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Abstract

Cellular control of gene expression is a complex process that is subject to multiple levels of 

regulation, but ultimately it is the protein produced that determines the biosynthetic state of the 

cell. One way that a cell can regulate the protein output from each gene is by expressing alternate 

isoforms with distinct amino acid sequences. These isoforms may exhibit differences in 

localization and binding interactions that can have profound functional implications. High-

throughput liquid-chromatography tandem mass-spectrometry proteomics (LC-MS/MS) relies on 

enzymatic digestion and has lower coverage and sensitivity than transcriptomic profiling methods 

such as RNA-seq. Digestion results in predictable fragmentation of a protein, which can limit 

generation of peptides capable of distinguishing between isoforms. Here we exploit transcript-

level expression from RNA-seq to set prior likelihoods and enable protein isoform abundances to 

be directly estimated from LC-MS/MS, an approach derived from the principal that most genes 

appear to be expressed as a single dominant isoform in a given cell-type or tissue. Through this 

deep integration of RNA-seq and LC-MS/MS data from the same sample, we show that a principal 

isoform can be identified in over 80% of gene products in homogenous HEK293 cell culture and 

over 70% of proteins detected in complex human brain tissue. We demonstrate that incorporation 

of translatome data from ribosome profiling further refines this process. Defining isoforms in 

experiments with matched RNA-seq/translatome and proteomic data increases the functional 
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relevance of such datasets and will further broaden our understanding of multi-level control of 

gene expression.
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Introduction

A major challenge in gene expression studies of mammalian systems is the splicing 

complexity of the transcriptome. Over 90% of human multi-exon protein coding genes can 

transcribe alternatively spliced mRNAs1; the average gene has the potential to express 3–4 

distinct mRNA transcripts, with complex genes potentially generating more than 102. 

However, several recent observations suggest that the majority of human cell-types and 

tissues tend to predominantly express a single ‘principal’ RNA transcript3,4. Identification of 

principal isoforms can yield important biological insights because they dictate the sequence, 

structure, regulation, and function of the protein(s) produced by the gene. Confident 

discrimination of these principal isoforms is complicated as each modality of omic data 

suffers from different biases and confounds with regards to isoform identification. By 

integrating multiple modes of such data we can attempt to overcome some of these 

limitations to provide confident principal isoform identification.

Distinguishing between isoforms remains a major challenge for mass spectrometry analysis. 

Isoforms are most easily distinguished by unique peptide-to-protein identification from 

peptide spectral matches obtained from LC-MS/MS. Sequence similarity across isoforms 

limits the number of these unique peptides and corresponding enzymatic cleavage sites 

within the protein sequence. Current analytical approaches deal with ambiguous or 

redundant peptide-to-protein matches using a protein grouping feature, which organizes 

spectral counts into groups representing the entire isoform family5–9. Protein grouping is 

beneficial because it retains spectral information, but does not provide a solution to isoform 

ambiguity. Top-down proteomics is a useful strategy for isoform identification, but analysis 

of intact proteins is often challenging10,11. Targeted mass spectrometry approaches such as 

parallel and selected reaction monitoring (PRM/SRM) have also been employed to 

distinguish between isoforms12–18. This method relies on targeting specific masses for 

peptide identification, and its sensitivity allows identification of low-abundance peptides. 

While targeted approaches are a promising advancement toward solving the problem of 

isoform ambiguity, they are still limited by the availability of unique peptides within the 

protein sequence, and cannot be used on a hypothesis-free basis.

Over the last two decades, genome-wide analysis of nucleic acids has rapidly advanced to 

the point where we can routinely survey the entire genome, epigenome, and RNA 

transcriptome of any cellular system. Transcriptome analysis remains the de-facto approach 

for a genome-wide survey of gene expression while incorporation of proteomic 

measurements has lagged despite improvements in mass-spectrometry technologies that 

have put analysis of complete cellular proteomes within reach19–21. Methods for quantifying 
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mRNA-seq at the isoform level have become extremely advanced, despite the challenges 

inherent in using relatively short reads with non-uniform coverage and a high propensity for 

multi-mapping. In a 2015 systematic review, 11 of the commonly used tools were found to 

have comparable consistency and accuracy in isoform quantification, particularly for higher 

abundance transcripts22. Thus, the most recent improvements to these workflows have 

focussed on increasing processing speed, decreasing memory usage, and correcting for 

sequence- and/or position-based biases inherent in RNA-seq experiments.

Recently, studies of the translatome have started to bridge the gap between transcriptome 

and proteome. Ribosome footprinting measures the dynamic profiles of ribosomes as they 

are translating mRNA to protein23 and provides additional and often crucial insight into 

post-transcriptional regulation24–27. Given that protein abundance and modification most 

closely reflects the biosynthetic state of the cell28,29, it may be advantageous to incorporate 

translation level data when predicting protein isoforms. Packages for analysis of ribosome 

footprint data have proliferated in the last two years, but the majority do not explicitly 

address allocation of footprints to isoforms30–33, instead focusing on improving sensitivity 

in analysis of translation efficiency. In these approaches, it is common to abstract to the 

gene-level by choosing a single ‘representative’ transcript; typically, one with either the 

longest coding sequence or the highest density of footprint reads. Given that calculation of 

translation efficiency depends on transcript length, mis-identification or naïve aggregation of 

multi-isoform genes could lead to incorrect quantification. Floor and Doudna used 

Cufflinks34, a popular package for transcript quantification in an attempt to obtain transcript-

level assignments of footprints26, while the Ribomap package uses mRNA transcript 

abundance to fractionally assign footprints to isoforms35. The Cufflinks approach is 

inherently limited by the coverage of the footprints and the Ribomap method does not allow 

for footprints to disagree with mRNA-seq data in the case of significant post-transcriptional 

regulation.

Here we show that in experiments with carefully matched multi-omic data the vastly greater 

transcript-resolving power of mRNA-seq can be exploited to enable isoform-level 

interrogation of the proteome and/or translatome. We adapted a basic expectation 

maximization technique, now the de-facto standard for mRNA-seq isoform 

quantification34,36–38, for use with LC-MS/MS and/or ribosome footprint data. By 

identifying the principal isoform(s) for each gene using the RNA-seq transcriptome 

quantifications, the EMpire tool (Expectation Maximisation Propagation of Isoform 

abundance from RNA Expression) set biologically informed priors to guide the assignment 

of peptides or footprints towards these same isoforms. Use of continuous prior likelihoods 

represents a continuum of expression that more accurately reflects the underlying biology of 

a sample than an arbitrary inclusion/exclusion of transcript sequences in a database 

reference. Divergence from the RNA-seq prediction was allowed if there was sufficient 

evidence against a particular mRNA isoform due, for example, to substantial post-

transcriptional regulation. In concordance with mRNA-seq data3,4, we demonstrated that we 

can identify a principal isoform in over 80% of gene products in homogenous HEK293 cell 

culture and over 70% of proteins in complex human brain tissue. Use of these informed 

priors was beneficial for principal isoform selection in over half of the genes detected, and 
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most, but not all, gene products agreed on the same principal isoform throughout all data 

modalities.

