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Diabetes affects hundreds of millions of patients worldwide. Despite the advances

in understanding the disease and therapeutic options, it remains a leading cause of

death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a

hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose

physiological levels namely by inhibiting insulin and glucagon secretion as well as

controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming

intracellular aggregates and amyloid structures that are associated with β-cell death. Data

also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup.

Besides the known consequences of hyperamylinemia in the pancreas, evidence has

also pointed out that IAPP has a pathological role in cognitive function. More specifically,

IAPP was shown to impair the blood–brain barrier; it was also seen to interact and

co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of

Alzheimer’s disease (AD) patients, thereby contributing to diabetes-associated dementia.

In fact, it has been suggested that AD results from a metabolic dysfunction in the brain,

leading to its proposed designation as type 3 diabetes. Here, we have first provided a

brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We

have then discussed the potential interventions for modulating IAPP proteotoxicity that

can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes

brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug

developmentstrategies against AD.
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INTRODUCTION

Amyloidogenesis is a process by which peptides spontaneously self-assemble into higher order
structures, namely oligomers, protofibrils, and mature amyloid fibrils (Martins et al., 2008; Maurer-
Stroh et al., 2010; Hauser et al., 2014). These mature amyloid fibrils are highly ordered structures
with fibrillar aggregates derived from different amyloidogenic amino acid sequences that share
common features (Maurer-Stroh et al., 2010). The current consensus is that the amyloid fibrils
are not the main cause of toxicity (Martins et al., 2008; Kuperstein et al., 2010; Hauser et al., 2014).
This seems to be mostly down to precursor oligomers and protofibrils, which are associated with a
number of the so-called amyloid diseases, including type 2 diabetes mellitus (T2DM), Alzheimer’s
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disease (AD), Parkinson’s disease, and cataracts (Hauser et al.,
2014; Cremades and Dobson, 2018).

T2DM, the most prevalent type of diabetes, is an islet amyloid
polypeptide (IAPP)-associated pathology (Cukierman et al.,
2005; Westermark et al., 2011; Yang and Song, 2013). Dementia
also represents a major public concern, affecting 50 million
people worldwide. AD, the most common form of dementia in
North America (Alzheimer’s Association, 2016; Bondi et al., 2017;
Lane et al., 2018), is associated with amyloid beta peptide 42 (Aß-
42) (Martins et al., 2008; Kuperstein et al., 2010). The amyloid
hypothesis on AD pathology is, however, called into question
by the undeniable role of Tau aggregation and other important
players, as has been reviewed (Makin, 2018).

There is much evidence to support the close association
between T2DM and AD. IAPP (also known as amylin) and Aß-
42 were proven to co-deposit, contributing to AD onset and
progression (Jackson et al., 2013; Wijesekara et al., 2017). In
addition, it the molecular interaction between Tau and IAPP
was recently proved (Arya et al., 2019). At last, AD is associated
with insulin resistance and an imbalance of glucose levels in the
brain (Cukierman et al., 2005; Yang and Song, 2013), earning
the designation of type 3 diabetes (T3DM) (de la Monte, 2014;
Kandimalla et al., 2017; Leszek et al., 2017). Given these links,
we have reviewed the mechanisms of IAPP dysfunction in
diabetes and dementia, particularly in AD, thus adding to the
recent view of multi-factorial contributions to both diseases.
Furthermore, we have also discussed the potential interventions
for modulating IAPP proteotoxicity that can be explored for
therapeutics, encouraging new venues for treatment.

IAPP AND DIABETES

Diabetes mellitus (DM) is one of the major causes of premature
illness and mortality worldwide (Federation, 2009). High blood
glucose levels and glucose intolerance, as a consequence of a
defective insulin production/secretion by pancreatic β cells (β-
cells) or insulin sensitivity (Stumvoll et al., 2005; Tan et al.,
2019), are the typical clinical features of the disease. In T2DM,
impairment and loss of β-cell mass has been associated with
diverse pathological phenomena, including glucolipotoxicity,
islet cholesterol accumulation, and islet inflammation (Poitout
and Robertson, 2002; Ishikawa et al., 2008; Brunham et al.,
2010; Donath and Shoelson, 2011). Equally important are the
current views that regard IAPP dyshomeostasis, intracellular
accumulation of IAPP oligomers, and IAPP amyloid deposition
in the islets of Langerhans as detrimental events in β-cell
dysfunction and disease (Kanatsuka et al., 2018).

