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ABSTRACT

The quality of sleep is an important factor in maintain-
ing a healthy life style. To date, technology has not en-
abled personalized, in-place sleep quality monitoring and
analysis. Current sleep monitoring systems are often dif-
ficult to use and hence limited to sleep clinics, or invasive
to users, e.g., requiring users to wear a device during sleep.
This paper presents iSleep – a practical system to moni-
tor an individual’s sleep quality using off-the-shelf smart-
phone. iSleep uses the built-in microphone of the smart-
phone to detect the events that are closely related to sleep
quality, including body movement, couch and snore, and in-
fers quantitative measures of sleep quality. iSleep adopts
a lightweight decision-tree-based algorithm to classify vari-
ous events based on carefully selected acoustic features, and
tracks the dynamic ambient noise characteristics to improve
the robustness of classification. We have evaluated iSleep
based on the experiment that involves 7 participants and
total 51 nights of sleep, as well the data collected from real
iSleep users. Our results show that iSleep achieves consis-
tently above 90% accuracy for event classification in a va-
riety of different settings. By providing a fine-grained sleep
profile that depicts details of sleep-related events, iSleep al-
lows the user to track the sleep efficiency over time and relate
irregular sleep patterns to possible causes.

1. INTRODUCTION
Sleep plays an important role in our overall health. Hav-

ing insufficient amount of sleep can easily cause fatigue and
lack of concentration during the day. Besides the amount
of sleep, the quality of sleep is also an important factor in
maintaining a healthy life style. Clinical studies show that
sleep is related to many serious diseases including diabetes,
obesity and depression [16] [27].

∗This work is supported in part by the NSF under
grant CNS-0954039 (CAREER), CNS-1250180 and ECCS-
0901437. This study is approved by the Institutional Review
Board (IRB) of Michigan State University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’13, November 11–15, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1169-4 ...$15.00.

To date, technology has not enabled personalized, in-place
sleep quality monitoring and analysis. Polysomnography
(PSG) is the primary clinical tool for sleep monitoring [13].
It can provide a quantitative profiling of sleep to diagnose
sleep disorders. However, due to the need of various sensors,
PSG-based sleep quality measurement is usually limited to
clinical settings. Actigraphy has been studied as an inex-
pensive alternative to assess sleep and wakefulness based on
body movement [8]. Several portable sleep assessment prod-
ucts are designed based on PSG or actigraphy technologies,
including ZEO [7], Sleep Tracker [5] and fitbit [1]. However,
they are invasive to users as they require a device to be worn
by the user during sleep. A recent in-depth survey of 230
participants suggested that, although most people are inter-
ested in using technology to track their sleep quality, many
are resistant to the idea of having to wear a device during
sleep [14].

This paper presents iSleep – a practical system to mon-
itor an individual’s sleep quality using off-the-shelf smart-
phone. iSleep is very easy to use and truly unobtrusive:
the user just needs to start iSleep app and place the phone
somewhere close to the bed (e.g., on a night stand). iSleep
uses the built-in microphone of the smartphone to detect
the events that are closely related to sleep quality, including
body movement, couch and snore. Based on the detected
events, iSleep infers quantitative measures of sleep quality
based on actigraphy and Pittsburgh Sleep Quality Index (P-
SQI) [12] which are two well-established scoring criteria in
sleep literature. We have released an initial version of iSleep
on the Google Play Store [2]. Within 6 days, iSleep was in-
stalled by more than 100 users from 9 countries on various
Android devices. By providing a detailed sleeping profile,
iSleep enables the user to be aware of irregular sleep patterns
like restlessness caused by extensive snoring which are oth-
erwise hard to find. Moreover, as an unobtrusive, portable,
in place monitoring tool, iSleep can track sleep quality quan-
titatively over a long period of time, which helps healthcare
provider diagnose trends related to certain diseases.

The design of iSleep faces several challenges such as highly
diverse acoustic profiles of sleep from person to person and
in different environments. We carefully analyze the acoustic
data collected from real sleep experiments and choose sever-
al statistical acoustic features that can differentiate environ-
ment noise and various sleep-related events. To improve the
robustness of detection, iSleep tracks the ambient noise char-
acteristics and updates the noise model adaptively. Finally,
iSleep adopts a lightweight decision-tree-based algorithm to
classify various sleep-related events and derive quantitative



sleep quality measures. We have evaluated iSleep extensively
in a long-term experiment that involves 7 participants and
total 51 nights of sleep, as well as using the data collect-
ed from the Android phones that downloaded and installed
iSleep from Google Play Store. Our results show that iSleep
achieves consistently above 90% classification accuracy for
various events, across different subjects and in a variety of
different sleep environments.

2. RELATED WORK
According to AASM (American Academy of Sleep Medicine),

the sleep stage scoring based on polysomnography (PSG)
has long been considered as the “gold standard” of sleep
study [20]. A polysomnogram typically requires the record-
ing of multiple channels including electroencephalography
(EEG), electromyography (EMG), electrocardiography (ECG)
or heart rate, respiratory effort, air flow, oxygen saturation
and etc. [13]. The result of PSG includes a collection of
indices such as sleep onset latency, total sleep time and etc,
which are considered together to infer the sleep quality. Due
to the need of various sensors, PSG-based sleep quality mea-
surement is usually limited to sleep clinics.

Actigraphy has been studied as an inexpensive alternative
to assess human sleep and wakefulness [8] based on the sub-
ject’s body movements overnight. The basic idea is that the
state of sleep and wake can be inferred from the amount
of body movement during sleep [8]. Through processing the
logged acceleration data, epoch-by-epoch (usually 30 second
or 1 minute) sleep/wake predictions are calculated. Several
algorithms [18] [29] [15] have been proposed to derive sleep
quality from actigraphy. The average accuracy of predicting
sleep/wake state is around 90% (reported 88% in [15] and
94-96% in [31]).

A widely used subjective sleep quality assessment method
is through PSQI (Pittsburgh Sleep Quality Index) [12], which
is a self-rated questionnaire to assess the sleep quality and
disturbance over a long-term interval. In PSQI, a set of
sleep measures are collected, including sleep latency, sleep
duration, sleep disturbance and etc. PSQI has been shown
useful in numerous studies [9] [11] over a variety of popula-
tions. However, the accuracy of PSQI is highly variable and
is often impeded by the inaccuracy of subject’s memory and
perception.

Several commercial personal sleep assessment products
are currently available. Watch PAT [6] detects respiratory
disturbances during sleep by monitoring peripheral arteri-
al tone (PAT). The users are required to attach a probe to
their finger during sleep. ZEO [7] is a popular sleep monitor-
ing product that infers sleep stages using three EEG sensors
contained in a head band worn by the user during sleep.
Several actigraphy-based products such as Sleep Tracker [5]
and fitbit [1] require the user to wear the device containing
accelerometer during sleep.