Experimental Methods

Experimental Design and Statistical Rationale

Each of the HEK293 cell assays was carried out over three biological replicate samples. In 

all of the HEK cell experimental modalities, a biological replicate consisted of one large 15 

cm diameter cell culture dish with HEK cells grown to 75–85% confluence (this equated to 

approximately 80–100 μL packed cell volume). This sample number was considered 

appropriate for the exploratory, proof of principle experiments presented here. For the 

human brain experiment, 5 biological replicates were used; this sample number was based 

on a previous proteomic study of mouse brain39. No technical replicates were used, as 

previous experiments showed good consistency across technical replicates.

HEK293 cell culture – Generation of a stable cell line expressing eGFP-L10a

HEK293 cells were transiently transfected with pCMV-EGFP-L10a using Effectene 

transfection reagent (Qiagen) according to the manufacturer’s protocols. Stably expressing 

colonies were selected by growth in media containing G418. The pCMV-EGFP-L10a 

contains the mouse L10a coding sequence, which diverges from the human coding sequence 

at 71 out of 653 bases, despite ultimately producing the same 100% conserved protein 

product. This enabled us to assess the ratio of exogenous GFP-L10a to endogenous L10a 

from our RNA-seq data, which was approximately 1:5 (data not shown) in the cell line 

(HEK293-L10a) used to produce all data.

Obtaining ribosome-associated RNA (raRNA) by eGFP-L10a immunoprecipitation

raRNAs were obtained according to a modified version of the original bacTRAP 

immunoprecipitation (IP) protocol40. HEK293-L10a cells were lysed by rotor 

homogenisation in bacTRAP lysis buffer (20 mM HEPES, 5 mM MgCl2, 150 mM KCl, 0.5 

mM dithiothreitol, 100 μg/ml cycloheximide, protease inhibitors, and recombinant RNase 

inhibitors) plus 2% n-dodecyl-beta-maltoside (n-dodec, Thermo Fisher Scientific). Addition 

of 2% n-dodec ensures capture of ribosome footprints from both cytosolic and endoplasmic 

reticulum (ER) associated ribosomes, which in the latter case are otherwise depleted in these 

preparations41 (and data not shown).

Lysates were cleared by centrifugation at 13,400 × g for 10 min at 4°C, then subjected to IP. 

For EGFP-L10a IP, 450 μL of BSA blocked MyOne Streptavidin T1 Dynabeads (Thermo 

Fisher Scientific) were coated with 180 μL biotinylated Protein L, and pre-conjugated to a 

combination of 75 μg each of the mouse monoclonal antibodies 19F7 and 19C8 (Sloan 

Kettering Memorial Hospital). Dynabead-antibody complexes were added to the cell lysate 

and immunoprecipitated overnight. The next day beads were washed 4 times with a high salt 

wash buffer (10 mM HEPES [pH 7.4], 350 mM KCl, 5 mM MgCl2, 1% NP-40, 0.5 mM 

dithiothreitol, 100 μg/ml cycloheximide). Bound mRNAs were eluted by resuspending the 

beads into 700 μL Qiazol and following the manufacturer’s instructions for RNA 
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purification using the miRNeasy kit (Qiagen). Full length total RNA was also prepared by 

lysing a pellet of HEK293-L10a cells in 700 μL of Qiazol, and using the miRNeasy kit.

Ribosome profiling sample preparation

Ribosome footprints were prepared as described23, with some modifications. Briefly, 

HEK293-L10a cells were lysed as above in bacTRAP lysis buffer plus 2% n-dodec. 

Ribosomes were collected by IP with 20 μg of biotin conjugated eGFP monoclonal antibody 

(Sloan Kettering, as above) complexed with 160 μL Streptavidin Dynabeads. Bead-

associated ribosomes were resuspended in 300 μL bacTRAP lysis buffer without RNase 

inhibitors, and treated with RNaseI as for cell lysates. Digestion was stopped by addition of 

10 μL of Superasin (Ambion). Ribosomes were collected by reattachment to the magnet and 

resuspended in 700 μL Qiazol, and processed as per Qiagen miRNeasy kit instructions. 

Ribosome footprints were eluted from RNeasy columns in 30 μL RNase free water, then 

extracted overnight at −80°C following addition of a further 38.5 μL RNase free water, 1.5 

μL GlycoBlue (ThermoFisher), 10 μM sodium acetate, and finally 150 μL isopropanol. 

Footprints were collected by centrifuging at maximum speed on a desktop centrifuge for 30 

min at 4°C. Pelleted RNA was air-dried, then run on a 15% TBE Urea Gel (ThermoFisher). 

A band was cut containing nucleotides of 26–32 nt size. Overnight RNA extraction from the 

gel pieces, followed by T4 Polynucleotide Kinase (New England Biolabs Inc) treatment of 

fragments was performed as described23.

RNA-seq library preparation and rRNA depletion

Full length RNA from total cells and raRNA underwent rRNA removal by RiboZero kit 

(EpiCentre, Illumina), to remove the ~90% of cellular RNA they represent. rRNA depleted 

RNA was prepared for sequencing according to TruSeq library preparation protocols 

(Illumina), using random primers to synthesize cDNA. Libraries were run on an Illumina 

HiSeq 2500 at the Yale Center for Genome Analysis, and paired end 75 nucleotide reads 

obtained.

Following T4 PNK treatment, ribosome footprints were prepared for sequencing using the 

NEBNext Small RNA Library Prep kit and the manufacturer’s instructions. This resulted in 

the use of a single gel extraction step, unlike previous protocols23. After testing various 

rRNA depletion protocols, we made the decision not to remove rRNA, simplifying the 

workflow and decreasing the opportunity for investigator introduced variability or end bias.

