
ISMRM Raw Data Format: A Proposed Standard for MRI Raw

Datasets

Souheil J. Inati1, Joseph D. Naegele1, Nicholas R. Zwart2, Vinai Roopchansingh1, Martin J.

Lizak3, David C. Hansen4, Chia-Ying Liu5, David Atkinson6, Peter Kellman7, Sebastian

Kozerke9, Hui Xue7, Adrienne E. Campbell-Washburn7, Thomas S. Sørensen8, and Michael

S. Hansen7

1National Institute of Mental Health, National Institutes of Health, Bethesda, MD 2Keller Center for
Imaging Innovation, Barrow Neurological Institute, Phoenix, AZ 3National Institute of Neurologic
Disease and Stroke, National Institutes of Health, Bethesda, MD 4Department of Oncology,
Aarhus University Hospital, Aarhus, Denmark 5Radiology and Imaging Sciences, Clinical Center,
National Institutes of Health, Bethesda, MD 6Centre for Medical Image Computing, University
College London, United Kingdom 7National Heart, Lung, and Blood Institute, National Institutes of
Health, Bethesda, MD 8Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
9Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland

Abstract

Purpose—This work proposes the ISMRM Raw Data (ISMRMRD) format as a common MR

raw data format, which promotes algorithm and data sharing.

Methods—A file format consisting of a flexible header and tagged frames of k-space data was

designed. Application Programming Interfaces were implemented in C/C++, MATLAB, and

Python. Converters for Bruker, General Electric, Philips, and Siemens proprietary file formats

were implemented in C++. Raw data were collected using MRI scanners from four vendors,

converted to ISMRMRD format, and reconstructed using software implemented in three

programming languages (C++, MATLAB, Python).

Results—Images were obtained by reconstructing the raw data from all vendors. The source

code, raw data, and images comprising this work are shared online, serving as an example of an

image reconstruction project following a paradigm of reproducible research.

Conclusion—The proposed raw data format solves a practical problem for the MRI community.

It may serve as a foundation for reproducible research and collaborations. The ISMRMRD format

is a completely open and community-driven format, and the scientific community is invited

(including commercial vendors) to participate either as users or developers.

Keywords

MRI; Image reconstruction; Open source; Raw data format

Correspondence to: Michael S. Hansen, National Heart, Lung, and Blood Institute, NIH, NIH Building 10/B1D405, 10 Center Drive,
Bethesda, MD 20892, michael.hansen@nih.gov.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:

Magn Reson Med. 2017 January ; 77(1): 411–421. doi:10.1002/mrm.26089.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Introduction

Image reconstruction research has played a pivotal role in driving many advances in

magnetic resonance imaging. Examples of paradigm shifting techniques include parallel

imaging (1, 2, 3) and, more recently, the introduction of nonlinear reconstruction and

compressed sensing (4, 5). Novel reconstruction algorithms build on and improve existing

methodology, and most reconstruction articles compare new methods to existing methods in

terms of image quality and reconstruction speed.

Reproducible research has drawn a great deal of attention recently, as highlighted for

example in a recent special issue of Science (6, 7). The field of computational science in

particular has produced several excellent examples of how such research can be carried out,

e.g., the wavelab toolbox (8). The ISMRM has begun to take steps to help facilitate

reproducible research, e.g., with the MRI unbound website (9). Underlying many of these

efforts is a discipline-specific file format specification that allows scientists to exchange data

easily. Much of modern astronomy research, for example, relies on telescope data in the

FITS standard (10). Other discipline-specific data formats have enabled scientists to escape

from the limitations imposed by vendor-specific, proprietary technology, leading to the

development of a wide range of post-acquisition data analysis tools, and enabling large-scale

collaborations. Medical imaging has the DICOM standard (11), which allows radiology

departments to store data from different vendors on a centralized PACS, and computer

scientists to implement novel image processing methods in a vendor neutral manner. The

subfield of neuroimaging has NIfTI (12), which underlies large-scale projects like the human

connectome project (13). The image file formats are useful for disciplines that operate on the

reconstructed images, but they do not address the needs of scientists involved in the

development of image reconstruction algorithms. This paper proposes an MR-specific raw

data format, which is designed to store data from MRI experiments before any

reconstruction steps have taken place. Specifically, it is intended to capture the data in

acquisition order before it is transformed by any operations such as filtering, interpolation,

zero padding, or Fourier transforms.

This ISMRMRD standard was developed by a subcommittee of the ISMRM Sedona 2013

workshop. It is designed to capture the details of the MRI experiment in a way that permits

image reconstruction. It is important to note that this goal is fundamentally different from

that of proprietary vendor raw data file formats. Generally, proprietary vendor raw file

formats are intended to capture protocol parameters for a particular pulse sequence at the

time of the scan. The proprietary raw data file formats are intended to store the information

needed to reproduce a particular experiment on a specific version of the scanner software

and reconstruction framework. The tight coupling between 1) the scanner console user

interface, 2) the pulse sequence control parameters, and 3) the image reconstruction control

parameters, make the vendor formats depend on a great deal of proprietary, vendor-specific

knowledge. The quantity of hidden information makes these formats inconvenient for data

sharing. More importantly, the specific implementation details of a particular vendor’s

scanner software architecture greatly influences the design of these file formats and the type

of information that they contain. In contrast, the proposed standard is designed to facilitate

Inati et al. Page 2

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the exchange of the raw k-space data along with the physics parameters of the data

acquisition process to provide the information necessary for image reconstruction.