Recently, several research efforts aimed at developing low-
cost sleep assessment systems. In [28], a wearable neck-cuff
system for real-time sleep monitoring is designed based on
oximetry sensor, microphone and accelerometer. Instead of
directly measuring the sleep, SleepMiner [10] predicts the
sleep quality based on the user’s daily context information
such as sound, light, postures, and positions. In [19], the
body position and movements during sleep are monitored
using accelerometers attached to bed mattress. A dense
pressure sensitive bedsheet for sleep posture monitoring is

proposed in [23]. However, these systems incur nontrivial
monetary costs of hardware or professional installation.

Several Android and iOS Apps such as Sleep as Android

[3] and Sleep Cycle [4] can measure sleep quality. All of them
exclusively rely on the actigraphy-based methods that mon-
itor body movements overnight using smartphones. Howev-
er, sleep-related events such as cough and snore can not be
reliably detected based on acceleration. For example, snore
is the sound caused by the vibration of respiratory struc-
tures while sleeping due to obstructed air movement, and
is not necessarily associated with body motion. Moreover,
since the motion data is collected through the built-in ac-
celerometer, the phone must be put on the bed, which not
only is inconsistent with the habit of most users, but also
may obstruct the individual’s body movement.

iSleep leverages the existing body of work on acoustic sig-
nal processing (e.g. SoundSense [24] and StressSense [25]).
However, iSleep employs novel techniques to address the
challenges specific to sleep-related event classification, in-
cluding highly diverse acoustic profiles of sleep.

3. SYSTEM REQUIREMENTS AND CHAL-

LENGES
iSleep is designed to be a “sleep diary” that provides the

user real-time, fine-grained feedback to their sleep quality on
a daily basis 1. Specifically, iSleep is designed to meet the
following requirements: (1) Since iSleep operates over night
while the user is asleep, it needs to be unobtrusive. It should
minimize the burden on the user, and the user should not
feel any kind of uncomfort when using the system. (2) iSleep
needs to provide fine-grained measurement, such as overall
sleep efficiency and the occurrences of events that may inter-
rupt sleep, such as cough and snore. Such fine-grained sleep
profiling helps the user understand what factors affect their
sleep quality. (3) iSleep needs to deliver robust monitor-
ing accuracy across different users, smartphones and sleep
environments. (4) The users’ privacy needs to be strict-
ly protected. Due to the inherently private nature of sleep,
any concern (or even suspension) of privacy breach may pre-
vent the adoption of sleep monitoring technology like iSleep.
For instance, the system should process the sensor samples
on the fly and only keep sleep-related data (e.g., the num-
ber/loudness of snores), instead of sending any raw sensor
samples to a remote server, because they may capture sen-
sitive information such as audio of sleep talks, conversations
before/after sleep and etc.

To meet these requirements, three major challenges need
to be addressed in developing iSleep. First, in order to effec-
tively monitor the sleep quality in an unobtrusive manner,
iSleep samples and analyzes acoustic signals from the built-
in microphone to detect sleep-related events. Therefore, the
user only needs to leave the phone somewhere close to the
bed (up to several meters). However, the built-in micro-
phone of smartphone is designed for capturing close vocal-
s, and usually has low sensitivity. Moreover, many sleep-
related events only generate low-intensity sound. For exam-
ple, the intensity of the sound from a roll-over movement is
typically only several dB higher than that of ambient noise.

1iSleep is not designed or certified for clinical use, although
the monitoring results provided by iSleep could be potential-
ly useful for professional diagnosis of sleep-related disease
such as insomnia [8].
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Figure 1: The architecture of iSleep system.

Second, iSleep needs to detect sleep-related events in a
robust manner across different users and environments. For
instance, different people likely snore in different ways in
terms of sound frequency and loudness. Moreover, even the
same person may snore differently due to the change of body
position overnight. Noises from appliances such as fans may
also have a major impact on the acoustic event detection
accuracy.

Lastly, in order to preserve users’ privacy, iSleep does not
store or transmit raw sound samples. Instead, sound data is
processed locally on the smartphone in real-time, while only
the event detection results such as the number of occurrences
of snore/cough/body movement are kept and shown to the
user. To capture the features of various acoustic events, the
microphone must be sampled at a high rate. Due to the
resource constrains of smartphones, the acoustic processing
algorithms must be extremely lightweight in order to process
the data in real-time, while maintaining satisfactory event
detection accuracy.

4. SYSTEM OVERVIEW
Keeping the above challenges in mind, we aim to build a

light-weight sleep quality monitoring system that is reliable
in detecting sleep-related events across different users and
environments. Fig. 1 shows the architecture of the iSleep
system. First, the acoustic signal is continuously sampled at
the frequency of 16 kHz from the microphone, and segment-
ed into frames. Second, the acoustic frames are fed to Noise

Detection, where the system determines whether a frame
only contains the sound of ambient noise. The model of am-
bient noise is then updated based on detected noise frames.
As a result, the system is able to adapt to the changes of
ambient noise. Third, acoustic features such as root mean
square and variance will be extracted from the frames that
potentially contain events of interest. The extracted fea-
tures, along with the updated ambient noise model, are fed
to the Sleep Event Detection, where sleep-related events such
as snoring, coughing and body movement will be detected.

iSleep derives both short-term (one-night) and long-term
sleep quality from sleep-related events according to two well-
established sleep scoring criteria: actigraphy and Pittsburgh
Sleep Quality Index (PSQI) [12]. iSleep uses actigraphy to
estimate the sleep/wake states overnight and then computes
a metric called sleep efficiency, which is the ratio of actual
sleep time to total in-bed time. Compared with other qual-
ity measures such as sleep stages, sleep efficiency provides
a quantitative and more intuitive feedback to users. In ad-
dition to one-night sleep efficiency, iSleep employs PSQI to
estimate long-term sleep quality over multiple nights. PSQI
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Figure 2: (a), (b) and (c) show the power spectral den-

sity of typical moving, snoring and coughing events, re-

spectively.

is a self-rated questionnaire which assesses sleep quality and
disturbances over a long time interval. Based on the de-
tected events such as snoring and coughing, iSleep is able
to estimate the answers to several PSQI questions such as
“During the past month, how often have you had trouble
sleeping because you cough or snore loudly?”. Then a sleep
quality score can be calculated based on scoring rules spec-
ified by PSQI.

As an unobtrusive, portable tool for in-place sleep moni-
toring, Sleep has a potential in helping users improve their
sleep quality and stay healthy in many ways. For exam-
ple, by providing a sleeping profile that depicts details of
sleep-related events, iSleep allows the user to track the sleep
efficiency over time, relate bad sleep to possible causes like
extensive snores which are otherwise hard to identify, and
help their healthcare providers diagnose trends related to
certain diseases. Moreover, the fine-grained sleep events de-
tected by iSleep can greatly improve the fidelity of subjec-
tive, questionnaire-based sleep assessment tools like PSQI
whose utility is otherwise impeded by the inaccuracy of sub-
ject’s memory and perception.

