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1 Introduction

The holographic principle suggests that the entropy of a region in quantum gravity is

bounded by its area in Planck units,

S ≤ Area

4
. (1.1)

For a static, spherically symmetric matter distribution, this follows from the Bekenstein

energy bound S ≤ 2πRM and the threshold for black hole collapse, M < Area/(8πR) [1].

We will refer to (1.1) as the Bekenstein area bound.

For a QFT in flat spacetime, the Bekenstein energy bound follows from the positivity

of relative entropy [2]. The status of the more general holographic bound (1.1) is not en-

tirely clear. In dynamical, gravitating spacetimes, there are counterexamples for spacelike

regions. Fischler and Susskind [3] pointed out that it is violated by an arbitrary amount

in FRW cosmology, because the area of a comoving region goes to zero near the big bang,

while the matter entropy is constant. It is also violated in the interior of an evaporating

black hole at late times, for a similar reason, with the large entropy provided by the interior

partners of Hawking radiation. Even in Minkowski spacetime, it is violated by regions with

null or nearly-null boundaries. These counterexamples led Bousso to conjecture a covariant

bound on the classical matter entropy flux through a null surface [4, 5]. The Bousso bound

evades the counterexamples and can be proved in special cases [6–10].

Recent developments in the study of the black hole information paradox [11–15] have

led to a new interpretation of the black hole interior that depends, crucially, on the apparent

violation of (1.1). (See [16] for a conceptual review.) The basic picture is that when (1.1)

is violated near the black hole singularity, an ‘island’ appears. The quantum state of the

island, which covers most of the black hole interior, is secretly encoded in the Hawking

radiation near null infinity. A sufficiently powerful observer collecting the radiation can

in principle access the operator algebra in the interior. The boundary of the island is a

quantum extremal surface (QES) [17], which is a surface of extremal generalized entropy.

The Bekenstein area bound (1.1) is violated by the semiclassical matter entropy in this

situation, but it does not violate the spirit of the holographic principle — the effective

dimension of the Hilbert space associated to the interior region, as measured for example

by our ability to entangle this region with an auxiliary system, is still set by the area.
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Since (1.1) is also violated in cosmology it is natural to ask whether there are quantum

extremal islands.1 In this paper we explore several examples of crunching cosmologies

where nontrivial islands indeed appear.

The island suggests a relationship between the black hole interior and the Hawking

radiation at null infinity similar to a holographic duality, though it does not necessarily

entail a reduction in the spacetime dimension. It is holographic in the sense that it encodes

the state of a gravitational system in a dual theory where gravity is unimportant. The

encoding is similar to subregion duality in AdS/CFT, where the density matrix of a region

on the boundary is encoded in the bulk entanglement wedge [18–20]. This relationship is

also known as entanglement wedge reconstruction. The examples in this paper support the

idea that crunching regions in cosmology can be encoded holographically in non-crunching

regions.

In our first examples, the role of the Hawking radiation is played by a non-gravitating

auxiliary system introduced to purify the thermal state of the matter fields in FRW. This

suggests an interpretation of cosmological islands as a version of holographic duality where

the island region is encoded in the quantum state of this auxiliary system. We also discuss

two-dimensional examples where instead of an auxiliary system, the quantum state in a

subregion of dS2 is encoded on I+, or in a Minkowski bubble within dS2.

As noted in [13], the island proposal implies that an auxiliary qubit cannot be entangled

with matter in a closed universe. If we tried to prepare such a state, the island would

include the entire closed universe, and the entropy of the qubit would vanish despite our

best attempt to entangle it. Our FRW examples replace the qubit by an entire QFT.

In our setup the universe is infinite and the area term is non-zero, but it is overcome

by the large matter entropy. Other cosmological applications of the island proposal have

been considered recently in two dimensions in [21, 22] and in higher-dimensional brane

worlds in [23]. See [24–26] for other perspectives on holographic entanglement in de Sitter

spacetime, and [27–31] for previous approaches to holography for crunching bubbles.

Before studying specific examples, we will study the general question of when quantum

extremal islands, denoted by I, can exist in any given spacetime and quantum state. We

discuss three simple necessary criteria:

1. The Bekenstein area bound (1.1) must be violated by the island region, in a sense

that we will make precise in section 3. The requirement is

Ŝmat(I) &
1

4
Area(∂I) , (1.2)

where Ŝmat is the finite part of the matter von Neumann entropy and the meaning

of ‘&’ is discussed in detail below. The subtlety in deriving this formula is dealing

with the UV divergences that would naively make the inequality trivial.

2. The boundary of an island must be in a quantum normal region [11]. This is by

definition a region where the quantum expansion is positive in the outgoing direction

1In the real universe, a curious fact is that in our past lightcone, if we use the thermal entropy on the

left-hand side, then the area bound (1.1) is violated around when the temperature reaches the TeV scale

(despite no connection to electroweak physics!).
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and negative in the ingoing direction:

± d

dλ±
Sgen(I) ≥ 0 , (1.3)

where Sgen is the generalized entropy. The derivatives are null deformations of the

boundary of the island, with d/dλ+ outgoing and d/dλ− ingoing with respect to I.

3. Let G be any region that surrounds the island, and shares a boundary with it (see

figure 4 below for an example). Then

± d

dλ±
Sgen(G) ≤ 0 . (1.4)

That is, the common boundary of I and G is also quantum normal with respect to G.

A slightly different relationship between islands and the Bekenstein area bound was pre-

viously discussed in [13]. Condition (2) is related to results of Engelhardt and Wall on

quantum extremal surface barriers [17] and it was derived for islands in ([11], section 5) as

we will review below. One of our main observations is that the three conditions together

are so strong that for practical purposes they are nearly sufficient to identify the islands

in a given spacetime.

These criteria depend only on the island region and its immediate surroundings —

they make no reference to the choice of auxiliary region. To make this more explicit, let us

choose a subsystem R in a non-gravitating system and assume there exists an island I in

the gravitating region. In the black hole context, R is the Hawking radiation, I is (mostly)

inside the black hole, and they are related by the large entanglement between interior and

exterior Hawking pairs. The criteria above depend only on I, not on R. The statement is

that if I is the island associated to any system R, then it obeys the three conditions.

In the black hole context, condition (2) implies that the boundary of the island must

be outside (or on) the quantum apparent horizon. For eternal black holes, the quantum

apparent horizon is the same as the event horizon, so it follows that the island ends outside

(or on) the event horizon, as observed in [32, 33]. For evaporating black holes, the quan-

tum apparent horizon is inside the event horizon, and the island ends between them. In

cosmology, the quantum normal region is typically inside the quantum apparent horizon.

In every example we know of where all three conditions can be satisfied simultaneously,

there are indeed nontrivial islands. In this sense the necessary conditions might actually be

sufficient, too. This is just an empirical observation, with no derivation. It would be very

interesting to derive sufficient conditions, especially for applications to higher dimensions,

where the calculation of the matter entanglement entropy of disjoint regions, needed to find

islands explicitly, is a serious technical challenge. In various big bang FRW cosmologies

in four dimensions, we show by explicit construction of the islands that the conditions are

sufficient.

In the rest of the introduction we will briefly summarize the various cosmological

examples that we will study in the paper. In section 2, we review the island rule for entropy

in gravitational systems. In section 3, we derive the general conditions (1), (2), and (3).
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We also discuss the requirement that islands must maximize the generalized entropy in all

timelike directions, check the conditions in some previous examples of quantum extremal

islands, and discuss the relation to the Bousso bound. In section 4 we review properties of

the matter entropy in FRW, and describe how to calculate the entropy of a region I ∪ R

where I is in FRW, and R is in an auxiliary spacetime that purifies FRW. In sections 5–8, we

discuss the examples reviewed momentarily. In section 9 we describe a tensor network toy

model for islands, which also serves to highlight the similarities between black hole islands

and cosmological islands. The tensor network model incorporates the fact that islands

must violate the area bound but does not seem to capture the extremality condition or the

quantum normal conditions in a natural way.

1.1 Summary of examples

In the examples we consider only spherically symmetric regions. The general conditions

and most of our methods for FRW apply to regions of any shape.

FRW with radiation only. We start with situations where the island I is a region in

a four-dimensional FRW cosmology. Region R, whose entropy we are calculating, is in

an auxiliary Minkowski spacetime that purifies the matter in FRW. If the FRW universe

is supported only by radiation, then there are no islands. This follows from the general

conditions (1) and (2) — the Bekenstein-violating region does not overlap with the quantum

normal region in this cosmology. It also follows from condition (3) alone. Turning on a

positive cosmological constant leaves these conclusions unchanged. See figures 10 and 12.

FRW with radiation and negative CC. If the FRW universe has a negative cosmo-

logical constant, the universe first expands, and then recollapses. In this case there are

islands when region R is large enough, as suggested by conditions (1)–(3) illustrated in fig-

ure 13. The island I always sits near the time of maximal scale factor, where the universe

begins to recollapse. An example is illustrated in figure 1. If we set tR = 0, and assume rR
is large enough to violate the area bound, then the island is I ≈ R. That is,

tI ≈ tR ≈ 0, rI ≈ rR . (1.5)

If we increase tR, the island stays at tI = 0, but it shrinks to have smaller radius. The

details of exactly how it shrinks depend on the matter sector; in a holographic CFT, we

find an island with rI in the range

rR − vBtR
a0

. rI . rR (1.6)

where vB is the butterfly velocity and a0 is the maximal scale factor.

This is one of the few cases where islands can be found analytically in higher than two

dimensions. There is an interesting interplay with bounds on the matter entropy coming

from the quantum null energy condition studied in [34].
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Figure 1. A recollapsing FRW universe, with the thermal state of matter purified by an auxiliary

Minkowski spacetime. We calculate the entropy of a large region R in the Minkowski spacetime

and find an island I near the turning point of the FRW universe.

Figure 2. Islands inside the crunching region of a 2d de Sitter model.

JT gravity in dS2. Jackiw-Teitelboim (JT) gravity in dS2 has a solution similar to the

Schwarzschild-de Sitter black hole. We calculate the entropy of a region R on I+, the

spacelike future boundary, and find an island in the black hole region. See figure 2. This

is consistent with our conditions (1)–(3), which are illustrated in figure 16. This example

is in fact very similar to the FRW thermofield double, because aside from the dilaton, the

dS2 black hole is two entangled copies of a hyperbolic FRW spacetime in the thermofield

double state.

Bubbles of flat spacetime in JT gravity in dS2. In the JT gravity calculation, the

details at I+ do not play much role. This means we will get similar results if in this region

we exit the de Sitter phase, for example by the nucleation of a flat-spacetime bubble. We

model this in JT gravity by patching together de Sitter and Minkowski solutions, and

calculate the entropy of regions inside the flat-spacetime bubble. Again we find islands

in the “crunching” region inside the black hole. See figure 3. Our conditions (1)–(2) are

completely independent of what happens outside of the hyperbolic patch where the island

– 5 –
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Figure 3. Islands in 2d de Sitter spacetime with a Minkowski bubble and nearby crunching regions.

lives, as is condition (3) if we restrict G to be in the same hyperbolic patch. In this case

the constraints are the same as in the previous example, illustrated in figure 16.

These two-dimensional examples have also been studied very recently in [22], which

overlaps with our sections 7 and 8.2

2 Review of the island rule

Let R be a non-gravitational system, such as a QFT, a subregion of a QFT, or a collection of

qubits. Suppose we prepare R in an entangled state with a gravitational system. The island

formula [11–13] computes the von Neumann entropy of system R, S(ρR) = −Tr ρR log ρR.

It states

S(ρR) = min extI Sgen(I ∪R) , (2.1)

where I is a region in the gravitational theory — the island — and the generalized entropy is

Sgen(I ∪R) =
Area(∂I)

4
+ Smat(I ∪R)− Sct(∂I) . (2.2)

Smat is the von Neumann entropy of the density matrix for the system I ∪R as calculated

in the semiclassical geometry (with fixed topology). Sct is the UV divergent part of the

entropy associated to the boundary of region I. (It is often absorbed into the definition

of the area term, but we will need to account for it explicitly.) The generalized entropy is

extremized over the choice of I. If there are multiple extrema, including the trivial island

I = ∅ which is always extremal, then we take the one with minimal Sgen.

2In [22] the authors argued that bra-ket wormholes are necessary in this two-dimensional model to avoid

paradoxes associated to islands timelike separated from region R. We will simply exclude timelike separated

islands by hand, as it is not clear a priori which saddlepoints should be included in the gravitational path

integral (see also [35]). This produces an entropy with no obvious pathologies but it is possible that there

are other contributions in some ranges of parameter space.
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Figure 4. Island I in the interior of an evaporating black hole.

The formula (2.1) for the entropy suggests that when there is a nontrivial island, the

degrees of freedom in region I are encoded in R. This can be formally derived to some

extent using the technology of quantum error correction [36–38]. To see why it makes sense,

consider a Bell state with one qubit in region R and its entangled partner in region I. This

pair does not contribute to the entropy Smat(I ∪R), nor to S(ρR), because the pair taken

together is in a pure state. Since entanglement between R and I does not contribute to

the entropy, we conclude that I must be secretly encoded in R. In other words, operators

in region I can be rewritten as operators in R, though simple operators in I will become

very complicated and nonlocal under this map [14, 39].