While the ISMRMRD format will continue to evolve as it attracts more users with a more

diverse set of applications and needs, the basic format has remained stable for more than two

years, and it makes sense to present it to the MRI community. This paper lays out the design

and structure of the format and describes several software tools that have been developed to

interact with data in the proposed format. A number of vendor-specific tools have been

created for converting proprietary data formats to the proposed format. An overview of the

current status of these data converters and information needed to locate them is also

provided. As a demonstration of how the data format can be used, a phantom has been

scanned on four different scanners, the data converted to ISMRMRD and reconstructed with

several different open source reconstruction programs written in MATLAB (The

MathWorks), Python, and C++ programming languages.

All software, data, figures, scripts to generate the figures, and the text in this manuscript are

available as open source.

Methods

Design

The proposed ISMRMRD format combines a flexible header (XML-based) with fixed

structures for the data. These are packaged together into a single file. A minimal raw data set

is depicted in Fig. 1 and consists of two sections:

• XML header. A flexible XML format document that can contain an

arbitrary number of fields and accommodate everything from simple

values (matrix sizes, etc.) to entire vendor protocols, etc. The purpose of

this XML document is to provide parameters that may be meaningful for

some experiments but not for others. This XML format is defined by an

XML Schema Definition file (ismrmrd.xsd).

• Raw data. This section contains all the acquired data in the experiment

organized as a sequence of data items. Each data item corresponds to a

single data frame or chunk in an experiment, for example, a single line of

data in a Cartesian acquisition or a single interleave in a multi-shot spiral

acquisition. Each data item consists of a fixed-size header (C-struct) with

encoding numbers, etc., along with the k-space data for all of the acquired

channels, and (optionally) the k-space trajectory as depicted in Fig. 2. The

raw data structures are defined in a C/C++ header file (ismrmrd.h).

The proposed format also provides a simple image format for storing the product of

reconstructions and a multidimensional array format for storing additional user-specified

parameters (e.g., gradient nonlinearity correction maps, etc.).

Encoding Space—One of the key design features of the proposed format is the notion of

an “encoding space”, which is a description of the type and limits of the experiment and

Inati et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provides the reconstruction program with the physical size and resolution of the imaging

volume and the ranges of the data header labels. An ISMRMRD dataset may contain data

from several encoding spaces. Each encoding space is described in the XML header, and

each acquisition (data chunk) is tagged with a label for the encoding space from which it

was acquired. All encoding spaces have a trajectory type, an “encodedSpace,” a

“reconSpace”, “encodingLimits”, and an optional trajectory description, that can contain an

arbitrary set of named parameters such as the gradient ramp and flat top times for EPI, or the

parameters controlling the shape of the spiral trajectory, etc. A somewhat more complex

example of an encoding describing a simple 2D Cartesian acquisition is shown in Fig. 3. In

this particular case, the encoding has the following description:

• the “encodedSpace” section gives the matrix size (32 × 16 × 1) and field

of view in mm (600 × 300 × 10) of the imaging volume encoded by the

excitation, i.e., a 10 mm thick slice, 600 mm in x and 300 mm in y,

encoded with a nominal matrix size of 32 in × and 16 in y, i.e., at a

nominal resolution of 18.75mm.

• The “reconSpace” section indicates that the image should be reconstructed

on a smaller field of view (300 × 300 × 10), but with half the number of

pixels in x.

• The combination of the “encodedSpace” and “reconSpace” indicates that

the k-space data were acquired on a grid oversampled by a factor of 2 in

the x direction.

• The “encodingLimits” section indicates the ky center (5) and the minimum

and maximum ky values (0 and 11 respectively), i.e., this is a partial

Fourier experiment, with a true pixel size that is somewhat larger than the

nominal resolution.

Encoding counters and flags—Each acquisition data header depicted in Fig. 2,

contains a set of encoding counters: kspace_encoding_step_1, slice, etc. For a

particular data set, the meaning of the encoding counters depends on the encoding space

defined in the data set’s XML header. For the case of cartesian imaging, the mapping

between ISMRMRD encoding counters and vendor specific dimensions is shown in Table 1.

The encoding counters also include a set of 8 integers and 8 floating point numbers that can

be used in an application specific way, for example they could refer to b-value and gradient

direction in a diffusion weighted imaging sequence (see below). Or one could use them to

label data from a spectroscopy or spectroscopic imaging experiment. Unfortunately, one of

the natural counters for spectroscopy (kspace_encoding step_0) was omitted from

version 1 of the acquisition data header. The missing kspace_encoding_step_0 would be

specifically useful for 3D chemical shift imaging (CSI) a.k.a. 3D spectroscopic imaging.

This oversight will be corrected in version 2.