5. SYSTEM DESIGN
In this section, we describe the design of iSleep. First, we

discuss the sleep-related events that iSleep can detect, and
the acoustic features used to detect those events. Next, we
describe how to estimate ambient noise. Lastly, we discuss
sleep-related event classification. Our design is based on
careful analysis of real data of a long-term experiment that
involves 7 subjects and total 51 nights of sleep. The details
of the experimental setting are described in Section 7.

5.1 Sleep Events and Feature Extraction
Since most people sleep in a relatively quiet environment
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at night, iSleep categorizes the possible sounds during sleep
into sleep-related events, ambient noise, and other sounds
such as those caused by cars/trains passing by. Specifically,
the sleep-related events of interest include body movement,
snoring and coughing. Our key insight is that, even though
the acoustic profiles of sleep events are highly dependent on
each individual, they have distinguishable features in terms
of energy and frequency. For example, the dominant fre-
quency of snoring is much lower than that of other events.
iSleep requires user to manually start and close the app when
he goes to bed and gets up, respectively. The duration of
sleep is hence equal to the running time of iSleep. We note
that it is possible to infer the time that the user goes to bed
or gets up by combining accelerometer microphone readings.
However, this requires the smartphone to constantly sample
sensors, resulting in high energy consumption.

In order to build a light-weight classifier that can adapt to
different individuals and environments, we choose three fea-
tures based on the key characteristics of each sleep-related
event. The first feature is root mean square (rms), which
captures the loudness of sound. Let f be a frame that con-
sists of n samples of acoustic amplitude s1, s2, ..., sn. In our
implementation, each frame contains 1, 600 acoustic samples
collected at 16 kHz. The rms of the frame is given by

rms(f) =

√

s21 + s22 + ... + s2n

n
(1)

where rms(f) denotes the value of rms for frame f . Fig.
2 shows the power spectrals of moving, snoring and cough-
ing. We can see that their energy distributions are different.
For example, most energy of snoring concentrates on low-
frequency band (0 ∼ 750Hz ), while the energy of moving
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distributes on both high and low frequency bands. Based
on this observation, the second feature we choose is the ra-
tio of low-band to high-band energies (rlh). The change of
rlh over time reflects the transition of dominant frequency.
The rise of rlh indicates that the proportion of low-band en-
ergy in the total energy is increasing. In other words, the
dominant frequency is transiting in the direction of high to
low. For example, the dominant frequency of snoring is sig-
nificantly lower than that of the ambient noise and other
activities. As a result, the rise of rlh can be used to effec-
tively detect snoring. In order to compute the rlh of frame
f , we need to calculate the energy of frame f in both low and
high frequency bands. The low-band frame f l is calculated
by applying a low-pass filter as follows,

s
l
i = s

l
i−1 + α× (si − s

l
i−1) (2)

where sli is the i-th acoustic sample of the low-band frame
f l, and the default value of α is set to be 0.25. The high-
band frame fh is computed by applying a high-pass filter as
follows,

s
h
i = α× (shi−1 + si − si−1) (3)

where shi is the i-th acoustic sample of the high-band frame
fh, and the default value of α is set to be 0.25. Then the
rlh of frame f , rlh(f), is given by

rlh(f) =
rms(f l)

rms(fh)
(4)

Fast Fourier Transform (FFT) and Mel-frequency cepstral
coefficients (MFCC) [21] are two commonly used frequency-
domain features for acoustic analysis. However, compared
with them, rlh has significantly lower computation overhead,
while yielding the same detection performance for our appli-
cation. The computation of normalized rlh within a frame
(containing 1600 samples) requires around 11200 addition
and 8000 multiplication operations, while that of FFT need-
s over 54000 addition and 36000 multiplication operations
[17]. Fig. 3 shows the comparison among the three afore-
mentioned features based on a two-second recording of snor-
ing. We can see that, rlh (Fig. 3(b)) yields a similar result
as FFT (Fig. 3(d)), which can be used to clearly detect the
snoring. The performance of MFCC (Fig. 3(f)) is inferi-
or to that of rlh. Designed for speech recognition, MFCC
is more sensitive to vocal sound, which have very different
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characteristics from snoring. The third feature is variance
(var), which reflects how far the amplitudes of acoustic sig-
nals within the frame are spread out. For example, the var

of a frame associated with body movement is typically much
lower than that of snoring or coughing.

5.2 Noise Characterization
In a typical scenario, the events related to sleep quality,

including body movement and snoring, are rare while most
sounds are noise generated by various sources. Thus noise
identification is critical to the accuracy of detecting sleep-
related events. In this paper, we refer to the ambient sounds
that last for a relatively long period as noises, as opposed to
the short-duration sounds that are caused by a sleeping in-
dividual. Specifically, acoustic noise is caused by two major
sources. The first is the background noise generated by the
recording unit itself while recording. The level of recorder
noise of built-in microphone of smartphone is much higher
than that of external standalone microphone. In addition,
the recorder noise level varies with different smartphones.

Fig. 4 shows the amplitude distributions of recorder noises
collected by sampling the microphones of 4 different devices
(iPhone 4s, Nexus 7, Nexus 4 and an external conference
microphone) in a quiet room for 4 seconds. The sampling
frequency is 16 kHz and the value of each sample is scaled
to [−1, 1] from its original 16-bit representation. We can ob-
serve that the noise level of external conference microphone
is substantially lower than those of the built-in microphones
of smartphones. Among the smartphones, iPhone 4s gener-
ates the lowest level of recorder noise.

Another common source of noise is appliances that are
operating overnight (e.g., fan or air-conditioner). Fig. 5
shows the distribution of three features extracted from dif-
ferent types of noises. Three groups of audio clips are used,
which are noise recorded by Nexus 4, noise with A/C oper-
ating recorded by Nexus 4, and noise recorded by Nexus 7.
The total length of each audio clips is around 140 minutes
(84000 frames), and they are extracted from data collected
from different users during sleep. We can observe that the
mean and standard deviation across different groups differ
substantially. For example, the operation of A/C results in
a wider distribution in all three features (rms, rlh and var).
However, a key observation is that most values in all three
cases fall within the range of mean ± 3 × std, regardless of
the types of the noises or smartphones used.

5.3 Noise Model Estimation
The result in Section 5.2 suggests that, the key feature

that differentiates noise from event-related sound is its rel-

atively stable variance. This is due to the fact that the
noise does not vary substantially within a short duration
(i.e., a few seconds). This observation allows us to design
a simple yet robust sleep-event detection method based on
the noise profile. The basic idea is to detect events based
on the thresholds of features that are calculated using the
noise measurement. To adapt to different environments, the
system continuously detects and updates the current noise
model, which is used to calculate the thresholds used to de-
tect and classify sleep events.

