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Abstract

Background: Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2
diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes
involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We
also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and
fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra).

Methodology/Principal Findings: Gene expression was analyzed by quantitative RT-PCR on islets isolated from 10-week-old
diabetic GK and control Wistar rats. Furthermore, GK rats were treated s.c twice daily with IL-1Ra (Kineret, Amgen, 100 mg/
kg/day) or saline, from 4 weeks of age onwards (onset of diabetes). Four weeks later, islet gene analysis and pancreas
immunochemistry were performed. Thirty-two genes were selected encoding molecules involved in endothelial cell
activation, particularly fibrinolysis, vascular tone, OS, angiogenesis and also inflammation. All genes except those encoding
angiotensinogen and epoxide hydrolase (that were decreased), and 12-lipoxygenase and vascular endothelial growth factor
(that showed no change), were significantly up-regulated in GK islets. After IL-1Ra treatment of GK rats in vivo, most selected
genes implied in endothelium/OS/immune cells/fibrosis were significantly down-regulated. IL-1Ra also improved islet
vascularization, reduced fibrosis and ameliorated glycemia.

Conclusions/Significance: GK rat islets have increased mRNA expression of markers of early islet endothelial cell activation,
possibly triggered by several metabolic factors, and also some defense mechanisms. The beneficial effect of IL-1Ra on most
islet endothelial/OS/immune cells/fibrosis parameters analyzed highlights a major endothelial-related role for IL-1 in GK islet
alterations. Thus, metabolically-altered islet endothelium might affect the b-cell microenvironment and contribute to
progressive type 2 diabetic b-cell dysfunction in GK rats. Counteracting islet endothelial cell inflammation might be one way
to ameliorate/prevent b-cell dysfunction in type 2 diabetes.
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Introduction

The endothelium plays an important role in the regulation of

hemostasis, blood flow, maintenance of vascular architecture and

mononuclear cell migration, all of primary significance in

atherogenesis. The diabetic state is well known to be associated

with macrovascular complications such as atherosclerosis and

medial calcifications that lead to increased risk of cardiovascular

disease [1]. In addition, a diabetic-specific microvascular disease is

at work in the retina (retinopathy), kidney (glomerulopathy) and

vasa nervorum (neuropathy) [2].

Until now, the pancreatic islets have been only rarely

considered as being a possible ‘‘end-organ’’ of type 2 diabetes

(T2D). However, the islet has been shown to undergo significant
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remodelling concurrently or even earlier than other end-organs

in T2D [3,4]. Indeed, some studies have demonstrated the

presence of fibrosis in various spontaneous T2D animal models,

and also the presence of amyloid deposits in type 2 diabetic

patients [3,5–7]. Moreover, we showed recently that inflam-

mation is present in the islets of type 2 diabetic animal models

and in humans [6,8,9]. In the spontaneously diabetic Goto-

Kakizaki (GK) rat, we suggested that these islet alterations were

reminiscent of microangiopathy [6,7]. Others, using electron

microscopy, have described signs of microangiopathy in young

but normoglycemic Zucker fatty rats and in the db/db mouse

[10,11].

Hyperglycemia and some other associated metabolic derange-

ments (increased free fatty acids (FFA) and/or insulin resistance),

which may precede hyperglycemia, mediate abnormal endothelial

cell (EC) function via increased oxidative stress (OS), disturbances

of intracellular signal transduction (such as protein kinase C

activation) and activation of receptors for advanced glycation end-

products (RAGE) [1–3,12–14]. These molecular events lead to: 1)

decreased nitric oxide (NO) availability associated with increased

levels of endothelin-1 (ET-1) and angiotensin II (A-II) with

resulting vasoconstriction and its consequences on blood flow and

vascular smooth muscle cell (VSMC) growth; 2) activation of

transcription factors such as nuclear factor kappa B (NF-kB) and
activator protein-1 (AP-1), which increases the expression of

cellular adhesion molecules such as intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1). It also stimulates the production of cytokines, for

example, IL-1 and chemokines, such as monocyte/macrophage

chemoattractant protein (MCP-1), leading to local inflammation,

leukocyte attraction/migration and reactive oxygen species (ROS)

production; 3) increased production of prothrombotic/dysfibrino-

lytic factors, such as tissue factor and plasminogen activator

inhibitor-1 (PAI-1), which induce hypercoagulation and platelet

aggregation [1,15].

Overall vascular function is dependent upon the balance of

pro-/antioxidant mechanisms, which determines endothelial

function [14]. Considerable evidence demonstrates that OS plays

a central role in the pathology of diabetes [16–18]. Among other

factors including obesity and insulin resistance, hyperglycemia

alone is able to directly induce OS [19–21]. Diabetes starts at

around 4 weeks of age (weaning) in GK rats. After 3 months of

mild hyperglycemia, GK islets show an upregulation of the gene

encoding thioredoxin-interacting protein [6], which is induced by

hyperglycemia and inhibits thioredoxin antioxidant function [22].

Also, ROS are involved in the mechanism of action of pro-

inflammatory cytokines, such as IL-1b and tumor necrosis factor-a
(TNF-a), known to be produced by EC and to target them [23–

28]. Therefore, based on the data presented above, we

hypothesized that T2D islet inflammation might have originated

from EC activation.

Here, we assessed in 10-week-old diabetic GK rats and Wistar

controls: 1) different circulating parameters linked to EC

dysfunction, OS, inflammation, and atherosclerosis; 2) the

expression of selected genes known to be involved in EC activation

in freshly isolated islets; 3) the effect of 1-month treatment with IL-

1Ra on islet expression of genes linked to endothelium, OS and

extracellular matrix proteins, and islet vascularization and fibrosis.

IL-1Ra has already been used in T2D and atherosclerosis [29–31].

Our data showed that endothelial activation is present in islets

from 10-week-old diabetic GK rats, concomitantly with inflam-

mation/OS. Moreover, IL-1Ra in vivo dampened these events,

ameliorating islet vascularization, reducing fibrosis and improving

glycemia.

Results

Dyslipidemia and signs of systemic OS in diabetic GK rats
Metabolic parameters for 10-week-old male control Wistar and

diabetic GK rats are summarized in Table 1. The body weight of

diabetic animals was significantly lower than controls. They

displayed mildly but significantly elevated fed blood glucose and

insulin levels [32]. They also showed hyperleptinemia and

significantly increased circulating levels of triglycerides, FFA, total

cholesterol and high density lipoproteins (HDL) cholesterol. Their

total cholesterol/HDL cholesterol ratio was similar to that of

Wistar rats. The glutathione redox state was significantly lower in

GK than Wistar red blood cells (RBC), with comparable

equivalent reduced glutathione contents (Eq GSH). Plasma a-
tocopherol level was significantly higher in GK animals than

controls. Concomitantly, the plasma homocysteine level, an

independent risk factor in the development of atherosclerosis

[33,34], was significantly lower. Moreover, the activity of

paraoxonase-1 (PON-1), an HDL-associated lipo-lactamase,

whose activity is negatively correlated with homocysteine [35],

was signicantly higher in diabetic than control animals. However,

circulating cytokines/chemokines levels, such as GRO1/KC (or

CXCL1, the rodent equivalent of IL-8), MCP-1 (CCL2), MIP-1a
(macrophage inflammatory protein-1a or CCL3) and IL-6 were

not significantly different at this age between both groups.