IAPP is a 37-amino acid neuroendocrine hormone that
plays an important role in regulating metabolism and glucose
homeostasis (Figure 1A). In circulation, IAPP and insulin act as
synergistic partners: they stimulate the uptake of blood glucose
into muscle and fat tissues and inhibit the endogenous glucose
output from the liver, thus stabilizing the blood sugar levels
in post-meal conditions (Zhang et al., 2016). Physiologically,
IAPP also reduces the secretion of nutrient-stimulated glucagon,
regulates gastric emptying and satiation (Lutz, 2010; Akter et al.,

2016), and regulates blood pressure while having an effect on the
renin-angiotensin system (Wookey et al., 1998).

IAPP and insulin are co-secreted and processed by proprotein
convertase (PC) 1/3, PC 2, and carboxypeptidase E (Yonemoto
et al., 2008). During its biogenesis, IAPP is synthesized as
an 89-residue preprohormone (Sanke et al., 1988). Its signal
peptide is cleaved throughout the transport into the endoplasmic
reticulum (ER) to form proIAPP (Akter et al., 2016), which is
then processed in the late Golgi complex. To yield the mature
active form of the hormone, IAPP suffers amidation of the C-
terminal end, and a disulphide bond is formed between cysteines
at positions two and seven (Westermark et al., 2011; Akter
et al., 2016; Bower and Hay, 2016). Once produced, mature
IAPP is co-packaged with insulin in secretory granules of β-
cells to then be co-released in response to glucose (Kahn et al.,
1993; Gedulin et al., 1997; Zhang et al., 2016). In a pre-
diabetes/diabetes phenotypes, the increased production of insulin
is accompanied by augmented IAPP levels (Kahn et al., 1991;
Mulder et al., 1996). The overload and impairment of β-cell
processing machinery leads to the accumulation of unprocessed
IAPP forms (Westermark et al., 2000; Paulsson et al., 2006). These
events, together with the overwhelming of the ER, generate a
feed-forward cycle that promotes IAPP oligomerization, fibril
formation, and β-cell injury. Elevated proIAPP levels and
amyloid deposition in β-cells lacking PC1/3 and PC2 (Marzban
et al., 2006), as well as the presence of proIAPP in intracellular
fibrils (Paulsson et al., 2006), corroborate this idea. Despite
this, the role of unprocessed IAPP forms in the disease is not
fully understood.

Under pathological conditions, increased IAPP expression
and the generation of aberrant IAPP intermediates favor
misfolding, which leads to the formation of toxic aggregates
through a seeding-nucleation model, similar to prion replication
(Mukherjee et al., 2017). As misfolded molecules accumulate,
they build up into intracellular oligomers and larger amyloid
fibrils, which deposit in surrounding tissues, thus disrupting the
normal islet architecture and functioning (Zhang et al., 2016).
Deposits of aggregated IAPP are present in the pancreas of about
90% of T2DM patients, thus representing a histopathological
hallmark of the disease (Westermark and Grimelius, 1973;
Mukherjee et al., 2017). Corroborating the toxicity of these
aggregates in diabetes, the IAPP allele S20G, which raises IAPP
aggregation propensity (Sakagashira et al., 2000), has been
associated with premature onset diabetes and has accelerated
the decline of endogenous insulin secretion when compared to
non-S20G T2DM individuals (Morita et al., 2011). Moreover,
a transgenic mice model expressing human IAPP (hIAPP)
spontaneously developed amyloidosis, showing impaired insulin
production, β-cell loss, and fasting hyperglycemia (Janson et al.,
1996).

Although the link between IAPP aggregation and β-cell loss
seems to be convincing, there are some questions that remain
poorly understood, including (a) the initiation site and triggers
of amyloid formation, (b) the mechanisms of IAPP-mediated
toxicity in β-cell death, and (c) the nature of toxic IAPP
species (Kanatsuka et al., 2018). Initially, mature amyloid fibrils
were presumed to be the pathological structures (Lorenzo and
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FIGURE 1 | IAPP on physiological and pathological contexts and (poly)phenols-mediated protection. (A) In healthy conditions, IAPP is co-secreted with insulin to

regulate glucose metabolism and homeostasis in a post-meal condition. Several functions are attributed to IAPP: slowing down gastric emptying, thereby reducing

food intake and body weight; reducing glucose output from liver and glucagon secretion; and stimulating the renin-angiotensin system, vasodilation, and

(Continued)
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FIGURE 1 | blood glucose uptake. (B) In disease conditions, IAPP pathological species deposit in the pancreas and in brain microvasculature where they induce the

injury of small vessels and reach the brain parenchyma. In the brain environment, IAPP forms heterogeneous deposits with Aβ molecules increasing neurotoxicity.