Specifically, iSleep first detects noise from a sequence of
frames with stable standard deviations. It involves two
steps. First, the system calculates the standard deviation
stdi = std(fi), where fi denotes the i-th frame, which cap-
tures the stability of acoustic signal within a frame. Howev-
er, the standard deviation varies with different devices and
noise profiles. Therefore, in order to to improve the robust-
ness of noise detection, we normalize the standard devia-
tion of each frame within a T -second window (containing 40
frames in our implementation) as follows:

stdi =
stdi − stdmean

stdmean − stdmin

(5)

where stdmean and stdmin denote the mean and minimum
standard deviation within the current window W . Second,
the system calculates the variance of the normalized stan-
dard deviation within the window W . Fig. 7 shows the
histogram of the variance based on 3, 644 noise windows
collected from real experiments conducted by different sub-
jects. We can see that the variances of most noise windows
are grouped within [0.4,0.5]. More than 95% variances are
below 0.5. Therefore, we use 0.5 as a threshold to detect
noise. Specifically, the frames within a noise window will be
considered as noise if the variance is lower than 0.5.

Fig. 6(b) plots the normalized standard deviation of dif-
ferent noises. We can see that, even though they have dif-
ferent acoustic amplitude distribution (shown in Fig. 6(b)),
the normalized standard deviations are similar. Since their
variances are lower than the preset threshold 0.5, they will
be classified as noise. The histogram in Fig. 8 shows the
distribution of acoustic signals for a duration of 4 second-
s. It contains a slight body movement lasting from around
2.8s to 3.8s. As the sound of the movement is very slight,
its distribution is close to that of noise without operating
appliance. However, we can observe that the normalized
standard deviation has a variance of 1.75, which clearly re-
flects the movement event. Therefore, these frames will be
classified as frames of interest and fed into the feature ex-
traction component.

A typical scenario at night is that the fan of A/C or heater
is automatically turned on and off, leading to a changing
noise profile. Fig. 9 shows the scenario where the air con-
ditioner is turned on. Fig. 9(b) shows the variance over the
past 4 seconds. In the detection result shown in Fig. 9(c),
we can observe that only a short period corresponding to
the transition is detected as non-noise sound. As such noise
misclassification only occurs in occasional transient states of
appliances, it does not affect the accuracy of sleep-related
event detection. Fig. 10 shows another typical scenario
where the sounds of sleep events are included. We can see
that only the parts without human generated sounds are de-
tected as noise. Therefore, our noise detection algorithm is
able to effectively detect changing noise.
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Figure 5: Histograms of three noise features recorded by

different devices. The dotted lines indicate the mean value

and the length of the arrow indicates the value of standard

deviation. The duration of each audio clip is around 140

minutes, containing about 84, 000 frames.
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After a sequence of frames is detected as noise frames,
iSleep calculates three features for each of the frames. In or-
der to estimate the current noise, iSleep computes the mean
and standard deviation (mean(rms), std(rms), mean(rlh),
std(rlh), mean(var) and std(var)) for each feature. Then,
each newly calculated distribution feature Fnew will be used
to update the current corresponding feature (Fcur) accord-
ing to an Exponential Moving Average (EMA) algorithm as
follows,

Fcur = Fcur + β × (Fnew − Fcur) (6)

In our implementation, the default value of β is set to be
0.5. The EMA algorithm ensures that estimated noise model
adapt to the changing noise profile. After the features of
current noise are updated, they will be stored and used in
the event detection process.

5.4 Event Detection
The main objective of sleep-related event detection is to

achieve robust performance across different users, smart-

phone platforms and environments. iSleep adopts an adap-
tive event detection algorithm that adapts to the estimated
noise model. First, acoustic features are extracted and nor-
malized for each frame that is not detected as noise frame.
Then, based on the normalized features (rms, rlh and var),
frames are classified. Lastly, we apply operators in mathe-
matical morphology [30] to the classification results to filter
out false-positive and false-negative errors.

5.4.1 Feature Extraction

iSleep normalizes the features of each frame based on the
current measurement of noise. Such a calibration process
allows the system to adapt to different devices and environ-
ments. For example, the rms value of frame f is normalized
as follows,

rms(f) =
rms(f) −mean(rms)

std(rms)
(7)

where rms(f) is the normalized rms, mean(rms) and std(rms)
are the current distribution features associated with rms ex-
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tracted from the noise. Likewise, rlh and var are also nor-
malized using the corresponding distribution features of the
noise and the results are denoted as rlh(f) and var(f), re-
spectively.

Fig. 12 shows the distribution of three normalized fea-
tures. It is plotted from the data collected from 7 subjects
using 3 different devices during a one-week experiment. Fig.
13 shows the zoom-in plot after excluding coughing and tak-
ing events. The frames associated with each event are man-
ually labeled and extracted. Then the three features of each
frame are calculated and normalized using the current mod-
el of the noise. Four test subjects live close to the railway,
and one subject lives in an apartment with automatic cen-
tral A/C. In addition, the three devices have different noise
profiles. However, Fig. 12 and 13 show that, after normal-
ization, the same events are grouped together and different
groups are clearly separable.

5.4.2 Event Classification

Motivated by the results in Fig. 12 and 13, we design a
decision-tree based classifier (shown in Fig. 11) to detect
sleep-related events. Decision tree is robust to errors and
widely used for classification problems with attribute-value
pairs and discrete output values [26]. Fig. 14 shows the split-
ting conditions of the decision tree. The dotted rectangles
indicate the splitting features, and the leaf nodes denote the
classification results. The splitting features and threshold-
s are determined based on the information gain calculated
using entropy. Specifically, the entropy of a node T is given
by

Entropy(T ) = −
∑

j

p(j) · log(p(j)) (8)

where p(j) is the relative frequency of class j at node T . S-
ince iSleep focuses on detecting three sleep events, therefore,
j = 3. After splitting node T into k nodes (T1, T2, ... Tk),
the information gain is given by

G = Entropy(T ) − [

k
∑

j=1

ni

n
Entropy(Tj)] (9)

where nj is the number of samples in node Tj and n is the
number of samples in node T . For each splitting, the system
chooses the split that maximizes the information gain.

Next, we describe the classification process in detail. First,
the non-noise frames are split into two groups according to
the rlh, which captures the dominant frequency. Since rlh

is the ratio between low-band and high-band energy, high
rlh means low dominant frequenc. As we can observe in
Fig. 14(a), this splitting condition is able to separate the
sounds into two groups; one group includes sounds of noise,
movement and coughing with relatively high frequency, and
another group includes other sounds with lower dominant
frequencies.

