the overall volume plot

would increase at Page time. The jump will be unchanged however.

This complete volume can be studied if we take the right brane also in the bulk and

fix the right brane to be the radiation region instead of considering dynamical bath. Let’s

say, we consider the case d = 4 with left brane angle θ1 = 1.5 π
10 and right brane angle 19π

20

(in the language of [81], the right brane angle is θ2 = π − 19π
20 = π

20 < θ1). In this case,

the HM and island surface area remains the same. Hence, the entanglement plot remains

the same as shown in blue curve of figure 2(a). Even, the volume plot corresponding to
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the left brane remains the same. But the HM volume corresponding to the right brane

changes and there is no divergence as the right brane is also in the bulk now. Another way

of saying this is simply that we have fixed the δ in eq. (29) to be π
20 . In that case, the

volume plot for the right brane becomes as shown in figure 9. In this plot, we can see that

the slope (rate of increase) of the complexity increases after the jump at Page time.

3.2.3 General discussion on right brane volume

For the right brane the comparison between the boundary time volume and the covariant

volume prescription gets a little complicated. The main reason of this complication is that

even the island volume VR−IS(t) for right brane is time-dependent. Hence if we want to

argue that the complexity jumping to higher value at Page time persists to the proposal in

eq. (3.2), we need to somehow argue that VR−IS(t) > VR−HM(max)(t). What we only know

so far is VR−IS(t) > VR−HM(t) and VR−HM(max)(t) ≥ VR−HM(t) which is not enough to say

VR−IS(t) > VR−HM(max)(t), (3.20)

for t ≥ tPage.
8

In [84], the authors followed the covariant proposal for subregion complexity.We expect

the qualitative nature of the left brane volume to be proposal independent. For the right

brane volume, the jump we found using our proposal is similar to the jump found in [84]

from no island to the island phase which is also supports our findings. However, let us

try to argue why in general we expect the radiation complexity to go through a jump at

Page time logically. This has to do with the fact that the entanglement wedge (EW) of

the radiation subsystem gets bigger suddenly at Page time as the entanglement islands

become accessible to the radiation subregion. Hence, at any instant after Page time, for

the right brane, the EW of the island phase contains the EW of the HM phase. Hence the

maximal volume Cauchy slice of the former must also be bigger than the maximal volume

Cauchy slice of the later. Therefore, the complexity in the HM phase is smaller than

the complexity of the island phase starting from the Page time. This argument logically

supports eq. (3.20). Building on these arguments, we think that our plots for right brane is

also universal and proposal independent and since the exact calculation is very hard to do

in general, our example calculation is a good playground to understand the overall nature

of the evolution of complexity.

4 Conclusion and outlook

In this paper, we have worked with a KR brane model in general spacetime dimensions.

The plots, however, has been shown explicitly for d = 4. The bulk metric is taken to be that

of the black string. The entanglement between the right and the left modes of the defect in

this model follows a Page curve typical of the entanglement between eternal black hole and

radiation, given the radiation is stored in a non-gravitational bath. From our study of vol-

umes dual to the left and right modes, we look at the subregion complexity of the evolving

8We are thankful to Hao Geng for pointing out this subtletly regarding the comparison with the covariant

prescription.
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black hole and radiation states, respectively. The entanglement islands play a crucial role

in this study of volumes as well. However, we are far from fully understanding the effect

of the islands in reproducing a Page curve of entanglement. In this particular model, we

placed the gravitational brane, which we call the physical or left brane interchangeably, at

a constant angle with the conformal boundary. The right brane is kept non-gravitational

at the conformal boundary. However, one would still get the Page curve if one takes the

right brane to be gravitational and computes the entanglement between the defect’s left

and right modes, given one fixes the right brane to be the region where the radiation is

stored. As advocated in [81], there is a competition between the two brane angles with the

conformal boundary. The entanglement curve will cease to exist if any of the two angles

exceeds a particular dimension dependent angle, known as the critical angle (θC). With

this information in mind, we list the main findings of our paper in the following.