The island rule is a generalized version of the Ryu-Takayanagi formula for holographic

entanglement entropy [17, 40–44]. It was discovered in an effort to understand the infor-

mation paradox. As a black hole evaporates, the von Neumann entropy of the Hawking

radiation increases. According to Hawking’s calculation, it increases monotonically, and

when the black hole evaporates completely, we are left with a finite entropy. This violates

unitarity. The remarkable discovery of [11, 12] is that at late times, when the paradox

arises, there is a nontrivial island inside the black hole. This is illustrated in figure 4. The

island rule (2.1) then gives a different formula for the radiation entropy, and this formula

is compatible with unitarity.

Initially, the island rule was postulated on the basis that the radiation entropy should

agree with the black hole entropy in a unitary theory [11, 12]. It was later derived by direct

evaluation of the entropy by the replica method, using the path integral of semiclassical

– 7 –
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gravity [14, 15]. It also has support from holographic arguments [13, 45]. The path integral

derivation, which builds on prior derivations of holographic entanglement entropy [42, 46],

requires a Euclidean (or Schwinger-Keldysh) path integral so it does not necessarily carry

over to FRW cosmology. The replica calculations do apply to recollapsing FRW since

there is a time reflection symmetry, but do not apply to all of the other examples in a

straightforward way. In those cases we will just take the island proposal as a postulate.

3 General conditions on islands

3.1 Condition 1: the area bound is violated

To form an island, we pay an entropy cost given by the island area in Planck units. This

will only beat the trivial island if there is very high matter entanglement between I and R.

The trivial island I = ∅ leads to the entropy S(R) = Smat(R). Therefore for a nontrivial

island to dominate, it must satisfy the extremality conditions and further obey

1

4
Area(∂I) + Smat(I ∪R)− Sct(∂I) < Smat(R) . (3.1)

It follows that

Smat(I)−
1

4
Area(∂I) + Sct(∂I) > Smat(I) + Smat(I ∪R)− Smat(R) . (3.2)

The right-hand side is positive by the Araki-Lieb inequality. If we temporarily ignore the

divergences, this would seem to imply a violation of a Bekenstein-like bound, Smat(I) >
1
4Area(∂I). However this is trivial due to UV divergences — the Araki-Lieb inequality

applied to (3.2) does not constrain the finite part, it just requires Sct > 0.

Fortunately we can remove the divergences and obtain a nontrivial bound by a slightly

more elaborate argument. First we will review the structure of divergences in the matter

and gravitational entropies.

The generalized entropy is believed to be finite due to cancellations between the matter

entropy and the geometric counterterms. See ([47], appendix A) for references and a review.

To describe how this works, let us separate out the UV divergence associated to ∂I in the

matter entropy by defining

Ŝmat(I ∪R) = Smat(I ∪R)− Sct(∂I) , (3.3)

and similarly

Ŝmat(I) = Smat(I)− Sct(∂I) . (3.4)

In general, Ŝmat(A) is defined by subtracting the UV divergences associated to components

of the boundary ∂A in the gravitating region. We do not subtract divergences from the

boundary of the non-gravitating region, R. The divergent piece Sct(∂I) is identical to the

counterterm in the generalized entropy, so the generalized entropy of the island is finite,

Sgen(I) =
Area(∂I)

4
+ Smat(I)− Sct(∂I) (3.5)

=
Area(∂I)

4
+ Ŝmat(I) .

– 8 –
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If the matter sector is a two-dimensional CFT, then Sct = c
6Np log

ǫrg
ǫuv

, where Np is the

number of boundary points, ǫuv is a UV length cutoff and ǫrg ≫ ǫuv is a renormalization

length scale.3 In d > 2 spacetime dimensions,

Sct(∂I) ∼ #
Area(∂I)

(ǫuv)d−2
+ · · · (3.6)

The dots are subleading divergences, including a logarithmic term log
ǫrg
ǫuv

in even dimen-

sions. The coefficient of the leading term depends on the regulator, but its sign is fixed to

be positive.

We now return to condition (3.1), which can be restated in terms of the mutual infor-

mation as

Imat(I,R) ≥ Sgen(I) (3.7)

with

Imat(I,R) = Smat(I) + Smat(R)− Smat(I ∪R) (3.8)

= Ŝmat(I) + Ŝmat(R)− Ŝmat(I ∪R) .

For any region R′ containing R, strong subadditivity requires

Imat(I,R
′) ≥ Imat(I,R) , (3.9)

and so

Imat(I,R
′) ≥ Sgen(I) . (3.10)

To turn this into a constraint that refers only to region I, we define a narrow region C that

surrounds I, and pick R′ = (I ∪ C)c. This is illustrated in figure 5. We may assume the

full state is pure by including a purifying system in R′. With these choices the quantity

Imat(I,R
′) is the mutual information regulator for entanglement entropy introduced in [48].

Assuming the width δ of region C to be small (but much larger than ǫuv), we have

Imat(I, (I ∪ C)c) = Ŝmat(I) + Ŝmat(I ∪ C)− Ŝmat(C) (3.11)

≈ 2Ŝmat(I)− Ŝmat(C) ,

up to corrections that vanish as δ → 0. Therefore (3.10) becomes

Ŝmat(I) &
1

4
Area(∂I) + Ŝmat(C) . (3.12)

The entropy of the narrow region C takes the form [49, 50]

Smat(C) = Sct(∂I) + Sct(∂I
+)− κ

Area(∂I)

δd−2
+ · · · , (3.13)

where the dots are subleading and κ is a scheme-independent constant that depends on the

matter content. In two dimensions, δd−2 is replaced by a log. Although the last term looks

3Most of the literature sets ǫrg = 1, or absorbs log ǫrg into GN and then sets GN = 1. We have kept it

in order to see that logarithmic running won’t affect the final result (3.15).
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Figure 5. Regions used to regulate the Bekenstein area bound. I is the island, R is the non-

gravitational system appearing in the island formula, and C is the narrow region of width δ.

similar to a UV divergence, this term is physical (i.e. universal), because δ is a physical

length scale in the setup, not the UV cutoff. The finite part is

Ŝmat(C) ≈ −κ
Area(∂I)

δd−2
. (3.14)

The area term appearing here is much smaller than the area measured in Planck units,

since δ ≫ ℓP , so it can be neglected in (3.12). Therefore we have derived the necessary

condition

Ŝmat(I) &
Area(∂I)

4
. (3.15)

The matter entropy is the finite part of the von Neumann entropy. The notation ‘&’ means

that we should only take seriously terms that are the same order as (or larger than) the

right-hand side, because of the approximations made in the derivation.

The conclusion is that the finite part of the quantum entropy of region I must violate

the Bekenstein area bound. As we have emphasized in the introduction, this condition

refers only to the island region I, so it must be satisfied by the island for any choice of R.

A closely related condition can be stated that references a region G surrounding I, in

the spirit of condition (3) in section 3.3. We simply rewrite (3.10) with G = (I ∪ R′)c as

Sgen(I ∪G) ≥ Sgen(G). This constrains the generalized entropy under growing region I by

appending region G. For R′ = R this is equivalent to the dominance condition, although

we will sometimes constrain region G to be smaller, which will give a weaker condition.

Taking G → 0 and expanding in terms of the matter entropy is what gave (3.15) above.

If the matter in region I is in a thermal state, then the extensive part of Ŝmat(I) is equal

to the thermodynamic entropy of region I. In other states Ŝmat(I) can be much smaller

than the thermodynamic entropy. An example of this effect is an excited state produced

by a global quantum quench at t = 0, with region I taken to have size L ≫ t [51–55]. This

is also relevant to cosmology because the quantum state produced by reheating at the end

of inflation is like that of a global quench — if the inflaton is in a pure state for t < 0 and

inflation ends at t = 0, then the matter supporting the FRW solution for t > 0 is thermal

on subhorizon scales but purified on longer distances (see e.g. [56] for a related discussion).

– 10 –
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3.2 Condition 2: I is quantum normal

If the island has a boundary, then it also obeys the extremality condition

d

dλ
Sgen(R ∪ I) = 0 . (3.16)

We will take the derivative in a null direction. That is, let Xµ(σ) be the embedding

functions defining the surface ∂I and kµ(σ) be a null vector field normal to ∂I, specifying

the profile of the deformation along the surface. We define the derivative d
dλ by deforming

Xµ(σ) → Xµ(σ) + λkµ(σ) . (3.17)

At various points we will use the notation d/dλ+ to refer to outward null derivatives and

d/dλ− for inward null derivatives with respect to region I.

By adding and subtracting Smat(I) to (3.16) we find

d

dλ

[
Smat(I) +

Area(∂I)

4
− Sct(∂I)

]
+

d

dλ
[Smat(I ∪R)− Smat(I)− Smat(R)] = 0 . (3.18)

We have also added the term d
dλSmat(R), which vanishes because the deformation does not

affect region R. Each term in brackets is UV-finite.

The first term in brackets is the generalized entropy of the island, and the second is

the mutual information, up to a sign. Thus we can rewrite the extremality condition as

d

dλ
Sgen(I) =

d

dλ
Imat(I,R) . (3.19)

This version of the extremality condition has the advantage that both Sgen and the mu-

tual information are UV-finite. It is also in this form that conditions (2) and (3) have a

simple physical explanation. The mutual information measures correlations between I and

R. Intuitively, it should be impossible for the mutual information to change too rapidly,

because there is only a finite amount of matter near ∂I that can potentially be correlated

with a region elsewhere. Therefore we expect both upper and lower bounds on d
dλSgen(I)

that depend only on what matter is present near ∂I.

The lower bound was obtained in [11] as follows. Let us choose the direction of in-

creasing λ to be an outward null direction, so we denote λ = λ+. That is, the original

region is a subregion of the deformed region. With this convention, strong subadditivity of

the matter entropy is equivalent to monotonicity of the mutual information with the sign

d

dλ+
Imat(I,R) ≥ 0 . (3.20)

For inward null deformations the inequality is reversed. Therefore, for (past or future

directed) null deformations,

± d

dλ±
Sgen(I) ≥ 0 . (3.21)

This derivative of the generalized entropy is proportional to the quantum expansion [47],

so we can also write the condition as

Θ±+ ≥ 0, Θ±− ≤ 0 . (3.22)
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Here we are using the notation of [5], where the first/second sign denotes inward (−) or

outward (+) in the time/space direction. We say that a region I obeying these conditions

lives in a quantum normal region, in analogy with the ordinary normal region defined by

the classical expansion (see [4, 57]).

Note that ‘outward’ is defined with respect to the island. If the island has multiple

boundaries, then the notion of outward depends on the boundary.

3.3 Condition 3: G is quantum normal

The physical intuition below equation (3.19) suggests that there is also an upper bound

on d
dλ+

Sgen(I). This is our condition (3). Let G be a region that surrounds the island and

shares a boundary, as in figure 4. G can be infinite or it can end at another boundary, but

we assume it is spacelike separated from R (or more accurately, achronal with respect to

R). The third general condition is

± d

dλ±
Sgen(I) ≤ ± d

dλ±
[Smat(I)− Smat(G)] . (3.23)

Since I and G share a boundary, and it is only along this shared boundary that the

deformation affects that area term, this can also be written

± d

dλ±
Sgen(G) ≤ 0 . (3.24)

The deformation d/dλ+ is outgoing with respect to I, but ingoing with respect to G, so

this says that G must also be quantum normal.

This third condition is on a slightly different footing from the first two because it

involves the choice of region G outside the putative island. The condition becomes stronger

for larger G, but we cannot take G too large because we assumed G is spacelike separated

from R. Once we have picked a region G, the statement is that condition (3) applies to

any island coming from a region R achronal with respect to G. This will be particularly

useful in our cosmological examples where we have two completely separate spacetimes,

one with gravity and one without. Region G will be chosen as the portion of the gravitating

spacetime that is not in I.

To derive condition (3) we start with the extremality condition in the form

d

dλ±
Sgen(I) =

d

dλ±
[Smat(I)− Smat(I ∪R)] . (3.25)

For any region R′ containing R, strong subadditivity of the matter entropy implies

± d

dλ±
Smat(I ∪R′) ≤ ± d

dλ±
Smat(I ∪R) . (3.26)

Replacing I∪R′ by its complement (including a purifying system if necessary) and plugging

into (3.25) gives the third condition, (3.23).
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3.4 Comments on the three conditions

As emphasized in the introduction, the three conditions refer only to region I and its

vicinity. They must be satisfied by the island associated to any region R that is spacelike

separated from I and G.

Together conditions (2) and (3) can be restated as

∓ d

dλ±
Ŝmat(I) ≤ ±1

4

d

dλ±
Area(∂I) ≤ ∓ d

dλ±
Ŝmat(G) . (3.27)

In the classical limit, the upper and lower bounds coincide, so this reduces to the usual

extremality condition of an HRT surface [41] d
dλ±

Area(∂I) = 0. In the quantum case, the

allowed region fattens out as prescribed by (3.27) to become codimension-0.