Proteostasis imbalance caused by Aβ/IAPP and tau may promote a set of molecular changes that culminate in glucose homeostasis dysregulation, cell death, and

neurodegeneration. The molecular pathways of β-cell dysfunction are depicted: autophagy dysregulation; ER stress; UPP overload; membrane instability; and

mitochondrial damage. (C) Protection mediated by (poly)phenols is associated with the stabilization of IAPP monomers, the remodeling of amyloids, protofibrils, and

toxic oligomers to non-fibrillogenic “off-pathway” oligomers and monomers. Aβ, Amyloid beta; ER, Endoplasmic Reticulum; IAPP, Islet Amyloid Polypeptide; Ub,

Ubiquitin; UPP, Ubiquitin Proteasome Pathway.

Yankner, 1996), however, the current consensus is that toxicity is
mostly associated with soluble oligomers and protofibrils, which
may act as the trigger agents for β-cell depletion and diabetes
onset (Haataja et al., 2008; Zhao et al., 2009; Zhang et al., 2016).

Oligomeric IAPP species form ion-leaking pores in the
cell membranes (Gurlo et al., 2010; Li et al., 2016b), leading
to enhanced membrane fluidity, calcium dysregulation, and
decreased cell viability (Huang et al., 2010). IAPP oligomers have
also been found within disturbed mitochondrial membranes in
transgenic hIAPP mice and T2DM patients (Gurlo et al., 2010).
Unstable mitochondrial membrane potential induced by toxic
oligomers is thought to be involved in the overproduction of
reactive oxygen species (ROS), which are currently considered
to be potential initiators of IAPP toxicity (Konarkowska et al.,
2005). ER stress and impairment of proteasome function have
also been associated with hIAPP-induced toxicity (Casas et al.,
2007; Gurlo et al., 2010), however, in studies with cultured islets
producing IAPP at more physiological levels, ER stress was not
detected (Hull et al., 2009).

In heterozygous hIAPP+ mice with β cell–specific Atg7
deficiency (hIAPP+Atg71βcell mice), the accumulation of toxic
oligomers, the loss of β-cells, and diabetes development is
linked to autophagy disruption, and this is suggestive of a role
for autophagy in IAPP toxicity (Kim et al., 2014). Moreover,
inhibition of lysosomal degradation in HIP (hIAPP transgenic)
rats increases hIAPP-mediated toxicity, whereas autophagy
stimulation protects β-cells against hIAPP-induced apoptosis
(Rivera et al., 2011). Chronic inflammation is also observed
in local and systemic amyloidosis due to the activation of the
NLRP3 inflammasome by hIAPP aggregates (Masters et al.,
2010). A general view of IAPP pathological mechanisms is given
in Figure 1B.

IAPP PATHOLOGY IN THE BRAIN

AD was considered for a long period to be caused by
Aβ amyloidogenesis and/or Tau aggregation (Makin, 2018).
Indeed, the presence of extracellular Aβ-42 amyloid plaques
and intracellular aggregates of hyperphosphorylated Tau are the
classical diagnostic markers of the disease (Glenner et al., 1984;
Gotz, 2001; Gong et al., 2003). Aβ exists mainly in two forms, Aβ-
40 and Aβ-42, composed of 40 and 42 amino acids, respectively,
and the increase of the Aβ-42/Aβ-40 ratio is strongly correlated
with AD severity (Kuperstein et al., 2010). Given the importance
of these players in disease pathophysiology, AD research has
been so focused on them that other possible agents have been
somewhat overlooked.

More recently, IAPP has emerged as a novel player in AD
pathology (de la Monte and Wands, 2008; Wijesekara et al.,
2017; Norwitz et al., 2019; Qiu et al., 2019). Notwithstanding,
the mechanisms by which IAPP contributes to AD pathology are
still unclear and deserve further enquiry. It is known that IAPP
and Aβ interact with each other and that IAPP promotes Aβ

aggregation in a seeding-like manner, leading to the formation
of cross-seeded oligomers (Andreetto et al., 2010; Rezaei-Ghaleh
et al., 2011; Yan et al., 2014; Hu et al., 2015; Bakou et al., 2017;
Moreno-Gonzalez et al., 2017; Ge et al., 2018; Armiento et al.,
2019). Interestingly, an aggregation blocker mimicking IAPP has
been proven to work against Aβ (Yan et al., 2007).

