

Molecular Human Reproduction

Draft Manuscript For Review. Reviewers should submit their review at http://mc.manuscriptcentral.com/molehr

GSK3A isoform-specific function in human sperm motility

Journal:	Molecular Human Reproduction
Manuscript ID	Draft
Manuscript Type:	Original Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Freitas, Maria João; Signal Transduction Laboratory, Institute for Research in Biomedicine – iBiMED, Medical Sciences Department, University of Aveiro Silva, Joana; Signal Transduction Laboratory, Institute for Research in Biomedicine – iBiMED, Medical Sciences Department, University of Aveiro; Reproductive Genetics & Embryo-fetal Development Group; Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto Brothag, Cameron; Kent State University Department of Biological Sciences Regadas-Correia, Bárbara; CNC.IBILI – Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Faculty of Medicine, University of Coimbra; Department Quantitative Methods and Information and Management Systems, Coimbra Business School Fardilha, Margarida; Signal Transduction Laboratory, Institute for Research in Biomedicine – iBiMED, Medical Sciences Department, University of Aveiro Vijayaraghavan, Srinivasan; Kent State University Department of Biological Sciences
Key Words:	sperm motility, sperm biochemistry, Interactome, GSK3

SCHOLARONE[™] Manuscripts

1	Title: GSK3A	isoform-specific	function in	human sperm	motility
---	--------------	------------------	-------------	-------------	----------

- 2 **Running title:** GSK3 function in human sperm motility
- 3

4 M.J. Freitas¹, J. V. Silva^{1,2,3}, C. Brothag⁴, B. Regadas-Correia⁵; M. Fardilha^{1*}, S. Vijayaraghavan⁴.

5

6 1. Signal Transduction Laboratory, Institute for Research in Biomedicine – iBiMED, Medical Sciences

7 Department, University of Aveiro, Aveiro, Portugal.

8 2. Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health

9 Research (I3S), University of Porto, Porto, Portugal.

10 3. Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in

11 Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto,

12 Porto, Portugal

13 4. Kent State University, Kent, OH 44242, USA.

14 5. CNC.IBILI – Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of

15 Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational

16 Research, University of Coimbra, Coimbra, Portugal; Department Quantitative Methods and

17 Information and Management Systems, Coimbra Business School, Coimbra, Portugal.

18 *Correspondence address: Signal Transduction Laboratory, Institute for Research in Biomedicine –

19 iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal. Tel:

20 +351 234 247 242; E-mail: mfardilha@ua.pt ORCID: 0000-0001-7459-9173

21 Abstract

22 Study Question: Does GSK3A present an isoform-specific function in human sperm motility? 23 Summary answer: GSK3A is a negative modulator of human sperm motility, while GSK3B does not 24 influence sperm motility. 25 What is known already: In mouse and bovine sperm, GSK3 activity is inversely proportional to 26 motility. Targeted disruption of GSK3A gene in testis results in normal spermatogenesis, but mature 27 sperm present a reduced motility, rendering male mice infertile. On the other hand, GSK3B testis-28 specific KO is fertile. 29 Study design, size, duration: Normospermic and asthenozoospermic samples from adult males 30 were used to correlate GSK3 expression and activity levels with human sperm motility profile. 31 Testicular and sperm GSK3 interactome was identified. 32 Participants/materials, setting, methods: Semen samples from normospermic (n=3) and 33 asthenozoospermic (n=4) donors were collected by masturbation and total GSK3 and serine 34 phosphorylated GSK3 were evaluated using immunoblotting with specific antibodies. GSK3 testis 35 interactome was identified by performing a yeast two-hybrid screen of a human cDNA testis library. 36 GSK3 sperm interactome was characterized by co-immunoprecipitation of GSK3 followed by 37 identification and quantification of its interactors by mass spectrometry. An extensive in silico 38 analysis of GSK3 interactome was performed. 39 Main results and the role of chance: Inhibited GSK3A presents a significant strong positive 40 correlation (r=0.822, p=0.023) with the percentage of progressive human sperm, whereas inhibited

