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Type 2 diabetes (T2DM) is characterized by insulin resistance,
defective insulin secretion, loss of �-cell mass with increased
�-cell apoptosis and islet amyloid. The islet amyloid is derived
from islet amyloid polypeptide (IAPP, amylin), a protein co-
expressed and cosecreted with insulin by pancreatic �-cells.
In common with other amyloidogenic proteins, IAPP has the
propensity to form membrane permeant toxic oligomers. Ac-
cumulating evidence suggests that these toxic oligomers,
rather than the extracellular amyloid form of these proteins,
are responsible for loss of neurons in neurodegenerative dis-
eases. In this review we discuss emerging evidence to suggest

that formation of intracellular IAPP oligomers may contrib-
ute to �-cell loss in T2DM. The accumulated evidence permits
the amyloid hypothesis originally developed for neurodegen-
erative diseases to be reformulated as the toxic oligomer hy-
pothesis. However, as in neurodegenerative diseases, it re-
mains unclear exactly why amyloidogenic proteins form
oligomers in vivo, what their exact structure is, and to what
extent these oligomers play a primary or secondary role in the
cytotoxicity in what are now often called unfolded protein
diseases. (Endocrine Reviews 29: 303–316, 2008)
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I. Introduction

TYPE 2 DIABETES (T2DM) is a loosely defined clinical
syndrome that likely has a number of different causes.

Risk factors for T2DM include a positive family history,
aging, and a variety of causes of insulin resistance, most
commonly obesity (Refs. 1–4 and references therein). Most
individuals respond to insulin resistance by adaptively in-

creasing �-cell mass and insulin secretion to maintain normal
blood glucose concentrations (5–7). This is consistent with
the response of other endocrine organs when chronically
stimulated. As an example, the low ionized calcium concen-
tration in chronic renal failure provokes adaptive hyperpla-
sia of parathyroid glands, not PTH failure (8).

Therefore, in those individuals who develop T2DM, the
deficient adaptive response to increased insulin demand is
an abnormal response. As such, by definition, T2DM is pri-
marily due to insulin resistance and impaired insulin
secretion.

A. �-Cell mass and type 2 diabetes

The underlying cause of impaired insulin secretion in
T2DM is unknown and likely has multiple origins in dif-
ferent individuals. A relative deficit in the number of
�-cells (often collectively referred to as �-cell mass) ap-
pears to be an important contributory factor (6, 9, 10). In
obese individuals with impaired fasting glucose, �-cell
mass is approximately 50% less than that of healthy in-
dividuals (6). The relationship between fasting blood glu-
cose and �-cell mass is curvilinear, with a wide range of
�-cell mass in nondiabetic individuals but with a steep
increase in blood glucose with each decrement in �-cell
mass beyond 50% (11) (Fig. 1).

In adult pigs, a 65% decrease in �-cell mass led to di-
abetes with most of the metabolic characteristics of T2DM
(fasting and postprandial hyperglycemia, impaired insu-
lin secretion, postprandial hyperglucagonemia) (12). Also,
a 50% partial pancreatectomy in dogs or humans causes
impaired fasting glucose initially and often diabetes sub-
sequently (13–16). Collectively, these data imply that the
deficit in �-cell mass present in T2DM can be sufficient to
induce diabetes, particularly in the setting of associated
insulin resistance.
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II. Islet Amyloid in T2DM and the Amyloid

Hypothesis

The islet in T2DM is characterized by what was originally
referred to as hyaline deposits, later demonstrated to consist
of amyloid (17). The term amyloid was developed to describe
abnormal extracellular deposits of protein that appeared
somewhat like amylopectin (starch; amyloid “like amylopec-
tin”) (Fig. 2). Amyloid when present is always abnormal and
consists of an insoluble protein precipitate, composed of
protein monomers arranged in a �-pleated sheet structure
(18). The resulting aggregated monomers appear as non-
branching fibrils by electron microscopy and are detected by
congo red or thioflavine staining by light microscopy (Fig. 3).
In 1987 two groups identified the constitutive protein in islet
amyloid, naming it amylin and islet amyloid polypeptide
(IAPP), respectively (19, 20). Because amylin also became the
name of a pharmaceutical company, we have preferred IAPP.
IAPP is coexpressed and cosecreted with insulin by pancre-
atic �-cells (21–23).

The islet in T2DM has parallels with the neuropathology
in neurodegenerative diseases such as Alzheimer’s disease
(24–27), Parkinson’s disease (28, 29), prion encephalopathy
(30), amyotrophic lateral sclerosis (31), and Huntington’s
disease (32) (Table 1). In neurodegenerative diseases and
T2DM, there is cell loss associated with abnormal aggrega-
tion of locally expressed protein. The proteins that form these
aggregates share in common the propensity to form amyloid
fibrils in an aqueous environment, prompting the question,
is the formation of the amyloid fibrils in these diseases a
cause or a consequence of the underlying cell attrition? Those
in favor of a primary role of amyloid in neurodegenerative
diseases coined the term “amyloid hypothesis” (24).

Evidence that was cited against the amyloid hypothesis is
the observation that the severity of the disease state often
correlates poorly with the extent of amyloid deposition (33–
35). For example, the extent of dementia or cortical atrophy
in Alzheimer’s disease does not correlate well with the extent
of brain amyloid derived from amyloid � protein (A�P)
hypothesis (36). Islet amyloid is found in nondiabetic indi-
viduals, particularly with aging (37), and is not present in all
islets in people with T2DM (38).