Hyperamylinemia has been pointed out as a possible trigger
for IAPP misfolding and aggregation, which may cause damage
in the brain (Jackson et al., 2013) and other organs by
various mechanisms that include the toxic gain-of-function of
IAPP aggregates and the loss of IAPP physiological functions
(Westermark et al., 2011; Despa et al., 2012, 2014). In addition,
IAPP dyshomeostais may affect other organs, particularly the
brain, in Aβ-42-dependent and -independent manners. This is
illustrated by studies showing that IAPP deposition impairs brain
function regardless of Aβ-42 pathology (Srodulski et al., 2014)
and that the brain of AD patients can also have IAPP deposits,
alone or in the presence of Aβ-42 (Fawver et al., 2014), even
if clinical signs of diabetes are absent (Jackson et al., 2013;
Oskarsson et al., 2015). A remarkable aspect is the fact that
the IAPP analog pramlintide is able to have a neuroprotective
effect, both in AD pathogenesis as well as on cognition in
general (Adler et al., 2014). This is in line with observations
that the key regions involved in Aβ-42-IAPP interaction—the
interface amino acid residues—are at the same time high-
affinity binding sites in both the cross- and self-aggregation of
these molecules (Andreetto et al., 2010). Pramlintide possibly
modulates these interactions by preventing them or promoting
the formation of biologically inactive fibrils. However, the in
silico cross seeding of Aβ-42 and IAPP fibril-like oligomers still
needs to be complemented with further experimental evidence
to support this hypothesis (Berhanu et al., 2013). In addition
to Aβ-42, it was also reported that the major component of
cerebrovascular plaques in the AD brain, the Aβ-40, can cross-
seed IAPP fibrillization, suggesting that these two peptides might
populate states that cross-interact (O’Nuallain et al., 2004). Other
mechanisms by which IAPP dyshomeostasis exacerbates Aβ-42
toxicity in the brainmay include ROS generation (Jhamandas and
MacTavish, 2004; Lim et al., 2010) and the breakdown of insulin
degrading enzyme activity, which is responsible for insulin, IAPP,
and Aβ degradation (Kurochkin andGoto, 1994;McDermott and
Gibson, 1997).

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 March 2020 | Volume 13 | Article 35

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Raimundo et al. Interplay Between IAPP and Aβ in AD

TABLE 1 | Effect of (poly)phenols on the aggregation of human IAPP.

Phenolic compound Experimental model Mechanism of action References

Baicalein • Cell-free • Inhibits the formation of β-sheet structures Mirhashemi, 2012

• Cell-free • Inhibits IAPP amyloid formation Velander et al., 2016

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Neutralizes IAPP-induced cytotoxicity in a dose

depend manner

Curcumin • Cell-free • Modulates IAPP self-assembly by unfolding

α-helix structures

Sparks et al., 2012

• Cell-free • Induces the dissociation of amyloid fibrils Shoval et al., 2008

• Cell-free • Alters the morphology and conformation of

IAPP aggregates

Daval et al., 2010

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Protects cells against amyloid-induced toxicity

ECG • Cell-free • Reduces the rate constants of first nucleation step of

amyloid fibril formation, inhibiting the first stages of

this process

Kamihira-Ishijima et al.,

2012

EGCG • Cell-free • Binds to specific conformers within an ensemble of IAPP

monomers, affecting the oligomerization process and

fibril assembly

Young et al., 2014a

• Cell-free • Delays the formation of β-sheet containing IAPP aggregates

• Stabilizes non-fibrillar large aggregates during fibrillogenesis

Suzuki et al., 2012

• Cell-free • Inhibits the formation of IAPP-NH2 fibrils

• Promotes the generation of IAPP-NH2

amorphous aggregates

Xu et al., 2017

• Cell-free • Remodels IAPP fibrils, but does not fully resolubilize them

to unstructured monomers

Cao and Raleigh, 2012

• Cell-free • Presents an amyloid remodeling activity that is dependent

on its auto-oxidation

Palhano et al., 2013

• Cell-free • Destabilizes IAPP oligomers

• Breaks the initial ordered pattern of two polymers,

decreases their β-sheet content, and enlarges their

conformational space

Wang et al., 2014

• Cell-free • Acts as an efficient amyloid inhibitor, especially in bulk

solution

• Does not disaggregate amyloid fibrils at a

phospholipid interface

Engel et al., 2012

• Cell-free • Binds to IAPP and induces the formation of

amorphous aggregates

Franko et al., 2018

• Cell-free • Disaggregates preformed amyloid fibrils derived from IAPP Meng et al., 2010

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Protect cells against IAPP-induced cytotoxicity