GSK3B is not significantly correlated with sperm motility (r=0.577, p=0.175). Regarding subcellular localization of GSK3 isoforms, GSK3A is mainly located in the human sperm flagelum (98%) while GSK3B is primarily localized to the head (97%). The importance of GSK3 in human sperm motility was further reinforced by *in silico* analysis of GSK3 interactome, which revealed a high level of involvement of GSK3 interactors in sperm motility related functions. 46 Limitations, reasons for caution: The yeast-two hybrid system relies on the yeast cell environment,

- 47 not fully mimicking mammalian cells. Yet, it is one of the only techniques that indicates binary
- 48 interactions. Co-Immunoprecipitation does not prove direct interaction, and weak interactions are
- 49 usually lost but retains intracellular environment conditions
- 50 Wider implications of the findings: Our findings prove that human sperm motility relies on isoform-
- 51 specific functions of GSK3A within this cell. Also, it is in accordance with mouse sperm motility
- 52 studies. Given the reported relevance of GSK3 protein-protein interactions in sperm motility, we
- 53 hypothesized that they stand as potential targets for male contraceptive strategies based on sperm
- 54 motility modulation.
- 55 Study funding/competing interest(s): This work was supported by FEDER funds through the
- 56 "Programa Operacional Competitividade e Internacionalização- COMPETE 2020", by National Funds
- 57 through the FCT and National Institutes of Health grant. The authors declare that there are no
- 58 conflicts of interest.
- 59 Key words: sperm motility/sperm biochemistry/interactome/GSK3
- 60

61 Introduction

62 Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, has been involved in a wide range of 63 cellular processes such as apoptosis, mitosis, and proliferation (Kaidanovich-Beilin and Woodgett, 64 2011; Beurel et al., 2015). Moreover, deregulation of GSK3 functions has been associated with 65 pathological conditions such as cancer, Alzheimer's disease, and diabetes (Amar et al., 2011; Gao 66 et al., 2011). GSK3 is ubiquitously expressed and is encoded by two genes giving rise to two 67 isoforms: GSK3A and GSK3B. The isoforms differ in their N-termini with GSK3A having a unique 68 glycine-rich N-terminus which is highly conserved in mammals, suggesting an isoform-specific 69 function (Azoulay-Alfaguter et al., 2011).

70 GSK3 plays a central role in the male reproductive system. In mouse testis, GSK3A is expressed in 71 the seminiferous tubules and its expression increases during the onset of spermatogenesis, peaking 72 in adult testis (Bhattacharjee et al., 2015). GSK3B expression is present in cells entering meiosis, 73 spermatids and Sertoli cells (Guo et al., 2003). Curiously, targeted disruption of GSK3A gene in 74 testis, results in normal spermatogenesis, but mature sperm presented a reduced motility and 75 metabolism, rendering male mice infertile (Bhattacharjee et al., 2015, 2018). On the other hand, 76 GSK3B testis-specific KO was fertile (Bhattacharjee et al., 2018). In mouse and bovine sperm, GSK3 77 activity is inversely proportional to motility and in immotile caput sperm, GSK3 activity is 6 times 78 higher than that of motile caudal sperm (Vijayaraghavan et al., 1996, 2000). GSK3 activity is 79 controlled by its phosphorylation state. When serine phosphorylated, GSK3 catalytic activity is low 80 (GSK3A Ser9 and GSK3B Ser21) but when tyrosine phosphorylated, it is activated (GSK3A Tyr 279 81 and GSK3B Tyr 216) (Wang et al., 1994).

Although in bovine and mouse the role of GSK3 in male fertility is well established, in human sperm the knowledge is limited. With that in mind, we performed a GSK3 characterization, by determining its activity levels in asthenozoospermic and normozoospermic ejaculated human samples and

- 85 subcellular location in human sperm. The observation that mouse GSK3B cannot substitute for
- 86 GSK3A implies that GSK3A is essential for normal sperm physiology. We considered that the unique
- 87 role of GSK3A in sperm motility is reliant on its interactors and, as such, identified the GSK3A and
- 88 GSK3B interactomes in both human testis and sperm.

to Review Only

89 Methods

90 Ethical approval

This study was approved by the Ethics and Internal Review Board of the Hospital Infante D. Pedro
E.P.E. (Aveiro, Portugal) ((Process number: 36/AO) and was conducted in accordance with the
ethical standards of the Helsinki Declaration. All donors signed an informed consent forms allowing
the samples to be used for scientific purposes.