Mass-spectrometry (MS) proteomics

Frozen pellets of HEK293-L10a cells were lysed by sonication in RIPA buffer plus protease 

inhibitors. Protein was precipitated from the lysate to remove detergents by chloroform/

methanol precipitation. Protein pellets were resuspended in 90 μL of 70% formic acid, and 

then 360 μL 0.1% TFA was added. Protein was quantified by nanodrop (Thermo Fisher 

Scientific) and 200μg was aliquoted, dried and reconstituted in in 8 M urea, 0.4 M 

ammonium bicarbonate, reduced for 30 min at 37°C with 4 mM dithiothreitol, alkylated by 

incubating for 30 min with 8 mM iodoacetamide, before dilution to 2 M urea and addition of 

trypsin at a ratio of 1 μg:20 μg total protein. Samples were digested overnight at 37°C, then 

acidified and desalted on a C18 Macro Spin Column (The Nest Group). Peptides were eluted 
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in 80% acetonitrile/0.1% trifluoroacetic acid (TFA), then dried by Speedvac. The dried pellet 

was resuspended in Buffer A (10 mM potassium phosphate in 25% acetonitrile solution (pH 

3.0)) and separated in the first dimension by Strong Cation Exchange on a 2.1 × 200 mm 

PolySULFOETHYL A™ column (PolyLC Inc.) via an HP 1090 HPLC Hewlett Packard). 

Separation was carried out over a linear 118 min gradient with increasing Buffer B (10 mM 

potassium phosphate, 25% acetonitrile pH 3.0, 1 M potassium chloride) at a flow rate of 200 

μL/min. Twenty fractions were collected, pooled into 10 tubes, and each tube desalted using 

a Ultra-Microspin C18 column (The Nest Group) prior to LC MS/MS. The desalted peptide 

mixture was reconstituted in Buffer A (Water with 0.1% formic acid) and quantified by 

Nanodrop (Thermo Fisher Scientific). Peptides were diluted to 0.05 μg/μl, and 5 μL were 

injection onto the column for each fraction to be analyzed by LCMS/MS. LCMS/MS 

analysis was performed using an LTQ Orbitrap Elite mass spectrometer (Thermo Fisher 

Scientific) equipped with a Waters NanoACQUITY ultra-performance liquid 

chromatography (UPLC) system using a Waters Symmetry C18 180 μm by 20 mm trap and 

a 1.7 μm (75 μm-inner-diameter by 250 mm) NanoACQUITY UPLC column (at 35°C) for 

peptide separation. Trapping was carried out for 3 min at 5 μl/min in 97% Buffer A (0.1% 

FA in water) and 3% Buffer B ((0.075% FA in acetonitrile (ACN)) prior to eluting with 

linear gradients that reached 6% B at 5 min, 35% B at 170 min, and 50% B at 175 min, and 

97% B at 180 min for 5 min; then dropped down to 3% B at 186 min for 14 min. Three 

blanks (1st 100% ACN, 2nd and 3rd Buffer A) followed each injection to ensure against 

sample carry over.

Mass spectral data were collected over a 300–2000 m/z mass range, with a precursor ion 

isolation window of 2.0 Da. Data Dependent Acquisition of MS/MS fragmentation (Top 10 

with minimum signal of 500 counts) was carried out via High-energy Collisional 

Dissociation (HCD) with normalized collisional energy of 28 (and activation time of 0.1 sec) 

and default charge state of 2 for the precursor mass (with charge state rejection of 

unassigned charge states and 1). Additionally, dynamic exclusion was enabled with repeat 

count and duration of 1 and 30 seconds respectively. The size of the exclusion list was set at 

500 ions for an exclusion duration of 60 seconds. MS1 data were collected in profile mode 

with 30,000 resolving power setting, while the MS/MS were collected in centroid mode with 

15,000 resolving power settings.

RNA-seq read alignment and transcript quantification

Due to our IP of ribosomes, and the decision not to deplete footprint samples of rRNA, we 

carried out an explicit alignment of the reads to known human rRNA before alignment to the 

genome.

TotalRNA- and raRNA-seq reads were mapped to the annotated 5S and 45S 

(chrUn_gl000220) rRNAs using STAR to remove any remaining rRNA contamination. 

Based on this alignment we observed that residual rRNA could explain on average ~20% of 

the sequence reads across all totalRNA and raRNA samples. We mapped the remaining 

~80% of the RNA-seq reads to the human genome (hg38) and annotated transcriptome 

(gencode v21) again using the STAR aligner, following roughly the ENCODE alignment 

parameters (github.com/ENCODE-DCC/long-rna-seq-pipeline/blob/master/DAC/
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STAR_RSEM.sh). Of the non-default options in STAR, the following are the most important 

to ensure compatibility with our method:

‘--outSAMtype BAM SortedByCoordinate’ for visualisation in IGV

‘--quantMode TranscriptomeSAM’ for alignments in transcriptome coordinates for eXpress

‘--outFilterMismatchNoverLmax 0.05’ to ensure # mismatches to <5% of the # of mapped 

bases

Transcript aligned reads were quantified using eXpress.

Ribosome footprint reads were clipped of their 3’ adapter and aligned, like the totalRNA- 

and raRNA-seq samples above, to the annotated 5S and 45S (chrUn_gl000220) ribosomal 

RNAs. Removal of rRNA reads was very important to reduce the effect of spurious 

alignments to the genome. Non-rRNA reads were aligned to the human genome (hg38) and 

annotated transcriptome (gencode v21) again using the STAR aligner.

Mass-spectrometry spectra alignment

The entire human transcriptome (as defined in gencode21) was in-silico translated, in three 

frames, to amino acid sequences using the transseq function within the EMBOSS42 software 

library. Also included in this ‘target’ database were CRAPome43 sequences of likely 

contaminants (such as Bovine Albumin). For the fractionated HEK cell experiment, 

MSConvert was used to create a merged.mgf from the proprietary ThermoFisher .raw files 

from the Orbitrap Elite. The merged.mgf was input to X!Tandem for spectral assignment 

using default parameters including trypsin cleavage, maximum missed cleavages of 3, 

minimum ion count of 4, and mapping to the reverse sequence as a decoy.

For the brain experiment, spectra obtained from the Orbitrap Elite, in proprietary 

ThermoFisher ‘.raw’ files, were processed using MaxQuant44 (v1.5.2.1). Peptides were 

searched using “trypsin/P” as the digestion enzyme, with a tolerance for up to 2 missed 

cleavages. This search included a fixed modification, cysteine carbamidomethylation, and 

two variable modifications, N-terminal acetylation and methionine oxidation. MaxQuant 

default options were used for mass tolerance; 20 ppm for precursor ions, and 0.5 Da for 

fragment ions. MaxQuant defaults of FDR corrected p of 0.01 was used for both peptide 

spectral match and protein identification.

The standard peptides.txt output file from MaxQuant was used as input. Spectra were 

searched against these transcriptome-derived protein sequences, common contaminant 

sequences, and a library of reverse ‘decoy’ sequences45.