As we derived them, the conditions above only apply when I is disjoint from R. An

example where I and R are connected occurs for an eternal black hole in AdS with left

and right boundaries coupled to flat space baths. In this case, we can have region R =

Rleft ∪ Rright, where Rleft consists of the entire left flat space bath including the left AdS

boundary, and Rright consists of a portion of the right flat space bath that does not include

the right AdS boundary. The quantum extremal surface simply extends Rleft, i.e. Rleft ∪ I

can be continuously deformed into Rleft, as shown in figure 6. In this case, our condition

(1) does not apply, condition (3) applies unchanged, and condition (2) can be shown to

apply to region Rleft ∪ I using the same argument as before.

It is natural to ask whether the conditions are also sufficient for islands. We do not

know the answer but we are not aware of any counterexamples. That is, in spacetimes

with a finite region satisfying all three conditions, there seems to be an island somewhere

in this region. In fact, this is true even if we drop condition (3).

There is a sense in which the Bekenstein condition is in tension with the other two,

so for them to all be satisfied requires special circumstances. To explain this, note that

we can always make the area of the boundary of a region I arbitrarily small while hardly

affecting the region itself, by wiggling the boundary in the time direction to make ∂I nearly

null. This is one reason why Bekenstein’s area bound needed to be upgraded to the Bousso

bound to formulate a reasonable covariant entropy bound [4, 5].

Choosing a wiggly boundary makes it easy to violate the Bekenstein area bound, but

comes at the expense of making it more difficult to find a quantum normal region. This

is because introducing wiggles in a timelike direction increases the classical expansion at

the ‘bottom’ of a wiggle, and decreases the classical expansion at the ‘top’ of a wiggle. For

example, in flat spacetime, the wiggly region bounded by the surface with {t = t(x1), x2 =

x3 = · · · = 0}, has null extrinsic curvature proportional to t′′(x1). If the wiggles are very

sharp, then in any spacetime this will make the sign of d
dλArea oscillate as we go around

the boundary of region I, making it difficult to satisfy the quantum normal conditions.

There is also tension between conditions 2 and 3, because as described above they can

only be satisfied classically when the inequalities are saturated. Thus taken together the

three conditions are very restrictive, so if they are all satisfied, this is a strong hint that

an island can be found nearby.
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3.5 The island is a maximum in the time direction

The extremality condition does not explicitly refer to whether the quantum extremal surface

is a local maximum, minimum, or saddlepoint of the generalized entropy. However it is

believed that the QES must always be a saddlepoint, and this can be proved under some

additional assumptions. This can be useful to search for islands.

In the classical case, Wall gave an alternative definition of the extremal surface as the

maximin surface obtained by minimizing the area on a slice Σ, then maximizing over the

choice of Σ [18]. Together with focusing, this implies that the area of an extremal surface

is always maximal in any timelike direction. That is, the area is non-increasing at second

order under timelike deformations. To simplify the notation we will explain this in two

dimensions. Let us expand the area term (i.e. the dilaton) to second order around the

extremal surface,

Area = φ(0) + α(x+)2 + β(x−)2 + γx+x− . (3.28)

Here x± = t±x are local null coordinates. The classical focusing equation ∇2
±φ ≤ 0 implies

α, β ≤ 0. The maximin prescription implies that there exists a spacelike direction, ∂x+a∂t
with |a| < 1, in which the area is increasing. Together, these require γ ≤ 0. We can then

choose any timelike direction and use the relations α, β, γ ≤ 0 to conclude that the area is

non-increasing along this direction at second order.

In the quantum case, the maximin prescription still applies [58] if we also assume the

quantum focusing conjecture [47]. Thus quantum extremal surfaces are also maximal under

all timelike deformations. We give a direct derivation of this statement in appendix B that

uses quantum focusing but does not rely on maximin. The idea of the derivation is to

take another derivative of the extremality condition (3.19) with respect to the boundary of

region R. We then combine strong subadditivity of the matter entropy, quantum focusing,

and entanglement wedge nesting to show γ ≤ 0 in the quantum case.

We will study an example in section 6.2.1 where requiring the island to be a maximum

under timelike deformations places nontrivial constraints on the matter entropy. Interest-

ingly, the resulting constraint turns out to be the same as the constraint derived from the

quantum null energy condition (QNEC) in [59].

3.6 Examples

In this subsection we will check the necessary conditions from above in a few examples.

These examples are of islands that have previously appeared in the literature, so it is simply

a check of our conditions above before we apply them to novel cases.

The first example is when the state of a closed universe is pure up to some amount of

matter entangled with matter in a separate universe. In this case the island region always

includes the entire closed universe. The violation of the Bekenstein area bound Ŝmat(I) &

Area(∂I)/4 occurs because the island has no boundary, implying Area(∂I) = 0, while there

is some nonvanishing matter entanglement. The requirement that the quantum extremal

surface be quantum normal with respect to regions I and G is trivial, since it is a statement

about the endpoints of the island, which do not exist in this case.
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Figure 6. I is an “island” (sometimes called a peninsula because it is connected to R) inside an

eternal black hole for region R.

Figure 7. I is an island inside an eternal black hole for region R. The quantum normal region for

I is shaded.

The next example is for the eternal black hole in AdS spacetime, glued to asymptotic

flat regions as in figure 6. In this case, taking the entire left flat spacetime and part

of the right flat spacetime as region R, the quantum extremal surface is outside of the

right horizon. This is a special case where there is not a disconnected island region,

as discussed in section 3.4, so our condition (2) has to be modified. To compute the

quantum apparent horizon, we pick a region that begins at spatial infinity on the left and

ends at some point outside the right horizon. Due to the time translation symmetry, the

quantum apparent horizon for this region coincides with the event horizon. This conclusion

is independent of dimensionality and asymptotics, since it follows directly from the timelike

Killing vector. This example explains why the island is outside the event horizon for eternal

black holes [32]. The argument also applies to the finite-size islands in eternal black holes

studied in AdS in [32, 33] and Minkowski spacetime in [60–62], because they are in a regime

where the problem factorizes into two copies of the situation just discussed.

It is straightforward to check the Bekenstein area bound and the quantum normal

conditions in the context of the CGHS/RST model in two-dimensional flat spacetime.

Islands in this model were found in [60–62]. For an eternal black hole, the position of the

island in relation to the quantum normal region for I is depicted in figure 7. It is outside

as required. Details for this case as well as the evaporating black hole in the CGHS/RST

model can be found in appendix C.
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Condition (3) in this context is more subtle. We must first choose a region G that

extends outside the island, to some point xG. Then condition (3) applies to any island

associated to a region R that is spacelike separated from G. If the point xG is outside

the event horizon then this places a cutoff on the allowed region R along I+. A natural

location for xG that does not restrict the region R is near the evaporation endpoint. As

shown in appendix C, the constraint from this choice is severe enough that the actual QES

sits on the boundary of the allowed region.

3.7 Comments on the Bousso bound

Certain entropies associated to a null cone are constrained by the classical and quantum

Bousso bounds [4, 7, 47, 63]. We would like to see how this is compatible with the violation

of the Bekenstein area bound for region I.

Conceptually there are two different ways that we can have Smat(I) >
1
4Area(∂I) while

satisfying the Bousso bounds. The first is if region I cannot be deformed to a null surface

— for example, a large region at early time in FRW violates the Bekenstein bound but not

the Bousso bound (which is the Fischler-Susskind bound in this context [3]), because the

singularity prevents us from deforming I to a null cone. The second mechanism is that

when the entropy is intrinsically quantum, the Bousso bound gives only a lower bound,

not an upper bound. This is the mechanism at play inside an old black hole. In this case,

the von Neumann entropy of region I is equal to the von Neumann of its past lightcone,

because they have the same causal domain, but the entropy is quantum mechanical so it

has no upper bound.

Referring to figure 8, the classical Bousso bound states that the flux of hydrodynamic

entropy through the null surface V is bounded above by 1
4Area(∂I) − 1

4Area(∂I
′). The

hydrodynamic entropy is classical entropy (from, say, a cup of tea) that can be calculated

by the integral of a local density; it contributes to the von Neumann entropy of V , but it

does not include the quantum effects that produce most of the entropy inside an old black

hole. So this is not a contradiction.

The quantum Bousso bound does constrain the full von Neumann entropy, but it is

also compatible with Smat(I) >
1
4Area(∂I). The quantum bound requires [47]

Smat(I
′)− Smat(I) ≤

1

4
Area(∂I)− 1

4
Area(∂I ′) (3.29)

and

Smat((I
′)c)− Smat(I

c) ≤ 1

4
Area(∂I)− 1

4
Area(∂I ′) . (3.30)

Neither of these inequalities places an upper bound on the quantum entropy Smat(I). The

latter inequality is responsible for the classical bound as a special case when a cup of tea

falls through V .

This discussion has a simple consequence for how islands can be created. Let us con-

sider an experiment where we try to engineer a faraway island by manufacturing entangled

qubits in a lab, then sending half of the qubits to a distant region of space. Can the qubits

be carefully arranged in a way that produces an island, allowing us to access this region
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Figure 8. I is an island inside an evaporating black hole. The Bousso bound applied to I, I ′ and

Ic, (I ′)c places an upper bound on the flux of classical entropy through V and the quantum entropy

of I ′, but it does not put an upper bound on the quantum entropy of I.

of space from the safety of our lab? The answer is no if we assume the Bousso bound

holds. In performing this experiment, the qubits would cross a null surface where we can

invoke the classical Bousso bound. (Since the entangled qubits are widely separated from

their partners, they will contribute to the hydrodynamic entropy flux that appears in the

classical Bousso bound, despite the quantum origin of their entropy.) It is therefore impos-

sible to create enough entanglement to violate the Bekenstein area bound in this manner.

The entanglement responsible for an island must be created in a more subtle way, as it

is in Hawking radiation. On the other hand, perhaps transporting entangled qubits can

be used to enhance the island effect, producing islands in situations with other sources of

entanglement but where they would not appear naturally.

4 Matter entropy in FRW

4.1 Thermofield double setup

Consider a spatially flat FRW cosmology in d spacetime dimensions,

ds2 = −dt2 + a(t)2dx2 . (4.1)

Conformal coordinates are defined by

ds2 = a(η)2(−dη2 + dx2), η(t) =

∫ t

0

dt′

a(t′)
. (4.2)

We assume the matter is in a thermal state. Although this is standard in cosmology, the

assumption we are making here is actually much stronger than the usual one, because
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standard cosmology is not sensitive to the microscopic details of the quantum state of

the matter — it applies just as well to a pure state that is approximately thermal on

distance scales larger than the thermal correlation length. Our setup by contrast assumes

the microscopic quantum state of the matter to be mixed on much larger scales.

Like any mixed state, the thermal state of the radiation can be purified by doubling

the degrees of freedom. A convenient (though highly non-unique) way to do this is the

thermofield double. Introduce a second copy of the matter QFT on an auxiliary, non-

dynamical d-dimensional Minkowski spacetime, where the metric is

ds2 = −dη2 + dx2 . (4.3)

We use the same coordinate labels (η, x) but we will always specify whether we are referring

to the original spacetime or the auxiliary, purifying spacetime. The thermofield double is

the pure state

|β0〉 =
1√
Z

∑

n

e−β0En/2|n〉∗1|n〉2 , (4.4)

where ∗ denotes CPT conjugation. Upon tracing out one copy, the reduced density matrix

in the other copy is thermal.

There is no gravity on the auxiliary space. This means that we are not purifying the

graviton radiation in the original FRW. We can ignore this issue by assuming the graviton

entropy is subleading compared to other components (which it is in the real world).

To define the thermofield double state that purifies FRW, we first prepare the ther-

mofield double in two copies of Minkowski spacetime,

ds21 = −dη2 + dx2 and ds22 = −dη2 + dx2 . (4.5)

This is prepared by a Euclidean path integral (for the matter fields only) on a strip of length

β0/2. Then we do a conformal transformation that inserts the conformal factor a(η)2 in

copy 1 but acts trivially in copy 2. The inverse temperature in the thermofield double is

denoted β0 to distinguish it from the physical inverse temperature β = aβ0 in FRW.

We will study the entropy of a region R in the auxiliary spacetime. This region is

specified by a spatial region ΣR at fixed time ηR. R plays the same role that the Hawking

radiation played in the evaporating black hole.

We will look for an island in the gravitating FRW region. First we need to understand

properties of the matter entanglement when region I is in the FRW spacetime and region

R is in the auxiliary Minkowski spacetime. We will do this in two steps — first we will

consider the matter entanglement in two copies of Minkowski spacetime, then we will turn

on the scale factor. We assume the matter sector is described by a CFT and that the

number of degrees of freedom in the CFT is large enough that we can ignore the entropy

of gravitons.