Table 1. Metabolic data for 10-week-old control Wistar and
diabetic GK male rats.

Parameters Wistar GK

Body weight (g) 384610 27768*

Glucose (mM) 5.960.3 8.360.4*

Insulin (pM) 184643 4406115*

Leptin (pM) 250633 360617*

Triglycerides (mM) 1.560.1 2.160.1*

FFA (mM) 0.560.0 0.760.0*

Total cholesterol (mM) 1.660.1 2.060.0*

HDL cholesterol (mM) 1.160.1 1.460.0*

Cholesterol/HDL ratio 1.460.0 1.460.0

RBC glutathione redox state 93.561.0 80.163.1*

RBC Eq GSH content (mM) 3.960.3 3.860.3

a-Tocopherol (mM) 13.560.6 22.061.1*

Homocysteine (mM) 9.960.6 6.060.3*

PON-1 (%) 10064 11663*

GRO1/KC (pg/ml) 312670 337637

MCP-1 (pg/ml) 153616 219645

MIP-1a (pg/ml) 6.460.8 7.662.5

IL-6 (pg/ml) 79621 2246113

Glucose, insulin, leptin, lipids, cytokine and chemokine levels were determined
in serum. Alpha-tocopherol and homocysteine levels, and paraoxonase-1 (PON-
1) activity were determined in plasma. Glutathione redox state (% of reduced
glutathione (GSH)) and GSH content (Eq GSH) were determined in red blood
cells (RBC). Glucose, insulin, leptin: n = 7 per group; lipids: n = 9 per group;
cytokines/chemokines: n = 7 per group; a-tocopherol, glutathione redox state
and GSH content (n = 7–13 per group) and homocysteine and PON-1: n = 7–8
per group. All parameters were assayed under fed conditions. FFA (free fatty
acids); HDL: high density lipoproteins; GRO1/KC/CXCL1: rodent equivalent of IL-
8; MCP-1/CCL2: monocyte/macrophage chemoattractant protein; MIP-1a/CCL3:
macrophage inflammatory protein-1a; IL-6, interleukin-6. *p,0.05 versus age-
matched Wistar group, as analyzed by Student’s t-test.
doi:10.1371/journal.pone.0006963.t001
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Therefore, in addition to mild basal hyperglycemia, 10-week-old

adult GK rats also exhibited hyperlipidemia, blood OS (as

reflected by oxidized RBC glutathione redox state), but had

already mounted blood antioxidant defense (high a-tocopherol

level and PON-1 activity).

Islet endothelial activation in diabetic GK rats
Hyperglycemia is well recognized to be associated with

increased arterial wall inflammation, reflected by increased

expression of anti-fibrinolytic components, vascular cell adhesion

molecules, renin-angiotensin system (RAS) factors, agents involved

in OS, vascular tone and angiogenesis, and also of cytokines,

chemokines, Toll-like receptors (TLRs) and molecules involved in

their signalling [1,15,25,28,36–38]. Therefore, we selected 32

genes encoding molecules belonging to these different classes.

Expression of these genes is shown in Table 2. Twenty-eight of 32

of the selected genes were significantly over-expressed. These

genes encoded the following molecules: 1) anti-fibrinolysis system:

PAI-1; 2) vascular adhesion molecules: E-selectin (E-SELE),

ICAM-1, platelet-endothelial cell-adhesion molecule-1 (PECAM-

1) and VECAM-1; 3) RAS: angiotensin-converting enzyme-1

(ACE-1) and angiotensin receptor-1a (AGTR-1a); 4) vascular

tone/OS/angiogenesis components: cyclo-oxygenase-2 (COX-2),

endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1),

heme-oxygenase-1 (HO-1), hypoxia-induced factor-1a (HIF-1a),

NADPH-oxidase-2 (NOX-2), prostacyclin synthase; 5) cytokines

and growth factors: IL-1b, IL-1Ra, IL-6, transforming growth

factor-b (TGF-b), tumor necrosis factor-a (TNF-a); 6) chemokines:

GRO1/KC, MCP-1, and MIP-1a; 7) cellular pathways for

cytokines and TLRs: caspase-1, TLR-2, TLR-4, myeloid differ-

entiation primary response protein MyD88, NF-kB and inductible

nitric oxide synthase (iNOS). The expression of 2 genes of 32 was

found to be significantly decreased, one encoding a molecule

belonging to RAS: angiotensinogen and the other encoding

soluble (cytoplasmic) epoxide hydrolase (sEH), involved in vascular

tone, OS, inflammation and angiogenesis. Finally, the gene

expression for the pro-oxidant 12-lipoxygenase (12-LOX) and

the pro-angiogenic factor vascular endothelial growth factor

(VEGF) was not modified. Thus, islets from 10-week-old diabetic

GK rats are characterized by increased mRNA levels of molecules

involved in dysfibrinolysis, endothelium cell adhesion, vascular

tone, OS and inflammation.

Beneficial effect of IL-1Ra on glycemia and expression of
genes selected for endothelial activation, OS and ECM,
and on vascularization and fibrosis in GK islets
Endothelial activation, OS and mechanisms of cytokine action

are tightly linked [23–28]. IL-1b, produced by EC among other

cells, is involved in microangiopathy/atherogenesis [28,39,40].

Therefore, we administered IL-1Ra, its natural antagonist, s.c.

twice daily at 50 mg/kg (i.e. 100 mg/kg/day) to GK rats, from 4

weeks (weaning and onset of diabetes) to 8 weeks of age. At the end

of treatment, IL-1Ra-treated GK rats showed a significantly lower

glycemia than GK saline (controls): 8.860.3 mM (n= 7) and

7.960.1 mM (n=8, p,0.05), respectively.

GK rat IL-1Ra treatment down-regulated 80% of selected

genes. As shown in Fig. 1A, IL-1Ra treatment significantly (except

otherwise stated) decreased GK islet expression of genes encoding:

PAI-1 (261%), VCAM-1 (268%, ns), ACE-1 (274%), ET-1

(Edn1, 254%), NOX-2 (267%), COX-2 (260%), iNOS (254%),

prostacyclin synthase (Ptgis, 248%), and eNOS (255%) vs Wistar

controls. However, IL-1Ra treatment did not significantly reduce

islet endothelial gene expression for E-selectin (Sele) and HIF-1a.

The effects of IL-1Ra treatment on genes encoding antioxidant

molecules are shown in Fig. 1B. Beta-cells appear to be especially

vulnerable to ROS attacks due to their low levels of antioxidant

enzymes [41,42]. To compensate for such vulnerability, diabetic b

cells may upregulate antioxidant genes in vivo [43], as we recently

showed in GK islets [44]. Here, IL-1Ra treatment of GK rats was

able to down-regulate the expression of some of these genes but not

all of them. First, the gene expression of one of the main stress-

activated mitochondrial enzymes, superoxide dismutase 2 was

decreased (Sod2, 263%). This enzyme represents the first-line of

defense against superoxide anions generated by the mitochondria.