The distribution of expectation values for spectra with legitimate database hits was 

compared to the equivalent distribution for spectra assigned to the reverse ‘decoy’ database 

and a [maximum] expectation threshold was selected for each sample that limited the false 

discovery rate (FDR) to 1%. I.e. 1% of spectra below this expectation value mapped to the 

reverse database while 99% mapped to the real database.
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Peptides that mapped to more than one distinct genomic locus or to contaminant sequences 

were discarded from further analysis, however this is not to be confused with peptides 

assigned to multiple potential isoforms of the same gene which were retained. It is worth 

noting that many of the peptides identified using the SWISS-Prot reference could be 

assigned to multiple distinct genes and thus constituted much of the data loss attributed with 

the use of this reference (data not shown). The transcriptome-derived reference did not suffer 

as much from multi-mapping, due mainly to less ambiguous gene-isoform relationships.

The analysis described below performs a second round of FDR correction based on decoy 

mappings and discards multi-locus mapping sequences.

Software implementation and testing

The code for the EMpire expectation-maximization algorithm is freely available and can be 

found at the Github repo: https://github.com/rkitchen/EMpire

Required inputs to the software are all in common data formats, examples are available in 

the GitHub repo:

footprinting: gencode/ENSEMBL genome annotation (.gtf)

footprint read -> transcript alignments (.bam)

[optional] eXpress RNA-seq transcript quants (.xprs)

mass-spec: gencode/ENSEMBL genome annotation (.gtf)

translated amino-acid sequences for each transcript (.fasta)

spectra -> either transcript X!Tandem output (.xml) or MaxQuant peptides file (peptides.txt)

[optional] spectra MS1 intensities for quantification (.mzXML)

[optional] eXpress RNA-seq transcript quants (.xprs) [OR] footprint EM output (.exprs)

Modifications to an expectation maximization (EM) algorithm

Footprint reads or MS peptides are defined in terms of their binary compatibility to the set of 

isoforms of a given gene. If a read or peptide has a valid alignment to a transcript it is given 

a value of 1, or else it is assigned 0. Using this compatibility matrix, I, of all reads/peptides 

against all transcripts as well as the relative transcript abundances from RNA-seq we can 

write down the likelihood, P(R1:N|ψ), of observing all 1..N footprint reads, R, given the 

distribution of the abundances, ψ, of 1..K isoforms:

P R1: N
ψ = ∏

n = 1

N

∑
k = 1

K

P R
n

I
k

P I
k

ψ
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In the simplest case of the naïve prior, we have no information about which isoform(s) may 

be responsible for generating the footprint reads and/or peptides so we define the initial 

distribution of isoform abundances as uniform:

ψ
k

= K
−1

In the case of a non-uniform prior (i.e. from the RNA-seq expression data), ψ is set as the 

ratios of isoform expressions to the total (cumulative) expression of all transcripts in their 

parent gene.

Since at the same level of expression isoforms with longer open reading frames will produce 

more footprint reads (and below saturation longer proteins will produce more identifiable 

peptides) we also define the probability that the jth isoform will contribute a footprint or 

peptide based on the length of its coding sequence, l, and its abundance:

P I
j

ψ =
ψ

j
l
j

∑
k = 1
K

ψ
k
l
k

For the peptide EM, the effective isoform length is calculated from an in-silico (Trypsin & 

LysC) digestion (allowing 2 missed cleavages) of the protein to the constituent peptides.

For each gene, we can update the isoform abundances (by Maximum Likelihood Estimation) 

from the original RNA-seq to new values that best explain the observed footprints. Sampling 

from these new isoform abundances allows us to assign footprint reads to specific isoforms 

and so on.

For the ribosome footprints, we further modify the compatibility matrix, I, to reflect the 

likelihood that a read of this length would be observed with its offset from the coding frame 

of the transcript. The calculation of this read-position weight matrix is described in the next 

section. Essentially if 90% of the reads of this read’s length have an observed frame offset of 

0.5nt and this read has the same offset to the current transcript then the compatibility is set to 

0.9. This allows for the down-weighting of reads that have a spurious frame-offset to the 

current transcript; in this example if only 2% of all reads of the same length have a frame 

offset of 1.5nt, which matches that of the current alignment to the current transcript, then the 

compatibility is set to just 0.02 and this read will have very little positive support for this 

isoform.

Ribosome footprint frame analysis

Here, we calculated the frame using the offset of the mid-point of the footprint read to the 

start of the middle-nucleotide of the closest codon triplet. Using this metric and the resulting 

position-weight-matrix (PWM) of the footprint size vs. codon offset we can infer that the 

result of incomplete RNase digestion, which will likely differ between footprint 

preparations, tends to leave additional nucleotides at the 3’ end of the footprint (Figure S4a). 

We can also use the PWM of read-mids to codon-offsets from single isoform genes to allow 

the reads to decide for themselves the optimal translation frame for each coding sequence 
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and then ask, as a function of the number of reads mapped to a transcript, what fraction of 

transcripts are called in the correct frame.

Other bioinformatic & statistical analysis

All RNA-seq statistical analyses, pre-processing, and normalization was performed within 

the R/Bioconductor scripting environment46. Gene clustering for Figure 4 / Figure S8 was 

performed using the dynamicTreeCut package, with default parameters except for the 

minimum cluster sizes which were adjusted for aesthetics. Cluster profiles were computed 

from the median major isoform fractions of the genes within each cluster. Where referred to 

explicity in the text, transcript IDs are taken from the October 2014 build of Ensembl: http://

oct2014.archive.ensembl.org/index.html.

PCR confirmation of principal isoforms from RNA-seq

Total-RNA was extracted from a HEK293-L10a cell pellet as described previously. cDNA 

was synthesized using SuperScriptIII Reverse Transcriptase (ThermoFisher Scientific) 

according to Manufacturer’s instructions. PCR primers for selected genes where isoforms 

were defined by a skipped exon were designed according to the scheme below.

Primers for individual genes were:

POLDIP3: AAGTGCAGGATGCCAGAGAG Fw

CAATGGGCTGAGAACAGGCT Rv

ALDH2: CCGAGGTCTTCTGCAACCAG Fw

TTGCATCAGGAGCGGGAAAT Rv

PDHB: CTGGCTTGGTGCGGAGAC Fw

CCAGCAAAGCCCATCTCTGA Rv

COPE: AGAGAGACGTGGAGAGGGAC Fw

CCACTATCCTTGTCTAGCGCC Rv

MOGS: CAGGTGTCGCTAACCGGAC Fw

CGGGTCTTCATGCCGAAGTA Rv

Standard PCR was performed using Taq DNA polymerase (Invitrogen, Thermo Fisher 

Scientific). cDNA was diluted 1:10, using 1 μL per 20 μL reaction. 30 PCR cycles were 

performed, before running the samples on a 1.5% agarose gel.