Entanglement and the left brane volumes:

• We apply Alishahiha’s proposal of subregion volume complexity [72] in our case and

find the volumes on both the left and right brane corresponding to different preferred

RT surfaces at different times. For the left brane, the volume provides the evolution

of complexity for the eternal black hole. In contrast, for the right brane, the volume

is argued to be dual to the evolution of the radiation state’s complexity.

• For the left brane, we find that the volume initially grows with time, similar to the

Hartman-Maldacena (HM) surface, which is preferred until Page time. But unlike

the HM surface, the HM volume depends upon the angle the gravitational brane

makes with the conformal boundary. It is a very expected result since the volume

enclosed by the HM surface and the left brane should, of course, depend upon where

the brane is placed. We computed such volumes for three different constant brane

angles
(

θ1 = π
10 , 1.5π

10 and 2π
10

)

for d = 3, 4 (these angles are less than the critical

angle for both the dimensions) and found that the volume decreases as we increase

the brane angle.

• Starting from the Page time, the island surface is the preferred RT surface. The

island surface is specified by figuring out the critical anchor. We find the critical

anchor by looking at the nature of the embedding. The basic idea here is that we

have to pick such a boundary condition for which the surface can reach the defect

(µ = π
2 ) but can not reach the conformal boundary (µ = π). The island surface has a

time-independent surface area and therefore saturates the Page curve starting from

the time when the area of the HM surface becomes greater than the island surface.

These details of the critical anchor are not presented in any previous literature to the

best of our knowledge.

• The volume corresponding to the island surface on the left brane is also a time-

independent constant for a constant brane angle. On top of it, it is always less

than the HM volume on the left brane at t = 0. It is easy to understand this fact

from the figures. The island volume remains constant because it is nowhere near the
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horizon of the black string metric. Therefore the volume between the island surface

and the left brane does not go through any growth. We will see, however, that it

is not the case for the right brane since in that case, the volume will also include

behind-the-horizon regions.

• For the island volume, we find that the constant volume decreases as the physical

brane angle is increased. The overall volume plot for the left brane for all the brane

angles studied in this paper goes through a similar initially growing region, which goes

through a negative jump at Page time and remains constant throughout the future.

• In section 3.1.3, we have provided the arguments to support the fact that this be-

haviour should persist even if one applies the ideal covariant prescription of the

subregion complexity. This ensures that our results are qualitatively proposal inde-

pendent. At least within this particular model’s purview, the subregion complexity

of the eternal BH should indeed follow the curve as shown in figure 6.

Right brane volumes:

• For the right brane, the situation is a bit different. The HM volume on the right

brane is also a growing one. However, we find that since we take the right brane

at the conformal boundary, the HM volume has a nontrivial divergence, regulating

which would involve a cut-off. We do not choose this constant arbitrarily. Rather,

we treat this growing volume as our reference volume for all the times and compute

the change of volume (∆V ) from this growing volume as we move forward in time.

• After Page time, the island surface comes into the picture. This gives the right brane

access to a new volume bounded by the HM surface, the island surface and the left

brane. Hence, ∆V goes through a positive jump at Page time. Afterwards, this

change keeps growing with time, indicating that the newly accessible volume also

includes the behind-the-horizon region. This is unlike the volume corresponding to

the island surface for the left brane, which is constant. The fact that this newly

added volume decreases as we increase the physical brane angle remains unchanged

for the right brane.

• Although we did only compute the change of volume from the reference volume

and the reference volume growth is not shown for the right brane at the conformal

boundary. It can be studied if we take the right brane to be gravitational and keep the

brane angle less than the physical brane angle. In that case, one would explicitly find

that the slope of the complexity growth increases at Page time with the positive jump

as shown in figure 9. Therefore, the general fact for the right brane from our finding

is that the complexity keeps growing with time, even after Page time. The slope of

the growth increases due to the inclusion of the islands, and the jump happens at the

inclusion point (Page time).

• The entanglement curve and the left brane volume plot remain unchanged even when

we take the right brane in the bulk until we make sure that θ1 > θ2.
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• Finally, similar to the left branes, we have again argued for our results being valid

qualitatively even for the maximal subregion complexity proposal by providing a set

of logical explanations in section 3.2.3.