• RIPHAT transgenic mice expressing

hIAPP (sub-chronic administration)

• Reduces the amount of IAPP fibrils in the pancreas but

does not alter the disease clinical signs

Franko et al., 2018

EGCG/Al(III) • Cell-free • Inhibits IAPP fibrillation Xu et al., 2016

EGCG:Zn(II) complex • Cell-free • Suppresses IAPP amyloid aggregation, both in the

presence and absence of a lipid membranes

• Promotes the stabilization of a helical structure of IAPP

Lee et al., 2019

• RIN-5F rat pancreatic β-cell line

exposed to hIAPP aggregates

• Suppresses the cellular toxicity mediated by IAPP

Ferulic acid • Cell-free • Represses IAPP amyloid formation Mirhashemi, 2012

(Continued)
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TABLE 1 | Continued

Phenolic compound Experimental model Mechanism of action References

Fisetin • Cell-free • Inhibits the formation of β-sheet structures Aarabi and Mirhashemi,

2017

Genistein • Cell-free • Prevents the conformational transition of IAPP monomers

to β-sheet structures

• Decreases amyloid fibrillization

• Interferes with self-aggregation of IAPP oligomers

Ren et al., 2018

• RIN-5F rat pancreatic β-cell line

exposed to hIAPP aggregates

• Reduces IAPP cytotoxicity

• Increases cell viability, decreases cell apoptosis, and

reduces cell membrane leakage

Morin • Cell-free • Inhibits the generation of IAPP aggregates

• Promotes the disaggregation of preformed fibrils

• Inhibits insulin aggregation and prevents

conformational changes

Noor et al., 2012

• Cell-free • Changes the morphology, solvent accessible surface area,

and the secondary structure of IAPP pentamer

Wang et al., 2015b

Myricetin • Cell-free • Inhibits IAPP fibrillogenesis Zelus et al., 2012

• PC12 rat adrenal gland cell line exposed

to hIAPP aggregates

• Reduces IAPP-induced cytotoxicity

O4, orcein-related

small molecule

• Cell-like system (using artificial crowding

agents Ficoll 70 and sucrose)

• Generates globular, amorphous off-pathway assemblies,

inhibiting the polymerization of mature IAPP fibrils

Gao et al., 2015

Oleuropein aglycone • Cell-free • Favors the generation of off-pathway IAPP species Rigacci et al., 2010

• RIN-5F rat pancreatic β-cell line

exposed to hIAPP aggregates

• Reduces IAPP cytotoxicity

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Promotes glucose-stimulated insulin secretion

• Stimulates the ERK/MAPK signaling pathway

• Inhibits the cytotoxicity mediated by IAPP amyloids

Wu et al., 2017

PGG • Cell-free • Inhibits IAPP aggregation and amyloid-based

fiber formation

Bruno et al., 2013

• PC12 rat adrenal gland cell line exposed

to hIAPP aggregates

• Prevents the toxicity of IAPP oligomers

Quercetin • RIN-5F rat pancreatic β-cell line

exposed to hIAPP aggregates

• Modulates the aggregation propensity of IAPP

• Protects cells from IAPP cytotoxicity

• Reduces oxidative damage

López et al., 2016

(Continued)
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TABLE 1 | Continued

Phenolic compound Experimental model Mechanism of action References

Resveratrol • Cell-free • Stabilizes IAPP off-pathway oligomers Nedumpully-Govindan

et al., 2016

• Cell-free • Inhibits the stacking of IAPP oligomers, avoiding its

aggregation and accumulation

Jiang et al., 2011

• Cell-free • Promotes conformational changes of hIAPP1 pentamer

(alters secondary structures, order degree,

and morphology)

Wang et al., 2015a

• Cell-free • Inhibits IAPP aggregation in the presence of

aggregation-fostering negatively charged lipid interfaces

Evers et al., 2009

• POPG model membrane • Promotes the generation of secondary structures (sheets

and helices)

• Perturbs the interaction between IAPP and negative

charged membranes

Lolicato et al., 2015

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Arrests IAPP fibril generation and associated cytotoxic

effects at an early stage

Radovan et al., 2009

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Generates off-pathway non-toxic IAPP conformations

• Enhances cell survival

Mishra et al., 2009

• INS-1 rat pancreatic β-cell line

expressing hIAPP

• Decreases amyloid deposition and restores insulin

secretion, though only when autophagy is not blocked

Lv et al., 2019

Resveratrol derivate • POPC/POPS model membrane • Eliminates amyloid growth and

associated-membrane damage

Sciacca et al., 2018

Rosmarinic acid • Cell-free • Represses IAPP amyloidogenic aggregates by opening the