However, IL-1Ra did not modify the expression of Sod1 gene. IL-

1Ra further reduced significantly catalase (Cat, 234%), but not

glutathione peroxidase 1 (Gpx1), nor thioredoxin 1 (Txd1), or

peroxiredoxin 1 (Prdx1). Those genes encode molecules involved in

further reduction of superoxide-derived compounds (H2O2). IL-

1Ra treatment down-regulated the expression of genes encoding c-

glutamylcysteine ligase catalytic subunit (Gclc, 242%) and

glutathione reductase (Gsr, 231%), both of which contribute to

maintain the content of GSH, an antioxidant thiol, whose

mechanisms include: 1) an antioxidant potential mediated by the

peroxidase-coupled reaction; 2) regulation of cellular sulfhydryl

status and redox equilibrium; 3) regulation of expression/activation

of redox-sensitive transcription factors induced by stress-evoked

responses [45]. IL-1Ra treatment also significantly lowered the gene

encoding HO-1 (Hmox1,249%), an antioxidant induced by supra-

physiological glucose concentrations [46], inflammation [47],

cytokines [48,49], and oxidative low density lipoproteins (LDL)

[50]. Finally, IL-1Ra treatment down-regulated the expression of

NF-E2-related factor (Nrf2, 247%), which drives the expression of

several genes, such as Gclc and Hmox1 [51].

As shown in Fig.1C, IL-1Ra reduced mRNA islet levels of

TLR4 (255%), MyD88 (222%) and NF-kB (248%), in addition

to mRNA down-regulation of various cytokines/chemokines

(including IL-1b), as shown elsewhere [52]. Not surprisingly

therefore, IL-1Ra treatment also down-regulated the expression of

genes encoded by macrophages or immature myeloid cells, which

infiltrate GK islets at this age [6]. For example, the mRNA levels

of MHC (major histocompatibility complex) class II (H2-Ea),

CD53, and CD74 (macrophage inhibitory receptor or MIF) were

strongly reduced: 270%, 240%, and 278%, respectively).

Moreover, the genes encoding the main three extracellular matrix

proteins constituting GK islet fibrosis (collagen I, collagen III and

fibronectin, whose genes were over-expressed in GK vs Wistar

islets [6]) were down-regulated after IL-1Ra treatment (Col1a1,

248%, Col3a1, 245%; Fn1, 249%, respectively) (Fig. 1D).

Finally, we performed immunohistochemistry for von Will-

ebrand factor (VWF), an EC marker, and for fibronectin, a main

component of GK islet fibrosis, also produced by EC [6]. Von

Willebrand factor and fibronectin islet labeling examples are

shown in figure 2 (panels A and B). As previously described [6],

islets of adult GK rats are extremely heterogeneous, compared to

age-matched Wistar islets: they showed different degrees of

endothelial alteration and fibrosis. More precisely, GK islet

vascularization appears more or less hypertrophied or even greatly

disorganized. One month of IL-1Ra treatment significantly

reduced labeling of GK islet alterations, as shown for both VWF

and fibronectin (253% and 269%, respectively).

Discussion

The origin of the recently recognized islet inflammation in T2D

is still an open question. A few studies in various spontaneous T2D

animal models (Zucker diabetic fatty, Otsuka Long-Evans

IL-1Ra & GK Islet Endothelium
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Tokushima fatty and Torii rats, and db/db mice) indicated islet

vessel alterations (leakage, hemorrhage), anomalies of blood flow,

microangiopathy [10,11,53,54] or even amyloid deposits along

vessels in type 2 diabetic patients [5]. We hypothesized that islet

inflammation might have originated from EC activation (for

review, see [7]). Using a molecular approach, we demonstrate

here, for the first time, that 10-week-old diabetic GK rats show

increased markers of endothelial microvessel activation associated

with inflammation in islets. Moreover, in vivo IL-Ra treatment

reduced most of these molecular and vascular alterations, islet

fibrosis and glycemia.

Endothelial dysfunction has already been described in old GK

rat macrovessels (mesenteric artery, thoracic aorta and cerebral

arteries) [55–59]. These studies showed adhesion molecule gene

overexpression, pronounced renal perivascular monocyte/macro-

phage infiltration, increased vascular OS, and RAS and ET-1

Table 2. Expression of genes encoding factors involved in endothelium activation and inflammation in GK islets.

Protein names Acronyms mRNA levels

Wistar (W) GK Fold of W

Dysfibrinolysis

Plasminogen activator inhibitor-1 PAI-1 0.460.1 31.563.2 q x70*

Cellular adhesion molecules

E-selectin (CD62) E-SELE 0.860.1 11.862.3 q x14*

Intercellular adhesion molecule-1 (CD54) ICAM-1 0.860.2 5.060.7 q x6*

Platelet endothelial cell adhesion molecule-1 (CD31) PECAM-1 2.560.5 4.060.3 q x2*

Vascular cell adhesion molecule-1 (CD106) VCAM-1 0.160.0 9.361.1 q x62*

Vascular tone/oxidative stress/angiogenesis

Angiotensin-converting enzyme-1 ACE-1 3.460.9 7.360.4 q x2*

Angiotensin receptor-1a AGTR-1a 1.460.2 2.960.3 q x2*

Angiotensinogen AGT 3.560.7 1.660.2 Q x0.5*

Cyclo-oxygenase-2 COX-2 0.960.2 17.364.1 q x19*

Endothelial nitric oxide synthase eNOS 0.960.1 2.460.1 q x3*

Endothelin-1 ET-1 0.560.2 1.460.1 q x3*

Epoxide hydrolase 2, soluble sEH 160.0 0.160.0 Q x0.1*

Heme-oxygenase-1 HO-1 1.860.2 45.560.1 q x25*

Hypoxia-induced factor-1a HIF-1a 2.660.1 4.560.6 q x2*

12-Lipoxygenase 12-LOX 0.360.1 0.360.1 R x1

NADPH-oxidase-2 NOX-2 0.960.1 2.860.1 q x3*

Prostacyclin synthase PGIS 1.760.2 8.860.7 q x5*

Vascular endothelial growth factor A VEGFA 2.160.2 2.360.1 R x1

Cytokines/growth factors

Caspase-1 or IL-1-converting enzyme Caspase-1 1.060.0 2.360.0 q x2*

Interleukin-1b IL-1b 0.360.1 4.560.9 q x15*

Interleukin-1 receptor antagonist IL-1Ra 0.160.0 3.760.2 q x34*

Interleukin-6 IL-6 1.360.4 48.968.1 q x38*

Transforming growth factor-b TGF-b 1.160.1 7.260.5 q x7*

Tumor necrosis factor-a TNF-a 0.560.3 16.464.1 q x33*

Chemokines

Chemokine GRO/KC (rodent analog of IL-8) KC or CXCL1 0.660.2 73.1615.5 q x113*

Monocyte chemoattractant protein-1 MCP-1 or CCL2 0.360.0 66.3611.9 q x204*

Macrophage inflammatory protein-1a MIP-1a or CCL3 1.060.3 44.765.6 q x46*

Toll-like receptor/intracellular pathways

Inductible nitric oxide synthase iNOS 3.260.5 21.961.9 q x7*

Myeloid differentiation primary response protein MyD88 MyD88 0.860.2 1.760.1 q x2*