In addition to the encoding counters, each acquisition data header also contains a field for a

set of flags (encoded as a 64-bit unsigned integer). These flags can be used to provide hints

to the image reconstruction program, for example, an acquisition may be tagged with the

Inati et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

flag ISMRMRD_ACQ_FIRST_IN_SLICE. The reader is referred to the header file (ismrmrd.h)

for a list of available flags.

File size limitations—The maximum number of acquisitions per data set is ≈4×106

acquisitions because the scan_counter is stored as a 32 bit unsigned integer. This should be

sufficient for current scanner technology. Each acquisition can contain 65535 samples

because the number_of_samples is stored as a 16 bit unsigned integer. Both of these

counters could be increased up to 64 bits, which is the current limit imposed by the the

HDF5 file format on the number of elements (acquisitions) in a dataset.

Flexibility vs. structure—One of the main design goals of the format is to strike a

balance between flexibility and structure, providing sufficient flexibility to enable the

development of novel data acquisition and image reconstruction methods, within a

sufficiently well-specified structure that allows for the standardization of accepted methods.

It is necessary for the file format to specify a clear set of rules for data organization; this is

achieved by the schema for the XML header and the definition of the data structures. For

example, for a data set to be valid, it must consist of a minimal ISMRMRD XML header, i.e.

one instance of the experimentalConditions, and one encoding space, as well as some

number of acquisitions. More complexity is required to describe a spectroscopic imaging

experiment, or a diffusion weighted imaging experiment, or an areterial spin labeling

experiment, etc., and one would need to combine more information in the XML header and

the encoding counters. For example, a data set acquired using a variable density spiral

sequence would need to use the trajectory description portion of the encoding space. The

XML header for such an experiment is shown in Table 2. The trajectory description provides

an identifier and the set of parameters used in the trajectory design, and for this particular

case, the encoding counter kspace_encoding_step_1 is used to indicate the interleaf number.

At this early stage, it is difficult to foresee the ways in which different practitioners will

chose to use the format for their specific applications, and more importantly, the challenge is

not technical, but rather sociological. A consensus would need to emerge around the

description of a particular type of experiment, and the community would need to agree on

the meaning of the various parameters stored in the XML header and in the individual

acquisition headers. The file format itself is designed to provide a framework within which

these discussions can take place.

ISMRMRD Library

The ISMRMRD library is a cross-platform implementation based on the domain-

independent Hierarchical Data Format (HDF) (http://www.hdfgroup.org/HDF5) for storage

and provides C/C++, Python, and MATLAB (Mathworks) interfaces for reading and writing

ISM-RMRD files. The project follows an open source development model with a website at

(http://ismrmrd.github.io) and a discussion board and code repositories at http://github.com/

ismrmrd. The library and associated tools can be compiled in a straightforward way on

Linux, Windows, and Apple computers. This section provides a high-level description of the

implementation and discuss some of the choices made during the development process. The

reader is encouraged to examine and experiment with the source code for more a detailed

view.

Inati et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hdfgroup.org/HDF5
http://ismrmrd.github.io
http://github.com/ismrmrd
http://github.com/ismrmrd

File container—The HDF format was chosen as the binary file container. The HDF format

is very flexible and has been adopted broadly in the scientific community. HDF5 originated

with National Center for Supercomputing Applications (NCSA) in the late 1980s and has

grown to become the file format used by a wide range of large scale projects in government,

private sector, and academic communities, in earth-science, astronomy, nuclear physics, etc.

HDF5 has also been adopted by projects in biomedical science, e.g. the Biological

Observation Matrix (BIOM) format for “-omics” described at (http://www.biom-format.org).

The HDF Group was spun-off from NCSA as a non-profit organization to support the

format. The reader is referred to the HDF Group’s website for more information regarding

projects using HDF5 (http://www.hdfgroup.org/HDF5/users5.html, and on-going and

completed projects involving the HDF Group (http://www.hdfgroup.org/projects). Reading

and writing from the HDF format are supported by most programming languages and

computational environments. The HDF library has a core C and C++ API, is supported

natively in MATLAB (it forms the basis for MATLAB’s own “.mat” file format starting with

mat-file version 7.3 (MATLAB R2006b or later), and is supported in Python via the H5Py

package (http://www.h5py.org). The HDF Group distributes a viewer (hdfview) and a set of

command line utility tools for manipulating and interactive with HDF5 files (https://

www.hdfgroup.org/products/hdf5_tools/). The flexibility of the HDF5 format can make its

use somewhat complex, for example the format supports multiple creation dates for the file

and objects within a file (creation, last access, modification), sometimes causing HDF5 files

containing the exact same data to have different checksum values, and making the use of a

tool such as the h5diff utility necessary for the accurate comparison of two HDF5 files.

Therefore, one of the goals of the implementation of the ISMRMD library is to provide a

domain specific layer that hide the details of the HDF5 file format.

XML header data binding—The XML header can be thought of as a text representation

of relevant experimental parameters that are needed for meaningful image reconstruction.

When writing image reconstruction software, the software developer usually interacts with a

binary representation of the XML document (XML Data Binding) to avoid direct, error

prone, and tedious interaction with the XML text. The process of generating the binary

representation of the XML document (deserialization) and the generation of the XML

document from the binary representation (serialization) is handled by dedicated functions.