β-sheet conformation of these structures

• Reduces IAPP-mediated toxicity

Zheng and Lazo, 2018

Rutin • Cell-free • Inhibits IAPP misfolding, disaggregates IAPP oligomers and

reverts IAPP conformation toward the physiological state

Aitken et al., 2017

• FVB/NJ transgenic mice

expressing hIAPP

• Slows diabetes progression

• SH-SY5Y human neuroblastoma cell

line exposed to hIAPP aggregates

• Inhibits IAPP aggregation and reduces IAPP-induced

neurotoxicity and oxidative stress

• Reduces the production of ROS and NO

• Attenuates mitochondrial damage

Yu et al., 2015

• BV-2 mouse microglial cell line exposed

to hIAPP aggregates

• Inhibits IAPP aggregation and reduces IAPP-induced

neurotoxicity

• Increases GSH/GSSG ratio

• Reduces the production of MDA, GSSG and

pro-inflammatory cytokines (TNF-α and IL-1β)

Salvianolic acid B • INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Suppresses membrane permeabilization, mitochondrial

impairment, and cytotoxicity induced by IAPP

• Inhibits the formation of lower order oligomers and fibrils

Cheng et al., 2013

Silibinin • Cell-free • Binds to specific conformers within an ensemble of IAPP

monomers, affecting the oligomerization process and

fibril assembly

Young et al., 2014a

• Cell-free • Favors the 3+ IAPP monomer preventing oligomerization

• Disaggregates preformed fibrils into small

off-pathway oligomers

Young et al., 2014b

(Continued)
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TABLE 1 | Continued

• Cell-free • Inhibits IAPP fibrillization through the suppression of toxic

IAPP oligomerization

Cheng et al., 2012

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Reduces IAPP cytotoxicity in a dose-dependent manner

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Enhances estrogen receptors phosphorylation, leading to

downregulation of ROS/RNS production induced

by IAPP/Aβ-42

Yang et al., 2019a

• INS-1 rat pancreatic β-cell line exposed

to hIAPP aggregates

• Protects cells from IAPP-induced apoptosis through

activation of GLP-1R/PKA signaling

Yang et al., 2019b

8-β-d-

Glucopyranosylgenistein

• Cell-free • Interacts with IAPP oligomers, preventing

amyloid fibrillization

Jesus et al., 2014

• STZ-induced diabetic rats • Normalizes fasting hyperglycemia

• Ameliorates excessive post-prandial glucose excursions

• Increases β-cell sensitivity and insulin secretion

Al(III), Aluminum III; Aβ, Amyloid beta; ECG, Epicatechin-3-Gallate; EGCG, Epigallocatechin-3-Gallate; ERK, Extracellular-Signal-Regulated Kinase; FVB/NJ, Friend Virus B NIH

Jackson; GLP-1R, Glucagon-like Peptide-1 Receptor; GSH, Glutathione; GSSG, Glutathione disulfide; hIAPP, Human Islet Amyloid Polypeptide; hIAPP-NH2, Amidated Human

Islet Amyloid Poplypeptide; IL-1β, Interleukin-1beta; MAPK, Mitogen Activated Protein Kinase; MDA, Malondialdehyde; NO, Nitric Oxide; PGG, Pentagalloyl Glucose; PKA, Protein

Kinase A; POPC, 2-oleoyl-1-pamlitoyl-sn-glyecro-3-phosphocholine; POPG, 2-oleoyl-1-pamlitoyl-sn-glyecro-3-glycerol; POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine;

RNS, Reactive Nitrogen Species; ROS, Reactive Oxygen Species; STZ-induced diabetic rat, Streptozotocin-induced diabetic rat; TNF-α, Tumor Necrosis Factor-alpha; Zn(II), Zinc II.