Nuclear factor kappa B (p65) NF-kB 1.060.1 2.460.1 q x2*

Toll-like receptor-2 TLR-2 1.060.1 4.461.1 q x4*

Toll-like receptor-4 TLR-4 0.460.1 1.960.2 q x4.8*

Total RNA was extracted from freshly isolated islets of 2.5-month-old male Wistar and GK rats and quantitative RT-PCR was performed for the indicated genes and
normalized to a housekeeping gene (rpL19 or Ef1a). Data are means6SEM of 5–6 different islet isolations per group except for caspase-1 and epoxide hydrolase-2
(n = 3). *p,0.05 using Student’s t-test.
doi:10.1371/journal.pone.0006963.t002
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involvement. Moreover, GK macrophages exhibit a pro-inflam-

matory phenotype associated with the pathogenesis of atherogen-

esis [60]. Alpha-lipoic acid, AGTR-1 and ET-1 antagonists have

been shown to provide vasoprotective effects in these macrovessels

[55,57–59]. Here, we extend the observation to alterations of the

islet microvascular bed in an early stage of the GK disease

development.

As expected, 8–10-week-old diabetic GK rats showed mild

hyperglycemia, hyperinsulemia and hyperlipidemia. However, it

should be mentioned that, at this age (around onset of insulin

resistance), hyperinsulinemia may be observed or not from one

batch of GK rats to another. Our data confirm that male diabetic

GK rats exhibit increased levels of triglycerides, FFA, cholesterol

and HDL [61,62]. Notably, extensive physiological screening in

both sexes of congenics revealed the existence of GK variants at

the locus Nidd/gk5, independently responsible for significantly

enhanced insulin secretion and altered cholesterol metabolism

[61]. GK rats had marked hyperleptinemia, classically associated

with obesity and/or hyperinsulinemia [63]. Concomitantly,

peripheral OS, as reflected by oxidized RBC glutathione redox

state, was present in GK rats. Patients with high circulating

homocysteine levels, an independent risk factor of atherosclerosis

development, have an impaired ability to induce cholesterol efflux

from macrophages [33,34,64]. Homocysteine, unexpectedly lower

in diabetic rats than in controls, might be responsible for the

higher systemic GK cholesterol levels. PON-1 is an antioxidant

Figure 1. IL-1Ra treatment reduces the expression of most of the selected genes for endothelial activation, oxidative stress,
myeloid cells, and fibrosis in GK islets. Pancreatic islets were isolated from GK rats following 1-month-treatment with IL-1Ra by s.c. injections (GK
saline n = 6, GK IL-1Ra (100 mg/kg/day), n = 5). For each animal, total RNA was extracted from isolated islets and quantitative RT-PCR was performed
for the indicated genes, and expressed relative to GK saline. *p,0.05 using Student’s t-test.
doi:10.1371/journal.pone.0006963.g001

IL-1Ra & GK Islet Endothelium
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Figure 2. IL-1Ra treatment improves vascularization and reduces fibrosis in GK islets. Immunohistochemistry was performed for von
Willebrand factor (VWF) (A) and fibronectin (B) in pancreas of young adult untreated Wistar and GK rats, and of s.c. saline- or IL-1Ra-treated-GK rats.
The border of each islet is defined by the dashed line. As shown in panel A, VWF-labeled islets from untreated GK rats are extremely heterogeneous in
terms of vascularization and extent of fibrosis, when compared to Wistar controls. In saline- and IL-1Ra-treated GK rats, immunolabeled islet area for
VWF or fibronectin was quantified for each islet and expressed as to the corresponding islet surface (n = 3 GK rats for both treatment groups, n = 25–
40 islets). Islets analyzed for quantification showed unchanged islet area between treatment groups. *p,0.05 using Student’s t-test.
doi:10.1371/journal.pone.0006963.g002
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agent and anti-atherogenic HDL-associated enzyme, which

prevents LDL and HDL oxidation [65,66]. Homocysteine has

been demonstrated to be negatively correlated to the plasma

activity of PON-1 in a mouse model of homocysteine disorder

[35]. This is also the case in diabetic GK rats, which had higher

plasma PON-1 arylesterase activity than Wistar. In this regard, it

should be noted that increasing PON-1 in mice attenuated

diabetes-induced macrophage OS, diabetes development and

decreased mortality [67]. Therefore, high circulating PON-1

activity together with enhanced a-tocopherol (vitamin E) in 10-

week-old diabetic GK rats, might suggest that these rats had

already installed a systemic antioxidant defense in the lipophilic

plasma compartment. The latter might be characterized by some

degree of leptin resistance, because of the decreasing effect of

leptin on plasma PON-1 activity in Wistar rats [68], and

hyperleptinemia in GK rats. This might explain why, despite

high circulating levels of the pro-inflammatory/pro-oxidant leptin,

systemic cytokine/chemokine levels were similar in GK rats and

Wistar controls, while the levels of some of them was high in GK

rats before weaning (see below).

Molecular signs of GK islet endothelial activation and OS might

not only derive from mild chronic hyperglycemia, but also from

associated metabolic disorders, such as increased circulating FFA

and cholesterol levels and/or insulin resistance, which can precede

hyperglycemia [1–3,12–14]. Hyperglycemia alone is recognized

for a long time to be deleterious for EC [1,2,17], while it induces

pro-inflammatory cytokine/chemokine expression in monocytes

and increases their adhesion to EC [69], where hyperglycemia-

induced ROS toxicity is dependent on paracrine factor release,

like cytokines [70]. High levels of FFA signaling through TLR

receptors, cholesterol, leptin and A-II are also able to stimulate

cytokine/chemokine release from EC and/or vascular smooth

muscle cells, consequently increasing vascular OS [63,71,72]

(Fig. 3). Then, inflammatory cells migrate and produce cytokines/

chemokines and ROS [73], which might alter b-cells. Also, b-cells
are able to produce IL-1 and IL-Ra in the presence of glucose,

FFA and/or leptin [74]. A vicious cycle is therefore initiated that

will alter islet blood flow and b-cell function [7], unless the islets

are able to mount defense mechanisms.