Evidence that supports the amyloid hypothesis includes
the recapitulation of disease states by some (but not all)
transgenic models for amyloidogenic proteins and mutations
in amyloidogenic proteins that lead to early onset disease (26,
27, 39). Mutations in A�P that increase its propensity to
aggregate were identified in early onset familial forms of
Alzheimer’s disease (25). A similar mutation in IAPP has
been described in Japan and leads to an increased risk for
T2DM (40).

This conflicting evidence for and against the amyloid hy-
pothesis has been somewhat resolved by recent advances.
The toxic form of amyloidogenic proteins appears not to be
the extracellular amyloid fibrils detected by light micros-
copy, but rather smaller nonfibrillar oligomers (41–44). Be-
fore considering a revised model of the amyloid hypothesis
further, we will briefly review the known properties of the
protein that forms islet amyloid, IAPP.

A. IAPP physiological functions

IAPP is coexpressed with insulin by pancreatic �-cells
(21–23). It is trafficked through the insulin secretory pathway
and cosecreted with insulin, for example after meal ingestion.
Although the physiological function of IAPP remains un-
known, it is highly conserved between species, implying
functional significance. Application of IAPP to rat soleus
muscle strips was shown to inhibit insulin-mediated glucose
uptake (45). The assumption was that the large amyloid
deposits in the islet in T2DM would be associated with high
circulating levels of IAPP, which in turn contributed to the
insulin resistance of this disease. In reality, the circulating
concentrations of IAPP (5–20 pm) were found to be far below
that required to inhibit insulin action (in nanomoles), and
furthermore plasma IAPP levels in T2DM were not increased
compared with nondiabetic controls (21).

One well-characterized action of IAPP is a direct paracrine
effect on �-cells to inhibit insulin secretion (46). It has also
been suggested that IAPP delays gastric emptying and sup-

FIG. 1. Relationship between percentage of pancreas volume occu-
pied by �-cells and fasting plasma glucose in obese humans without
insulin or oral antidiabetic treatment. The solid line is derived from
nonlinear regression analysis (monoexponential fit, r � 0.50; P �

0.0001 by ANOVA). The dashed vertical lines indicate the mean �-cell
area in obese nondiabetic subjects (OND) (right) and the computed
inflection point of the curve (left). IFG, Impaired fasting glucose; OD,
obese diabetic. Adapted from Ref. 11. [Copyright 2006 American Di-
abetes Association. From Diabetes Care 29:717–718. Reprinted with
permission from The American Diabetes Association.]

FIG. 2. Human islets from T2DM subjects (right) have less �-cells
than those from nondiabetic subjects (left) and contain deposits of
amyloid (arrow) derived from IAPP. Human islets were stained for
insulin. This figure originally appeared in an article by Matveyenko
and Butler (39). It is reprinted with permission from the ILAR Jour-
nal, Institute for Laboratory Animal Research, The National Acad-
emies (www.nationalacademies.org/ilar).
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presses appetite (47), although it is unclear whether these
actions are physiological actions of IAPP within normal cir-
culating levels or are present only in response to pharma-
cological IAPP concentrations.

B. IAPP species comparison

IAPP is expressed as an 89-amino acid protein that un-
dergoes processing to a 37-amino acid peptide (48). The
primary sequence of IAPP is closely conserved between spe-
cies, but there are some important differences in IAPP20–29,
the region of the peptide believed to be important for con-
veying its propensity to form oligomers in an aqueous en-
vironment (49). As can be seen in Fig. 4, primates and hu-
mans share close homology in IAPP20–29, and synthetic forms
of these peptides form amyloid. It is therefore intriguing that
nonhuman primates and cats, like humans, are also prone to
developing T2DM with a similar clinical course and islet
pathology as that observed in humans (50).

In contrast, neither rats nor mice spontaneously develop
T2DM. Rat and mouse IAPP20–29 is identical and not amy-
loidogenic, due to three proline residues that render rat and
mouse IAPP water soluble (49). Moreover, the cytotoxicity of
IAPP depends on its propensity to form oligomers (42, 51,
52). This distinction between human IAPP (hIAPP) and ro-
dent IAPP (rIAPP) provides an opportunity to use the trans-
genic approach to examine the impact of hIAPP expression
in mice or rats.

III. Lessons Learned from Transgenic Rodents; the

Amyloid Hypothesis Challenged

Several different hIAPP transgenic mouse models have
been reported (53–60). The phenotype and islet pathology of
hIAPP transgenic rodents have been summarized in a recent
review (39). Some but not all develop diabetes. In common

with other mouse models of diabetes, there is a greater pre-
disposition to diabetes in male mice compared with female
mice, and also a background effect. hIAPP transgenic mice
on a FVB background develop diabetes if IAPP expression is
increased by induction of insulin resistance, whether
through cross breeding onto an obese background (55, 58) or
pharmacologically (53). Alternatively, increasing the gene
dosage of hIAPP by cross breeding hIAPP transgenic mice to
homozygosity also leads to diabetes (54). The underlying
mechanism for diabetes in hIAPP transgenic mice and rats is
a deficit in �-cell mass due to increased �-cell apoptosis (59,
61). The metabolic characteristics of T2DM, i.e., hyperglyce-
mia, impaired insulin secretion, insulin resistance, and hy-
perglucagonemia, are all recapitulated in hIAPP (HIP) trans-
genic rats (62).