Both the binary representation and the functions for serialization and deserialization can be

auto-generated by XML data binding tools, e.g., CodeSynthesis XSD (http://

www.codesynthesis.com/products/xsd/) for C++, JAXB for Java (https://jaxb.java.net/), or

PyXB (http://pyxb.sourceforge.net/) for Python. The auto-generated data structures and

functions are easier to maintain since they can be regenerated when the XML schema

(ismrmrd.xsd) changes, but the syntax they provide can be less convenient. Alternatively,

data structures and serialization and deserialization code can be “handcrafted”. This may

provide a more convenient interface, but the software maintenance overhead is greater. The

proposed data format does not dictate which approach to use when interacting with the XML

header, but the provided libraries include data structures and associated functions.

Depending on the convenience of available tools these software components have either

been “handcrafted” or auto-generated as described below.

Inati et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.biom-format.org
http://www.hdfgroup.org/HDF5/users5.html
http://www.hdfgroup.org/projects
http://www.h5py.org
https://www.hdfgroup.org/products/hdf5_tools/
https://www.hdfgroup.org/products/hdf5_tools/
http://www.codesynthesis.com/products/xsd/
http://www.codesynthesis.com/products/xsd/
https://jaxb.java.net/
http://pyxb.sourceforge.net/

Programming language-specific implementations—This work is implemented in

three different programming environments or languages to interact with ISMRMRD files.

This section contains a few notes regarding the C/C++, MATLAB, and Python APIs that

were created:

• C library. This code defines fixed data structures (ismrmrd.h) and the

functions used to interact with the HDF5 file.

• C++ library. This code is a wrapper around the C library with classes and

functions that provide memory management and reduce programming

error. It includes a “handcrafted” XML header binding class.

• Build system. The C and C++ implementation use the CMake (Kitware

https://cmake.org) build configuration system to support multiple

operating systems (Linux, Microsoft Windows, Apple OS X).

• MATLAB library. This code consists of pure MATLAB data structures

and functions (classes) that call the MATLAB interface to HDF5 as well

as “handcrafted” Java code for the XML header binding class using the

Java provided by MATLAB.

• Python library. This code consists of pure Python classes for the data

structures, uses NumPy arrays for the data and the k-space trajectories

(http://www.numpy.org), and an auto-generated XML header binding

class.

The code repositories also contain the source code for the documentation (which use the

Doxygen (http://www.doxygen.org) and Sphinx (http://sphinx-doc.org) projects) as well as

example utility programs demonstrating how to use the APIs to read and write ISMRMRD

files. The utility programs depend on the Boost library (http://boost.org) for command-line

user interaction.

Data Conversion Tools

Converters have been developed for several proprietary file formats: Bruker, General

Electric, Philips, and Siemens. The Bruker, Philips and Siemens converters are open source

with repositories that can also be found at http://github.com/ismrmrd. The GE converter

relies on proprietary vendor code and is being distributed via the vendor’s research network.

Given the variety in vendor raw data file formats, the architecture of these programs is

described in general terms with the aim of giving some guidance or aid to others who are

implementing their own conversion tools. The reader is referred to the source code for

details, but to give a few examples: the Bruker raw data are stored in a simple directory

structure with the acquisition parameters stored in several text files and k-space data stored

in a simple binary file as equal length frames of k-space data; there are no data labels

associated with each data frame. Siemens raw data are stored in a single integrated file that

can contain raw data from multiple scans. For each scan, acquisition parameters are stored in

a structured text header, followed by k-space data frames stored in acquisition order, where

each frame of k-space data is tagged with data labels containing the frame’s line number,

slice number, location, etc. The complexity of the GE and Philips formats fall somewhere

Inati et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cmake.org
http://www.numpy.org
http://www.doxygen.org
http://sphinx-doc.org
http://boost.org
http://github.com/ismrmrd

between the simple file structure of the Bruker format and the more integrated file format

used on the Siemens systems. The GE data does not contain explicit labels for each data

frame and more sequence knowledge is needed to convert the data. The Philips raw data

format has data labels associated with each data frame and it was possible to design a more

generic automated converter.

The converters for the aforementioned vendor formats were written in C++. All four

converters use the CMake build system and depend on the ISMRMRD C/C++ library

described above as well as Boost for user interaction. For XML file handling, the converters

also depend on either 1) libXML2 and libXSLT (http://www.xmlsoft.org) on Linux and

Apple, or 2) the Xerces-C XML parser library (http://xerces.apache.org/xerces-c/) on

Windows. Acquisition parameters from the vendor-specific data were converted to an

intermediate XML file (containing vendor-specific parameter names and values). This XML

file was then translated into the vendor-independent ISMRMRD XML header file using a

sequence-specific Extensible Stylesheet Language (XSL) style sheet. The frames of k-space

data were processed in the order in which they appeared on disk. For formats with tagged

data frames (Philips and Siemens), the proprietary binary header tags were parsed and used

to populate the fixed-size ISMRMRD data header structures. For formats with untagged data

frames (Bruker and GE), sequence and vendor-specific knowledge was used.