As IAPP produced in the pancreas was shown to cross
the blood–brain barrier (Banks et al., 1995; Banks and Kastin,
1998) and to act on brain receptors, another important aspect
of IAPP pathophysiology in the brain is its role in neuronal
network function. Therefore, the effects of IAPP on neuronal
and glial cells have been investigated (Chaitanya et al., 2011;
Xi et al., 2019). As the primary site of IAPP action, the area
postrema (AP) is the brain structure best characterized in terms
of IAPP effects.While IAPP was shown to promote the formation
of AP neuronal projections in neonatal rodents, in adult
Wistar rats, IAPP injections were reported (1) to affect genes
controlling neurogenesis, particularly NeuroD1, (2) to increase
the number of newly proliferated AP-cells, and (3) to promote
differentiation of these cells into neurons (Liberini et al., 2016).
A study to investigate the mechanism by which IAPP modulates
neuronal excitability in AP neurons in rat brainstem slices
revealed that IAPP induced changes in excitatory responses of
neurons not displaying the hyperpolarization-activated cation
current. Furthermore, this study revealed that IAPP receptors
were mainly located on presynaptic glutamatergic terminals
connecting these neurons and that IAPP can increase glutamate
release enough to cause cell firing (Fukuda et al., 2013). Likewise,
hIAPP was shown to cause a dose-dependent membrane
depolarization and an increase in firing frequency in neurons of
the diagonal band of Broca, a cholinergic basal forebrain nucleus,
in rats (Li and and Li, 2012). Hence, IAPP dysregulationmay have
important implications in neuronal function. IAPP receptors
were also proven to be mediators of the deleterious actions of
Aβ-42 in human neurons (Jhamandas et al., 2011). In this sense,
amylin receptors are seen as potential targets for AD therapies
(Fu et al., 2017).

AD is also considered a metabolic disease to a large extent.
It is clear that the brain loses its capacity to deal with glucose
and to respond to insulin and insulin-like growth factor (IGF)

(Rivera et al., 2005; Liu et al., 2011; Talbot et al., 2012). The
inability to respond to insulin and IGF leads to brain “starvation”
and neuronal loss (de la Monte et al., 2009; de la Monte, 2012).
Moreover, reducing the activity of the insulin/IGF signaling
cascade seems to protect from AD-like neurodegeneration in
nematodes, possibly by promoting more densely packed (and less
toxic) amyloid fibrils (Cohen and Goedert, 2004; El-Ami et al.,
2014). Thus, the link between AD and insulin/IGF exists, but it is
not easy to decipher. However, some of the mechanisms involved
are becoming clear. For example, the kinases that promote
Tau phosphorylation, causing cell death, become increasingly
activated due to insulin resistance (Schubert et al., 2003, 2004).
Then, Aβ-42 and its precursor protein levels also increase in the
brain as a result of insulin resistance (Messier and Teutenberg,
2005). One can state that, what could be called the “brain
diabetes phenotype,” i.e., increased resistance to insulin and to
IGF, can result in the appearance of classical AD molecular
biomarkers. Besides these clear links between diabetes and AD-
related peptides and proteins, the physiological functioning of
insulin and IGF promotes neuronal growth, differentiation, and
the formation of synapses, the lack of which is associated with
dementia (Takeda et al., 2010; Westwood et al., 2014). Overall,
insulin and IGF are required for synaptic plasticity and are
necessary for the cognitive function, themechanisms of which are
only partially explained (Qiu et al., 1998; Wickelgren, 1998; Zhao
and Alkon, 2001). Oxidative stress is also associated with AD and
diabetes as well as advanced glycation end products (Ramasamy
et al., 2011; Silveira et al., 2019).

Although studies focusing on IAPP, insulin, and IGF are
stimulating and may lead to exciting developments, one must be
careful to draw definitive conclusions regarding multi-factorial
diseases such as AD, even if it has been analyzed through the
prism of the glucose metabolism. The road to a treatment for AD
is full of failed starts and drug-development pipeline failures even
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if one (partially) understands the mechanism involved (Berhanu
et al., 2013). The fact that aging implies reductions in insulin
and IAPP release (Dechenes et al., 1998) provides important
clues that, in retrospect, should not have been overlooked for
so long (Despa and Decarli, 2013). The most powerful process
may be related to IGF-I, which has been shown to protect
and rescue hippocampal neurons from Aβ-42 neurotoxicity and
IAPP-induced toxicity, as a two-in-one solution. This was already
reported over 20 years ago (Doré et al., 1997), but, inexplicably,
it was somewhat ignored. This is no longer the case: the role of
IAPP in AD is not overlooked, as IAPP is even seen as the second
amyloid of AD pathology, a promising approach to understand
IAPP in relation to AD (Fawver et al., 2014). A curious finding
is that Aβ-42 directly activates the amylin-3 receptor subtype,
which may have major implications in AD pathology (Fu et al.,
2012) as well as in the “brain diabetes phenotype” that we have
proposed here. Moreover, it may also explain why pramlintide,
which acts on rat and human amylin receptors (Gingell et al.,
2014), can be protective in AD. Interestingly, Aβ-42 expressed
on human neurons can bind to amylin receptors (Jhamandas
et al., 2011), thereby triggering activation of apoptotic genes,
as IAPP does (Jhamandas and Mactavish, 2012). The activity
of these molecules on the brain may lead to neuronal death,
particularly in AD patients, thus explaining their phenotypic
profiles (Kawarabayashi et al., 2001; Dubois et al., 2016; Li and
Huang, 2016; Li et al., 2016a).