Because replicating �-cells are particularly vulnerable to
hIAPP-induced apoptosis (63), the deficit in �-cell mass is
due to loss of cells as well as an inability to adequately
compensate through increased �-cell replication. Transgenic
protein expression in �-cells has unexpectedly induced di-
abetes in mice (64). Therefore, it is important to note that
comparably high �-cell-specific transgenic expression of sol-
uble rIAPP in mice does not lead to increased �-cell apo-
ptosis, loss of �-cell mass, or diabetes (65). Collectively, these
studies imply that hIAPP can be expressed and trafficked
successfully by mouse �-cells up to a threshold beyond
which apoptosis may be induced, and this vulnerability to
high expression rates of hIAPP depends on its propensity to
oligomerize.

An important lesson that arose from studies of hIAPP
transgenic mice is that the concept that extracellular IAPP
amyloid causes �-cell apoptosis (the amyloid hypothesis) is
implausible. Homozygous transgenic mice for hIAPP devel-
oped diabetes due to a high rate of �-cell apoptosis by 10 wk
of age (54, 65). However, extracellular islet amyloid was not
yet present in these mice during the rapid loss of �-cells from

TABLE 1. The common molecular basis of amyloid-related T2DM and neurodegenerative diseases

Diseases Protein that forms toxic oligomers Cells lost

Type 2 diabetes mellitus Islet amyloid polypeptide �-cells
Alzheimer’s disease �-Amyloid protein Cortical neurons
Parkinson’s disease Synuclein Dopaminergic neurons
Prion encephalopathy/transmissible spongiform encephalopathies Prion Cortical neurons
Amyotrophic lateral sclerosis Mutant superoxide dismutase Motor neurons
Polyglutamine/Huntington’s disease Huntingtin’s polyglutamine Pyramidal neurons

FIG. 3. The islets from T2DM human (A), diabetic vervet monkey (B), and diabetic obese hemizygous hIAPP transgenic mouse (C) stained for
amyloid using Congo red. (Unpublished images from the Butler laboratory.)
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age 5–10 wk. In obese hemizygous hIAPP transgenic mice
that develop diabetes at approximately 20 wk of age, exten-
sive islet amyloid develops, but there is no relationship be-
tween the extent of islet amyloid and the frequency of �-cell
apoptosis (61). Moreover, the �-cells undergoing apoptosis
are not adjacent to amyloid deposits, as would be expected
if the amyloid deposits were the toxic form of amyloid (Fig.
5). This lack of proximity of �-cells undergoing apoptosis and
islet amyloid is also evident in humans with T2DM (6). Fur-
ther evidence against the toxicity of extracellular amyloid is
provided by another hIAPP transgenic mouse model that
develops extensive islet amyloid but not diabetes (66).

Because cytotoxicity induced by hIAPP overexpression
and amyloid formation were readily dissociated in hIAPP
transgenic mice, the amyloid hypothesis in its literal form,
that extracellular amyloid causes cytotoxicity, was chal-
lenged. The dissociation of hIAPP induced cytotoxicity and
hIAPP amyloid formation gives rise to the question, what is
the cytotoxic form of hIAPP?

A. hIAPP toxic oligomers, and not amyloid, induce �-cell

apoptosis; the amyloid hypothesis modified

Cytoxicity by hIAPP was first reported when hIAPP or
rIAPP was applied to human islet cells in culture (51). Ap-
plication of hIAPP but not rIAPP caused �-cell apoptosis. Not
surprisingly, the islet cells exposed to hIAPP (but nor rIAPP)
were also subsequently observed to be decorated with amy-
loid. The authors concluded that the association between the
appearance of extracellular amyloid fibrils and apoptosis
implied causality, i.e., that the extracellular amyloid fibrils
had induced apoptosis. However, in subsequent studies
other investigators were unable to support this conclusion
(42, 52). When amyloid fibrils were added to islet cells in
culture, apoptosis was not induced and electron microscopy
revealed viable cells decorated with amyloid. In contrast, if
a freshly prepared aqueous solution of hIAPP was added to
islet cells in culture apoptosis was reproducibly induced, and
under these circumstances electron microscopy revealed the
presence of small nonfibrillar hIAPP oligomers, apparently
disrupting the cell membrane, and indeed penetrating the
cell (42). These data together with those from the hIAPP
transgenic mice implied that it was not the amyloid fibrils
that induce apoptosis, but much smaller oligomers that form
rapidly after free hIAPP monomers interact in an aqueous
environment.

This impression was reinforced by studies of membrane
bilayers (42) (Fig. 6). Freshly prepared solutions of hIAPP
induced nonselective ion channels and ultimately disrupted
the membranes, whereas neither amyloid fibrils nor freshly
prepared solutions of rIAPP had any discernible effect. Dis-
sociation between formation and actions of hIAPP toxic oli-
gomers vs. hIAPP-derived amyloid was further demon-
strated by use of rifampicin (153). Rifampicin, as previously
reported, inhibited hIAPP amyloid formation but failed to
inhibit formation of either hIAPP toxic oligomers or hIAPP

FIG. 4. Alignment of IAPP ortholog proteins. Amino acid alignment
of IAPP protein sequences identified in Homo sapiens (human,
CAA39504), human mutant (S20G) (40), Macaca mulatto (monkey,
XP_001098290), Felis catus (cat, NP_001036803), Canis lupus (dog,
NP_001003233), Mus musculus (mouse, NP_034621), and Rattus nor-
vegicus (rat, NP_036718). Dots correspond to conserved residues with
human IAPP sequence. Red letters correspond to the amyloidic se-
quence.