It is worth emphasizing that creating the converters required significant work and special

knowledge of the vendor formats. However, once code was developed for converting raw

data from one pulse sequence on a particular platform, it was straightforward to modify this

code to handle other sequences. It is expected that other developers can modify these

converters to handle currently unsupported product sequences or their own research

sequences. It is also important to note that while some users may work on the

implementation of these vendor-specific converters, many users will simply use the

converted ISMRMRD files as input for the algorithms and thus be exposed less to these

vendor-specific details as a consequence of using the proposed format.

It is also worth emphasizing that the source code for the Siemens, Philips, and Bruker

converters has been released publicly since it does not contain propritary files. The parts of

the code that interact with the vendor raw data files, parse header and data structures etc, can

be reverse engineered in a tedious but straightforward manner. The source code for the GE

converter currently contains proprietary code and cannot be shared publicly, it has been

released through the GE collaborator network only. The authors have had discussions with

GE regarding a new converter that could be shared more freely, but at the time of writing this

article, it has not been completed.

Experimental Demonstrations

In a typical MR image reconstruction research project, one often tests and validates an

algorithm or a particular implementation of an algorithm. This validation can be done using

simulated data and data acquired from phantom or in vivo experiments. In the interest of

reproducible research, a scientist could distribute the source code and the raw data sets that

were used to generate the figures for the publication and perhaps additional code or data

related to the testing or validation of the algorithm.

Inati et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.xmlsoft.org
http://xerces.apache.org/xerces-c/

This section demonstrates how one could use the ISMRMRD format and APIs for the

development, implementation, and testing of image reconstruction algorithms suitable for

2D experiments.

Example 1: Cross-vendor and cross-language demonstration—In this example,

the k-space data are acquired using a multi-channel receiver array and the data are fully

sampled on a Cartesian grid. The workflow for this demonstration project could form a

subset of a full development cycle:

1. An initial implementation or proof of concept of the algorithm is

implemented in a rapid prototyping language such as MATLAB or Python.

2. Synthetic data are generated in simulation and used to test/validate the

prototype implementation.

3. Experimental data are collected and used to test/validate the prototype

implementation.

4. A high performance production version of the algorithm is implemented in

a compiled language such as C/C++ or Fortran. In some cases the high

performance implementation may require specialized hardware such as a

compute cluster or a graphical processing unit (GPU).

5. The synthetic and experimental data sets are used to test/validate the high

performance implementation of the algorithm.

6. The high-performance implementation of the algorithm is given approval

from a local ethics board and put into production in a clinical environment.

The prototype image research example project began with an outline of the steps of the

simple 2D image reconstruction algorithm:

1. Data are read and stored in a buffer (Nkx,Nky,Ncoil).

2. The Fourier transform is computed in two dimensions (x,y).

3. The images are cropped if the data were acquired on an oversampled grid

in the frequency encode direction.

The prototype implementation of this algorithm was written in Python

(do_recon_python.py) and MATLAB (do_recon_matlab.m). The high-performance

implementation of the algorithm was written in C++ (ismrmrd_recon_cartesian_2d).

All three implementations used the corresponding ISMRMRD APIs to read in an

ISMRMRD format file and to save the reconstructed image.

A synthetic data set in ISMRMRD format was generated using a program written in C++

(ismrmrd_generate_cartesian_shepp_logan). This program simulated a simple

experiment collecting data from a single-slice object using an 8-element receive array in the

presence of a small amount of noise. The k-space data were generated by multiplying the

Shepp-Logan phantom with the receive profile of an 8-rung birdcage coil followed by

Fourier transformation and the addition of randomly generated white Gaussian noise with

standard deviation 0.05 to the real and imaginary part of each receiver channel.

Inati et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Data sets were collected from a phantom (kiwi fruit) using scanners from four different

vendors:

• Bruker 4.7T with a single channel 10cm transmit/receive coil

• GE 3T MR750 with a 32-channel head coil

• Philips Achieva 3T with a 6-channel knee coil

• Siemens 3T Skyra with a 32-channel head coil

Data were acquired using product 2D pulse sequences. The FOV=10 cm, slice thickness=2

mm, and matrix size (Nx=Ny=512) were matched, although no attempt was made to match

the pulse sequence type or timings.

Example 2: Non-cartesian trajectories, nominal vs. corrected—A spiral imaging

experiment set was used to illustrate the use of the optional k-space trajectory data included

in the ISMRMRD format. Data were acquired on a 1.5T Siemens system using an

interleaved variable density spiral trajectory (32 spiral interleaves, FOV = 30 cm, slice

thickness = 5 cm, matrix size = 192). The parameters describing the nominal trajectory were

stored in the encoding section of the ISMRMD XML header. Gradient impulse response

function corrected k-space trajectories were predicted using the system-specific gradient

impulse response function (14, 15) and stored along with the k-space data in the ISMRMRD

data file. A reconstruction program written in MATLAB (do_spiral_recon_matlab.m)

was used to generate images using both the nominal and and corrected spiral trajectories.