A natural way to realize the FRW thermofield double is through a Randall-Sundrum

brane construction in higher-dimensional AdS. This may provide another way to analyze

this model along the lines of [13, 64–67], but we will not take this perspective.
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4.2 Two copies of Minkowski

We start by analyzing the matter entanglement entropy for a thermofield double state of

two copies of flat spacetime. To distinguish this from FRW we use a tilde,

S̃mat ≡ von Neumann entropy in two entangled copies of Minkowski

Smat ≡ von Neumann entropy in FRW entangled with Minkowski

Let I be a subregion in copy 1 and R be a subregion in copy 2. The matter en-

tanglement S̃mat(I ∪ R) across the thermofield double has been studied in many pa-

pers [34, 53–55, 68–71]. The details depend on the specific choice of matter, but the general

picture is independent of the matter and is easy to understand. In the thermofield double

state, the entanglement is local on the scale β0. That is, degrees of freedom near the point

(η, x) in copy 1 are maximally entangled with degrees of freedom near the same point (η, x)

in copy 2, up to a smearing on the scale β0.
4 This can be seen from the Euclidean path

integral used to prepare the thermofield double state.5

Because entanglement is local across the thermofield double, it follows that if I and R

have the same coordinate labels, then S̃mat(I∪R) is small — it does not scale with volume.

Now consider what happens as we deform I. If we deform it with η fixed, i.e. ηI = ηR,

there is a contribution to the entropy proportional to the non-overlapping volume between

I and R, because we are no longer keeping all of the entangled partners of the matter in

R. Thus up to subextensive corrections,

S̃mat(I ∪R) ≈ sth|VR − ṼI | (equal time) (4.6)

where sth is the thermal entropy density.6 The tilde on ṼI is to emphasize that this is the

volume as calculated in flat spacetime, i.e. the comoving volume in FRW.

Now instead of deforming I in the spatial direction, suppose we translate it in time.

That is, we take I to have the same spatial domain as R, but at ηI 6= ηR. Under time evo-

lution, some of the entangled partners of the matter in R will exit I through its boundary.

This leads to a linear-in-time increase in the entropy,

S̃mat(I ∪R) ≈ sthvE |ηI − ηR|Ãrea(∂I) (equal space) . (4.7)

Here vE is a proportionality constant known as the entanglement velocity [53–55] which is

constrained by general arguments to the range 0 < vE ≤ 1 [72, 73]. Again the tilde means

4We are choosing the orientation of the time coordinates such that η → η+δη, η̄ → η̄+δη is a symmetry

of the TFD. That is, we evolve (4.4) under eiH1η1−iH2η2 . This is the opposite of the convention in [53].
5We are making the standard assumption that thermal states are gapped up to hydrodynamic modes.

This folk theorem may have interesting counterexamples.
6This formula assumes that I ⊂ R′ or R′ ⊂ I, with R′ the image of R in the other copy of Minkowski.

Otherwise |VR − ṼI | is replaced by the vol((R′\I) ∪ (I\R′)). Throughout this subsection we will only

write the extensive part of the entropy; all of the formulas also have UV-divergent contributions from the

boundaries.
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Figure 9. Quasiparticle picture of entanglement across the thermofield double.

‘comoving.’ This formula holds for time scales larger than the thermal wavelength,

|ηI − ηR| & β0 , (4.8)

but much less than the extrinsic curvature scale of region I or R.7

If I is deformed in both space and time, both effects increase the entropy. We will

consider some examples below. The general conclusion is that S̃mat(I ∪ R) is minimized

when I and R have the same coordinate values in both space and time, and if we deform

I slightly, then it takes the form

S̃mat(I ∪R) ≈ sthf(ηI − ηR, rI − rR)Ãrea(∂I) (general small deformation) . (4.9)

The formulas (4.7) and (4.8) determine f(δη, 0) and f(0, δr) for |δη|, |δr| much larger

than the scale β0 set by the temperature but much smaller than the sizes of the regions.

There is also a universal formula in the limit of |δη|, |δr| much less than β0 that we will

discuss below.

These results can be understood qualitatively in terms of a quasiparticle picture for

entanglement spreading, first introduced by Cardy and Calabrese in the study of global

quenches [51, 52] and illustrated in figure 9. The state is prepared by Euclidean evolu-

tion by β0/2, which creates short-range entanglement between pairs of quasiparticles on

opposite sides of the thermofield double. Under Lorentzian time evolution, the entangled

quasiparticles spread out along the gray lines. The entanglement entropy S̃mat(I ∪ R) is

estimated by counting the number of quasiparticles in I∪R whose partners are not in I∪R.

Another general property of the function f that will be useful is that it cannot change

too rapidly. This is intuitively clear, because f is like a hydrodynamic entropy, which

can change under spatial deformations by at most sthδVol and similarly under timelike

7The meaning of ‘&’ in (4.8) requires more explanation. For the most part, we will be interested in

derivatives of S̃mat. In this case, we expect (4.7) to be accurate for |ηI − ηR| larger than some O(1) number

times β0. It is not necessary to take |ηI − ηR| ≫ β0. For example in 2d we can see from the explicit

formula (A.7) that the derivative of (4.7) is accurate to one part in 104 already for |ηI −ηR| = β0. However

there is also a constant shift in the exact formula compared to (4.7), so the actual value is only accurate

for |ηI − ηR| ≫ β0.
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deformations. This intuition can be formalized using the monotonicity of relative entropy,

which leads to the bounds [73]

|∂ηIf(ηI − ηR, rI − rR)| ≤ 1, |∂rIf(ηI − ηR, rI − rR)| ≤ 1 . (4.10)

We review the derivation for a spacelike derivative in appendix D and refer the reader

to [73] for the timelike case.

For holographic matter, the function f is known explicitly for symmetric regions. In

appendix A we derive exact formulas for a holographic 2d CFT, which match this general

discussion. In that case, vE = 1 and the function f appearing in (4.9) is

f2d(δη, δr) =
2πc

3β0
max (|δη|, |δr|) . (4.11)

In higher dimensions, f for holographic matter is derived in [70].

4.3 Turning on the scale factor

So far this discussion has ignored the FRW scale factor. We can incorporate it by doing

a conformal transformation.8 The effect is to rescale the UV divergence in the matter

entropy,

ǫuv → ǫuv
a(η)

. (4.12)

In odd dimensions, this has no effect on the generalized entropy, because the divergences

in the matter entropy are absorbed into counterterms and the renormalization of Newton’s

constant, as discussed in section 3.1.9 In even dimensions, depending on the shape of the

region, there can be a logarithmic divergence C log ǫuv controlled by the a-type conformal

anomaly. Therefore the effect of the scale factor is

Smat(I ∪R) = S̃mat(I ∪R) + C log a(ηI) + · · · , (4.13)

where the dots are absorbed into the area term in the definition of the generalized entropy.

For an interval in two dimensions, C = c
3 with c the central charge. In four dimensions,

for a half-space C = 0, and for a sphere

C = −4A (4.14)

with A the Euler-type Weyl anomaly [40, 75].

Combining (4.13) with (4.9) we have

Ŝmat(I ∪R) ≈ sthf(ηI − ηR, rI − rR)Ãrea(∂I) + C log a(ηI) + Sct(∂R) . (4.15)

Recall that Ŝmat is defined in (3.3) by subtracting the UV divergence at ∂I but not at

∂R, so in this formula we have included all of the extensive terms and UV divergences in

Ŝmat. The area here is the comoving area, and sth is the comoving entropy density, i.e.

entropy per coordinate volume in FRW. This formula holds for small deformations away

from I = R, on scales much larger than β0 but small compared to the size of the regions,

the extrinsic curvature of the regions, or the spacetime curvature.

8See [74] for a discussion of entanglement entropy in de Sitter space, including the more difficult case of

massive fields.
9We assume all regions have a smooth boundary so there are no corner contributions.
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5 No islands in radiation-dominated FRW

Consider a four-dimensional radiation-only FRW cosmology. The energy density and scale

factor are

ǫ =
ǫ0
a4

, a =
η

η0
, η0 =

√
3

8πǫ0
. (5.1)

In conformal coordinates, Tµν = a2ǫdiag
(
1, 13 ,

1
3 ,

1
3

)
. This state of the CFT is conformally

related to a finite-temperature state in Minkowski spacetime with energy density

ǫ0 = cthT
4
0 (5.2)

and thermal entropy density

sth =
4

3
cthT

3
0 . (5.3)

The constant cth is roughly proportional to the number of degrees of freedom, and T0 = β−1
0

is a constant parameter that corresponds to the temperature of the state in flat spacetime,

before the Weyl transformation to FRW. T0 is equal to the physical temperature in FRW

at η = η0.

5.1 Application of the general constraints

Let I be a spherical region of comoving radius rI at time ηI . The matter entropy is domi-

nated by the extensive, thermodynamic contribution, so the generalized entropy associated

to this region is

Sgen(I) ≈
Area(∂I)

4
+ sthṼol(I) (5.4)

= πa2Ir
2
I +

4π

3
sthr

3
I . (5.5)

Here Ṽol is the comoving volume and aI := a(ηI). Comparing this to the area term, we

see that the Bekenstein area bound (3.15) is violated for

rI &
3π

2
T0(ηI)

2 . (5.6)

This is the first condition. Now we will identify the quantum normal regions. Recall from

section 3 that this is the region in which Sgen increases under forward-directed outward

deformations, and decreases under forward-directed inward deformations. That is, the

quantum normal region for I is the region satisfying

± (∂ηI ± ∂rI )Sgen(I) ≥ 0 . (5.7)

The outgoing condition (+) is always satisfied. The ingoing condition (−) is satisfied in

the region

rI ≤ rQAH =

{
πT0(ηI)

2

πT0ηI−1 ηI > 1
πT0

∞ ηI < 1
πT0

(5.8)
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Figure 10. Regions of the radiation-only FRW cosmology, defined for a spherical region I. The

Bekenstein-violating region does not overlap with the quantum normal region for I, and there is no

quantum normal region for G, so there cannot be spherical islands.

The time η = 1/(πT0) when the quantum apparent horizon goes to infinity is a Planck

distance from the big bang singularity so the semiclassical theory does not apply, and it

cannot be trusted. To see this, note that the proper time elapsed from η = 0 to η = 1/(πT0)

is t =
√

2cth
3π3 , and we are working in Planck units. In the semiclassical regime with T0ηI ≫ 1,

the quantum normal region for I is therefore simply

rI ≤ ηI . (5.9)

This is the same as the classical normal region. The quantum normal region for I and the

Bekenstein-violating region are shown in figure 10.

The third condition states that region G is also quantum normal. (See figure 11 for

the definition of region G.) The generalized entropy of G is

Sgen(G) =
Area(∂I)

4
− sthṼol(I) + const. (5.10)

= πa2Ir
2
I −

4π

3
sthr

3
I + const. (5.11)

The quantum normal condition is

± (∂ηI ∓ ∂rI )Sgen(G) ≥ 0 . (5.12)

This requires the outgoing expansion to be positive and the ingoing expansion to be nega-

tive. The signs differ from (5.7) because the definition of ‘outgoing’ is opposite for region

G. Satisfying the ingoing condition requires ηI < β0/π, which is outside the semiclassical

regime.

In section 3 we showed that region I can only be an island if all three conditions

are satisfied. Clearly this is impossible in the semiclassical regime, because condition 1

and condition 2 have no overlap, and condition 3 is never satisfied. Therefore the four-

dimensional radiation-only FRW cosmology has no spherically symmetric islands.
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Figure 11. Regions in FRW and the auxiliary purifying spacetime. The regions R,B,G, I will

play roles similar to the regions with the same labels in the evaporating black of figure 4.

5.2 Explicit check

Of course we can also look for islands by extremizing the generalized entropy explicitly.

Let R be a spherical region in the auxiliary Minkowski spacetime that purifies the matter

state in FRW. It is defined at time ηR and has radius rR. We will look for an island in

FRW for which I is a small deformation of R, i.e. ηI = ηR + δη and rI = rR + δr with

|δr|, |δη| ≪ rR. Using (4.14)–(4.15), the generalized entropy that appears in the island

formula takes the form

Sgen(I ∪R) =
1

4
Area(∂I) + Ŝmat(I ∪R) (5.13)

≈ πa2Ir
2
I + 4πsthf(δη, δr)r

2
I − 4A log aI + Sct(∂R) .

The function f(δη, δr) is complicated (unknown in general), but the entanglement speed

limit derived in [73] and reviewed around equation (4.10) requires

|∂ηIf(δη, δr)| ≤ 1 , |∂rIf(δη, δr)| ≤ 1 . (5.14)

It follows that the extremality condition ∂ηISgen = 0 cannot be satisfied, except possibly

in the Planck regime, ηI . β0, because it is only in this regime that the matter derivative

can compete with the derivative of the area term. Therefore there are no islands in the

semiclassical regime.10

10Formally, using our formulas for the entropy leads to an island near the FRW singularity, ηI ∼ 0. It

is a minimum of the generalized entropy in the time direction so it entails a formal violation of quantum

focusing. However this is outside the validity of the semiclassical theory.
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Figure 12. Regions of the FRW cosmology with radiation and positive vacuum energy. The

Bekenstein-violating region does not overlap with the quantum normal region for I, and there is no

quantum normal region for G, so there cannot be spherical islands.

5.3 Positive cosmological constant

Now we turn on a positive cosmological constant Λ > 0. In the FRW coordinates (4.1),

the Friedmann equation is

3

(
ȧ

a

)2

=
8πǫ0
a4

+ Λ . (5.15)

The solution is

a(t) = a0

√
sinh

πt

2tm
(5.16)

where

a0 =

(
8πǫ0
Λ

)1/4

, tm =
π

4

√
3

Λ
. (5.17)

The big bang singularity is at t = 0. As in the discussion above, the Bekenstein area

bound (3.15) is violated for

rI & rBek =
3a2

4sth
. (5.18)

The outgoing quantum normal condition for I is always satisfied, and the ingoing condition

for I is satisfied (in the semiclassical regime t ≫ ℓP ) when

rI ≤ rQAH ≈ rAH =
1

da/dt
. (5.19)

These regions are shown in figure 12. The ingoing quantum normal condition for G is

again never satisfied. We conclude that there are no spherically symmetric islands in

four-dimensional FRW cosmology with radiation and a positive cosmological constant.