Data Availability

The mass spectrometry proteomics data and files required to run the analysis described in 

the paper have been deposited to the ProteomeXchange Consortium via the PRIDE partner 

repository with the dataset identifier PXD008693.
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Results

Integrated experiments for profiling the transcriptome, translatome, and proteome

In order to fully explore the possibilities for isoform-level integration of RNA, ribosome 

footprint, and proteomic data, we designed a series of assays to be run in parallel on the 

same cellular sample (Figure 1a). For this proof of principle we used a modified stable 

human cell-line (HEK293-L10a), collecting RNA-sequencing (RNA-seq) data at two levels, 

total cellular RNA (‘totalRNA’) as well as immunoprecipitating (IP) only those transcripts 

engaged by the ribosome (ribosome associated RNA; ‘raRNA’), with the hypothesis that 

such transcripts may more closely reflect the abundance of protein. We obtained ribosome 

footprints (‘FP’) through the same (IP)-based approach. Finally, we obtained mass-

spectrometry (LC-MS/MS; ‘MS’) proteomic data in ‘discovery’ mode, which relied on 

fractionating samples to be able to identify more peptides (Supporting Table 1).

These assays differed not only in their molecular target but also their sensitivity. The depth 

of coverage, in terms of genes detected at all levels of expression, was unsurprisingly by far 

the greatest in totalRNA (Figure 1b). In our dataset, we observe the vast majority (19,881) of 

protein-coding genes, of which 11,286 were expressed above 5 transcripts per million (TPM; 

Figure 1c). raRNA gene expression captured greater than 90% of the protein coding genes 

detected by total RNA-seq (Figure 1c), while depleting for lower abundance non-coding 

RNA biotypes, including lncRNAs and processed pseudogenes (Figure S1). We detected at 

least 5 ribosome footprints from 56.2% of these protein-coding genes, with fractionated 

‘discovery’ proteomics identifying 2 or more peptides from 18.7% (Figure 1c).

Intronic reads in totalRNA may act as a confound to transcript quantification by RNA-seq, 

due to the presence of pre-spliced transcripts from the nucleus (Figure S2a). RNA-seq reads 

derived from raRNA indeed contained far fewer intronic reads than totalRNA (Figure S2b). 

We hypothesised that poly-A purification might bring a similar benefit over total RNA, but 

inspection of data from an ENCODE K562 cell-line (www.encodeproject.org) showed no 

such reduction in intronic reads (Figure S2c). Notably, the ‘cleaner’ exonic signal from 

raRNA data led to more consistent transcript quantification across all three biological 

replicates compared to totalRNA] (Figure S3a,b) This agreement was clearly dependent on 

both the expression of the gene and on the magnitude of the dominance of the principal 

isoform (Figure S3c,d). For genes expressed above 5 TPM and with a principal isoform that 

accounted for more than 50% of the mRNA produced by the gene, principal isoform 

agreement increased to 93% for totalRNA and to 97% for raRNA (Green lines, Figure 

S3e,f). While conservative in terms of excluding many non-coding genes, the 5 TPM 

threshold included 96% of protein coding genes for which we observed footprint reads 

and/or peptides (Figure 1c).

In the case of ribosome footprints, despite their short fragment size, they contain other 

useful information that can be leveraged when assigning them to isoforms. The “perfect” 

cycloheximide frozen ribosome footprint, (consisting of only those nucleotides directly 

physically protected from the RNase enzyme by the ribosome) is a 28 nucleotide fragment, 

with the read midpoint situated between nucleotide 1 and 2 of the nearest codon (zero offset, 

Figure S4a). This consistent fragmentation pattern allows identification of codons from 
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ribosome footprints, and as a result prediction of the open reading frame47 (ORF). Due to 

variations in the ribosome profiling technique such as incomplete RNase digestion, a range 

of fragment lengths are obtained. Rather than discard these “imperfect reads,” reads from 

genes with a single ORF can be used to create a position-weight-matrix (PWM) of read-

midpoints to codon-offsets (Figure S4b). The PWM shows the consistency of ORF 

prediction within each biological replicate, and could be used as a quality control metric to 

highlight samples with inconsistent RNase digestion. In our hands, consistently digested 

samples produce a majority of 29 nucleotide length fragments, which correctly predicted the 

transcript frame 90% of the time (Figure S4b). Incomplete RNase digestion usually resulted 

in a 3’ base overhang (Figure S4a). Given the consistency highlighted in the PWM, 3 

footprints per transcript was sufficient to call the correct frame 75% of the time, rising to 

greater than 90% accuracy with at least 10 footprint reads (Figure S4c).

Isoform-level integration of RNA-seq, ribosome footprints, and MS peptides

Computational tools for RNA-seq transcript quantification, such as the eXpress algorithm37 

used to assess isoform consistency in our data, typically employ an expectation 

maximization (EM) approach to determine the optimal abundances of each transcript so as 

to best explain the set of observed sequence reads. It is possible to employ a similar 

approach to quantifying isoforms based either on LC-MS/MS peptides or on ribosome 

footprint reads26. Unfortunately, compared to RNA-seq, peptide and ribosome footprint data 

are much more limited in their capacity to identify specific isoforms due to their smaller 

size, lower yield, and confinement to the coding sequence (CDS) of the gene. Given that 

confident isoform discrimination relies largely on peptides or reads that span one or more 

exon-exon boundaries, identifying the correct isoform from footprints or peptides alone can 

be problematic. For protein analysis, a random 13 amino-acid peptide (the average observed 

peptide size in the HEK293 data set) has an average probability of 30% to cross an exon-

exon boundary (Figure S5). Despite their increased number, ribosome footprints fare even 

worse due to their smaller size leading to an average probability of 23% to cross an 

exon:exon junction. RNA-seq fragments, however, are much longer (especially with paired-

end data) and, as such, have a much higher probability (on average 85%) of spanning at least 

one junction. In principle, it is therefore strongly advantageous to inform an EM model by 

using totalRNA or raRNA transcript quantifications to set biologically informative priors.

To exploit the increased ability of RNA-seq to quantify the set of expressed transcripts in a 

sample, we sought to modify a standard EM algorithm to take RNA-seq transcript 

expression levels (as transcripts per million; TPM) as input to form biologically informative 

continuous prior likelihoods (priors). These priors represent a continuum of expression that 

accurately reflects mRNA expression in a sample. These priors were then used to assign 

short length peptides and/or footprints to isoforms (Figure S6). Unlike a naïve prior (which 

initially assumes an equal likelihood of any isoform) the RNA-seq derived priors can 

overcome a large amount of the ambiguity in the set of transcripts/isoforms likely 

responsible for the observed peptides and/or footprints. In our experiments we applied 

different combinations of priors depending on the data available. In the HEK293 cell study 

we assessed both allocation of ribosome footprints using RNA-seq priors (Figure S7), and 

LC-MS/MS peptides using RNA-seq and footprint isoform likelihood as priors (Figure 2, 
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see methods for more detail on input file formats). This approach also incorporated 

modifications to the standard EM algorithm to assign more confidence to in-frame ribosome 

footprint reads, according to the values in the sample-specific PWM (Figure S4).