Notably, islet capillary alterations and hemorrhage and signs of

microangiopathy are already present in normoglycemic Torii and

Zucker fatty rats, before onset of diabetes [11,53]. In Torii rats,

hyperlipidemia precedes hyperglycemia [75]. Similarly, we

observed in prediabetic 7-day-old GK vs Wistar neonates,

Figure 3. Proposed model illustrating the islet endothelial dysfunction and oxidative stress surrounding b cells in GK rats. Elevated
glucose, FFA and possibly cytokines induce endothelial activation at the islet level by eliciting reactive oxygen species (ROS) production and cytokine/
chemokine release by endothelial cells and vascular smooth muscle cells. Once released, chemokines (CXCL1, CCL2, CCL3) attract/retain immune cells
(monocytes, neutrophils), which further induce ROS and cytokine production around b cells. In addition, cytokines as well as metabolic factors (high
glucose and FFA) may act directly on b cells to increase intracellular cytokines and ROS production with consecutive antioxidant defense response.
Antagonizing IL-1 by IL-1Ramay inhibit endothelial activation/dysfunction and subsequent immune cells attraction/activation. IL-1Ramay also blunt IL-1
signaling in b cells and subsequent ROS production and antioxidant defense response. CXCL1 (GRO1/KC, rodent equivalent of IL-8), CCL2 (MCP-1); CCL3
(MIP-1a); FFA (free fatty acids); IL-1b, interleukin-1b; IL-1Ra, interleukin-1 receptor antagonist; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a.
doi:10.1371/journal.pone.0006963.g003
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increased serum FFA levels and high cholesterol/HDL ratio

together with elevated levels of chemokines (CXCL-1, CCL2 and

CCL3) [76]. Because we also found higher circulating total

cholesterol/HDL cholesterol ratio in E21.5 GK fetuses, our

present hypothesis is that dyslipidemia, together with fetal GK

hyperglycemia [77], initiates an islet microangiopathy/atheroscle-

rosis process via in utero programming [78]. Such developmental

metabolically-induced alterations may explain the high islet ROS

levels associated with altered glutathione and thioredoxin-related

gene expression recently observed in prediabetic 7-day-old GK

neonates [44]. Thus, using oligo GEArrays targeted at endothe-

lium and cardiovascular disease biomarkers, we showed a

significant upregulation of genes encoding various inflammatory

molecules [76], while the expression of genes encoding eNOS, E-

selectin, VCAM-1, IL-1b, IL-1Ra, IL-6, TNF-a, TLR-4 and

MyD88 (upregulated in 10-week-old GK rats) was similar in 1-

week-old prediabetic GK and Wistar islets (data not shown).

After diabetes onset, however, we showed in GK islets that most

of the selected 32 genes, which were up-regulated, encoded

deleterious molecules involved in microangiopathy/atherosclero-

sis. Some molecules are more or less specific to endothelium (such

as PAI-1, VCAM-1, E-selectin, PECAM-1 and eNOS), while part

of endothelial activation includes inflammatory products not

specific to endothelium. For example, cytokines and chemokines

can be produced by different cell types, including EC, VSMC,

macrophages, granulocytes, even b-cells or other endocrine cells

[7]. As hypothesized, there was an over-expression of genes

encoding: anti-fibrinolytic agent, cellular adhesion molecules,

cytokines/chemokines, growth factors and caspase 1, which

cleaves pro-IL-1 and pro-IL-18 in their active forms [79]; and

finally TLRs, which are stimulated by FFA and involved in

atherosclerosis [37], and molecules involved in TLR and IL-1

signaling: MyD88, NF-kB and iNOS. The majority of molecules

selected here are known to be modulated at the transcriptional

level. However, a few of them, particularly NF-kB and HIF-1a,

are regulated at the post-transcriptional and even post-transla-

tional level. Therefore, their mRNA levels do not correlate

systematically with their transcriptional activity. Here, however,

increased gene NF-kB expression was accompanied with more

translational activity, because of its association with gene

upregulation of IL-1 and iNOS, 2 molecules known to be under

NF-kB regulation. In addition, mRNA levels of other genes under

NF-kB regulation (antioxidant/antiapoptotic genes) were also

elevated in 10-week-old GK islets [80].

The GK islet iNos overexpression should be underlined on the

basis of the following data: 1) studies using iNOS-deficient mice

showed that iNOS plays an important role in the pathogenesis of

vascular lesions characteristic of the early stages of diabetic

retinopathy, preventing leukostasis [81]; 2) granulocytes infiltrate

diabetic GK islets [6], express iNOS and produce ROS [73]; 3)

granulocytes induce cardiomyocyte injury after myocardial

ischemia/reperfusion by an iNOS-derived OS and peroxynitrite-

mediated mechanism [82]; 4) in the aortic tissue of diabetic GK

rats, superoxide production is increased but NO bioavailability

decreased [56]. This is associated with elevated eNOS protein

expression and low levels of its cofactor tetrahydrobiopterin,

increased nitrosylated protein content and expression of the

superoxide-generating enzyme NADPH oxidase (particularly,

NOX-2). These data suggest that diabetes triggers ROS

production from the NADPH oxidase, leading to tetrahydrobiop-

terin oxidation, eNOS uncoupling, and oxidative NO inactivation

with subsequent peroxinitrite formation [83]. Moreover, increased

expression of NOX-2 and eNOS mRNA and protein levels have

been observed in the mesenteric arteries of streptozotocin-induced

diabetic apolipoprotein-E-deficient mouse [84]. Similarly, genes

encoding NOX-2 and eNOS were also up-regulated in our

diabetic GK islets, together with elevated eNOS protein level

(unpublished data) and increased GK islet NO production [85],

therefore strenghtening eNOS uncoupling. Finally, it should be

noted that: 1) eNOS expression is stimulated by hypercholester-

olemia, TNF-a, TGF-b and hypoxia; 2) NADPH oxidase

expression is stimulated by glucose, FFA and cytokines in rat

pancreatic islets and a clonal b-cell line [86]; and 3) high glucose

levels downregulate the number of monocytic calveolae, which

mediate the intracellular lipid transport, through NADPH

oxidase-induced OS [87]. The gene encoding the pro-inflamma-

tory/pro-oxidant COX-2 enzyme was strongly up-regulated in

GK islets. Notably, inhibition of COX-2 gene or its deletion in

macrophages protects against atherosclerosis [88]. Regarding b-

cell function, COX-2 over-expression could be deleterious,

because its selective inhibition is able to enhance glucose-induced

insulin secretion through a reduction of prostaglandin E2 [89].

Among other genes that were found to be up-regulated in

diabetic GK islets are those encoding several vasoconstrictor

agents, such as ET-1 and RAS-linked molecules. Endothelins

activate NADPH oxidases, thereby increasing superoxide produc-

tion and OS, and consequently leading to endothelial dysfunction

[90,91]. ET-1 has also been shown to stimulate in vitro the release

of IL-1b, TNF-a and IL-6 from monocytes [92] and has marked

vasoconstrictor effect on mouse pancreatic islet vasculature, either

in vivo or in vascularly perfused islets [93]. As already mentioned,

circulating ET-1 levels are elevated in aged GK rats and ET-1

antagonists ameliorate their macrovessel alterations [58]. The

presence of various RAS components has been described at the

islet level [94], and A-II-mediated signal through AGTR-1

involves NADPH activation, superoxide production and eNOS

uncoupling [72]. In the diabetic retina, A-II induces leukostasis via

NADPH activation [95]. AGT, ACE, and or AGTR-1 mRNA

and protein levels are elevated in arterial cells of type 2 diabetic

patients, and RAS inhibition reduces the onset of T2D and

prevented atherosclerosis [96]. Hypercholesterolemia stimulates

angiotensin peptide synthesis and contributes to atherosclerosis

through the AGTR-1 [97]. Moreover, in streptozotocin-induced

diabetic mouse aortas, the AGTR-1 blocker candesartan or the

ACE inhibitor captopril markedly attenuates eNOS-derived ROS

production, while augmenting NO bioavailability, implicating

eNOS recoupling [98]. In db/db mouse islets, candesartan,

ameliorates b-cell function, decreases OS markers and fibrosis,

and prevents EC loss [99]. As expected, GK islets showed an up-

regulation of ACE, AGTR-1 genes but an AGT gene down-

regulation, which could be linked to the local insulin inhibitory

effect on AGT mRNA expression in EC [100].