6 Islands in recollapsing FRW

We will now consider a four-dimensional FRW cosmology with radiation and a negative

cosmological constant Λ < 0. Solving the Friedman equation (5.15), the solution for the

scale factor in FRW coordinates is

a(t) = a0

√
cos

πt

2tm
(6.1)
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where again

a0 =

(
8πǫ0
|Λ|

)1/4

, tm =
π

4

√
3

|Λ| . (6.2)

The big bang is at t = −tm. The spacetime begins to recollapse at the turning point t = 0,

and there is a crunch singularity at t = tm.

6.1 Bekenstein area bound and the quantum normal regions

It is useful to restore units temporarily to see how things scale with the Planck length

ℓP ∼
√
~GN . The crunch time scales as

tm ∼ 1√
|Λ|

. (6.3)

The maximal scale factor is

a0 ∼ (GN ǫ0/|Λ|)1/4 . (6.4)

This is dimensionless and assumed to be O(ℓ0P ), so

~GN

Λβ4
0

∼ O(ℓ0P ) , (6.5)

where β0 is the thermal wavelength of the matter. Therefore tm scales as β2
0/ℓP . The

entropy density is sth ∼ 1/β3
0 independent of ℓP . So in understanding the semiclassical

regime we should scale the island time as tI ∼ β0 or tI ∼ β2
0/ℓP , and hold everything

else fixed.

We will now return to natural units. The generalized entropy of a spherical region I is

again given by (5.4) with this new scale factor. The Bekenstein area bound is violated for

rI & rBek =
3a20
4sth

cos
πtI
2tm

. (6.6)

The quantum normal region for I is defined by the two inequalities

(±aI∂t + ∂r)Sgen(I) ≥ 0 . (6.7)

These are equivalent to the condition

rI

[
2sthtm − π

4
a30 sin

π|tI |
2tm

√
cos

πtI
2tm

]
+ a20tm cos

πtI
2tm

≥ 0 . (6.8)

We restrict our attention to the regime of semiclassical gravity, away from the singularities.

Far away from the turning point tI = 0, the matter term drops out because it is suppressed

by ℓP when we restore units. In this case the quantum normal region agrees with the

classical normal region, which is

r ≤ rAH =
4tm
πa0

√
cos πtI

2tm

sin π|tI |
2tm

. (6.9)
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Figure 13. Recollapsing FRW cosmology with radiation and a negative CC.

Near the turning point, the matter term in (6.8) is important. In this regime we can expand

the trigonometric functions in (6.8). Define

t1 =
16stht

2
m

π2a30
=

a0β0
2π

. (6.10)

We find the quantum normal region for I in the regime tI ≪ tm is

rI ≤ rQAH =




∞ |tI | ≤ t1

8t2m
π2a0(|tI |−t1)

|tI | > t1
(6.11)

Note that using the scalings above, t1 is a macroscopic (non-Planckian) timescale of order

the thermal wavelength. For |tI | ≫ t1, the quantum apparent horizon rQAH approaches

the classical apparent horizon rAH . The quantum apparent horizon hits the boundary of

the Bekenstein-violating region, rBek = rQAH , at t = 5
3 t1 = 5

6πβ, where β = a0β0 is the

physical inverse temperature at the turning point.

The generalized entropy of region G is given by (5.10), and the corresponding quantum

normal condition is

(±aI∂t − ∂r)Sgen(G) ≥ 0 . (6.12)

This condition is satisfied only in the small teardrop region on the Penrose diagram in

figure 13. Intuitively, the reason the condition is hard to satisfy is that G is the outside of

a sphere. Classically, the outside of a sphere in a weakly curved spacetime is anti-normal,

so a large matter contribution is required to overcome the area term.

Islands can exist only in the triple overlap where I is Bekenstein-violating and quantum

normal, and G is quantum normal. This requires I to be a large region near the turning

point. The situation is summarized in figure 13.
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6.2 Islands for |tR| . β

In the auxiliary region, it is convenient to define a rescaled time coordinate

tR ≡ a0ηR . (6.13)

Any spherical islands in the radiation+negative CC cosmology must have their boundary

in the overlap of the Bekenstein-violating region with the quantum normal region. We have

determined that this region is limited to the corner of the Penrose diagram near spatial

infinity, with |tI | . β and rI &
3a20
4sth

. We will now find that there are indeed islands in this

regime if we calculate the entropy of a region R in the auxiliary system with |tR| . β and

rR &
3a20
4sth

.

Using (4.15), the generalized entropy that appears in the island formula again takes

the form

Sgen(I ∪R) =
1

4
Area(∂I) + Ŝmat(I ∪R) (6.14)

≈ πa2Ir
2
I + 4πsthf(δη, δr)r

2
I − 4A log aI + Sct(∂R) .

with

δη = ηI − ηR, δr = rI − rR . (6.15)

The behavior of f(δη, δr) is described in section 4, and the relation between conformal

time η and cosmological time t is given in (4.2). The last term is the UV divergence from

region R, which does not affect the extremization.

To find an island, we fix the region R and look for extrema of Sgen. Assume tR . β

and rR &
3a20
4sth

. It is easy to see that there is an extremum near tI ≈ tR, rI ≈ rR. We will

check this self-consistently by first setting δη = 0 and looking at Sgen as a function of rI :

Sgen(I ∪R) ≈ πa20r
2
I + 4πsthr

2
If(0, rI − rR) + const. (6.16)

Using (4.6) to evaluate f , and rR & rBek, this has a minimum near rI ≈ rR up to corrections

of O(β).

Now we set rI = rR, and consider the behavior of Sgen as a function of tI . We are

looking for islands with |tI | ≪ tm, so we can expand around the turning point,

ηI ≈ tI
a0

, aI ≈ a0

(
1− |Λ|

3
t2I

)
. (6.17)

In the regime |tI | ≪ tm, with rI = rR, the entropy is therefore

Sgen(I ∪R) ≈ const.− 2π

3
a20|Λ|r2Rt2I + 4πsthr

2
Rf

(
tI − tR

a0
, 0

)
. (6.18)

We have dropped the much smaller term from the anomaly, 4
3A|Λ|t2I . If additionally |tI | &

β, then we can also use (4.7) to evaluate f , and we find

Sgen(I ∪R) ≈ const.− 2π

3
a20|Λ|r2Rt2I + 4πsthr

2
RvE

|tI − tR|
a0

. (6.19)
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This function is symmetric about the origin, and it is increasing when tI . −β, and

decreasing when tI & β. Therefore there is a maximum around tI ≈ 0, up to corrections

of O(β).

The conclusion is that when R is a large enough region near the point of maximal

scale factor, there is an island with I ≈ R. This dominates over the trivial island for large

regions, because the island entropy does not grow with volume. The entropy of region R

without including an island is simply its thermal entropy, which does grow with volume.

6.2.1 Subleading analysis and the QNEC bound

The approximations used thus far can only pinpoint the location of the island to an accuracy

of O(β). In some cases we can do better. For these purposes let us assume tR = 0,

rR > rBek. The function written in (6.19) actually has two local maxima at tI = ±vEβ/(2π)

and a local minimum at tI = tR = 0. However as all three of these extrema have tI = O(β),

the approximations used to derive (6.19) are inaccurate in this regime. Indeed, from [58]

and the discussion in section 3.5 we expect the island to be a maximum of Sgen in the time

direction, so the minimum should disappear under closer scrutiny. We will now check this,

and find a nice agreement with an entropy bound derived recently by Mezei and Virrueta

using the quantum null energy condition (QNEC) [59].

In the regime |tI | ≪ β, the function f is known to be quadratic in time [54, 55, 59, 76],

sthf(δη, 0) ≈ bf (δη)
2 (|δη| ≪ β0) . (6.20)

Using this approximation, we find that for tI ≪ β, the time dependence of the generalized

entropy, after setting rR = rI , is

Sgen(I ∪R) ≈ const.− 2π

3
r2Ra

2
0|Λ|

(
1− 6bf

a40|Λ|

)
t2I . (6.21)

Thus tI = 0 is a maximum of the generalized entropy if

bf <
a40|Λ|
6

=
4

3
πǫ0 . (6.22)

The QNEC bound [59] for a 4d CFT is bf ≤ 4
3πǫ0. If the QNEC bound were violated,

then the island would be a minimum under time deformations, and quantum focusing

would also be violated. This fits together nicely, since the QNEC was originally motivated

by quantum focusing. In a holographic theory the QNEC bound is saturated. Then the

quadratic correction to Sgen vanishes so we would need to go to higher order to resolve the

extremum.

6.3 Islands for |tR| & β

So far we have only analyzed the case where region R is chosen to be near the turning

point, tR ≈ 0. We will now ask what happens as we increase tR. The matter contribution

is quite complicated in general, so we will not attempt a general analysis. We will just ask

what happens to the island we have found at the turning point if we increase tR, assuming
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tR ≪ rR. The spacetime is symmetric in time, so without loss of generality we choose

tR > 0.

For concreteness we will assume the holographic formula for the matter entropy func-

tion, f . Although the entropy is different in other theories, the general shape is similar in

any CFT, so the conclusions about the island would also be qualitatively similar.

We will first minimize Sgen as a function of rI . We can neglect the anomaly term, and

we know from the general conditions that the island lies near the turning point, so the

function we are extremizing is

Sgen(I ∪R) = const.− 2π

3
a20|Λ|r2I t2I + 4πr2Isthf(ηI − ηR, rI − rR) . (6.23)

In the regime |δη|, |δr| ≪ rR, the matter entropy in a holographic CFT has [53–55, 70]

f(ηI − ηR, rI − rR) =





|δη| vE
(

1−
(

δr
δη

)2
)1/4 if |δr| ≤ vB|δη|

|δr| if |δr| > vB|δη|
(6.24)

where vB =
√

2
3 is the butterfly velocity [71] and vE =

√
2

33/4
is the entanglement velocity in

four dimensions [53]. Here as |δη|, |δr| ≪ rR, we are using the exact result for a strip.

We know from the Bekenstein area bound and quantum normal condition that |ηI | is
small, so we can replace |ηR − ηI | ≈ ηR. If rR is large enough, then (6.23) has a minimum

in the spatial direction that lies in the range

rI ∈ [rR − vBηR, rR] . (6.25)

The formula for the minimum is not illuminating so we will not reproduce it. As ηR
increases, the minimum moves to the lower endpoint, rI ≈ rR−vBηR. The time dependence

is dominated by the area term for tI & β, so there is a maximum at tI ≈ 0, up to O(β)

corrections.

Therefore we conclude that as ηR is increased, the quantum extremal surface stays

at the turning point of the scale factor, but moves to smaller r. An example is drawn in

figure 14. In the figure, R′ is the partner of region R in FRW, i.e., (rR′ , ηR′) = (rR, ηR).

Note that at any fixed time ηR in the auxiliary spacetime, there will always be a

nontrivial island if we choose rR large enough. At any fixed rR & rBek, there is a finite

range of ηR with a nontrivial island; the size of this range is controlled by rR − rBek, with

larger regions having nontrivial islands at larger times.11

7 dS2

In this section we will consider two-dimensional de Sitter spacetime in JT gravity [77, 78]

coupled to a two-dimensional CFT. The action is

S =
φ0

16πG

∫
d2x

√−gR+
1

16πG

∫
d2x

√−g φ(R− 2) + SCFT , (7.1)

11We have only analyzed the extremum that appears for tR = 0, and followed it as we change tR. We

have not ruled out the possibility that for some choice of matter sector, f could be such that there are other

extrema that appear in other parameter ranges.
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Figure 14. Island for a region R that is not at ηR = 0. This is an example where rI is at the lower

end of the range (6.25).

where we have left out boundary terms. For details about this model see [79–82]. The first

term (combined with a boundary term) is purely topological and will not play a role in

our discussion, except for a constant shift in the entropy. The equations of motion of this

theory, with vanishing stress tensor for the CFT, are

R = 2 , (gµν∇2 −∇µ∇ν + gµν)φ = 0 . (7.2)

There is a solution similar to the Schwarzschild-de Sitter black hole. In global coordinates,

the metric and dilaton are

ds2 =
1

cos2 σ
(−dσ2 + dϕ2) , φ = φr

cosϕ

cosσ
, (7.3)

with σ ∈
(
−π

2 ,
π
2

)
, ϕ ∈ (0, 2π), and φr > 0. The Penrose diagram is given in figure 15.