FIG. 5. The increased �-cell apoptosis in hemizygous hIAPP transgenic mice (OT) does not correspond to areas of amyloid. Islets from obese
nontransgenic (ONT, left panels) and obese hemizygous hIAPP transgenic mice (OT, right panels) immunostained for insulin (upper panels)
and corresponding islets stained for TUNEL (lower panels). Adapted from Ref. 61. [Copyright 2003 American Diabetes Association. From
Diabetes 52:2304–2314. Reprinted with permission from The American Diabetes Association.]
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cytotoxicity. These data established the fact that hIAPP toxic
oligomers are not simply “pre-amyloid” fibrils or protofi-
brils, but are an off-amyloid fibril pathway form of oligomer
(Fig. 7). This finding was already implicit in transgenic ro-
dent studies where �-cell toxicity was unrelated to the extent
or location of amyloid formation (61). If hIAPP toxic oligomer
formation is off the fibril pathway, then inhibition of amyloid
formation may not only fail to prevent toxicity of amyloi-
dogenic proteins, but may even promote formation of toxic
oligomers and enhance toxicity.

Having established that small membrane permeant oli-
gomers, but not amyloid fibrils, are the toxic form of hIAPP,
the amyloid hypothesis can be modified rather than rejected.
Restated, proteins with the propensity to form amyloid
fibrils have the capacity to form membrane-permeant toxic
oligomers. To date, the relationship between the propensity
to form toxic oligomers and amyloid fibrils is not fully char-
acterized. Moreover, the structure of toxic oligomers remains
to be established. Our own interest with respect to hIAPP
toxic oligomers reverted to the questions, do toxic hIAPP

oligomers form intra- or extracellularly, and in vivo do they
act intra- or extracellularly to induce apoptosis?

B. Where do hIAPP toxic oligomers form and act?

A recent breakthrough in this field came from the labo-
ratory of Charles Glabe at the University of California, Irvine
(68). Glabe’s group developed a method to reproducibly
synthesize a molecular mimic of A�P toxic oligomers using
a colloidal gold core (69). When this molecular mimic was
injected into rabbits, antibodies were raised that bound to the
toxic form of A�P but did not bind to monomers or amyloid
fibrils of A�P (68). Unexpectedly, this antibody also binds to
the toxic oligomeric form of hIAPP, prion, and synuclein but
not to the monomers or the amyloid fibrils of these proteins.
One implication of this intriguing landmark paper is that the
tertiary structure of the toxic oligomers of hIAPP, A�P,
synuclein, and prion must be remarkably similar even
though they are composed of monomers of distinct proteins.
Another implication is that it is now possible to use this
antibody to identify the location (intra- vs. extracellular) of
the toxic oligomers. A third implication is that the mecha-
nisms subserving formation of these toxic oligomers and
their mechanism of action to induce cytotoxicity are likely to
be similar in these diseases, now often referred to as unfolded
protein diseases (70).

By use of the toxic oligomer-specific antibody, we were
able to establish that the toxic oligomers of hIAPP in hIAPP
transgenic mice form intracellularly (Fig. 8) (71). Staining for
toxic oligomers was not found in the extracellular islet amy-
loid. To establish whether the toxic oligomers act intra- or
extracellularly, we used a vaccine approach. After vaccina-
tion of hIAPP transgenic mice with the same oligomer prep-
aration used by the Glabe laboratory to raise the antitoxic
oligomer antibody, high titers of antioligomer antibodies
developed in hIAPP transgenic mice. However, �-cell apo-
ptosis was not decreased. By implication, toxic hIAPP oli-

FIG. 7. Proposed model for the balance between the different aggre-
gation states of hIAPP in an aqueous solution. Once hIAPP oligomers
are dissolved in an aqueous solution, IAPP intermediate structures
(protofibrils) further assemble into amyloid fibrils. Alternatively,
they may form toxic membrane-perforating toxic oligomers (top). In
the presence of rifampicin, formation of amyloid fibrils is inhibited,
but the formation of toxic oligomers is unaffected, consistent with
continued cytotoxicity (bottom). This figure originally appeared in an
article by J. J. Meier et al.: Am J Physiol Endocrinol Metab 291:
E1317–E1324, 2006 (153). It is used with permission from the Amer-
ican Physiological Society.

FIG. 6. Stability of planar bilayer membranes is disrupted by addi-
tion of hIAPP. Control recording of bilayer capacitance and the same
membrane 5 min after adding 10 �mol/liter freshly dissolved hIAPP
to the cis chamber. Note membrane instability and increase in mem-
brane electrical noise. Filtered at 0.3 kHz. Adapted from Ref. 42.
[Copyright 1999 American Diabetes Association. From Diabetes 48:
491–498. Reprinted with permission from The American Diabetes
Association.]