In addition to the up-regulated genes with deleterious effects,

we noted a few genes, whose modulation would be supposed to

exert protective effects. This is the case for the gene encoding

prostacyclin synthase (Ptgis), which is stimulated by IL-1b, TNF-

a and TGF-b, and produces prostacyclin (PGI2), a potent

vasodilatator agent [101]. Two other over-expressed genes, also

stimulated by cytokines and hypoxia, encode molecules with

antioxidant and/or pro-angiogenic effects: HO-1 and HIF-1a.

HO-1, whose gene expression was markedly up-regulated in GK

islets, is a potent antioxidant agent, which is able to decrease

MCP-1 but increase VEGF in EC [102], inhibit their adhesion

molecules expression [103] and protect them from glucose-

induced apoptosis [104]. HO-1 induction improves pancreas

graft survival by preventing pancreatitis after transplantation,

and protects pancreatic microcirculatory dysfunction after

ischemia/reperfusion in rats [105,106]. HIF-1a, like NF-kB, is
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regulated at post-transcriptional and/or post-translational levels.

The HIF-1a overexpression in GK islets is possibly linked to

vessel alterations. We also showed that a crucial target gene of

HIF-1a, Ldha (encoding lactate deshydrogenase A) was also

overexpressed in GK islets [80]. HIF-1a regulates several pro-

angiogenic genes, eNOS, HO-1, MIF, and VEGF [107]. Because

of concomitant gene upregulation of eNOS and HO-1, it is

highly probable that HIF-1a activity was also stimulated in GK

islets. However, VEGF gene expression showed no change. This

observation might be of importance in the context of T2D and

atherosclerosis, where defects in endothelial precursor cells were

recently recognized [108,109]. GK rats might present a deficient

angiogenesis due to lack of VEGF response and also possible

eNOS uncoupling, because VEGF-induced-eNOS is an efficient

pathway of angiogenesis [110,111] as well as COX-2 [112]. In

this context, the lack for GK rats to increase blood flow and islet

mass after 60% pancreatectomy as opposed to Wistar rats should

be noted [113].

IL-1Ra, the natural IL-1 antagonist, is another molecule of

interest in this study for several reasons. It has been shown to: 1)

play a crucial role in the prevention of inflammatory diseases; 2)

counteract deleterious effects of IL-1 members involved in insulin

resistance and diabetes; 3) reduce hyperglycemia and improve b-

cell function in type 2 diabetic patients [29,114,115]. In addition,

some haplotypes of the IL-1Ra gene have been found to be

correlated with increased cardiovascular disease risk in patients

with or without diabetes and IL-1Ra is being to be used in

atherosclerosis [31,116,117]. Compared to Wistar, untreated GK

islets showed a marked IL-1Ra gene up-regulation, which was

unable to counteract spontaneously in situ the consequences of the

concomitant strong IL-1b gene up-regulation. In this regard, on

can note that: 1) a very high IL-1Ra/IL-1 ratio is necessary to

counteract IL-1 effects; 2) in situ a very low IL-1b concentration

can exert its pleiotropic action and part of the latter may become

IL-1-independent with time; 3) and/or the GK islet inflammatory

process could be triggered concomitantly by other factors, such as

TLR activation via dyslipidemia [71]. By contrast, 100 mg/kg/

day IL-1Ra treatment of GK rats was able to significantly down-

regulate most selected genes for endothelial activation, all

cytokines/chemokines and their pathways, myeloid cell infiltra-

tion, and ECM proteins. Concomitantly, most antioxidant gene

expression was down-regulated, particularly those known to be

activated by IL-1 at the EC level [118] and serum level of the

antioxidant PON-1 was back to age-matched (8-week-old) Wistar

values after IL-1Ra in vivo (data not shown). As expected, IL-1Ra

treatment reduced islet hyper-vascularisation and islet fibrosis in

GK rats. These data highlight the primary role of IL-1 in the

pathogenesis of islet microangiopathy in a spontaneous T2D

model (Fig. 3). In this regard, co-expression of IL-1Ra and VEGF

improves human islet survival, which is strictly dependent upon

adequate revascularization [119].

Concerning IL-1Ra-induced islet endocrine modifications, we

recently described elsewhere [52]: 1) no change of the percentage

of pancreatic b-cell area between sham (saline) and IL-1ra-treated

GK rats, which would be in agreement with data published on the

high fat diet (HFD) fed mouse [30]; 2) IL-1Ra enhancement of the

expression of insulin processing enzymes, proconvertase 1 and 2,

concomitant with increased insulin gene expression (INS1 and

INS2): indeed, IL-1b downregulates both proconvertase expres-

sion, impairing insulin processing, either alone or in combination

with other cytokines such as IL-6 and TNF-a [120–123]. In GK

rats, IL-1Ra reduces islet IL-1b, IL-6, and TNF-amRNAs and IL-

6 production, likely improving insulin processing, as reflected by

their better circulating pro-insulin/insulin ratio.

The beneficial effects of IL-1Ra concerning GK glucose

homeostasis appears to be somehow limited based on the glycemia

values measured at the end of treatment, as shown here. However:

1) the effect of IL-1Ra on glycemia varied greatly from one day to

another, despite our attempt to control as best as possible

environmental conditions, but the highest dose of IL-1Ra

(100 mg/kg/day) administered during 1 month decreased the

AUC by 50% [52]; 2) glycemia is the result of insulin production

and action and involvement of counterregulatory hormones,

notably from from a-cells. In this regard, because increased IL-6

release by GK islets may have increase their a-cell mass, as

described in response to HFD in mice [124], IL-1Ra, which

reduced GK islet IL-6 release, might have consequently diminish

their a-cell mass. However, adult Wistar and GK rats have similar

a-cell mass and glucagonemia [125] and 100 mg/kg/day IL-1Ra

in vivo did not modify GK glucagonemia (data not shown); 3) IL-

1Ra appears less effective on insulin resistance at higher dose [52];

4) the time of treatment onset, the dose and the duration of

treatment could be improved; 5) TLR activation by FFA may be

concomitantly at work in GK rats and IL-1Ra treatment did not

modify circulating GK lipid parameters [52].