Then the frames in the high-frequency group are further
split into two groups based on var, shown in Fig. 14(a).
Since var reflects how far the intensities of acoustic signals
within the frame are spread out, it is able to separate frames
caused by coughing from those caused by movement and
noise in the high-frequency group. Therefore, the system is
able to detect cough frames at this stage. Likewise, as shown
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Figure 15: Actigraphy-based sleep/wake estimation

based on recording of 8 hours.

in Fig. 14(c), in the low-frequency sound group, frames
containing snore can also be detected according to var.

In the third branch shown in Fig. 11, we aim to split the
frames caused by movement and noise according to rms.
Both sounds have relatively high dominant frequency and
low variance. As shown in Fig. 14(b), since the sound inten-
sity of movement is higher than that of noise, rms is able to
separate the frames caused by movement from those caused
by noise. As a result, the movement frames are detected at
this stage.

5.4.3 Handling Mis-classifications

As the occurrence of most events results in clustered frames,
isolated event frames are likely false positives. Therefore, af-
ter event frames are detected, we apply the opening operator
in mathematical morphology [30] to filter out isolated frame
events. Mathematical morphology is widely used in the i-
dentification of geometrical structures in image processing.
Specifically, single or continuous event frames can be filtered
out if the number of these continuous frames is less than the
operator diameter (default value is 5). We apply the closing
operator [30] to the resultant frame sequence after apply-
ing the opening operator, in order to connect those event
areas with narrow gaps between them. This is because the
narrow gap between two continuous event frame clusters is
likely false negative. Specifically, if the length of the gap is
less than the diameter of closing operator, the frames within
the gap will be classified as event frames. Finally, we apply
dilation operator [30] with the diameter of 2 frames to the
continuous event frames. This will result in an expansion of
2 frames on both ends of the event frame sequences. The
purpose of dilation is to ensure that the “edge” of this event
is included.

Fig. 16 shows the event detection process in a typical s-
cenario. The duration of the acoustic signal is 85 seconds,
where the body movement of the user (18-26th second) is
followed by a sequence of snoring events (38-83th second).
Figure 16(a), (b) and (c) show the normalized features. We
can observe that the increase of rlh clearly reflects the snor-
ing event. The movement events usually have the similar
rlh with noise, but higher rms and var. In Fig. 16(d), the
first plot shows the classification result for each frame. We
can see that the movement and snoring events are detected
correctly, but several noise frames are misclassified as even-
t frames. The second plot in Fig. 16(d) shows the event
detection result after we apply the opening, closing and di-
lation operators. We can see that the isolated misclassified
frames are removed, and the gap between two sequences of
movement frames are closed. However, the snoring event at

move snore move snoreTruth: Result: 

Figure 16: The event detection process of a 85-second

acoustic signal that contains sound of body movement

and snoring. (a), (b) and (c) show the features for each

frame, respectively. (d) shows the event detection results

before and after opening, closing and dilation operations.

around 58 second is also filtered out. This is mainly because
this particular snoring event is extremely short with very low
intensity. As a result, only a single frame within this snoring
event is detected as snoring frame. This frame is removed in
the opening operation, causing a false negative error. Note
that the detected snore events are used to calculate PSQI
scores, which only require coarse-grain information about
sleep-related events. Specifically, the detected snore will be
used to automatically answer the question: ‘During the past
month, how often have you had trouble sleeping because y-
ou cough or snore loudly’. The options include ‘not during
the past month’, ‘less than once a week’, ‘once or twice a
week’ and ’three or more times a week’. As a result, a few
misclassifications during a particular sleep will not affect the
choice of answer. Therefore, misclassifying a weak snore or
cough event is acceptable because its impact on the final
sleep quality assessment is negligible.

5.5 Sleep Scoring
iSleep uses the detected sleep-related events to derive quan-

titative measures of sleep quality based on two criteria. One
is actigraphy that only requires information about body
movement of a whole-night sleep. The other is PSQI, where
all the detected events are considered jointly for estimating
the sleep quality.

In our implementation of actigraphy-based estimation, iSleep
adopts similar method proposed in [31], where the sleep/wake
state of a minute is determined by taking 4 previous minutes
and 2 following minutes into account. The model takes the
form:

D =P (W−4A−4 + W−3A−3 + W−2A−2 + W−1A−1

+ W0A0 + W+1A+1 + W+2A+2)
(10)

where P is a scale factor for the entire equation, W−i, W0

and W+i represent the weighting factor for the previous
minute, current minute and following minute, and A−i, A0

and A+i indicate the activity scores for the previous minute,
current minute and following minute, respectively. If D ≥ 1,



A1 Time to go bed at night
A2 Minutes taken to fall asleep
A3 Get-up time in the morning
A4 Hours of actual sleep per night
B1 Cannot sleep within 30 minites
B2 Wake up in the middle of the night or early morning
B3 Cannot breath comfortably
B4 Cough or snore loudly

Table 1: Metrics from PSQI that iSleep uses to estimate

the sleep quality.

Duration of Sleep A4
Sleep Disturbance B1, B2, B3, B4
Sleep Latency A2, B1
Sleep Efficiency A1, A3, A4

Table 2: The left column is the components in PSQI that

can be derived from detected events. The right column is

the metrics that are used to calculate the corresponding

component score.

the state of the current is determined as wake, whereas
D ≤ 1 means the current minute is in sleep state. The
model used in iSleep adopts the weighting factors suggested
in [31]. It takes the following form:

D =0.125(0.15A−4 + 0.15A−3 + 0.15A−2 + 0.08A−1

+ 0.21A0 + 0.12A+1 + 0.13A+2)
(11)

where the activity score A is the number of frames associated
with body movement in each minute. Fig. 15 shows the
prediction of wake/sleep state over a 8-hour recording during
sleep. The first plot shows the calculated activity scores for
each minute. The second plot shows the calculated D value
by using Eqn. 10. The last plot is the sleep/wake estimation
result. We can see that the user changes from sleep state to
wake state 4 times throughout the night. The duration of
each wake state lasts around 10 minutes. The sleep efficiency
is defined as the ratio of actual sleep time to total in-bed
time:

Sleep Efficiency =
Tsleep

Tsleep + Twake

(12)

For the long-term sleep quality estimation, iSleep calcu-
lates the scores of 4 components listed in Table 2 from PSQI.
In order to calculate the component scores, iSleep measures
the metrics listed in Table. 1 based on the detected events.
However, some of the metrics used to calculate the score of
Sleep Disturbance can not be measured by iSleep. For ex-
ample, some of them are related to the bedroom’s temper-
ature, whether having dream, or feeling pain during sleep.
As a result, instead of using the 9 metrics, iSleep uses only
4 metrics that can be inferred from the detected events and
scales the score by multiplying 9

4
. The scoring rules of the

other components are the same as specified in PSQI.