FIG. 8. hIAPP toxic oligomers in islets from obese hemizygous hIAPP
transgenic mice. hIAPP toxic oligomer immunoreactivity does not
coincide with extracellular amyloid; it is predominantly intracellular,
confined to �-cells, and it is perinuclear or in vesicle-like structures.
Immunofluorescent staining for toxic hIAPP oligomers (red),
autofluorescence for amyloid (green), and nuclei 4�,6-diamidino-2-
phenylindole (DAPI) (blue) (A, 20� magnification). Immunofluores-
cent staining for toxic hIAPP oligomers (red), insulin (green), and
nuclei DAPI (blue) (B, 100� magnification). Adapted from Ref. 71.
[Copyright 2007 American Diabetes Association. From Diabetes 56:
1324–1332. Reprinted with permission from The American Diabetes
Association.]
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gomers in hIAPP transgenic mice form and act intracellularly
in vivo.

On a technical note, to date the antibodies for detection of
toxic oligomers are ineffective in paraffin-embedded tissue,
requiring frozen sections. This is not surprising because they
detect the shared structure of toxic oligomers rather than a
particular amino acid sequence in the monomers that com-
pose them, a structure likely disturbed by tissue processing.
Therefore, to date there are no data in human pancreas from
patients with T2DM to confirm that the toxic hIAPP oli-
gomers present in transgenic mice are also present in T2DM.
Comparable intracellular IAPP oligomers were noted intra-
cellularly in human �-cells from surgically resected insuli-
noma (72).

Although hIAPP oligomers form intracellularly in mice
with high transgenic expression rates of hIAPP, not all �-cells
even in these models have detectable hIAPP oligomers (71).
These data imply that at any given time most �-cells in these
mouse models have mechanisms in place that prevent hIAPP
oligomer formation. Because hIAPP monomers rapidly form
toxic oligomers in an aqueous solution, to better understand
why these oligomers form in some �-cells, it seems prudent
to consider the cellular mechanisms that prevent formation
of hIAPP oligomers.

IV. Cellular Mechanisms to Prevent hIAPP Oligomer

Formation. The Unfolded Protein Response (UPR),

proIAPP Processing, and Vesicle Environment

The endoplasmic reticulum (ER) is responsible for the
synthesis, folding, and appropriate targeting of all client
secretory proteins before their export to the Golgi (most
prominently insulin and IAPP in �-cells). The ER has several
important properties to facilitate protein folding. These include
a Ca2� concentration of approximately 300 �m (vs. 0.1 �m in
the cytosol) (73, 74), a relatively oxidative state favoring
disulfide bond formation by protein sulfide isomerases (75),
and a protein quality control system (76, 77). Unfolded pro-
teins are exported from the ER by retrograde translocation to
the cytosol and degradation by the proteosome (78, 79). In
addition, the ER contains abundant chaperone proteins that
shield hydrophobic regions of unfolded proteins from sur-
rounding proteins (80–83). Chaperone protein binding has
been shown in vitro to inhibit A�P oligomerization (84).
Given that the ER protein concentration is approximately 100
g/liter, these properties are remarkably successful at pre-
venting ER protein aggregation. This is particularly the case
for proteins such as hIAPP that are highly prone to form
self-aggregates at much lower concentrations in an aqueous
environment (85).

In addition to these properties of the ER, the unfolded
protein response (UPR) balances ER protein delivery with
the capacity of the ER to fold and traffic these proteins [Refs.
86–90; also see article by Scheuner and Kaufman in this issue
of Endocrine Reviews (152)] (Fig. 9). By doing so the UPR
defends the ER from being overwhelmed by misfolded and
more importantly aggregated proteins that may lead to ER
stress and apoptosis (91). Three independent proteins, PERK
(protein kinase-like ER kinase), IRE1� (inositol requiring 1�),

and ATF6 (activating transcription factor 6) detect increased
abundance of unfolded proteins in ER and activate a se-
quence of events that globally decreases translation of major
ER client proteins, increases transcription and translation of
ER chaperone proteins [e.g., binding Ig protein (BiP)], and
increases expression of proteins involved in clearance of
unfolded ER proteins (88, 92, 93). The importance of PERK
in the protection of �-cells was illustrated by the develop-
ment of diabetes due to increased �-cell apoptosis in the
PERK �/� mouse (94).

In summary, the UPR allows secretory cells such as the
�-cell to balance ER delivery of major client proteins (insulin
and IAPP in the �-cell) to the capacity of the ER to fold and
traffic these proteins to the Golgi and secretory vesicles.
Because expression of IAPP increases disproportionately to
insulin under conditions of insulin demand (95), under these
conditions, IAPP competes for ER resources and presumably
constrains the maximal insulin synthesis rate. Theoretically,
this can be overcome by increasing the number of �-cells.
Although this adaptation appears readily available in mice
(61), in adult humans there is a limited capacity for �-cell
replication (6). Therefore, under conditions of sustained in-
sulin resistance (e.g., obesity), the ER in human �-cells will be
in a state of prolonged high demand. Any additional stress
to the �-cell under these conditions that adversely influences
ER function (e.g., oxidative damage, ER Ca2� depletion, ER
membrane leakage) will readily disturb this balance, poten-
tially leading to ER stress-induced apoptosis (96, 97).