Last but not least, the drastic under-expression of the soluble

epoxide hydrolase (sEH) might represent the major attempt to

compensate the defects triggered by metabolically-induced

inflammation in GK islets. Indeed, sEH is implicated in the

metabolism of epoxyeicosatrienoic acids (EETs) (see for reviews,

[126–128]). These EETs are derived from arachidonic acid by

cytochrome P450 epoxygenases. Their degradation by sEH

generate dihydroxyeicosatrienoic acids, which are less active than

their parent epoxides. Decreased sEH activity would therefore be

expected to increase intracellular EET levels and prolong their

beneficial effects, which include: 1) potent vasodilatation; 2)

marked anti-inflammatory action [129]; 3) antioxidant effect by

inducing the expression of a set of antioxidant genes, including

thioredoxin and superoxide dismutase, as described in GK rat

islets [44]; 4) beneficial effects on vessels: EETs inhibit the

migration and proliferation of VSMC and, by contrast, stimulate

EC proliferation and angiogenesis, particularly in response to

hypoxia [127]. Very recent data showed that sEH inhibitors

attenuate the progression of renal damage in diabetic GK rats

from Taconic and also the development of atherosclerosis in

apolipoprotein-E-knockout mice [130,131]. Moreover, it has been

described several polymorphisms in the gene encoding human

sEH that encode variants with altered catalytic activity. Some of

these variants are associated with increased risk of atherosclerosis

(for review, see [127]).

In conclusion, these data offer a better understanding of the

pathophysiology of islet behaviour in a spontaneous T2D animal

model, where both pro- and anti-vasoconstrictor, pro- and

antioxidant, pro- and anti-inflammatory, and pro- and anti-

angiogenic mechanisms are concomitantly at play in islets during

disease progression. The protective mechanisms may thus explain

long-lasting mild hyperglycemia in GK rats, despite early islet

endothelial activation associated with inflammation and OS.

These data also highlight the crucial role of IL-1 in triggering islet

OS. Therefore, counteracting endothelial cell inflammation as

early as possible is one way to prevent OS-related disorders in type

2 diabetes pathophysiology.

Methods

Animals
All animal experiments were conducted on fed age-matched

male GK and nondiabetic Wistar rats from our local colonies
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Table 3. Primer oligonucleotide sequences of selected genes.