6. IMPLEMENTATION
iSleep is implemented on Android 4.2.2 Jelly Bean. The

application file has a size of around 1 MB and takes 2.7
MB storage on the phone after installed. It requires about
20 MB RAM allocation while running. The displaying and
processing functions are implemented in separate threads to
ensure the timeliness of acoustic sampling and processing.

(a) (b) (c)

Figure 17: The user interface of iSleep. (a) The

screen showing sleep efficiency and sleep states over

night. (b) The screen showing the sleep events detected

overnight and the normalized loudness of each event. (c)

The screen showing the history of sleep efficiencies and

events.

iSleep samples the built-in microphone at 16 KHz. The
samples are buffered and segmented into frames with the du-
ration of 0.1 second. Based on the variance, iSleep detects
non-noise frames and noise-frames. Noise frames are used to
estimate current noise distribution. Then, according to the
noise distribution and features extracted from the non-noise
frames, iSleep detects sleep-related events and saves them
for further processing. Lastly, for each night, iSleep uses
actigraphy to generate a short-term sleep quality report ac-
cording to the movement events. For each week, iSleep es-
timates the long-term sleep quality according to PSQI and
all the detected sleep events. To protect the users’ priva-
cy, iSleep only buffers the raw acoustic signal for the last
4 seconds and the buffered data is erased after the feature
extraction.

We have released an initial version of iSleep on the Google
Play Store [2]. The screen shots are shown in Fig. 17. The
application is easy to use and understand. Before sleep,
the user only needs to start the app and put the phone on
the nightstand within 6 feet of the bed. iSleep prevents
the CPU from sleeping, so that it can still keep running
after the screen is turned off by pressing the power button.
After getting up, the user needs to stop the monitoring to
see the sleep efficiency and detected sleep events. Within 6
days of release, iSleep has been installed by around 100 users
from more than 9 countries on various Android devices. The
feedbacks collected from the Google Play Store and the app
show that users like to use iSleep to track their sleep quality
and be aware of their sleep events.

7. EVALUATION
In this section, we evaluate the performance of iSleep using

experiments. Our primary results show that iSleep is able
to effectively capture various sleep events and accurately
estimate the sleep quality of the user.

7.1 Experimental Setting
We conduct three sets of experiments to evaluate the per-

formance of iSleep. Section 7.2 presents the experimental
results of a long-term experiment that involves 7 subject-
s and total 51 nights of sleep. All of the subjects are col-
lege/graduate student volunteers ranging from 20 to 30 years
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Figure 19: Event detection results based on a

10-second audio clip recorded at different dis-

tances (3, 6, and 9 feet). The movement events

are labeled. (a), (b) and (c) show their features.

(d), (e) and (f) are the detection results.

old, and 2 of the 7 subjects are male. Section 7.3 presents
micro-benchmarks that evaluate the system performance un-
der different settings and environmental factors. Section 7.4
evaluates iSleep based on the data collected from its Android
application released on Google Play Store.

Two metrics are used to quantify the performance of sleep
event detection. Event detection accuracy (EDA) evaluates
the accuracy of snoring and coughing detection. It is de-
fined as the ratio of the number of correctly detected events
to the total number of events. A snoring or coughing event is
successfully detected as long as a subset of the frames asso-
ciated with it is correctly classified. For instance, a snoring
event containing 10 frames is considered as detected if iSleep
correctly classifies at least one of these frames. This is main-
ly because iSleep only considers the number of occurrences
of these two types of events when calculating PSQI scores.
Moreover, the duration of a single snoring or coughing event
is relatively short (typically around 1 second). Therefore,
for our application, it is not necessary to detect the exact
duration of these events.

Another performance metric used in our evaluation is frame

detection accuracy (FDA). Different from EDA, FDA quan-
tifies the performance of body movement detection. It is de-
fined as the percentage of the correctly classified movement
frames in all frames associated with the movement. This
is because the calculation of activity score D (Eqn. 11) in
actigraphy is based on the number of frames associated with
body movement in each minute. Therefore, it is importan-
t to evaluate iSleep’s accuracy in detecting the duration of
body movement.

Our both evaluation metrics are based on true positive
results, because the classification algorithm yields very few
false negative and false positive results. The reason for this
is two fold. First, the acoustic features we chose are very ef-
fective in differentiating different events. As a result, a sleep
event is rarely mis-classified as another type of event (false
negatives results). As shown in Table. 3, over 51 nights of
sleep, around 6-10% of frames associated with movement are
misclassified as noise, 48 out of 1446 (3.3%) snore events are
misclassified as other events. Second, adaptive noise model-
ing and the mathematical morphology adopted by iSleep can

sbj nights move(FDA) snore(EDA) cough(EDA)
1 13 91.7% 585/601(97.3%) 0/0
2 6 92.0% 0/0 0/0
3 12 89.8% 114/122(93.4%) 0/0
4 7 93.4% 0/0 0/0
5 4 94.1% 0/0 0/0
6 4 92.2% 0/0 85/85
7 5 90.1% 0/0 0/0
ttl 51 91.9% 699/723(96.7%) 85/85

Table 3: The event detection result based on the data

collected from 7 subjects and total 51 nights of sleep.

effectively eliminate the noise frames that are mis-classified
as sleep events (false positive results). Our long-term ex-
periments show that, less than 20 minutes of various noises
(< 0.08%) are misclassified as sleep-related events, and no
noise frames are misclassified as snore or cough events.

7.2 Long-term Experiment
In this section, we present the result of a long-term ex-

periment. 7 participants (2 males, 5 females) are recruited
for data collection. The duration of the data collection for
each participant varies from 3 to 14 days. There are totally
51 nights of sleep during the experiment.

The experimental platform used in data collection is com-
posed of three components. First, two smartphones/tablets
are put on both sides of the subject to collect acoustic da-
ta during sleep. The distance between the phone and the
subject is around 5 feet, unless otherwise specified. The
recorded audio clips are stored on the phones and retrieved
for analysis after the experiment. Second, an omnidirection-
al microphone (Snowball USB Microphone) is attached on
the headboard to collect the high-quality audio as ground
truth of snoring and coughing events. A small laptop is con-
nected with the microphone to store recorded audio clips. In
order to minimize the impact of the noise from laptop fan,
we place the laptop 16 feet away from the bed and connect
it with the microphone using a long cable. Third, in order to
record the ground truth of body movements, an iPod touch
is used to log the acceleration data of the user during sleep.
In order to mitigate the impact of differences of mattresses,
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Figure 20: The sleep states and events of user 1 and 6 during the long-term experiment. The sleep states are calculated

using the body movements based on actigraphy.

it is put inside a sport armband attached to the subject’s
lower leg.

After the data collection, we first synchronize the data
captured by different devices. Then the snoring and cough-
ing events are manually labeled from the high quality audio
clips recorded by external microphones. The acceleration
data collected by the iPod attached to the leg is used to
obtain the ground truth for movement events. To evalu-
ate the accuracy of sleep quality monitoring, each subject is
asked to fill a PSQI questionnaire about how they feel about
their sleeps during the period of data collection. The ques-
tionnaires are then used to correlate with the sleep quality
measures calculated by iSleep.