In common with the ER, the insulin secretory vesicles
presumably sustain hIAPP concentrations that far exceed the
solubility of hIAPP in a typical aqueous environment. A
property of insulin secretory vesicles that is likely important
in preventing IAPP oligomer formation is the acid pH of the
vesicle lumen (85, 98, 99). At the pH 5.5 present in insulin
secretory vesicles, hIAPP is maintained in monomers (99). In
addition, insulin interacts with hIAPP to reduce oligomer
formation (85). It is likely that there are other factors (chap-
erone proteins, ions) that restrain oligomer formation in in-
sulin vesicles.

In conclusion, the synthesis and trafficking of nascent cli-
ent secretory proteins by the ER is closely regulated to pre-
vent oligomer formation. Likewise, the properties of the lu-
men of the insulin secretory vesicles favor maintaining
hIAPP in a monomeric form. Because hIAPP oligomers ap-
parently form intracellularly, these protective mechanisms
presumably fail under those circumstances.

A. Why do hIAPP oligomers (and amyloid) form?

Given the potent mechanisms in place to prevent intra-
cellular oligomerization of amyloidogenic proteins such
as hIAPP, why does this fail in T2DM? Mice transgenic for
hIAPP provide some insights. First, the increased risk of
hIAPP oligomerization with increasing hIAPP expression
implies that the mechanisms that protect against hIAPP aggre-
gation and toxicity are saturable. This is consistent with the
observation that circumstances that increase expression of IAPP
per �-cell in humans increase risk for developing T2DM.

Thus insulin resistance (which disproportionately in-
creases IAPP compared with insulin expression) (100, 101) is
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a major risk factor for T2DM. Also, a 50% decrease in �-cell
mass (which doubles the secretory demand per �-cell) often
leads to subsequent diabetes in dogs (15) and humans (14,
16), both of which express an amyloidogenic form of IAPP,
but not rats that secrete a soluble form of IAPP (102) (Fig. 4).
Recent genome-wide linkage studies show linkage between
risk for T2DM and several cell cycle transcriptional regula-
tory proteins (3). This together with the wide range of �-cell
mass observed in nondiabetic humans (Fig. 1) raises the
possibility that a relatively low adult �-cell mass might serve
as a risk factor for T2DM. Under these circumstances, insulin
resistance would place a substantial increased demand per
�-cell in adult humans and, presumably, a greater risk for
hIAPP expression rates that exceed the threshold for traf-
ficking hIAPP in a soluble form.

Another potential cause of IAPP oligomer formation de-
spite the protective mechanisms against it would be expres-
sion of a mutant hIAPP that increases the propensity for
hIAPP to form oligomers (103). Although a rare cause of
T2DM, the S20G mutation (Fig. 4) reported in Japan meets
this criterion (40).

One other potential mechanism that would increase the
risk for hIAPP toxic oligomer formation would be a decrease
in the capacity of �-cells to neutralize toxic oligomers as they

form. Insulin degrading enzyme (IDE) has been reported to
have this property, and therefore it is of note that the IDE
gene shows linkage to both T2DM and Alzheimer’s disease
(3, 104). IDE has been shown in vitro to inhibit hIAPP (and
A�P) aggregate formation and cytotoxicity (105, 106). Poly-
morphisms in chaperone proteins important in trafficking
hIAPP are an obvious candidate for increased propensity to
form hIAPP oligomers. In this regard it is of interest that
hIAPP and A�P share close structural properties and that the
prevalence of Alzheimer’s disease is increased in people with
T2DM (107).

Also, any factors, inherited or acquired, that disturb the
function of the ER might reasonably be expected to increase
risk for hIAPP oligomer formation. Compromised ER func-
tion leads to mitochondrial dysfunction (108). Because ER
function requires high energy, it is reasonable to expect that
compromised mitochondrial function might lead to ER dys-
function. Therefore mitochondrial dysfunction in �-cells in
T2DM (109) might be expected to lead to increased risk of
hIAPP oligomer formation.

Factors in the secretory pathway and vesicle environment
might also contribute to risk for oligomer formation. In cystic
fibrosis, acidification of intracellular vesicles is impaired, and
it is therefore of interest that a high proportion of patients

FIG. 9. The schematic illustration of the UPR in protein secretory cells. Increased demand for BiP leads to detachment of BiP from PERK, IRE1�,
and ATF6, which get activated. Activated PERK phosphorylates �-subunit of eukaryotic translation initiation factor 2 (eIF2�), which subse-
quently suppresses ER protein translation and leads to more ATF4. Activated IRE1� has a RNA editing function and removes the hairpin
structure on inactive X-box-binding protein-1 (XBP1) mRNA (unspliced, u-XBP1), which later becomes active transcription factor (spliced,
s-XBP1). Activated ATF6 translocates into the Golgi and undergoes partial intramembrane proteolysis by site-1 protease (S1P) and site-2
protease (S2P), then migrates to the nucleus. These three activated transcriptional factors then induce a series of responses to increase chaperone
proteins, limit new protein translation, and increase the degradation of unfolded proteins (see Fig. 10 and Refs. 65, 83, 86, 123, and 131).
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with cystic fibrosis develop T2DM with islet amyloid (110).
Also, impaired hIAPP processing, a function of the insulin
secretory pathway, has been implicated as a predisposing
factor to hIAPP amyloid formation (111). This might be a
factor in the tendency for islet amyloid formation in human
insulinoma (72).