STRATEGIES FOR REDUCING IAPP
PROTEOTOXICITY USING NATURAL
COMPOUNDS

The links between IAPP and AD have not gone unnoticed,
with some authors presenting relevant reviews on the topic and
hinting at possible therapeutic strategies (Despa and Decarli,
2013; Jackson et al., 2013; Bharadwaj et al., 2017; Mietlicki-
Baase, 2018). The role of IAPP is undeniably relevant in
both diabetes and AD. Therefore, attempting to modulate
the oligomerization process or block its cytotoxicity is an
appealing venue for therapeutic strategies. Different approaches
have been attempted to block protein aggregation (Figure 1C).
Efforts have been made to interfere with the oligomerization
process itself by (i) stabilizing the monomer, (ii) remodeling
small oligomers from a fibrillogenic to non-fibrillogenic form,
thereby creating “off-pathway” oligomers, and (iii) reverting
fibrils to monomers or other intermediate species (Pithadia
et al., 2016; Table 1). Another strategy is to revert the
pathological effects of oligomers in cellular homeostasis,
such as ER stress, mitochondrial damage, cell membrane
permeabilization, autophagy impairment, inflammation, and β-
cell death (Kiriyama and Nochi, 2018).

The pleiotropic action of (poly)phenols toward chronic
diseases, particularly diabetes, is well-documented (Bahadoran
et al., 2013; Panickar, 2013; Jasmin and Jaitak, 2019; Silveira et al.,
2019). Most importantly, (poly)phenols have been linked to the
inhibition of aggregation of proteins such as IAPP and Aβ-42
(Pithadia et al., 2016; Sequeira and Poppitt, 2017; Dhouafli et al.,
2018). It has been shown that different classes of (poly)phenols

may interfere with different steps of the oligomerization process
(Ladiwala et al., 2011). The lower toxicity of these compounds
compared to synthetic molecules gives them an advantage as
future therapeutics. However, there is an urgent need for the
validation of their therapeutic potential in pre-clinical studies, as
most of the evidences derives from cell-free and in vitro assays
(Table 1).

Epigallocatechin gallate (EGCG) and resveratrol are the
most-studied compounds. EGCG has been proved to remodel
IAPP oligomers, create “off-pathway” intermediates, and prevent
monomers from shifting into β-sheet structures, a critical step in
early-stage aggregation processes (Bieschke et al., 2010; Young
et al., 2014a; Nedumpully-Govindan et al., 2016). Resveratrol
has also been suggested as an inhibitor of both IAPP and Aβ-
42 pathological effects. It was reported to lower intracellular
and secreted levels of Aβ-42 and also to stimulate intracellular
degradation (Marambaud et al., 2005). However, resveratrol
seems to be less effective than EGCG and inefficient in
preventing amyloid formation (Tu et al., 2015). In addition,
(poly)phenols have an important role in reducing oligomer-
induced cytotoxicity by modulating oxidative stress (Chakrabarti
et al., 2013), inflammation (Apetz et al., 2014), and autophagy
(Rigacci et al., 2015). A compilation of (poly)phenols as bioactive
components modulating IAPP toxicity is given in Table 1.

CONCLUDING REMARKS

This study shows how an “old story” can originate ground-
breaking knowledge and create new venues for a therapeutic
approach. The first high-impact paper describing IAPP as a
relevant factor for T2DM was published in 1994 (Lorenzo et al.,
1994). Since then, even though it took a long time for this field
to be pursued, knowledge has come a long way. It is now clear
that direct brain microvascular injury, leading to white matter
disease, is unequivocally originated by elevated IAPP levels in
diabetes (Ly et al., 2017), further supporting the “diabetes brain
phenotype” hypothesis that we have proposed here.

This change of approach is as cutting-edge as the finding that
amyloid fibrils precursors, but not the amyloid fibrils themselves,
are the cause of toxicity (Martins et al., 2008). We believe that
this study, and others that reflect on the role of IAPP in AD
in an unbiased manner (Mietlicki-Baase, 2018) complemented
by further experiments, will certainly pave the road to future
IAPP-centered drug development strategies against AD, as we
considering it as the result of a “diabetes brain phenotype.” Such
a view will certainly yield major therapeutic advances.
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