Gene Sequences

Ace1 Forward: GCGGAGTCGATGCTGGAGAA

Ace1 Reverse: GTGGCCCATCTCGTGGTGTA

Agt Forward: CTCCCAGAGCCAACCTTTGA

Agt Reverse: CAGCATCTTGTACATGCGGAAA

Agtr1a Forward: CTGGCAGAAATGCAATCTCATCA

Agtr1a Reverse: GCCCTTTGGGAGTTGAACAGAA

Alox15 Forward: GGGCCACTGCTGTTCGTAAGA

Alox15 Reverse: GCCCTGAACCCATCGGTAA

Casp 1 Forward: CCTGTGCGATCATGTCACTAA AA

Casp 1 Reverse: GCCAGGTAGCAGTCTTCATTACAA

Cat Forward: GGGTGGTGCTCCCAACTACTA

Cat Reverse: CACCTGAGTGACGTTGTCTTCA

Cd53 Forward: GCGTGGTTTCACTCCAATTTC

Cd53 Reverse: GGACATCCCCAGCACCTGTA

Cd74 Forward: CCAGGACCACGTGATGCA

Cd74 Reverse: CCCCTTCAGCTGTGGGTAGTT

Col1a1 Forward: CCCAACCCCCAAAAA

Col1a1 Reverse: CTGCGTCTGGTGATACATATTCTTCT

Col3a1 Forward: AGCTGGCCTTCCTCAGACTTC

Col3a1 Reverse: GCTGTTTTTGCAGTGGTATGTAAT

Cox2 Forward: CGCTTCTCCCTGAAACCTTACA

Cox2 Reverse: GGAGAATGGAGCTCCAAGTTCTA

Edn1 Forward: GCCAGTGTGCTCACCAAAAAGA

Edn1 Reverse: GGACAGGGTTTTCCCTTCTTGAA

eNos Forward: CACCCGGACAACCTCATCA

eNos Reverse: CTGCTCATTTTCCAAGTGCTTCA

Ephx2 Forward: ACCCATCGGTGACCTCCAA

Ephx2 Reverse: AAGGCCACGTCAGAAATGAAA

Fn1 Forward: CCTACGGATGACTCATGCTTT

Fn1 Reverse: CAGATAACCGCTCCCATTCC

Gclc Forward: GCCGTGGTGGATGGGTGTA

Gclc Reverse: CCACGTCGACTTCCATGTTTTCA

Gpx1 Forward: GTGCGAGGTGAATGGTGAGAA

Gpx1 Reverse: CTGGACCTACCAGGAACTTCTCAAA

GRO1/KC Forward: GGAAGAAGGGCGGAGAGATGA

GRO1/KC Reverse: CCTCTCACACATTCCTCACCCTAA

Gsr Forward: GCCCACAGCGGAAGTCAA

Gsr Reverse: GGGCAAGTCTTCCAGCTGAAA

H2-Ea Forward: CCCTCC AGCGGTCAATGT

H2-Ea Reverse: TGACACGCCTTTGGTGACA

Hmox1 Forward: GAGACGCCCCGAGGAAA

Hmox1 Reverse: GGGCCAACACTGCATTTACA

Hif1a Forward: GGCGACATGGTTTACATTTCTGATAT

Hif1a Reverse: GCTCCGCTGTGTGTTTAGTTCTTT

iNos Forward: CGCTACACTTCCAACGCAACA

iNos Reverse: CGGATTCTGGAGGGATTTCA

Icam1/CD54 Forward: CGGGAGATGAATGGTACCTACAA

Icam1/CD54 Reverse: CCGCAATGATCAGTACCAACA

Il1ra Forward: GAGGAACAATTTTTGCAGGGTGTA

Gene Sequences

Il1ra Reverse: CCCAGAGGGCAGAGGCAATA

Il1b Forward: CTGGTACATCAGCACCTCTCAA

Il1b Reverse: GAGACTGCCCATTCTCGACAA

Il6 Forward: GCCACTGCCTTCCCTACTTCA

Il6 Reverse: GACAGTGCATCATCGCTGTTCA

Mip1a/Ccl3 Forward: CCAAGTCTTCTCAGCGCCATA

Mip1a/Ccl3 Reverse: GCAGATCTGCCGGTTTCTCTTA

Mcp1/Ccl2 Forward: CTGGACCAGAACCAAGTGAGATCA

Mcp1/Ccl2 Reverse: GTGCTTGAGGTGGTTGTGGAAA

Myd88 Forward: CGGAGGAGATGGGTTTCGAGTA

Myd88 Reverse: CGATGCGGTCCTTCAGTTCATA

Nox2 Forward: CTGGACATCCTGGTGGTTTTCA

Nox2 Reverse: GGACCGCATCATGGTGAAGAA

NfkB/Rela Forward: CTGGCCATGGACGATCTGTTT

NfkB/Rela Reverse: CCCTCGCACTTGTAACGGAAA

Nrf2 Forward CCACGTTGAGAGCTCAGTCTTCA

Nrf2 Reverse GACACTGTAACTCGGGAATGGAAA

Pai1/Serpine1 Forward: CCGACCAAGAGCAGCTCTCTGTA

Pai1/Serpine1 Reverse: GTGCCGAACCACAAAGAGAAA

Pecam1/Cd31 Forward: GGCCCTGTCACGTTTCAGTTTTA

Pecam1/Cd31 Reverse: CCTGCTCCTTGCTAGTTTGTTCA

Prdx1 Forward: GCATGGATTAACACACCCAAGA

Prdx1 Reverse: GCCCCTGAAAGAGATACCTTCA

Ptgis Forward: CGCTGGCTACCTGACCCTGTA

Ptgis Reverse: GCCAGTTTGGGGAGCATCA

Sele/Cd62 Forward: GCCAGCCCTCTACCAGAATGA

Sele/Cd62 Reverse: CCCAAATTCCAGAGTGACGAAGA

Sod1 Forward: GCCGTGTGCGTGCTGAA

Sod1 Reverse: GCCTTGTGTATTGTCCCCATA

Sod2 Forward: GGCCAAGGGAGATGTTACAA

Sod2 Reverse: GACCCAAAGTCACGCTTGA

Tgfb1 Forward: GAGCCCGAGGCGGACTACTA

Tgfb1 Reverse: CCCGAATGTCTGACGTATTGAAGA

Tlr2 Forward: Rn02133647_s1 These were purchased
from AB, this is the assay number, the
rest is proprietary.

Tlr2 Reverse: Rn02133647_s1

Tlr4 Forward: CGCTTTCAGCTTTGCCTTCA

Tlr4 Reverse: GCCAGAGCGGCTACTCAGAAA

Tnfa Forward: GGGGCCTCCAGAACTCCA

Tnfa Reverse: GGAGCCCATTTGGGAACTTCT

Txd1 Forward: GGATGTTGCTGCAGACTGTGAA

Txd1 Reverse: GGCTTCGAGCTTTTCCTTGTTA

Vcam1/CD106 Forward: GCTCTTGTTTGCCTCGCTAA

Vcam1/CD106 Reverse: GTGGGTTCTTTCGGAGCAA

Vegfa Forward: CCAGGAGTACCCCGATGAGATAGA

Vegfa Reverse: GGTGAGGTTTGATCCGCATGA

doi:10.1371/journal.pone.0006963.t003
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(Paris, France) in accordance with accepted standards of animal

care, established by the French National Center for Scientific

Research. Characteristics of the nonobese GK rat model of T2D

maintained in our colony at the University Paris-Diderot together

with the Wistar control rats have been previously described [32].

Two and a half-month-old male rats were killed by decapitation

and blood and pancreata collected for measurement of metabolic

parameters, islet isolation and quantitative RT-PCR analysis or

pancreas immunohistochemistry.

Metabolic parameters
Basal morning glycemia was determined with a glucometer.

Serum insulin was assayed by ELISA (Mercodia). FFA levels were

quantified using an enzymatic colorimetric assay (NEFA C) (Wako

Chemicals GmbH). Cholesterol, HDL, and triglyceride serum

levels were determined by using colorimetric assays (Penta

Cholesterol CP kit, HDL cholesterol direct kit and Pentra

Triglycerid CP kit, respectively, ABX Diagnostics). To measure

glutathione, 50 ml of RBC were added to 450 ml of a mixture (1:5

v/v) of EDTA (1%)/metaphosphoric acid (5%), and 100 or 200

islets were mixed with 5% metaphosphoric acid (300 ml). After

centrifugation (3000 g, 10 min, 4uC), reduced glutathione (GSH)

and its oxidized form (GSSG) were identified in supernatants by

reverse-phase HPLC with electrochemical detection [132]). Total

glutathione content, referred to as ‘‘equivalent GSH’’ (Eq GSH), is

the sum of GSH and doubled GSSG concentrations

(2GSHRGSSG). The glutathione redox state is: [total forms]

6100, with [total forms] = [oxidized form]+[reduced form].

Alpha-tocopherol was determined in heparinated plasma (100 ml)

extracted with 2-propanol (400 ml) [133]. Plasma homocysteine

was assayed by using the fluorimetric HPLC method previously

described [134]. PON-1 activity assay was performed on 5 ml of

plasma. PON-1 arylesterase activity toward phenyl acetate was

quantified spectrophotometrically using 20 mM of Tris-HCl,

pH 8.3 with 1 mM of CaCl2 and 10 mM of phenyl acetate

(Sigma-Aldrich). The reaction was performed at room tempera-

ture for 1 min by measuring the appearance of phenol at 270 nm

with the use of continuously and automated recording spectro-

photometer. All values were corrected for non-enzymatic hydro-

lysis. Serum leptin, cytokines and chemokines were assayed using

LuminexTM (Millipore, Switzerland) [124].

Islet isolation and mRNA analysis
Pancreatic islets were isolated using collagenase (Boehringer

Mannheim) and then handpicked under a stereomicroscope [135].

Total RNA was isolated from islets using the RNeasy mini kit

(Qiagen) and its concentration determined by optical density at

260 nm. To remove residual DNA contamination, the RNA

samples were treated with RNAse-free DNAse (Qiagen) and

purified with RNeasy mini-column (Qiagen). Total RNA (4 mg)

from each islet sample was reverse transcribed with 40 U of M-

MLV Reverse Transcriptase (Invitrogen) using random hexamer

primers. The primers used were derived from rat sequences and

designed using OLIGO6 (see Table 3). Quantitative RT-PCR

amplification reactions were carried out in a LightCycler 1.5

detection system (Roche) using the LightCycler FastStart DNA

Master plus SYBR Green I kit (Roche). Reverse transcribed RNA

(10 ng) was used as the template for each reaction. All reactions

were run in duplicate with no template control. The PCR

conditions were: 95uC for 10 min, followed by 40 cycles at 95uC

for 10 s, 60uC for 10 s and 72uC for 10 s. Changes in mRNA

expression were calculated using difference of CT values as

compared to a housekeeping gene (rpL19 or Ef1a), and expressed

relative to controls.

In vivo IL-1Ra treatment
IL-1Ra (kindly donated by Amgen, CA, USA) treatment of GK

rats was performed by twice daily subcutaneous injections

(100 mg/kg/day). Treatment was initiated 3 days following

weaning at 4 weeks of age, i.e., after onset of mild fed

hyperglycemia [32]. IL-1Ra treatment, which was given during

growth of the animals, had no effect on body weight. Subcuta-

neous (s.c.) injection experiments were stopped 4 weeks after

initiation of treatment and the animals sacrificed for islet isolation

followed by quantitative RT-PCR or pancreas immunohistochem-

istry.

Immunohistochemistry
GK rat pancreatic cryosections were incubated with rabbit anti-

fibronectin (1/40, Novotec) or rabbit anti-VWF (1/100, Dako),

followed by swin anti-rabbit secondary antibody (1/100, Dako) as

previously described [6]. Antibody-stained surface areas were

quantified blindly by measuring the surface area labeled by each

marker in a given islet and expressing it to the whole surface of this

islet (in 25–40 islets in 3 animals per treatment group), using an

Olympus BX40 microscope.

Statistics
Data are presented as means6SEM. Statistical analyses used an

unpaired Student’s t-test or ANOVA as appropriate. Significance

was defined as p,0.05.
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