Building on the main findings, we now try to explain them in terms of our present

understanding and results presented in other literature on the related issue. The jump

in volume at Page time for the right brane is not new and has been previously found

in [80, 84, 86]. It is typical for the radiation state as the islands are included in the

entanglement wedge of the radiation subsystem starting from the Page time. This results

in the first-order phase transition of the volume curve at Page time. This has been related

to the multipartite purification complexity of the Hawking quanta in [80, 87], whereas the

authors of [84] have argued it to be related to the mutual complexity.

The complexity of purification is the complexity that gets added to the previous com-

plexity of the radiation state due to the purification of certain hawking quanta outside the

black hole horizon with their inner partner modes accessible to the radiation subsystem at

the Page time. This newly accessible modes purify the previously present partner modes

and to construct these purified partner modes, one needs to use certain new number of

quantum gates from the perspective of the radiation side. This causes the jump in volume

at Page time. From the black hole side, the situation is just the other way around. Due to

the monogamy property of entanglement, the black hole can not access the purified modes

anymore and needs a lesser number of gates than before Page time to reproduce the state

in the black hole side. However, it is hard to understand completely why the left brane

volumes become time-independent starting from the Page time. Physically it indicates the

black hole needs very small number of gates compared to before Page time to construct the

mixed state accessible to itself. Since this time independence results from the island sur-

face’s time independence (remember this time independence helps the entanglement curve

achieve the saturation), it seems that the constant entanglement results in the constant

complexity of the eternal black hole state. It will nevertheless be interesting to study other

models of the eternal black hole-radiation system to determine if this behaviour is universal

or model-dependent. However, we would like to stress that the positive (negative) jump

for the radiation (eternal black hole) complexity at Page time seems universal and model-

independent. More arguments on this particular direction can be found in the conclusion

section of [80].

In [84], the authors have attributed the jump in complexity (on the brane) from no-

island to island phase to the mutual complexity. For two sub-region A and B, mutual

complexity is defined as Cmutual(AB) = C(A) + C(B) − C(A ∪ B). Since in [84], the RT

surfaces were disconnected after Page time, the argument of mutual complexity seemed to

work. However, in our case, the mutual complexity ideally should be zero since the island

surface is connected and divides the region into two bulk volumes the sum of which give us

the complete volume. Therefore, the connection to purification complexity seems to work

better in our case. In general, the subregion complexity is expected to be related to pu-

rification complexity, which can be related to mutual complexity (as advocated in [88]). It

would be interesting to look more into the connection of purification and mutual complex-
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ity in this regard. One might hope to find such a relation indeed if the covariant maximal

volume prescription is followed.

Finally, to conclude, we would like to mention that ideas of complexity in the field the-

ory side are still developed partially [89–97].9 Hence, we followed the gravitational (holo-

graphic) mixed state complexity proposal previously explored in various literature [72, 80,

98–104] and applied in the model studied in this paper. The results indicate a universality

in the jump of radiation complexity at Page time and provide us with some hope that the

path being followed is somewhat self-consistent. However, to complete the understand-

ing, it would be extremely worthwhile to apply the field-theoretic proposals of complexity

within simpler settings. One possible way is to apply the ideas of purification complexity

developed in the field theory and CFT sides to study a partial purification of an interacting

system at the midpoint. Since in the field-theoretic side, particularly for CFTs, people are

still exploring very specific states, it might be hard to address complicated mixed states in

CFTs. But, applying it to free field theoretic models might also teach us some important

insights about this particular phenomenon, and its dependence on the correlation strength

of the field theory. Since the field-theoretic studies of mixed state complexity have also

made forays in probing other interesting physics like chaos, quench, etc [88, 105–111], it

would also be immensely exciting if one could tie the ideas of islands and information

paradox with scrambling or other interesting physics happening inside the black holes.