Our evaluation is based on the data collected from 7 sub-
jects and total 51-night sleeps. The overall detection results
are shown in Table 3. We can see that the movement detec-
tion accuracies are relatively stable across different subjects,
and the average FDA is 91.9%. The snoring detection ac-
curacy is 97.3% and 93.4% for subject 1 and 3, respectively.
The system achieves 100% coughing detection accuracy for
subject 6.

Fig. 18 shows the sleep efficiency and sleep events detect-
ed by iSleep during the experiment. There are two snorers
(user 1 and 3) out of seven subjects. Specifically, user 1 usu-
ally snores periodically (every 2 or 3 seconds) for a duration
of around one minute. User 3 snores more sporadically. An-
other observation is that coughing events are detected for
user 6 during the first three days of experiment. This is
due to the fact that user 6 happened to catch a cold. The
number of coughing events gradually decreases every night
as the user recovers. We can see that the users who snore
or cough during sleep are more likely to have more dynamic
and lower sleep efficiency. The main reason is that snores
and coughs are usually followed by body movements, which
indicate wakefulness of the user.

Fig. 20 shows the detailed sleep states and events detect-
ed by iSleep of user 1 and 6. We have several interesting
observations: (1) Most of the snoring and coughing events
are accompanied by body movements, which cause the sub-
ject to transition from sleep state to wake state. (2) User 1
usually snores during 2 to 5 am. (3) At the fifth night, us-
er 1 got in bed about 1.5 hours later than she usually does.
Due to the reduction of sleep time, her sleep efficiency is sig-
nificantly lower than the other 12 nights. (4) The low sleep
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Figure 21: The noise levels (with 95% confidence inter-

val) of two subjects during the long-term experiment.

efficiency of user 6 is caused by her relatively short sleep time
(around 7 hours) and frequent body movement due to the
cold symptoms. The subjects are enthusiastic about these
patterns of their sleep discovered in the experiment, and ex-
pressed interests in adopting tools like iSleep for long-term,
daily sleep monitoring. We also note that iSleep users are
able to make these observations easily on their own through
the interface of iSleep shown in Fig. 17.

We observed different noise profiles in the sleeping envi-
ronments of participants. Fig. 21 shows the noise intensity
at different nights for User 3 and User 6. Although the noise
level for each subject is relatively stable over time, the noise
of User 6 is louder and substantially more dynamic than that
of User 3. The high-quality audio data of external micro-
phone confirms that this was due to the louder A/C in User
6’s home. Despite the substantial differences in sleeping en-
vironments of different subjects, iSleep achieved consistently
high detection accuracy, as shown in Table 3.

In order to evaluate the performance of measuring long-
term sleep quality, we compare the 4 component scores (shown
in Table 2) that are obtained from the subjects’ PSQI ques-
tionnaires and iSleep. According to the scoring rules of P-
SQI, each component is scored on a scale of 0 to 3, where 0
means better and 3 means worse. For example, the score of
Sleep Efficiency is calculated as follows:















Sleep Efficiency ≥85%, score=0;
75%≤ Sleep Efficiency <85%, score=1;
65%≤ Sleep Efficiency <75%, score=2;
Sleep Efficiency <65%, score=3.

iSleep calculates the component scores according to the same
rules based on the detected sleep events. Table 4 shows the
scores computed from subject questionnaires and by iSleep.
We can observe that there is only one mismatch for Dura-
tion of Sleep, Sleep Disturbance, and Sleep Latency. And



Subject
Duration of Sleep Sleep Disturbance Sleep Latency
PSQI iSleep PSQI iSleep PSQI iSleep

1 1 1 1 1 1 1
3 2 2 1 1 1 1
4 1 1 1 1 0 1∗

5 1 1 1 1 1 1
6 3 3 3 2∗ 1 1
7 2 1∗ 1 1 0 0

Table 4: The comparison of PSQI scores provided by

the subjects and computed by iSleep. The componen-

t score ranges from 0 (best) to 3 (worst). The scores

of iSleep that do not match those from subjects’ PSQI

questionnaires are labeled by *.

the score discrepancy for each mismatch is only one. This
result demonstrates that iSleep can accurately predict users’
answers to these questions based on objective assessment of
sleep-related events. As a result, iSleep can be used as a
reliable sleep diary that significantly reduces users’ burden
on remembering the details of their past sleeps.

7.3 Micro-benchmarks
This section presents a set of micro-benchmarks that eval-

uate the performance of iSleep under various distance and
noise settings. We also evaluate iSleep in two-user scenarios
and its processing overhead and impact on battery lifetime.

7.3.1 Impact of Distance

In real scenarios, users likely place their phones at dif-
ferent distances from the bed. In order to evaluate iSleep’s
performance with respect to the distance between the phone
and the user, we put phones at 3, 6 and 9 feet away from
the user during sleep, respectively. The evaluation for each
distance is based on a one-night experiment that lasts about
6.5 hours containing movement and snore events. The re-
sult of movement detection is shown in Fig. 23. We can
see that increasing the distance between the phone and the
user leads to lower movement detection accuracy. When the
distances are 3 feet and 6 feet, the mis-classifications are
mainly caused by minor leg or arm movements with rela-
tively low sound intensity. However, when the distance is 9
feet, the sound intensity of movement events is substantially
reduced. Another observation is that, the FDAs of different
devices are relatively consistent at the same distance. This is
because the acoustic features used in classification are nor-
malized by the current noise model, making the detection
robust against the differences in microphones’ sensitivities.

Fig. 19 shows the features and detection results of a 10-
second audio clip captured from different distances. We can
observe that the increase of distance leads to lower rms and
var. As a result, the frames on the edges of a movement
event with low sound intensity are more likely to be mis-
classified as noise. However, the detection of snore events is
not affected by distance because of the significantly higher
sound intensity.

Next, we investigate the accuracy of recognizing two user-
s under different device and distance settings. As discussed
in Section ??, iSleep compares the rms calculated by two
devices to differentiate the events of different users. We fo-
cus on body movement events here because they have lower
intensity than other events and hence are more difficult to
differentiate. The recognition accuracy is defined as the per-
centage of movement frames which are correctly associated

Device pair 1 ft. 1.5 ft. 2 ft. 2.5 ft. 3 ft.
pair 1 60/62 58/58 66/66 61/61 60/60
pair 2 59/62 57/58 65/66 61/61 60/60
pair 3 60/62 57/58 66/66 61/61 60/60
pair 4 57/62 55/58 65/66 60/61 60/60
pair 5 60/62 57/58 65/66 60/61 60/60
pair 6 57/62 56/58 64/66 60/61 59/60

Table 5: The user recognition accuracy by taking the

majority vote for each movement event. The details de-

vices are shown in Fig. 22.

with the user. Six pairs of devices are used for each setting
of distance difference. For each pair, one device is put 3 feet
away from the user, while the other is located at 4, 4.5, 5,
5.5 and 6 feet away, respectively.