In conclusion, there are several potential factors already
well recognized as associated with T2DM that might lead to
an increased risk for hIAPP oligomerization. From the above
discussion, it can be appreciated that the formation of toxic
hIAPP oligomers might occur as a consequence or as a cause
of �-cell failure. Because hIAPP oligomers are cytotoxic, it
would seem reasonable to predict that they contribute to the
progression of �-cell failure in T2DM, if they form secondary
to islet dysfunction. Given the probable multiple causes of
the clinical syndrome of T2DM, hIAPP oligomers likely form
and contribute early in some forms of T2DM and late in
others, depending on the underlying mechanisms that ini-
tiated �-cell dysfunction.

B. hIAPP-induced �-cell apoptosis

Apoptosis was first used to describe cell death with spe-
cific morphological characteristics (cell shrinkage, nuclear
condensation, chromatin margination, and clumping and
blebbing of the cell surface) (112) and then on the presence
of free 3-OH strand breaks in DNA by the TUNEL (terminal
deoxynucleotidyl transferase-mediated dUTP nick-end la-
beling) method (113). Subsequently specific biochemical
pathways were identified that initiate and execute this form
of cell death (114). Furthermore, apoptosis was found to be
an evolutionarily conserved means of tissue remodeling dur-
ing normal development (115). In adult tissue, apoptosis
continues to play a role in regulated cell turnover (116).
Induction of high rates of apoptosis has been identified as the
underlying mechanism leading to loss of cell mass in neu-
rodegenerative diseases, e.g., Alzheimer’s disease (117, 118)
and Parkinson’s disease (28).

Two major pathways of apoptosis are the extrinsic path-
way (119) and the intrinsic pathway, which includes the ER
stress pathway (91, 96, 97, 120–123). The extrinsic pathway
is classically mediated by binding of death signals (Fas li-
gands) to death receptors (Fas) on the cell surface leading to
aggregation of Fas receptors, caspase-8 and Fas-associated
death domain protein into a death-inducing signaling com-
plex in which caspase-8 is proteolytically activated and then
released (119). Activated caspase-8 can then either directly
activate the execution phase of apoptosis (via caspase-3) or
amplify its signal by proteolytic activation of the proapop-
totic member of the Bcl-2 family Bid leading to subsequent
release of mitochondrial proapoptotic factors (e.g., cyto-
chrome c). The extrinsic pathway of apoptosis is active in
autoimmune-mediated �-cell death (124, 125) and has also
been invoked as a mediator of �-cell glucose toxicity (type-1
and type-2 diabetes) through the actions of high glucose
concentration to induce expression of the Fas ligand and
IL1-� in �-cells (126, 127).

The intrinsic pathway of apoptosis is mediated through a
number of cell stresses. In the context of degenerative dis-
eases, documented inducers of the intrinsic pathway include

ER stress, mitochondrial dysfunction, generation of oxygen
free radicals, metabolic toxins, disruption of the actin cy-
toskeleton, and anoxia (97, 128).

The ER stress pathway of apoptosis (Fig. 10) is a mecha-
nism of apoptosis to which cells with a high secretory burden
(such as �-cells) are particularly vulnerable (65, 91, 94, 123,
129–131). The primary defense mechanism against ER stress-
induced apoptosis is the UPR (86–90). For clarity in this
article, we define ER stress as the circumstances that provoke
induction of apoptosis as a consequence of the accumulation
of aggregated proteins. We distinguish this from the UPR
that we define as the adaptive efforts by the cell described
above to prevent ER stress. This is in distinction to some
publications in this recently evolving field that use UPR and
ER stress interchangeably. When the UPR is unable to clear
the ER of unfolded, and especially aggregated proteins, ER
stress by this definition may develop.

Two distinct circumstances can be anticipated that might
lead to ER stress. In one, mutant proteins are synthesized
with the property of an increased propensity to oligomerize.
The common mutations of the cystic fibrosis gene (132), the
Huntington’s gene (133), some known mutations of the A�P
gene (27, 29), and IAPP (40, 103) leading to familial Alzhei-
mer’s disease or T2DM have this property. The Akita mouse
model of diabetes has a mutation in the insulin gene leading
to ER aggregation of insulin, ER stress-induced �-cell apo-
ptosis, and diabetes (123). In humans, a rare mutation in
IAPP that increases the propensity of IAPP to oligomerize is
linked to a familial form of T2DM (40, 103). The other more
common circumstance is ER overload, the expression of an
oligomeric protein such as hIAPP at a rate that exceeds the
ER capacity to fold and traffic the protein. This fits with the
known risk factors for T2DM including insulin resistance and
a deficit in �-cell mass (for example after partial pancreat-
ectomy) (13).

Marchetti et al. (134) showed increased markers of ER
stress in isolated islets from patients with T2DM. Interest-
ingly, �-cells showed modest signs of ER stress when the
islets were cultured at normal glucose, but increased when
the islets were cultured at higher glucose. This finding im-
plies a genetic predisposition in islets from individuals with
T2DM to ER stress when �-cells are chronically stimulated,
a predisposition absent in islets of nondiabetic individuals.
These data are consistent with the notion of a lower capacity
to traffic and fold major client secretory proteins, such as
IAPP in individuals with T2DM. We have previously re-
ported that ER stress is characteristic of �-cells in humans
with type 2 diabetes but interestingly not in type 1 diabetes
(Fig. 11B) (65).