In patch 2, the dilaton approaches +∞ as σ → π
2 , so this is the asymptotic future

boundary I+. In patch 1, the dilaton approaches −∞ as σ → π
2 , which is viewed as

the black hole singularity. In the embedding into three-dimensional Minkowski spacetime

ds2 = −dX2
0 + dX2

1 + dX2
2 , global coordinates are defined by

X0 = tanσ , X1 =
sinϕ

cosσ
, X2 =

cosϕ

cosσ
. (7.4)

The solution in patch 2 is

ds2 =
1

sinh2 T
(−dT 2 + dX2) , φ = −φr cothT , X ∈ R , T < 0 , φr > 0 , (7.5)

with embedding into three-dimensional Minkowski spacetime given as

X0 = −coshX

sinhT
, X1 = −sinhX

sinhT
, X2 = − cothT . (7.6)
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Figure 15. Penrose diagram of dS2. Patch 1 and 2 are often called the hyperbolic patches. Patch

3 is a static patch. The left and right edges of the diagram are identified. Region R sits near I+

and has an island region I.

Notice that the dilaton diverges to +∞ near the future boundary. In the higher-dimensional

perspective this indicates that the size of the transverse sphere is diverging. From the

embedding coordinates we can see that moving into the other hyperbolic patch, ϕ → ϕ+π,

is the same as {T,X} → {−T+iπ,−X}. In patch 1, the metric is the same, but the dilaton

has the opposite sign,

φ = φr cothT . (7.7)

The single-interval entanglement entropy in global coordinates is derived by writing

the metric for Euclidean dS2 as Weyl-equivalent to flat spacetime:

ds2 = Ω−2dxdx̄ , Ω =
1

2
(1 + xx̄) . (7.8)

This means we can insert the appropriate Weyl factors to transform the flat-spacetime

answer and obtain

Smat =
c

6
log

(
(x1 − x2)(x̄1 − x̄2)

ǫ2uvΩ(x1)Ω(x2)

)
(7.9)

for an interval with endpoints at x1 and x2, where c is the central charge of the CFT. The

Lorentzian global coordinates are given as

x = e−i(σ−ϕ) , x̄ = e−i(σ+ϕ) (7.10)

leading to

Smat =
c

6
log

(
2(cos(σ1 − σ2)− cos(ϕ1 − ϕ2))

ǫ2uv cos(σ1) cos(σ2)

)
. (7.11)

This is the entanglement entropy for the Hartle-Hawking state on dS2. To get the entan-

glement entropy in the hyperbolic patch we use the coordinate transformations

σ = tan−1

(
−coshX

sinhT

)
, ϕ = tan−1

(
sinhX

coshT

)
. (7.12)
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With the standard branch of tan−1, this is the coordinate change for hyperbolic patch 2,

and shifting ϕ → ϕ + π gives the coordinate change for patch 1. Our convention is such

that each (future) hyperbolic patch is covered by X ∈ R, T < 0, with T increasing to the

future and X increasing to the right. Using this coordinate transformation, we get the

entanglement entropy for a single interval within one hyperbolic patch:

c

6
log

2(cosh(X2 −X1)− cosh(T2 − T1))

ǫ2uv sinhT1 sinhT2
. (7.13)

To move one of the points into the neighboring hyperbolic patch we use the continuation

above to obtain
c

6
log

2(cosh(X2 +X1) + cosh(T2 + T1))

ǫ2uv sinhT1 sinhT2
. (7.14)

This is the entanglement entropy for one endpoint in patch 1, and the other endpoint in

patch 2.

Although the setup seems different, this is actually very similar to our discussion of

an FRW universe purified by an auxiliary spacetime in the thermofield double state, as

in sections 4–6. The black hole interior, patch 1, plays the role of the FRW universe.

This hyperbolic universe is in the thermofield double state with the exterior, so patch 2

is playing the role of the auxiliary spacetime in the previous discussion. The difference is

that this region is now part of the physical spacetime, and has a dynamical dilaton and

nontrivial conformal factor in the metric. The entanglement entropy (7.14) is identical

to the entanglement entropy of regions on opposite sides of the thermofield double in

equation (A.7), after inserting the appropriate conformal factors (up to a factor of 2,

because (7.14) only counts the entropy of one of the two intervals in (I ∪R)c, while (A.7)

counts both).

7.1 Islands in dS2

With the above solutions we will exhibit an island in the crunching hyperbolic patch for a

region in the neighboring hyperbolic patch. We pick the region R to be in patch 2 with

R : {T = TR , X ∈ [−XR, XR]} , R ∈ patch 2 (7.15)

and require |TR| ≪ 1 so that R is anchored near I+. Since the Planck scale is diverging

near I+ in this hyperbolic patch, we ignore the effects of gravity in region R, meaning that

we will not include an area term from ∂R in the generalized entropy.

Without any island contribution, region R has von Neumann entropy

Smat(R) =
c

3
log

(
2 sinhXR

ǫuv sinh(−TR)

)
. (7.16)

We consider the inclusion of an island region I given as

I : {T = TI , X ∈ [−XI , XI ]} , I ∈ patch 1 (7.17)
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Since the global state is pure, we can compute the generalized entropy by considering the

two-interval region (I ∪R)c, which gives

Sgen(I ∪R) = 2φ0 + 2φr cothTI +
c

3
log

(
2(cosh(XR +XI) + cosh(TR + TI))

ǫuvǫrg sinhTI sinhTR

)
, (7.18)

where we set 4G = 1. The factor of two comes from the two intervals in (I ∪ R)c. We

assume the entropy of these two intervals factorizes, which holds when the cross-ratio of the

four points at the boundaries of I and R is in an appropriate OPE limit, as can be checked

self-consistently at the end. We have also included the gravitational entropy Sgrav = φ for

each endpoint of the island region. This removes the UV divergence at the boundary of

region I, as it has the effect of replacing ǫuv → ǫrg in the matter entropy where ǫrg is an

RG scale, as discussed in section 3.1. Note that we define the generalized entropy without

any gravitational term at ∂R, so it does not remove the UV divergence there.

Extremizing the island region with respect to XI gives a minimum at

XI = −XR (7.19)

and extremizing with respect to TI gives a maximum, which as TR → 0 is given as

TI ≈ − sinh−1 6φr

c
. (7.20)

At leading order in small TR the island entropy is

Sisland(R) = 2(φ0 + φI) +
c

6
log

(
4(φI − c/6)

T 2
Rǫ

2
uvǫ

2
rg(φI + c/6)

)
(7.21)

where

φI = −φr

√

1 +

(
c

6φr

)2

. (7.22)

This entropy is independent of XR, while the semiclassical entropy (7.16) grows linearly at

largeXR, so at some length the inclusion of the island will minimize the generalized entropy.

The critical value of the length where the transition occurs — which we will call the Page

length in analogy to the black hole context — can be found by solving Sisland(R) = Smat(R)

and gives

XPage = sinh−1

(
e

6
c
(φ0+φI)

1

ǫrg

√
φI − c/6

φI + c/6

)
. (7.23)

For large regions, this reduces to XPage ≈ 6(φ0 + φI)/c.

Notice that the quantum state in region R is not accessible to a single observer in de

Sitter space. We can modify the problem so as to exit from the de Sitter epoch. We can

do this locally in patch 2 by extending past I+ and gluing on a flat-spacetime hat. An

observer that goes into the flat spacetime hat can have region R in her past lightcone.

This observer is sometimes called a “census taker” [83]. We will consider a closely related

problem in the next section.
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An important aspect of the solution we have considered above is that the dilaton

diverges to −∞ at I+ in patch 1 while it diverges to +∞ at I+ in patch 2. This means

that patch 2 is inflating toward the future while patch 1 is crunching. This is because

this solution can be thought of as a dimensional reduction of Schwarzschild-de Sitter in

an extremal limit, also known as the Nariai solution. Patch 1 is the black hole interior,

and the island we have exhibited is very analogous to the islands exhibited in black hole

solutions in other spacetimes. This feature played a key role in the calculation above, since

the gravitational cost for nucleating an island decreased as we moved toward I+ in patch

1, whereas for an inflating patch the cost would increase.12

7.2 Bekenstein area bound and the quantum normal regions

We would like to check that the Bekenstein area bound is violated as discussed in section 3.1.

We consider an interval centered around the origin in the hyperbolic patch 1 with X ∈
(−XI , XI) at time TI . The regularized matter entropy is given from (7.13) as

Ŝmat(I) =
c

3
log

2 sinhXI

ǫrg sinh(−TI)
, (7.24)

while the gravitational entropy is given by

Area(∂I)

4
= 2(φ0 + φr cothTI) . (7.25)

The Bekenstein area bound is violated when

− sinhXI

sinhTI
& ǫrg exp

(
6

c
(φ0 + φr cothTI)

)
. (7.26)

For large XI , with TI given by (7.20), this inequality becomes

XI &
6

c
(φ0 + φI) , (7.27)

where we have ignored subleading logarithmic pieces. Up to these subleading pieces this is

equal to the Page length (7.23).

The endpoints of our island must be in the quantum normal regions of I and G, as

discussed in sections 3.2–3.3. We first consider the quantum normal region for I. We

consider the future-directed outgoing null derivative of the right endpoint XI . To take this

derivative we will need the formula for the entanglement entropy of a single interval in the

hyperbolic patch, given in (7.13). Altogether the generalized entropy is given as

Sgen(I) = 2φ0 +φr cothT1 +φr cothT2 +
c

6
log

2(cosh(X2 −X1)− cosh(T2 − T1))

ǫ2rg sinhT1 sinhT2
. (7.28)

Differentiating Sgen(I) with respect to X±
2 = T2 ± X2 and setting X2 = −X1 = XI and

T2 = T1 = TI < 0 gives the pair of inequalities

cothXI ≥ ±
(
cothTI +

6φr

c sinh2 TI

)
(7.29)

12Notice that from a higher dimensional perspective, φ0 is set by the cosmological constant, unlike the

case for anti-de Sitter spacetime where it can be arbitrarily large.
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where we have required the outgoing derivative to be non-negative and the ingoing one to

be non-positive. Since XI > 0 and therefore coth is monotonically decreasing we have

XI ≤ coth−1
∣∣∣ cothTI +

6φr

c sinh2 TI

∣∣∣. (7.30)

This is the quantum normal condition for region I. Notice that since our island region is

at arbitrarily large XI = −XR, we need this bound to trivialize, i.e. the right hand side

needs to diverge for the existence of the island to be consistent. That happens when the

argument of coth−1 is less than one, in which case there is no upper bound. This restricts

log
√

1− 12φr/c < TI < log

√
1

1 + 12φr/c
. (7.31)

The first inequality is trivial for φr/c > 1/12. Our island does indeed lie in this range.

Interestingly, this becomes very restrictive for φr/c ≪ 1, forcing TI ≈ −6φr/c. In the

regime φr/c ≪ 1 this is precisely what we found for the island time, TI = − sinh−1(6φr/c) ≈
−6φr/c. It is also restrictive as φr/c ≫ 1, requiring TI . log

√
c/(12φr) → −∞.

Now we consider the quantum normal condition for the region G defined as the interior

patch minus the island. That is,

G = [−∞,−XI ] ∪ [XI ,∞] , (7.32)

at arbitrary time TI , in patch 1. This is similar to our choice of region G in the FRW

thermofield double, where it was the gravitating region minus the island. We will assume

the entanglement entropy factorizes into twice the entanglement entropy of one of the two

intervals, which is a good approximation for XI & 1.13 The formula for the generalized

entropy is therefore

Sgen(G) = 2φr cothTI −
c

3
XI −

c

3
log sinhTI + const. (7.33)

The quantum normal condition is

(∓∂TI
− ∂XI

)Sgen(G) ≥ 0 (7.34)

which simplifies to ∣∣∣ cothTI +
6φr

c sinh2 TI

∣∣∣ ≤ 1 . (7.35)

This is the same range we found below (7.30) by requiring that there is no quantum

apparent horizon for region I, so in fact both of the quantum normal conditions (for I and

G) are satisfied in this range.

The quantum normal region (assuming 12φr/c > 1) is shown in figure 16 together

with the Bekenstein-violating region. For 12φr/c < 1 there is an additional excluded

region coming out of the right horizon X = T = −∞ and ending at the corner X = −∞,

T = finite. In the limit φr/c ≪ 1 this is shown in figure 17.

13The OPE limit we are taking is when the size of the two intervals comprising G is small compared

to their separation. The cross-ratio can be computed using the Minkowski distances in the embedding

space, since this is the same as the distance in the metric dxdx̄ with x, x̄ given by (7.10). Using the

embedding (7.6), the cross-ratio simplifies to exp(−2XI), which is small for XI & 1.
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Figure 16. Regions of the dS2 spacetime, assuming a reflection-symmetric region I within patch 1.

The endpoints of I must fall in the overlaps of the quantum normal region and Bekenstein-violating

region. Only the semiclassical portion of the Bekenstein-violating region is drawn, which is why it

appears to end abruptly.

Figure 17. Half of the hyperbolic patch of dS2, with the various regions displayed for φr/c ≪ 1.

In this limit, the range of allowed times for the endpoint of an island becomes very narrow.

7.3 Pure de Sitter in higher dimensions?

Our dS2 model is similar to a black hole in a higher-dimensional de Sitter spacetime. What

about pure de Sitter in higher dimensions? Here we can make progress by analyzing the

Bekenstein area bound, our condition 1. In the Hartle-Hawking state, the matter entropy

is computed by a Weyl transformation from flat spacetime. This means the matter entropy

does not scale with volume — it grows with rI at the same rate as the gravitational entropy.