Using a naïve prior in the HEK293 cell dataset, in 58% of genes neither peptides (blue bars) 

nor footprints alone (grey bars) could distinguish the principal isoform, instead settling on 

two or more equally likely isoforms (Figure 3a). In multi-isoform genes for which the naive 

EM converged on a single principal isoform, this isoform was typically extremely dominant 

and at least 10-fold more likely than the ‘next-best’ isoform (Figure 3b,c). In the footprint 

dataset, use of a biologically informative RNA-seq prior established a minimum 2-fold 

dominant isoform for over 80% of genes. The choice of RNA-seq prior was not critical, as 

total-RNA and raRNA performed equivalently (Figure 3b). In the LC-MS/MS dataset, use of 

a biologically relevant raRNA-seq prior resolved a principal isoform for 70% of genes. 

Inclusion of footprint data in the RNA-seq prior resolved principal isoform ambiguity for a 

further 8% of proteins compared to raRNA alone (Figure 3c).

The EM algorithm has two components: the naïve or biologically informed prior, and the 

expectation maximization on the given data. Using an unsupervised hierarchical clustering 

and dynamic tree-cut we defined clusters of genes in each of the footprint EM and the 

proteomic EM that behaved similarly in terms of the ability to resolve a principal isoform on 

the basis of different priors and/or given data (Figure S8 and Figure 4a–b). These clusters 

could be generalized into genes for which the biological prior was necessary or beneficial 

for identification of a two-fold dominant (>66.6 % of gene expression) principal isoform 

(footprint EM: 57.1% of genes in clusters c3,4,5,7; proteomic EM: 54.7% in clusters 

c1,3,5,6,7), genes where identification of a dominant principal isoform was driven entirely 

by the given data (footprint EM: 41.3% of genes in clusters c2,6,8; proteomic EM: 33.7% in 

clusters c2 and c8), or was conflicting, picking a different principal isoform with different 

biological priors (footprint EM: 1.6% of genes in cluster c1; proteomic EM: 11.6% in cluster 

c4).

For further validation of the approach, we selected a variety of genes with isoforms 

containing a single skipped exon, for which the naive prior was unable to help identify a 

principal isoform but the biological priors appeared to resolve this ambiguity (Figure 5a). 

We designed PCR primers to amplify the region containing the prospective skipped exon, 

resulting in products of defined sizes dependent on the presence or absence of the exon. In 

the example gene highlighted in Figure S9 POLDIP3, use of the RNA-seq prior 

overwhelmingly suggested the presence of a 2-fold dominant transcript, POLDIP3–001, 

with a minor transcript of POLDIP3–002, an outcome which was fully consistent with both 

footprint read locations (Figure S9a), and peptide data (Figure S9a,b). Thus, PCR analysis 

showed a principal transcript at 563 bp, the product size for transcript POLDIP3–001, with a 

minor product at 476 bp (transcript POLDIP3–002). For the remaining four cases (ALDH2, 

PDHB, COPE, MOGS), there was only evidence for the proposed dominant transcript, as 

predicted by the RNA-seq (Figure 5b).

Finally, we showed that this approach was also highly effective when applied to a much 

more complex dataset with matched mRNA-seq and LC-MS/MS from our recent study of 
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adult human brain regions21. We analyzed 5,197 proteins detected by single-shot LC/MS-

MS from the dorsolateral prefrontal cortex (dlPFC) of 5 adult humans, using publicly 

available mRNA-seq data from the same samples to serve as a biologically informative 

prior48. In these complex samples, use of the mRNA-seq prior both increased the number of 

genes where a principal isoform could be consistently defined across all 5 samples (Figure 

6a, teal bars), and allowed for selection of a 2-fold dominant principal isoform in an extra 

40.6% of proteins (Figure 6b). In 29.8% of proteins the peptide data alone were sufficient 

for selecting a principal isoform. By using the mRNA prior it was possible to call a 2-fold 

dominant principal isoform in 70.4% of proteins. Unsurprisingly, as we saw with the 

HEK293 data, the more dominant a principal isoform was, the more consistently it was 

called in all five samples (Figure 6b, teal bars).

Conclusions

The eukaryotic genome can produce an enormous repertoire of mRNA products. Isoforms 

are mRNA transcripts that arise from the same gene that may differ in their transcription 

start site, exon usage, and untranslated regions1. Each of these transcripts may be subject to 

different regulatory mechanisms, and result in variable structure and function of the final 

protein product. It is therefore critical to our understanding of gene expression to consider 

abundance of isoforms, and not simply genes, in high throughput data. The presence of 

UTRs in mRNA, and the relatively long reads used in paired end mRNA-seq allows for 

increasingly reliable definition of isoforms in these data. While ribosome footprints may be 

found in UTRs, peptides are not produced from these regions, and the shorter sequences 

output from LC-MS/MS or ribosome footprinting are much less likely to cross isoform 

defining exon boundaries. Here we have demonstrated that use of continuous biologically 

relevant priors, obtained from matched isoform-level mRNA-seq22 quantification can lead to 

a marked improvement of the isoform-assignment of ribosome footprints and LC-MS/MS 

peptides in over 50% of genes.

The EMpire tool takes experiment-level peptide to spectrum matches from widely adopted, 

freely available proteomics software (we recommend the peptides.txt file from MaxQuant) 

and uses transcript quantification data from RNA-seq to set biologically informed priors on a 

sample-by-sample basis, allowing peptides to be assigned to the most likely protein isoforms 

in each individual sample. This tool may also be used to assign ribosome footprints to 

isoforms, and ribosome footprints can be input as priors for proteomic experiments. EMpire 

has workflow advantages over simply using an individualized reference database with which 

to match proteins and peptides. With an individualized reference, spectra from each sample 

would have to be matched to their own personalized reference, an approach incompatible 

with that used in most spectral alignment software, where data from every sample is grouped 

together, allowing for improved normalization and comparison between samples. 

Furthermore, thanks to data generated via large projects such as ENCODE49, it has become 

clear that the deeper a sample transcriptome is sequenced, the more transcripts are detected. 

It is not clear exactly what the signal:noise threshold is that allows confident definition of 

the meaningful expression of a transcript, and as such defining on/off characteristics for 

mRNA expression is challenging and potentially error-prone. The approach presented here 

defines and exploits continuous prior likelihoods that reflect the underlying biology, which is 
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superior to the arbitrary inclusion/exclusion of transcript sequences in an individualised 

protein or peptide reference database.