Holographically, it also remains an open problem to build a consistent model-independent

quantitative understanding of this jump at Page time. The dependence on the theory’s

parameters and, more precisely, having better explicit control on the rate of radiation, Page

time etc., seem to be the crucial direction one probably could also be interested in. On

the other hand, to check whether the overall nature of the plots is universal, it might be

a good idea to study complexity in other models of evaporating (for example; holographic

moving mirror [112, 114]) or eternal (for example; geometric secret sharing [20]) black hole

vs radiation. We hope to explore these directions more in future.
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Figure 10. The blue line is the island surface that meets the left brane marked by the red line.

The island surface can be seen to meet the vertical line (the HM surface) at around u = 0.3. The

coordinates are defined as z = u sin µ and y = −u cos µ [81].

A Area and volume regularization

Both the area of the HM and Island surfaces diverge as they reach the defect at µ = π
2 .

There are many ways to regularize these divergences. The most usual way followed in

many of the literatures is to introduce a UV cut off. However, this is best applied in cases

where the computations are analytic and the contribution can be cancelled by subtracting

the empty AdS divergence. In our case, the solutions of the embedding for both the HM

and the island surfaces are numerical and hence, considering a simple UV cut off might be

problematic at times. Therefore, we initially resolved to a different path. We know that the

HM surface always orthogonally connects the two defects and is placed precisely at µ = π
2 .

It grows with time. But the divergence does not grow as the divergence is there simply due

to the physics near the defect which has nothing to do with the horizon of the black string

metric. The growth of HM surface on the other hand is a result of the black string metric.

So in case of the HM surface, we can simply subtract the divergence of the empty AdS HM

divergence from the black string HM divergence to get the finite contribution in area.

In case of the island surface, the situation is bit trickier. As we mentioned previously,

the island surface is specified by looking at the critical anchor plots of the time independent

embedding function u[µ]. But, for the critical anchor choice defining the island, we find

that the area diverges numerically when we input the embedding function with the proper

boundary conditions. In this case, it is even harder to subtract a UV divergence. We plot

the embedding function with the µ = π
2 line (remember that the HM surface is placed along

this line). We find that the island surface starts getting overlapped completely with the

HM line from certain u value. We use this fact subsequently to subtract the HM divergence
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Figure 11. Volume vs. time plot corresponding to left brane for d = 3. The finite part of the HM

volume is positive whereas the finite part island volume is negative.

from the divergent island contribution starting from the region where these two surfaces

start becoming the same. This assumption of considering the two surfaces to be the same

starting from some u value is therefore crucial in cancelling the divergence, especially of

the island surfaces. A representative figure of this fact is shown in figure 10.

To make the story analytically consistent as well, the divergence in Island area can

also be shown to exactly cancel the divergence coming from the HM surface area by using

the fact that µ → π
2 and µ′(u) → 0 as u → 0. To see that we express the Island area as an

u integral,

AIS =

∫

dµ

ud−2(sin µ)d−1

√

1 +
u′(µ)2

u2h(u)
(A.1)

=

∫

du

ud−2 sind−1 µ

√

µ′(u)2 +
1

u2h(u)
(A.2)

Hence the divergence in the island area when u = δ → 0 is 1
(d−2)δd−2 , which is same as the

cutoff dependence of the HM area.

We apply similar idea while regularizing the volume as well. This is briefly explained

previously in section 3.1.

B Volume negativity

We find that the finite part of the volume (after subtracting the otherwise divergent part)

between the island and the left brane could be negative. In d = 3 we find that this volume

is always negative irrespective of the brane angle but in d = 4 this volume is only negative

if u1 is less than some critical value. For d = 3, it is somewhat expected. The finite part

of HM volume is just a scale factor multiplied by the HM area, which starts from zero
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for d = 3. We also know that the island volume which is constant throughout the time is

expected to be less than HM at t = 0 and hence less than zero. We would like remind here

that the crucial point is that this does not mean the volume we compute is unphysically

negative. It is only the finite part after subtracting the divergent part. Had we not done so,

the overall volume would have of course been a very large and positive value. The volume

plot corresponding to the left brane is shown in figure 11.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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