Therefore the Bekenstein area bound will not be violated, so no islands appear in pure de

Sitter spacetime.
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8 Minkowski bubble in dS2

One physical motivation for considering crunching cosmologies is in the context of eter-

nal inflation. For any quantum-gravitational theory with a landscape, like string theory,

gravitational instantons lead to the nucleation of bubbles in a parent inflating cosmology.

This process may continue ad infinitum, stopping locally only when “terminal vacua” are

reached. These are bubbles with vanishing or negative cosmological constant. The bubbles

with negative cosmological constant generically lead to a crunch. In the previous sections

we focused on the presence of islands in the context of the thermofield double, where one

of the two spacetimes is a crunching cosmology. The island region of the crunching cosmol-

ogy was encoded in a region in the second, Minkowski spacetime. Here, we would like to

consider a similar setup where the Minkowski spacetime is the terminal vacuum in which

the observer lives and the crunching cosmology is a neighboring bubble. The necessary

conditions outlined for the presence of an island in section 3 are independent of region R,

so it is at least plausible that islands may exist in this setup as well.

One difference with the previous thermofield double examples has to do with the pre-

dominant decay channel considered in the literature, the Coleman-De Luccia instanton [84].

This solution preserves O(D) symmetry and is expected to be the dominant decay chan-

nel, i.e. it is the bounce of lowest Euclidean action. The O(D) symmetry means that the

spatial slices are hyperboloids and we need to consider an open FRW universe, while in

sections 4–6 we have been considering flat spatial slices.

It is difficult to compute the entropies needed to look for islands explicitly in a higher-

dimensional model of bubble nucleation. So we instead consider a two-dimensional model.

Rather than compute an instanton that mediates decay and solve for the global geometry,

we use Jackiw-Teitelboim gravity in dS2 plus a large-c matter CFT. We will glue this

solution to flat spacetime to mimic a bubble nucleation of vanishing cosmological constant,

so we will take the Minkowski theory to be flat-spacetime JT gravity. (Similar calculations

of islands in the context of dS2 glued to flat spacetime have been presented in [22].) This

sharp gluing mimics vanishingly thin bubble walls. The two theories and their solutions in

the relevant patches are

S =
1

16πG

∫
d2
√−g φ(R− 2) + SCFT , ds2dS = dθ2 − sin2 θdt2 , φdS = φm cos θ (8.1)

S =
1

16πG

∫
d2
√−g (φR− 2) + SCFT , ds2flat = dr2 − r2dt2 , φflat = φ0 +

r2

2
(8.2)

Notice that the sign of the cosmological constant in the flat-spacetime JT action is different

than the usual one [85]. As we will see in (8.3) this is so that the dilaton grows toward I+.

The walls of a Coleman-De Luccia bubble are timelike and accelerate outward to

quickly become nearly null. To simply model this we will take a null limit and glue across

θ = r = 0, represented by the thick dashed orange line in figure 18, which means we need

the continuation of the flat spacetime solution into the hyperbolic patch:

ds2flat = −dt2 + t2dX2 = e2T (−dT 2 + dX2) , φflat = φ0 +
t2

2
= φ0 +

e2T

2
. (8.3)
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Patch 1

Patch 2

Patch 1

Patch 3

Figure 18. The Penrose diagram of dS2 glued to flat spacetime along the thick dashed orange line.

Patch 1 is a hyperbolic patch of dS2, patch 2 is a hyperbolic patch of flat spacetime, and patch 3

is a static patch. We calculate the von Neumann entropy of region R and find the island I.

The gluing requires picking φ0 = φm. As discussed in the previous section, the neighboring

de Sitter region is considered to be a crunching cosmology since the dilaton is diverging to

−∞ in the future.

We would like to compute the entropy of a region R in patch 2, with and without

the inclusion of an island. We take region R to be at a fixed time TR and with spatial

extent (−XR, XR). We can compute the semiclassical entropy of the island by using the

coordinate transformation

t = eT coshX , x = eT sinhX (8.4)

to transform the Minkowksi vacuum answer into

Smat =
c

6
log

(
(∆x)2 − (∆t)2

ǫ2uv

)
=

c

3
log

(
2 sinhXR

e−TRǫuv

)
. (8.5)

Now we would like to consider the inclusion of an island. Since this problem is structurally

very similar to the one in the previous section, we again look for an island in patch 1. We

assume the two-interval entanglement entropy on (I ∪R)c factorizes. The entropy for one

of the two intervals in (I ∪ R)c is given by the same formula as (7.14), except we need to

take into account the different Weyl factor in patch 2. The gravitational entropy remains

the same since patch 1 is unchanged. Thus the generalized entropy on I ∪R is given by

Sgen =
c

3
log

(
2(cosh(XR +XI) + cosh(TR + TI))

−e−TR sinhTI ǫuvǫrg

)
+ 2(φ0 + φr cothTI), (8.6)

where we set 4G = 1. Extremizing this with respect to XI gives XI = −XR. Extremizing

with respect to TI gives

cothTI − tanh
TI + TR

2
+

6φr

c sinh2 TI

= 0 . (8.7)
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Since we want the endpoints of region R to sit on I+ we need to take TR → ∞, which

leads to the solution

TI ≈ −1

2
log

(
1 +

12φr

c

)
. (8.8)

Notice that this saturates the upper bound (7.31) and is therefore on the border of the

region allowed by quantum normalcy of G. The island entropy is given by

Sisland(R) ≈ 2(φ0 + φI) +
2cTR

3
− c

3
log ǫuv (8.9)

where

φI = −φr

(
1 +

c

6φr

)
. (8.10)

Thus as long as φ0 ≫ φr(1+ c/φr) we can remain weakly coupled. The critical value of the

length where a transition between the semiclassical entropy and the island entropy occurs

can be found by solving Sisland(R) = Smat(R), which gives

XPage ≈ sinh−1
(
e

6
c
(φ0+φI)+TR

)
(8.11)

Notice that since patch 1 is unchanged from our discussion in section 7, we satisfy the

Bekenstein area bound and the endpoints of our island will be in the quantum normal

region, as in section 7.2. For φr/c ≪ 1 we find TI ≈ −6φr/c, as dictated by the shrinking

of the quantum normal region in this limit.

To make this case closer to the one in the previous section, we can regulate region

R to sit near but not on I+. Then as we increase the length of region R we will reach

the Page length where the island solution dominates. In this case, the quantum state on

region R is in the past lightcone of an observer that goes to future timelike infinity of

patch 2. The unbounded growth of entropy with respect to increasing the size of region R,

which in the previous section was only accessible to a metaobserver with access to spacelike

patches of I+, is now accessible to a single observer (the census taker [83]). Conceptually,

a Minkowski hat provides an “exterior” view of cosmology similar to the exterior view of

a black hole.

This spacetime has a maximal analytic extension with an infinite number of inflating

regions and crunching regions, just like Schwarzschild-de Sitter in higher dimensions. It is

tempting to use this extension as a better model for a multiverse.

9 Tensor network picture

We will now discuss a simple toy model for the island rule using tensor networks. This pro-

vides some intuition for the structure of the quantum state that leads to an island. Similar

toy models were discussed in [21, 86–91].14 The tensor network does a nice job of captur-

ing the intuition for deformations of I in spacelike directions, and for the violation of the

Bekenstein area bound, but it does not do so well in the time direction. There is no appar-

ent analogue of the extremality condition or the quantum normal condition. The purpose

of this section is to provide some basic intuition for islands and the Bekenstein bound.

14See [92] for a more detailed proposal for the structure of the quantum state responsible for islands.
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Figure 19. Tensor network toy model for the quantum state of an evaporating black hole at late

times.

9.1 Evaporating black hole

A tensor network that qualitatively captures the structure of the quantum state of an

evaporating black hole at late times is shown in figure 19. The regions I,G,B,R roughly

match the corresponding regions in the black hole in figure 4.

Each box represents a tensor; bonds joining the tensors are contracted indices, and

free legs are uncontracted indices. The tensor network is a quantum state in the Hilbert

space associated to the uncontracted indices.15 Note that there are no external legs on I

or G because these represent the gravitational regions. For the purposes of the toy model

we assume gravity is unimportant in regions B and R and treat them like a quantum field

theory.

The short bonds correspond to the spatial geometry of a late-time slice in figure 4.

The long bonds connecting I ↔ R correspond to matter entanglement, i.e., the long-range

entanglement between Hawking radiation in region R and its interior partners in region I.

For generic tensors, the von Neumann entropy S(ρR) in this quantum state is pro-

portional to the length of the minimal cut that separates R from the rest of the diagram.

This feature is reminiscent of the Ryu-Takayanagi formula [40] and is the starting point for

an intriguing correspondence between holography and tensor networks [93–95]. Although

the tensor network is discrete and non-dynamical it has an uncanny ability to predict

complicated gravitational phenomena, including quantum extremal islands.

At early times, the area of the black hole is large, while the entanglement between the

interior and the Hawking radiation is small. Therefore we can estimate the entropy by a

15So the diagram represents the quantum state

∑
I
k1k2···

j1j2···
G

ℓ1ℓ2···
k1k2···

B
i1i2···
ℓ1ℓ2··· ,σ1σ2···

R
j1j2···
i1i2··· ,α1α2···

|σ1〉|σ2〉 · · · |α1〉|α2〉 · · · . (9.1)
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minimal cut that simply excises region R:

(9.2)

The entropy from this cut grows with time as more Hawking radiation enters region R.

Meanwhile the area term, represented by the links I ↔ G, shrinks as the black hole

evaporates. Eventually, it is more economical to cut along ∂I:

(9.3)

The entropy from this cut decreases with time, because the contribution from the bonds

I ↔ G is proportional to the shrinking black hole area.

The transition from one cut to another occurs at the Page time and indicates the

formation of a quantum extremal island. The toy model illustrates one way for an island I

to be ‘encoded’ in an auxiliary system R. A more detailed understanding of this encoding

can be found in the language of quantum error correction [14, 36, 37, 96, 97].

9.2 Tensor network for FRW

A tensor network toy model for FRW is in figure 20. It is identical to the black hole,

but the interpretation of the bonds is different, and we have reorganized the picture to

match the geometry of the FRW+Minkowski thermofield double. The region labels match

those in figure 11. Now the entanglement between I and R comes from our choice of

the thermofield double state, rather than from Hawking radiation. This entanglement is

time-independent for comoving regions, while the area-term entanglement depends on time

through the scale factor.

This picture highlights the similarities between the evaporating black hole and FRW.

The model also clearly has an analogue of our condition (1) in the introduction, i.e., islands

must violate the Bekenstein area bound — the matter entropy of I counts vertical tensor

legs on I, and the gravitational entropy counts horizon tensor legs on I. In the toy model

there is no need to worry about regulating the quantum area.

On the other hand, from the tensor picture we might expect to find islands in FRW

with radiation only. This is not the case, a result that we traced back to the fact that
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Figure 20. Tensor network toy model for the thermofield double of FRW.

in radiation-only FRW, the Bekenstein-violating region has no overlap with the quantum

normal region. Apparently the tensor network picture for FRW succeeds in predicting the

island only near the turning point of a recollapsing cosmology.

Earlier network-like toy models for cosmology which also include dynamics can be

found in [98, 99].
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A Entanglement across the thermofield double in 2d CFT

In this appendix we consider some properties of the matter entanglement in a 2d CFT, for

two regions on opposite sides of the thermofield double. This setup is the same as section 4

but in two dimensions we can be more explicit.