Fig. 22 shows the recognition accuracy based on rms of
each frame. We can observe that, the accuracy raises with
the difference of distances. Moreover, the pairs consisting of
the same model of devices result in higher recognition ac-
curacy (over 91%), because their microphones have similar
sensitivity. However, since each sleep-related event is com-
posed of a sequence of frames, the recognition accuracy can
be improved by taking a simple majority vote of the frames.
As shown in Table 5, the average recognition accuracy is
improved to 98%. The mis-recognitions mainly occur on the
movement events with a short duration, such as a slight leg
jerking for less than one second. When the distance differ-
ence is 1.5 feet or further, iSleep can achieve a recognition
accuracy of more than 95%.

7.3.2 Impact of Noise

We now examine the impact of noise on the performance
of iSleep. The evaluation is based on the real data containing
body movements, snoring, coughing, and noises from vari-
ous appliances including a humidifier (around 9 feet away
from the bed), a ceiling fan (around 8 feet above the bed)
and the central A/C (two vents on the ceiling of the bed-
room). The operational time of each of these appliances is
at least 2.5 hours. iSleep can reliably detect all the snoring
and coughing events under different noises. The result of
movement detection is shown in Fig. 24. We can observe
that the operation of appliances increases the average noise
level, leading to an up to 10% drop in FDA. This is mainly
because when the noise level rises, some movement frames
with low sound intensity are mis-classified as noise. Specifi-
cally, iSleep can still achieve over 90% movement detection
accuracy, while the ceiling fan and humidifier are operating.

Fig. 25 shows a typical event detection process in the p-
resence of noise. The duration of the audio clip is 40 seconds,
when the A/C starts operating at 0 second. We can observe
that during the first 4 seconds, the rlh rises from around
0 to around 20, due to the low-frequency sound from A/C.
Then the sound of the first 4 seconds is detected as noise,
and used to update the noise model. As a result, the rlh

falls back to around 0 at the 5th second. At the 9th second,
the rlh rises again, due to the speed change of the A/C fan.
iSleep detects sound from 10 to 14 seconds as noise, and
updates the noise model at the 14th second.

7.3.3 Processing Time and Energy Consumption

We expect the smartphone to be connected to the charg-
er when iSleep is used for the whole night. However, users
may forget to charge the phone, or would like to use iSleep
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Figure 24: The impact of appliance

noise on movement detection accuracy,
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noise Truth: coughmove
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Figure 25: Event detection in the presence of operat-

ing A/C. (a), (b) and (c) show the acoustic features over

time. (d) shows the detected noise frames that are used

to update current noise model. (e) is the detection re-

sult.

during short naps without having to charging the phone.
We now evaluate the processing time of each component
of iSleep and the system energy consumption. The evalua-
tion results based on data collected from 5 devices overnight
are shown in Table 6. We can see that the feature extrac-
tion component consumes the most processing time among
all components, since three features need to be computed
for each frame. Thanks to the light-weight decision-tree
based classifier, the event detection component only con-
sumes around 0.2% of total CPU time. We also evaluate
energy consumption of iSleep based on the battery usage
data from the Android system. Since the screen is turned
off, computation and microphone sampling are the major
sources of power consumption. On average, iSleep consumes
around 4% battery per hour (excluding the system consump-
tion of Android). This result suggests that, a fully charged
phone running iSleep likely survives a full night of usage
without connecting to the charger.

7.4 Evaluation using iSleep App Data
This section presents a preliminary evaluation based on

the data of real iSleep users. We collected data from the

Phones ND FE ED Total % of CPU
Nexus 7 30ms 38ms 0.15ms 68.15ms 1.7%
Nexus 4 28ms 36ms 0.13ms 64.13ms 1.6%
Nexus S 67ms 88ms 0.27ms 155.27ms 3.9%
G. Nexus 40ms 53ms 0.15ms 93.15ms 2.3%
G. Note II 33ms 40ms 0.15ms 73.15ms 1.8%

Table 6: The average CPU time consumed by different

components of iSleep to process 4-second acoustic data.

(ND: noise detection, FE: feature extraction, ED: event

detection).

Android phones that downloaded and installed iSleep from
Google Play Store during the first week after the release
of iSleep. Although there were more than 100 installs, as
expected, many users opted out the data collection. The in-
formation collected include users’ ratings on the accuracy of
sleep efficiency computed by iSleep as well as the numbers
of various events detected during each night (no raw acous-
tic data was collected). On the screen of monitoring results,
iSleep shows a slide bar (see Fig. 17) that allows the user to
rate the accuracy of the sleep efficiency measured by iSleep
on a scale of 0 (not accurate) to 100 (very accurate). The
average of 25 scores on sleep efficiency from users is above
85%. Fig. 26 shows the results of four users randomly cho-
sen from those who participated in the data collection. We
can see that, both the total in-bed time and actual sleep time
are relatively consistent for the same user, reflecting the us-
er’s normal sleep behavior. A detailed analysis of the results
also suggests that the shorter sleep time is usually caused by
either snoring or extensive body movement. Another obser-
vation by correlating the sleep efficiency and user ratings is
that, users are more likely to give low feedback scores when
the measured sleep efficiency is low.

8. CONCLUSION AND FUTURE WORK
We have described the design, implementation, and eval-

uation of iSleep – a practical system to monitor an indi-
vidual’s sleep quality using off-the-shelf smartphone. Com-
pared with existing solutions, iSleep is very easy to use and
unobtrusive. iSleep uses the built-in microphone of the s-
martphone to detect the events that are closely related to
sleep quality, including body movement, couch and snore,
and infers quantitative measures of sleep quality based on
actigraphy and Pittsburgh Sleep Quality Index (PSQI). We
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have evaluated iSleep extensively in a long-term experimen-
t that involves 7 participants and total 51 nights of sleep.
Our results show that iSleep achieves above 90% accura-
cy for sleep-rated event classification in a different settings.
The fine-grained sleep profile measured by iSleep also en-
abled users to track details of sleep events over time and
discover irregular sleep patterns.

The high-rate microphone sampling is a major source of
energy consumption. We will investigate an adaptive sam-
pling scheme in which the microphone is sampled at a low
rate, and only sampled at a higher rate when a potential
event is detected. Environmental factors such as room tem-
perature play an important role in quality of sleep. We plan
to integrate iSleep with tools that can monitor sleep envi-
ronments [22]. This will enable in-depth analysis of causes of
interrupted sleep and irregular sleep patterns, providing im-
portant information for healthcare providers to find trends
related to certain diseases.
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