In our proof of concept study using HEK293 cells, almost 60% of genes have no clear 

principal isoform using a naïve prior. By using a prior derived from mRNA-seq, we can 

confidently assign a 2-fold dominant isoform to ~80% of genes detected by peptides or 

ribosome footprints. The addition of footprint data to the mRNA-seq prior further increases 

the fraction of proteins with a principal isoform at all levels of dominance (2-, 10- and 100-

fold). This suggests that in situations where isoform quantification by RNA-seq is noisy, 

adding more data modalities to isoform level analysis may improve the confidence of 

isoform selection. For ~55% of these genes, the biological prior is necessary for definition of 

the principal isoform. For the vast majority of genes detected by ribosome footprints, the 

different modalities consistently select the same isoform. This is evidence that the 

assumptions made at the mRNA level that most cell types or even tissues express a principal, 

dominant isoform of each gene, are valid for studies at the translational and proteomic level. 

There are some caveats to this latter point which are highlighted by our study, particularly in 

the proteomic data, where approximately 10% of genes detected by proteomics harbored a 

disagreement between the RNA-seq and peptide data. This disagreement may be a technical 

issue related to the coverage of the proteomic data, and the observability of individual 

peptides. Where only a small number of peptides are detected from a single protein-coding 

gene, a peptide that disagrees with the RNA prior has significant power to change the 

outcome. In such cases it is likely that a substantial amount of the disagreement from 

proteomic data arises from low protein sequence coverage, and will decrease towards the 

percent disagreement observed with the footprint data (~1.6%) as the sensitivity of LC-

MS/MS continues to increase.

We also explored the performance of this approach using proteomic data from a more 

complex system. Human dlPFC is an extremely complex tissue, with a layered 

cytoarchitecture and the presence of a large number of individual cell types50,51. We 

hypothesized that it may be more difficult to define isoforms in this data, as different cell 

types may contribute different isoforms for the same proteins. However, the use of mRNA-

seq as a prior increased the number of genes with a 2-fold dominant isoform from 30% 

(naïve prior) to 70%. It is likely that a substantial portion of the 30% of genes remaining 

uncertain can be accounted for by the contributions of isoforms from varying cell types. It is 

worth noting that the mRNA-seq data used for this study48 were relatively old 50 nucleotide 

single-end reads. Despite the limitations of these shorter single end reads in defining 

isoforms, use of this mRNA-seq data still provided a clear benefit for isoform selection from 

the proteomic data. As we saw in the HEK293 cell experiment, the principal isoform 

selection was consistent, with the same principal isoform selected in all five biological 

replicates in 65% of genes.

While the experimental workflow for assignment of peptides to isoforms is therefore 

extremely flexible with regards to sample type and file input (see Methods), some of the 

measurements may be unsuitable or more error prone in certain biosample types. Ribosome 

profiling data for example can only be reliably obtained from fresh, unfixed tissue. Fixing of 

samples (such as fixed formalin paraffin embedded samples, FFPE) can make tissue more 
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difficult to homogenize and protease digest, and can introduce novel peptides from sites of 

formalin-induced protein-protein crosslinks52. Such peptides would not be assessed for 

isoform allocation as they would not be present in standard references used in peptide 

matching. It is possible that the loss of such peptides may change the outcome of the 

algorithm, and thus caution should be used when comparing ‘omics data where preservation 

or preparation may bias one of the profiling modalities. There is also a possibility that 

proteins that are processed post translationally, such as secreted peptides cleaved by 

proteases, may disagree strongly with the most likely mRNA transcript, appearing as 

“conflicting” with regards to agreement between the prior and outcome. As it is currently 

unclear whether specific transcript isoform abundance is directly related to proteoform 

abundance on a global scale, it is important to compare RNA read location and peptide level 

data assigned by this EM approach with the available literature about downstream protein 

modifications for key experimental targets.

In addition to an improvement in isoform identification, our approach involves mapping all 

features back to genomic co-ordinates. Currently, it is surprisingly difficult to combine 

mRNA-seq data with protein data post-hoc. This is partly a result of using non-comparable 

reference databases in the mRNA-seq versus proteomic data. Mapping back to genomic co-

ordinates therefore provides stability for comparisons through multiple versions of reference 

databases, and makes comparison between different modalities easier. With small 

adaptations, it will be possible to use this approach for other high throughput data formats 

such as HITS-CLIP, methylation, and ChIP-seq experiments. This may also prove useful in 

model systems with less complete reference annotation than human and mouse, using RNA-

seq based technologies to define isoforms identified by proteomics. In these systems, using 

ribosome footprinting may be particularly helpful as the weightings derived from their frame 

prediction capabilities can be used to define open reading frames. Integration of these data 

modalities from early in the analysis will increase the functional salience of these data, 

minimize artifacts arising from poor comparability of reference databases, and enable us to 

more fully understand the relationship between mRNA, translation and protein.
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Refer to Web version on PubMed Central for supplementary material.
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LC-MS/MS Liquid chromatography Tandem mass spectrometry
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PRM Parallel Reaction Monitoring

IP Immunoprecipitation

raRNA Ribosome-associated mRNA

FP Ribosome Footprint

MS Mass spectrometry

EM Expectation Maximisation

CDS Coding Sequence

TPM Transcriptions per million

dlPFC dorsolateral pre-frontal cortex

UTR Untranslated region
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Figure 1 |. Experimental approach to integrated analysis of the transcriptome, translatome, and 
proteome
a) Schematic diagram of the experimental approach to multi-modal profiling of the 

translatome in HEK293-L10a cells. Total-RNA and protein were obtained from lysing whole 

cells, while ribosome-associated (raRNA) and ribosome footprint RNA were obtained 

following immunoprecipitation of intact ribosomes from detergent extracted post nuclear 

supernatant (capturing cytosolic and ER associated ribosomes).

b) RNA-seq of totalRNA (dark blue) captures 60,155 genes (#genes, y-axis) that vary 

widely in abundance (log10(TPM), x-axis) and biotype. Gene location on the x-axis is 

defined by the TPM of the total-RNA for that gene, and as such all data shown is a subset of 

the genes observed by totalRNA. Plotted are genes (note that histograms are overlaid) also 

observed when profiling raRNA (light blue, 27,977 genes), ribosome footprints (green, 

lower threshold of 5 ribosome footprints/gene, 11,286 genes), and protein (red, genes with at 

least 2 peptides, 3833). The bimodal distribution of totalRNA gene expression broadly 

reflected a distinction between the cohort of mostly low-abundance non-coding RNAs and 

the higher-expressed protein-coding transcriptome. Genes with TPM > 1 show identical 

distributions of totalRNA-seq and raRNA-seq gene expression. Genes with at least five 

ribosome footprints are generally expressed above ~1 transcript per million (TPM). 

Fractionated LC-MS/MS, where peptides are first separated into pools offline, then analyzed 

serially, was used to identify proteins.

c) Of the 60,155 total genes captured by total RNA, 19,881 are annotated as protein coding. 