Consider a 2d CFT in two copies of Minkowski spacetime, in the thermofield double

state. Define a region I in system 1, and region R in system 2:

I : {x1 ∈ [−rI , rI ], t1 = tI} (A.1)

R : {x2 ∈ [−rR, rR], t2 = tR}

In this subsection the goal is to compute the CFT entropy of I ∪R. We can think of this

theory as living on an analytic continuation of the Euclidean cylinder. Take the complex

cylinder coordinate z with z ∼ z + iβ. Then the two systems live at Im z = ±iβ/4. The

map to the plane is

w = e2πz/β . (A.2)
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The endpoints of region I are [z1, z2] and the endpoints of region R are [z3, z4], with

z1 = −rI − tI + iβ/4 z̄1 = −rI + tI − iβ/4 (A.3)

z2 = rI − tI + iβ/4 z̄2 = rI + tI − iβ/4

z3 = −rR − tR − iβ/4 z̄3 = −rR + tR + iβ/4

z4 = rR − tR − iβ/4 z̄4 = rR + tR + iβ/4

We will calculate the Renyi partition function Zn = Tr (ρI∪R)n using the twist opera-

tor methods of Cardy and Calabrese [100, 101], as applied to this problem in [53] (see

also [102–104]). The only difference compared to [53] is that here we allow regions R and

I to be different sizes. The partition function is

Zn = 〈σ(z1)σ̄(z2)σ̄(z3)σ(z4)〉cyl (A.4)

=

(
2π

β

)8hn

|w1w2w3w4|2hn〈σ(w1)σ̄(w2)σ̄(w3)σ(w4)〉plane

where σ and σ̄ are twist operators, with chiral scaling dimension

hn =
c

24
(n− 1/n) . (A.5)

The calculation of the twist correlator depends on the CFT. For concreteness we will assume

the CFT is holographic (i.e. has large central charge c ≫ 1 and a large spectral gap), but

the results are independent of this assumption in the kinematic regime we are ultimately

interested in. In a holographic CFT, the twist correlator is the minimum of two factorized

channels. In the first channel we contract the points across the thermofield double and find

Zn =

(
2π

β

)8hn

|w1w2w3w4|2hn |w1 − w3|−4hn |w2 − w4|−4hn . (A.6)

Plugging in the kinematics above and taking n → 1 to compute the von Neumann entropy

we find

S1(I ∪R) =
c

3
log

[
β2

2π2ǫ2uv

(
cosh

2π(tR − tI)

β
+ cosh

2π(rR − rI)

β

)]
. (A.7)

The other channel is where we contract each twist operator with its partner on the same

side of the TFD. In this channel the partition function is

Zn =

(
2π

β

)8hn

|w1w2w3w4|2hn |w1 − w2|−4hn |w3 − w4|−4hn , (A.8)

and this leads to an entropy which is simply the sum of two thermal entropies,

S2(I ∪R) =
c

3
log

[
β

πǫuv
sinh

2πrR
β

]
+

c

3
log

[
β

πǫuv
sinh

2πrI
β

]
. (A.9)

The full answer for a holographic CFT is the minimum of (A.7) and (A.9). Except very

near the transition where (A.7) and (A.9) are equal, this result actually applies to any 2d

CFT, because we have just used to the OPE of the twist operators to approximate the

partition function.
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B Derivation of the timelike-maximum requirement

In this appendix we will show that the entropy Sgen(I ∪ R) increases (or rather does not

decrease) at second order under any timelike deformation of ∂I, by taking two derivatives

of the generalized entropy. We assume the quantum focusing conjecture (QFC) [47] and

entanglement wedge nesting (EWN) [18, 19, 105]. These are not really independent as-

sumptions [105] but we will use them both as inputs. As discussed in section 3.5, the same

conclusion follows from the quantum maximin prescription derived in [58].

Consider an island in 2d. Before extremizing, the generalized entropy is a function

Sgen(I ∪R) = S(i+, i−, r+, r−) (B.1)

where (i+, i−) is an endpoint of I and (r+, r−) is an endpoint of R. It can also depend on

other endpoints of I and R but this dependence is suppressed in the notation as any other

endpoints are held fixed. The extremality condition is

∂i±S(i
+, i−, r+, r−) = 0 . (B.2)

Act on these two equations with the total derivatives d/dr± to find

∂r+∂i+S +
∂i+

∂r+
∂2
i+S +

∂i−

∂r+
∂i−∂i+S = 0 (B.3)

and three other similar equations with different combinations of derivatives. QFC is the

statement

∂2
i+S ≤ 0 , ∂2

i−S ≤ 0 . (B.4)

(Generally these would be covariant derivatives but here this is not necessary due to the

extremality conditions.) Pick orientations so that increasing r− grows R, increasing r+

shrinks R. The orientations for the island are opposite, so increasing i− shrinks I and

increasing i+ grows I. EWN requires that if we grow R, the island endpoint must move in

a spacelike direction that grows I. Therefore

∂i+

∂r−
> 0,

∂i−

∂r−
< 0 . (B.5)

And if we shrink R, the opposite holds, so

∂i+

∂r+
< 0,

∂i−

∂r+
> 0 . (B.6)

The first term in (B.3) reduces to just the matter entropy contribution, because

∂r±Area(∂I) = 0. Thus strong subadditivity of the matter entropy implies

∂i+∂r−S < 0 , ∂i−∂r+S < 0 , ∂i+∂r+S > 0 , ∂i−∂r−S > 0 . (B.7)

Using SSA, EWN, and QFC (which can all be viewed as different aspects of QFC), we see

that the equation (B.3) takes the form

(positive) + (positive) + (positive) ∂i−∂i+S = 0 . (B.8)

– 45 –



J
H
E
P
1
1
(
2
0
2
0
)
1
1
1

Therefore

∂i−∂i+S ≤ 0 . (B.9)

The other three equations similar to (B.3) give the same sign constraint. In the notation

of section 3.5, this implies γ ≤ 0 and therefore following the same steps as the classical ar-

gument we conclude that S is non-decreasing at second order under timelike deformations.

The extension of this argument to higher dimensions is straightforward. We simply

replace derivatives with respect to the endpoints by derivatives with respect to affine param-

eters λ± that deform the surface in null directions, along a small portion of the boundary

with area A. The quantum expansion in higher dimensions is defined by [47]

Θ± = lim
A→0

4

A
dSgen

dλ± , (B.10)

which is a finite quantity. The diagonal part of the quantum focusing conjecture requires

0 ≥ d

dλ±Θ± = lim
A→0

[
d

dλ±

(
4

A

)
dSgen

dλ± +
4

A
d2Sgen

dλ±2

]
. (B.11)

At a quantum extremal surface, the first term drops out due to the extremality condition
dSgen

dλ± = 0. Therefore the argument goes through as above.

C Details of the CGHS/RST example

In this appendix we check the general conditions for the CGHS/RST model, as discussed

in section 3.6. We will use the conventions of [62, 106]. The first example is the eternal

black hole. Region R is considered to be two equal intervals on I+
L and I+

R as drawn in

figure 7. For sufficiently late time an island was found to appear that stretched from the

left horizon to the right horizon. The metric is given by ds2 = −e2ρdx+dx− for some ρ and

x± = t± x. The matter is in the x± vacuum, i.e. Tx±x± = 0. The entropy for a symmetric

interval around the origin is therefore given by

Smat =
c

3
log

(x+2 − x−2 )

ǫuve−ρ(x2)
, (C.1)

where (x+2 , x
−
2 ) represents the right endpoint and (x−2 , x

+
2 ) represents the left endpoint.

In this model, the combination ρ + 6Sgrav/c = Ω + k, where Ω is a scalar field which

characterizes the gravitational solution in a particular gauge and k is some constant which

can be ignored for our purposes. Using this equality and Ω = −x+x− +M for the eternal

black hole, the Bekenstein area bound becomes

x+2 − x−2 & exp

(
6

c
(M − x+2 x

−
2 )

)
. (C.2)

Working near the horizon x−2 = 0 we see that for late enough time we can take the length

x+2 − x−2 to be arbitrarily large and the inequality is obeyed.

We now compute the quantum normal region for I. This region will be a symmetric

interval around the origin, and we will extremize with respect to the right endpoint. The
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quantum apparent horizon on the left will follow by symmetry. We will restrict to t > 0

since that is where the island lives. The entanglement entropy in the eternal black hole

background is given by (C.1). Using ρ+6Sgrav/c = Ω+k, the generalized entropy becomes

Sgen =
c

6

(
−x+1 x

−
1 − x+2 x

−
2 + 2k + log

(
(x+2 − x+1 )(x

−
1 − x−2 )

ǫ2rg

))
. (C.3)

The quantum normal region ±∂x±

2
Sgen ≥ 0 for x±1 = x∓2 gives

x+2 ≤ x−2 +
1

x−2
. (C.4)

The above condition comes from the outgoing constraint, as the ingoing one is strictly

weaker. The quantum normal region is illustrated in figure 7, and the quantum extremal

surface is seen to lie within it as required.

The quantum normal region for G is computed similarly, where G is the union of the

interval from (x2, t2) to (xG, tG) and its reflection x → −x. We will assume the entropy

factorizes into the sum of entropies of the two intervals. Extremizing with respect to the

left endpoint of the right interval ∂x±

2
Sgen = 0 gives

x±2 =
1

x∓2 − x∓G
(C.5)

In the limit x+G → ∞, we find the quantum normal region

x−2 ≥ 0 , x+2 ≤ 1

x−2 − x−G
. (C.6)

Thus the quantum extremal surface must be on or inside the horizon. The limit x+G → ∞
restricts region R to be on I+ (and lie at times x− < x−G), in which case the island was

found to lie on the horizon. Notice that in the limit x+G → ∞ the extremizations done

to obtain (C.5) are precisely the extremizations necessary to find an island for a region

R = (I ∪G)c. This means that the endpoint of the island is given as x+2 = −1/x−G, x
−
2 = 0,

consistent with [62]. In the limit x−G → −∞, region R has to vanish and the quantum

normal region for G shrinks to the bifurcation point, consistently reproducing the classical

extremal surface.

Our final example is provided by an evaporating black hole in the same model. This

solution has a shock wave impinging on the vacuum Tσ±σ± = 0 where σ± = ± log±x±.
The region R and its island I are shown in figure 4. At late times and large initial mass,

the regulated matter entropy of region I is given by

Ŝmat ≈
c

12
log x+QES ≈ − c

12
log
(
−x−2

)
, (C.7)

while the gravitational entropy is given by

Sgrav =
c

24
(4M + log(−x−2 )) (C.8)
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Thus for log(−x−2 ) = −4M/3 the Bekenstein area bound is violated. This is precisely the

Page transition.

We now compute the quantum normal region for this solution. The entanglement

entropy of region I (for consistency with the previous example, we will refer to the right

endpoint of I as (x+2 , x
−
2 ), even though there is no left endpoint) is given by

c

6

(
ρ+

1

2
log(−x+2 x

−
2 ) + log log(−4x+2 x

−
2 )

)
(C.9)

We once again use ρ + 6Sgrav/c = Ω + k where Ω = −x+x− − 1
4 log(−4x+x−) −M(x+ −

1)Θ(x+ − 1) for the evaporating black hole and we consider x+2 > 1. The generalized

entropy is therefore

Sgen =
c

6

(
1

2
log(−x+2 x

−
2 ) + log log(−4x+2 x

−
2 )− x+2 x

−
2 − 1

4
log(−4x+2 x

−
2 )−Mx+2 + k

)

(C.10)

where M is a parameter related to the strength of the shock wave and therefore the mass

of the resulting black hole. The quantum extremal surface lies on the curve [62]

4(M + x−2 )x
+
2 − 1 = 0 . (C.11)

The quantum normal region is defined by ±∂x±

2
Sgen ≥ 0, which requires

4(M + x−2 )x
+
2 − 1− 4

log(−4x+2 x
−
2 )

≤ 0 . (C.12)

Since x−2 < 0, we see that the quantum extremal surface is inside the quantum normal

region.

We would like to consider the quantum normal region for G. Instead of taking the

right endpoint xG to be on I+ as for the eternal black hole, we instead place it inside the

black hole at the evaporation endpoint, where the apparent horizon meets the singularity.

Thinking of the black hole interior as a baby universe, this is the analog of picking G to

be Ic in the cosmological half of the thermofield double.

The evaporation endpoint is given by

x+G =
1

4M

(
e4M − 1

)
, x−G =

M

e−4M − 1
. (C.13)

The generalized entropy is given in section 3.2 of [62], resulting in a quantum normal region

x+2 ≤ 1

4x−2


1 +

4

log
x−

2 (e−4M−1)
M


 , x−2 ≥ −M +

1

4x+2
− 1

x+2 log e4M−1
4Mx+

2

. (C.14)

For M ≫ 1 and e4M ≥ x+2 & eO(M), the latter inequality saturates at the actual location

of the QES, as seen by explicit comparison to (C.11). Thus the QES sits on the border of

the allowed region.
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D Derivation of the bound on |∂Smat|

In this appendix we review the derivation of the second inequality in (4.10) bounding

spacelike derivatives of the matter entropy density, following [73]. See also [72].

Let ρ be the density matrix of the matter fields in the thermofield double, and ρA its

reduction to a region A. The state ρth = ρI ⊗ ρR can be thought of as the density matrix

of two copies of a thermal state reduced to I ∪ R. Unlike the thermofield double, this

state has no entanglement between I and R. Up to sub-extensive corrections, the relative

entropy of ρI∪R with respect to this state is given by [73]

Srel(ρI∪R|ρI ⊗ ρR) ≈ sth(VI + VR)− Ŝmat(I ∪R) . (D.1)

Monotonicity of relative entropy requires

∂rISrel(ρI∪R|ρI ⊗ ρR) ≥ 0 , (D.2)

which implies ∂rIf ≤ 1. Another way to reach the same result is to note that this relative

entropy is equal to the mutual information I(I,R), so monotonicity is equivalent to strong

subadditivity.

To bound ∂rIf from below, we use strong subadditivity, SX + SY ≥ SX∪Y + SX∩Y .
Let I(r) denote the region of size r, so I = I(rI), and choose X = I(rI + δr) ∪ R,

Y = I(rI) ∪ I(rI + δr + γ)c, where the complement includes a potential purifying system.

Here δr is the small deformation corresponding to the ∂rI derivative and γ ≪ δr is a

geometric regulator similar to the strip of size δ in figure 5. The UV divergences cancel in

SSA. Taking γ small and keeping only the extensive contributions, SSA becomes

Ŝmat(I(rI + δr) ∪R) & Ŝmat(I(rI) ∪R)− Ŝmat(I(rI + δr)\I(rI)) . (D.3)

Here ‘&’ indicates that we keep only the extensive parts of Ŝmat. This requires ∂rIf > −1,

so together with the result above we have derived |∂rIf | ≤ 1.
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