Example 3: Accelerated EPI with GRE coil sensitivity calibration and SENSE

reconstruction—An echo planar imaging (EPI) experiment was used to illustrate how

data from multiple scans can be stored in a single ISMRMRD file. Three data sets were

acquired on a 3T Siemens system using two pulse sequences:

1. a conventional fully-encoded gradient echo sequence

2. an accelerated (R=2) single-shot EPI sequence with 3 navigators per shot

3. a noise scan (collected by the EPI sequence)

The three data sets were stored in the same ISMRMRD file. A reconstruction program

written in Python (do_epi_recon_python.py) was used to reconstruct images from the EPI

time series as follows:

1. The noise data were used for pre-whitening.

2. The fully encoded GRE data were reconstructed (2D FFT).

3. The GRE images were used to estimate SENSE unmixing weights.

4. Each acquisition (one line in ky) of the data from the EPI sequence was

reconstructed in the x-direction using gridding.

5. For each shot of EPI data, the three navigators were used to estimate EPI

phase correction.

Inati et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6. After phase correction, the EPI data (R=2) where reconstructed by FFT in

the y-direction followed producing aliased images.

7. The SENSE unmixing coefficients were applied to the aliased images to

produce a single un-aliased image.

Results

Experimental Demonstration

The raw data files were transferred off-line and converted into ISMRMRD using the vendor-

specific converters described above. It was possible to convert the data from all four vendors.

The resulting reconstructions are shown in Fig. 4.

Figure 5 shows spiral images reconstructed using nominal and corrected variable density

spiral trajectories. The corrected trajectories are predicted by the sequence “on the fly” using

system-specific calibration data and are stored in the ISMRMRD file along with the raw k-

space data. Images reconstructed with knowledge of the corrected trajectories are

significantly less distorted and can be produced both in real-time or retrospectively.

Figure 6 shows images reconstructed from an accelerated EPI sequence. Data from a fully

encoded GRE sequence (not shown) were used to estimate the coil sensitivities. Both data

sets were stored in a single ISMRMRD file.

Source Code and Raw Data Dissemination

The source code for this project is being distributed in several git repositories hosted on

GitHub at the URLs listed bellow. The SHA-1 hashes uniquely identify the particular

revision of each of the repositories used for the production of this manuscript. Snapshots of

the code repositories can also be found on the E.U funded Zenodo project website hosted at

CERN, which provides a digital object identifier (DOI) for each release of each repository:

• Manuscript LaTeX, figures and MATLAB and Python reconstruction:

https://github.com/ismrmrd/ismrmrd-paper

hash=7f79355e842f2459638921c02b671d7d5ca9c3e2

• C++ API and C++ synthetic data generation and C++ reconstruction:

https://github.com/ismrmrd/ismrmrd

hash=c485787c98f4c2ad7ad6a2f9f5a0f4dc3927ea94

http://dx.doi.org/10.5281/zenodo.32618

• Python API:

https://github.com/ismrmrd/ismrmrd-python

hash=c38cd60c3a69416374c276b7820b0ffd70a6c4e0

http://dx.doi.org/10.5281/zenodo.32650

• Bruker converter:

Inati et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ismrmrd/ismrmrd-paper
https://github.com/ismrmrd/ismrmrd
http://dx.doi.org/10.5281/zenodo.32618
https://github.com/ismrmrd/ismrmrd-python
http://dx.doi.org/10.5281/zenodo.32650

https://github.com/ismrmrd/bruker_to_ismrmrd

hash=b945af3d37bff868d05b23b1dd67d0826f0a993d

http://dx.doi.org/10.5281/zenodo.32597

• GE converter (currently private):

Available via the GE collaboration network

• Siemens converter:

http://github.com/ismrmrd/siemens_to_ismrmrd

hash=a740086b831c5b259aca36a41a3654b04c672b03

http://dx.doi.org/10.5281/zenodo.32596

• Philips converter:

https://github.com/ismrmrd/philips_to_ismrmrd

hash=581601fad04dee333ae6ff021d9ad1b39b3044b0

http://dx.doi.org/10.5281/zenodo.32595

The raw data in vendor proprietary formats and in ISMRMRD format are being distributed

via Zenodo (http://dx.doi.org/10.5281/zenodo.33166). Alternatively the raw data can be

downloaded using the code/do_get_data.sh script, which is intended for Linux/Apple.

Readers are encouraged to download the data and source code.

Discussion and Conclusion

This work presents an initial version of a standard for storing raw MR data and an

implementation that supports several common programming languages and operating

systems. It has also been demonstrated that data can be converted to ISMRMRD from

proprietary vendor formats. Once the data have been converted to a vendor-independent

format, generic reconstruction tools can be used to reconstruct data regardless of the scanner

origin. The presented data converters are not complete for all proprietary configurations.

However, the data converters are either completely available as open source or shared freely

in the research communities associated with a specific vendor platform. Following the

approach laid out in the source code for the data conversion software it should be a relatively

simple task to accommodate other acquisition types.

The methods presented in this paper focused on a 2D Cartesian reconstruction example for

simplicity, but more sophisticated reconstruction systems also use the ISMRMRD format.

For example, the Gadgetron (16) framework uses the format as its internal data

representation. The Graphical Programming Interface (17) has also been used with the

ISMRMRD format using a set of externally provided compute nodes (https://github.com/

hansenms/gpi_ismrmrd).