Ribosome footprints are identified from 56.2% of these protein coding genes, and 

proteomics samples 18.7%.
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Figure 2 |. Analytical workflow for isoform assignment
Isoform prediction and assignment for an experiment integrating RNA-seq and proteomics 

data. Peptide to spectrum matches produced by MaxQuant44 are aligned as transcript 

coordinates (see Methods if X! Tandem output is a preferred input). The top row is a simple 

peptide input with no biological prior and the middle is the RNA-seq informed biological 

prior (transcripts quantified by eXpress37). The bottom row shows integration of RNA-seq, 

footprint, and MS/MS proteomics, which occurs on a sample-by-sample basis. In this 

situation the output from the footprint EM (Figure S7) is input to the MS/MS EM.
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Figure 3 |. Using an RNA-seq prior robustly decreases the ambiguity of footprint and peptide 
assignment to the principal isoform in multi-isoform genes
a) Histogram showing the number of equally likely isoforms selected by performing EM 

with a naïve prior. Genes with only one isoform (“Mono isoform”) are shown as “MIG” on 

the x-axis. For those multi-isoform genes shown at 1 on the x axis, EM with a naive prior 

was able to settle on a single dominant isoform. For MS/MS peptide data (blue bars), naive 

EM was ambiguous as to the likely principal isoform in 58.1% of multi isoform genes. For 

footprint data (grey bars), 58.2% of multi-isoform genes were ambiguous.

b) Cumulative frequency plot for each of the 9583 genes identified in ribosome footprint 

data as a result of different biological prior use. The plot shows the fraction of genes with a 

principal isoform dominance (principal isoform/second isoform) less than X-fold (where x is 

given on the x axis) For the purpose of clean plotting, principal isoform dominance values 

greater than 120-fold were capped at 120. A value of 1 reflects a gene in which a single 

principal isoform cannot be determined. This applies to 45% of genes when a naïve prior is 
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used, versus less than 5% of genes if an RNA prior is used. Vertical dashed lines indicate 2-

fold, 10-fold and 100-fold dominant thresholds; for example, 48% of genes have a <2-fold 

dominant principal isoform using a naïve prior, but this applies to only 16% of genes with an 

biologically informative prior. As shown by the overlapping lines, use of a total RNA or 

raRNA prior has an equivalent effect on improving resolution of principal isoform 

ambiguity, compared to a naïve prior. c) Cumulative frequency plot as per 3b) for each of the 

1541 proteins detected by MS/MS. Addition of footprint data to an raRNA prior further 

improved the resolution of principal isoform ambiguity.
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Figure 4 |. A biologically realistic prior improves isoform level interpretation of ribosome 
footprints and MS/MS peptides
a) Genes with at least three ribosome footprint (FP) reads clustered into 8 main groups (Fig 

S8a) based on the result of the EM. The EM algorithm has two components: the naïve or 

biologically informed prior, and the expectation maximization on the given data. Each plot 

shows the fraction of total reads assigned to the most dominant isoform (principal isoform 

fraction) before (prior) and after the EM for each of the 8 groups. The results based on the 

three available priors are illustrated by the three columns of plots (naive, left; totalRNA, 

center; raRNA, right). Genes fell into three main groups, those where using a biologically 

informed RNA-seq prior allowed for selection of a two-fold dominant (y > 0.66) principal 

isoform (green arrows; clusters 3, 4, 5), those for which the principal isoform was driven 

entirely by the given footprint data (blue arrows; clusters 2, 6, 8), and those in which the use 

of a different prior led to different outcomes in terms of the reported principal isoform 

(“conflicting,” red arrows; cluster 1). An intermediate group also existed (turquoise arrows; 
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cluster 7) for which the informative prior aided in assigning isoforms but was still unable to 

distinguish between two equally likely principle isoforms. The bracketed number on the 

right hand side of the plots indicates the number of genes belonging to each cluster.

b) As a) following EM using peptides obtained from mass spectrometry (MS/MS). Peptides 

clustered into 8 main groups based on the result of the EM (Figure S8b) Here the priors were 

naive (left), totalRNA (centre), and raRNA+footprints (right); where the latter was the 

isoform abundance output generated by the ribosome footprint EM using the raRNA prior - 

the right column in a). Genes fell into three main groups, where using a biologically 

informed prior allowed for selection of a two-fold dominant principal isoform (green arrows; 

clusters 1, 3, 5, 7), those for which the principal isoform was driven entirely by the given 

peptide data (blue arrows; clusters 2, 8), and those in which the principal isoform was 

conflicted (red arrows; cluster 4). As for a, an intermediate group also exists (turquoise; 

cluster 6) where the informative prior aided in assigning isoforms but was still unable to 

distinguish between two equally likely principle isoforms. The bracketed number on the 

right hand side of the plots indicates the number of genes belonging to each cluster.
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Figure 5 |. An RNA-seq prior improves isoform assignment in specific genes where a naive prior 
ties
a) Detailed illustration of the EM result for 5 selected genes showing differences in the 

relative isoform abundances of each. In all cases, the biological prior was necessary to 

resolve the principal isoform (red) and the second isoform (blue) where applicable. To the 

right, the isoform names are shown along with the expected product size for the PCR 

validation in b)
b) PCR analysis of the 5 genes selected in panel a) show that, at least at the mRNA level, all 

agree with the principal isoform inferred by RNA-seq. POLDIP3 (left) also showed evidence 

for the expression of the second isoform predicted by RNA-seq.
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Figure 6 |. Consistent principal isoform identification in complex human brain samples using a 
RNA-seq prior
a) Using an mRNA-seq prior (right) increases consistency of identification of a single 

minimum 2-fold dominant isoform compared to a naïve prior (left). Red bars (disagree) 

indicate number of genes where the EM was unable to break a tie between equally likely 

isoforms, or where different principal isoforms are called in the 5 biological replicates. Teal 

bars (agree) indicate selection of the same principal isoform in all 5 biological replicates b) 
Following a naïve prior (left), up to 70% of genes were ambiguous in terms of their principal 

isoform; red peaks in this dodged histogram are evidence of the algorithm’s failure to break 

a tie between 2 (x=0.50), 3 (x=0.33) or 4 (x=0.25) equally likely isoforms per gene. Use of 

the mRNA prior (right) substantially reduced the number of genes with an ambiguous 

principal isoform, with ~70% of genes reporting a 2-fold or greater dominant isoform 

(x>0.66). Teal bars indicate genes for which the same principal isoform was called in all five 

biological samples.
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Scheme 1: 
Figure showing design of primers for Main Figure 5b. Primers were designed that were 

placed either side of a skipped isoform, producing products of a different size depending on 

the mRNA isoform expressed.
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