The exact mechanism linking protein oligomer formation
and ER stress-induced apoptosis is unknown. One proposed
mechanism is that toxic oligomers interact with the ER mem-
brane leading to Ca2� leakage (74, 135). This might directly
lead to mitochondrial membrane permeability, leakage of
cytochrome c, and activation of executioner caspases
(caspase-3), as well as indirectly contributing to apoptosis by
increasing the number of unfolded proteins in the ER due to
depletion of ER Ca2�. Ca2� leakage from the ER can also
activate ER-associated calpain, which can then directly in-
duce apoptosis in a caspase-independent manner (136, 137).
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In rodents, activation of the ER membrane resident
caspase-12 is associated with induction of the ER stress path-
way of apoptosis, although it is not clear whether caspase-12
activation is a consequence of, or a mechanism contributing
to the ER stress-induced pathway of apoptosis (31, 138, 139).
Caspase-12 expression was detected in hIAPP transgenic
mice and rats, but not in rIAPP transgenic mice (Fig. 11B).
Caspase-4 appears to have the same properties (activated by
chronic ER stress) in humans (117, 140).

ER stress has been identified as an important mechanism
inducing apoptosis in Alzheimer’s disease (117, 118, 141),
Parkinson’s disease (29, 142), and T2DM (65, 123, 131), all
three of which share the characteristic of increased apoptosis
in relation to protein misfolding of amyloidogenic proteins
(Table 1). Therefore, ER stress is obviously a strong candidate
for mediating hIAPP oligomer-induced apoptosis.

ER stress has been observed in �-cell lines transduced with
hIAPP as well as mice and rats transgenic for hIAPP (65, 131)
(Fig. 11A). Nuclear C/EBP homologous protein/GADD153
(CHOP) staining was found in hIAPP, but not rIAPP trans-
genic mice, and also in pancreatic section of a T2DM subject
(Fig. 11B). The appearance of CHOP preceded execution of
apoptosis as measured by TUNEL. We occasionally observed
concordant nuclear and TUNEL in hIAPP-expressing INS
cells (Fig. 11C). Furthermore, when we knocked down CHOP
by small interfering RNA, apoptosis was decreased (Fig.
11D). Application of hIAPP oligomers extracellularly has
also been shown to impair the ubiquitin proteasomal path-
way (65). The accumulation of polyubiquitinated proteins
was also identified in hIAPP, but not rIAPP transgenic mice

(Fig. 11B). Because hIAPP oligomers induce membrane leak-
age and disruption, application of these oligomers extracel-
lularly or formation of them within the secretory pathway
intracellularly might reasonably be expected to permit Ca2�

influx into cytoplasm, a known signal to induce the intrinsic
pathway of apoptosis. Moreover, ER stress has been shown
to induce expression of death receptor (143), potentially in-
voking the extrinsic pathway of apoptosis so that in reality,
both classical pathways of apoptosis will likely be active once
cell membranes have been disrupted. Furthermore, a recent
study showed that addition of hIAPP to the cells induces
�-cell apoptosis through Fas-associated death receptor (144).
Consistent with this, activation of p38 MAPK and JNK1 has
also been noted after application of hIAPP oligomers to cells
extracellularly (145–147).

Islet amyloid has also been noted in islets from hIAPP
transgenic mice (56) and human islets either in culture at high
glucose (148, 149) or after transplantation (150). It is not
known why transplanted islets, or islets in culture, have
increased hIAPP amyloid formation, but loss of vasculature
might be a predisposing factor. Also, isolated islets and trans-
planted islets are relatively anoxic (151), with mitochondrial
dysfunction likely leading to decreased ER function. hIAPP
oligomer formation might be a contributory factor to early
�-cell loss after islet transplantation.

V. Summary

The islet in T2DM shares much in common with neuro-
pathology in neurodegenerative diseases such as Alzhei-

FIG. 10. Proposed molecular signaling pathways of hIAPP-induced ER stress and apoptosis in pancreatic �-cells. BiP shortage activates three
transcriptional factors (ATF4, ATF6, and XBP1), which collectively launch the UPR. In hIAPP overexpressing models and under insulin
resistance conditions, an increased number of proteins in the ER leads to molecular crowding, which promotes protein aggregation and
misfolding, especially of the amyloidogenic protein like hIAPP. Aggregated or unfolded hIAPP can compromise ER membrane barriers for ionic
calcium. Decreased calcium inside the ER lumen and increased calcium in the cytosol may lead to ER stress, which is represented by nuclear
translocation of CHOP, induction of death receptor DR5, down-regulation of BCL-2, cleavage of caspase-12, and accumulation of ubiquitinated
proteins. Decreased ER calcium will decrease the efficiency of protein folding machinery and result in more unfolded proteins. Increased calcium
in the cytosol may open up the mitochondrial permeability transition pore (Mito PTP), leading to cytochrome c release and caspase-9 activation
(64, 84, 87, 123, 131).
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mer’s disease. Because measurement of �-cell dysfunction is
more sensitive and less demanding than cognitive function,
hIAPP transgenic models are an appealing means to advance
an understanding of both fields. Most of the focus in neu-
rodegenerative diseases is now focused on protein misfold-
ing and aggregation, the diseases now often referred to as
unfolded protein diseases. Important questions that remain
to be answered include, why do toxic oligomers of amyloi-
dogenic proteins form; what is the precise structure of these
oligomers; and are there therapeutic approaches that can
prevent their formation or toxicity? Once these questions are
addressed, the importance of the toxic oligomer hypothesis
will be better defined.
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