Future work will be focused on expanding the header sections in the flexible XML header to

support specific applications. Changes to the fixed memory layout (C-struct) header and data

Inati et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ismrmrd/bruker_to_ismrmrd
http://dx.doi.org/10.5281/zenodo.32597
http://github.com/ismrmrd/siemens_to_ismrmrd
http://dx.doi.org/10.5281/zenodo.32596
https://github.com/ismrmrd/philips_to_ismrmrd
http://dx.doi.org/10.5281/zenodo.32595
http://dx.doi.org/10.5281/zenodo.33166
https://github.com/hansenms/gpi_ismrmrd
https://github.com/hansenms/gpi_ismrmrd

may include capabilities to store arbitrary waveform data elements that could be used to

capture detailed information about gradient waveforms or physiological telemetry. The

format may also be changed to allow more choices for data storage formats and precision.

Specifically, data is currently stored as 32-bit floating point values, which causes

ISMRMRD files to be larger than the original data from vendors that use fixed point

(integer) storage either in 16-bit format or in combination with variable length integer

encoding (compression). The proposed format is flexible enough to accommodate different

storage forms, possibly in combination with compression, which is easily supported by

HDF5, but support for such features is not currently included in the software libraries.

The main aim of the proposed standard is that it will serve as a foundation upon which

practitioners can base reproducible research and collaborations. A great deal of work

remains and the authors ask for input from the ISMRM community to help shape the

direction of the format. Specifically, the project would benefit from volunteers that have a

detailed understanding of more specialized research applications in terms of which

experimental parameters are needed to produce high quality reconstructions. The authors

would also like to encourage groups with existing software packages to adopt this open data

format as one of the input formats they support.

It is important to reiterate that the ISMRMRD format is a completely open and community-

driven format. As vendors release new software versions, the members of the research

community who are users of that platform will need to contribute their expertise to update

the conversion tools and to ensure their correctness. As the research community develops

new methods, members of the community will need to contribute their expertise to update

the format. After informal discussions with ISMRM leadership, it has been decided that a

formal governing structure in the form of a committee would not benefit the project at this

stage, but a more structured mechanism for prioritization of changes may be needed at a

later point in time as the format matures further. The authors and developers invite anybody

in the community (including commercial vendors) to participate either as users of the format

or as developers of the format or associated tools.

Acknowledgments

Multiple people participated in the discussions that led to this work. The authors acknowledge their contributions

(in no particular order): Walter F. Block, Peter Boernert, David O. Brunner, Mark A. Griswold, Brian A.

Hargreaves, Craig H. Meyer, Sonia Nielles-Vallespin, Tim Nielsen, Douglas C. Noll, James G. Pipe, Kaveh

Vahedipour, and Ghislain Valliant.

This research was supported in part by the Intramural Research Program of the NIH, NHLBI, NIMH, NINDS.

References

1. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI.

Magn Reson Med. 1999; 42:952–62. [PubMed: 10542355]

2. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast

imaging with radiofrequency coil arrays. Magn Reson Med. 1997; 38:591–603. [PubMed: 9324327]

3. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A.

Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;

47:1202–10. [PubMed: 12111967]

Inati et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Donoho DL. Compressed sensing. Information Theory, IEEE Transactions on. 2006; 52:1289–1306.

5. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR

imaging. Magn Reson Med. 2007; 58:1182–95. [PubMed: 17969013]

6. Jasny BR, Chin G, Chong L, Vignieri S. Again, and again, and again…. Science. 2011; 334:1225–

1225. [PubMed: 22144612]

7. Peng RD, et al. Reproducible research in computational science. Science (New York, Ny). 2011;

334:1226–1227.

8. Wavelab. WaveLab website. http://statweb.stanford.edu/~wavelab. Accessed August 13, 2015

9. ISMRM MRI Unbound. ISMRM website. http://www.ismrm.org/mri_unbound. Accessed August

13, 2015

10. FITS astronomical image and table format. NASA; website. http://fits.gsfc.nasa.gov/. Accessed

August 13, 2015

11. DICOM standard. Medical Nema website. http://medical.nema.org. Accessed August 13, 2015

12. NIfTI neuroimaging informatics technology initiative. National Institute of Mental Health; website.

http://nifti.nimh.nih.gov. Accessed August 13, 2015

13. Human connectome project. Human Connectome website. http://www.humanconnectome.org.

Accessed August 13, 2015

14. Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP. Gradient

system characterization by impulse response measurements with a dynamic field camera.

Magnetic resonance in medicine. 2013; 69:583–593. [PubMed: 22499483]

15. CampbellWashburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS. Real-time distortion

correction of spiral and echo planar images using the gradient system impulse response function.

Magnetic resonance in medicine. 2015

16. Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image

reconstruction. Magn Reson Med. 2013; 69:1768–76. [PubMed: 22791598]

17. Zwart NR, Pipe JG. Graphical programming interface: A development environment for MRI

methods. Magn Reson Med. 2014; doi: 10.1002/mrm.25528

Inati et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://statweb.stanford.edu/~wavelab
http://www.ismrm.org/mri_unbound
http://fits.gsfc.nasa.gov/
http://medical.nema.org
http://nifti.nimh.nih.gov
http://www.humanconnectome.org

Figure 1.

A minimal ISMRMRD dataset consists of a flexible XML header and raw data organized as

sequence of data items consisting of fixed-size data headers and the corresponding k-space

data for each set of samples or data chunk.

Inati et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.

The raw data structure for each data frame or chunk of the acquisition, consisting of a fixed-

size header with encoding numbers, location, etc. and the raw k-space data and (optionally)

the k-space trajectory sampling locations. r and i indicate the real and imaginary part of the

data points respectively.

Inati et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.

The encoding space of a simple 2D Cartesian acquisition. The XML header describes the

image encoding and reconstruction fields of view and matrix sizes and k-space sampling

bounding box. The image is acquired at a matrix size of 32 × 16 × 1 and field of view of

600mm × 300mm with a slice thickness of 10mm. It should be reconstructed at a matrix size

of 16 × 16 × 1 and field of view of 300mm × 300mm with a slice thickness of 10mm. The k-

space data were acquired on a grid oversampled by a factor of 2 in the x direction. The

“encodingLimits” section indicates the ky center (5) and the minimum and maximum ky

values (0 and 11 respectively), i.e. this is a partial Fourier experiment, with a true pixel size

that is somewhat larger than the nominal resolution, min(ky) = −5, max(ky) = +6. The

example experiment also employs partial Fourier along the readout dimension, i.e.

asymmetric echo.

Inati et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.

An experimental demonstration where data sets were acquired on scanners from four

vendors and converted from the vendor proprietary raw data file formats into ISMRMRD

format. A fifth data set was synthesized numerically and stored in ISMRMD format. The

five ISMRMRD raw data sets were reconstructed using three image reconstruction programs

written in C++, MATLAB, and Python. The resulting images are shown above, from left to

right Bruker, General Electric, Philips, Siemens, and the synthetic data set, and from top to

bottom C++, MATLAB, and Python reconstruction programs. The differences in SNR and

shading between the images are due to the coil geometries: small volume coil vs. knee coil

vs. head array.

Inati et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.

Images reconstructed with nominal variable density spiral trajectories compared to spiral

trajectories stored in ISMRMRD format. ISMRMRD trajectories are predicted using

contemporary gradient impulse response functions and therefore produce distortion-

corrected reconstructed images.

Inati et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.

Image reconstructed from an accelerated EPI sequence using SENSE. The coil sensitivities

were estimated from a separate GRE sequence (not shown).

Inati et al. Page 20

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Inati et al. Page 21

Table 1

The relationship between ISMRMRD encoding counters for conventional cartesian imaging and vendor

dimension labels.

ISMRMRD Bruker GE Philips Siemens

kspace_encode_step_1 encode step 1 frame e1 line

kspace_encode_step_2 encode step 2 – e2 partition

average – – measurement acquisition

slice slice slice location slice

contrast echo echo echo echo

phase – – cardiac phase phase

repetition repetition repetition dynamic scan repetition

set – – row set

segment – – – segment

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Inati et al. Page 22

Table 2

XML header encoding space for a variable density spiral sequence, providing an identifier and the set of

parameters used to generate the trajectory. The reconstruction program would need to be programmed to use

this information.

<trajectory>spiral</trajectory>

<trajectoryDescription>

 <identifier>HargreavesVDS2000</identifier>

 <userParameterLong>

 <name>interleaves</name>

 <value>32</value>

 </userParameterLong>

 <userParameterLong>

 <name>fov_coefficients</name>

 <value>1</value>

 </userParameterLong>

 <userParameterLong>

 <name>SamplingTime_ns</name>

 <value>2600</value>

 </userParameterLong>

 <userParameterDouble>

 <name>MaxGradient_G_per_cm</name>

 <value>2.400000</value>

 </userParameterDouble>

 <userParameterDouble>

 <name>MaxSlewRate_G_per_cm_per_s</name>

 <value>14414.413920</value>

 </userParameterDouble>

 <userParameterDouble>

 <name>FOVCoeff_1_cm</name>

 <value>30.000000</value>

 </userParameterDouble>

 <userParameterDouble>

 <name>krmax per cm</name>

 <value>3.200000</value>

 </userParameterDouble>

 <comment>Using spiral design by Brian Hargreaves

 (http://mrsrl.stanford.edu/~brian/vdspiral/)

 </comment>

</trajectoryDescription>

Magn Reson Med. Author manuscript; available in PMC 2018 January 01.

http://mrsrl.stanford.edu/~brian/vdspiral/

	Abstract
	Introduction
	Methods
	Design
	Encoding Space
	Encoding counters and flags
	File size limitations
	Flexibility vs. structure

	ISMRMRD Library
	File container
	XML header data binding
	Programming language-specific implementations

	Data Conversion Tools
	Experimental Demonstrations
	Example 1: Cross-vendor and cross-language demonstration
	Example 2: Non-cartesian trajectories, nominal vs. corrected
	Example 3: Accelerated EPI with GRE coil sensitivity calibration and SENSE reconstruction

	Results
	Experimental Demonstration
	Source Code and Raw Data Dissemination

	Discussion and Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2