All procedures using mice were performed at the Kent State University animal facility and were approved by the National Institute of Environmental Health Sciences institutional Animal Care and Use Committee (IACUC) and the Kent State Animal Ethics Committee under the IACUC protocol number 362DK 13-11. Immediately after CO₂ euthanization, testis and epididymis of 3-4-month-old CD1 mice (*mus musculus*) were removed.

100 Sperm extracts

Human ejaculate semen samples were obtained from healthy donors by masturbation into a sterile container. Basic semen analysis was performed by qualified technicians according to World Health Organization (WHO) guidelines (Organization, 2010). There was no significant presence of nonsperm cells in the sample (round cells <1.0x10⁶ cells/mL). After semen liquefaction, sperm cells were washed in phosphate buffered saline (PBS1x, Fisher Scientific, Loures, Portugal).

106 Immunoblotting

107 Washed human sperm were lysed in either Tris buffer (20mM Tris-HCl, pH 7.4, 1mM EDTA, 1mM

108 EGTA) (Fisher Scientific); 1xRIPA (0.05M Tris-HCl, pH 7.4, 0.150M NaCl, 0.25% deoxycholic acid, 1%

109 NP-40, 1mM EDTA) (Millipore Iberica, Madrid, Spain); 1xRIPA modified (0.05M Tris-HCl, pH 7.4,

- 110 0.150M NaCl, 0.25% deoxycholic acid, 2% NP-40, 1mM EDTA); or 1%SDS (Fisher Scientific, Loures,
- 111 Portugal) during 30min on ice and centrifuged at 16,000xG, 15min, 4°C. The supernatant was
- 112 recovered (protein extract). Mouse sperm cells and testis were lysed in 1xRIPA, centrifuged at

113 16,000xG, 15min, 4°C and the protein extract recovered. Human testis protein extract was acquired
114 from Takara, Enzifarma, Lisboa, Portugal (ref: 635309).

115 Sperm protein extracts were mass normalized using BCA assay (ref: 23225, Pierce, Fisher Scientific) 116 separated by SDS-PAGE and electrotransfered to a nitrocellulose membrane. Afterwards, the 117 membrane was incubated with the following antibodies: mouse anti-GSK3A/B (Invitrogen, Fisher 118 Scientific, ref: 44-610, 1:2000) rabbit anti-GSK3A (Cell Signaling Technology, Danvers, MA, USA, ref: 119 #9338, 1:1000) rabbit anti-GSK3B (Cell Signaling ref: #9315, 1:1000); mouse anti-GSK3A pS21 (Santa 120 Cruz Technologies, Heidelberg, Germany, ref: sc-365483, 1:1000); mouse anti-GSK3B pS9 (Santa 121 Cruz Technologies ref: sc-373800, 1:1000) and rabbit anti-LRP6 (Cell Signaling, ref: #2560, 1:1000), 122 4°C, ON. Finally, the membrane was incubated with the appropriate infrared secondary antibodies 123 (1:5000, Li-Cor Biosciences UK Ltd, Cambridge, UK). The images were obtained using Odyssey 124 Infrared Imaging Bands System (Li-Cor Biosciences). Bands were quantified with the Quantity One 125 1-D Analysis Software (Bio-Rad, Amadora, Portugal). Phosphoserine GSK3 levels were calculated by 126 determining the ratio between phosphoserine signal and total GSK3 signal. GSK3 levels were 127 normalized to the loading control Ponceau S. The statistical measures used were the mean and 128 standard error of the mean (SEM). A test of normality (Shapiro- Wilk test) was performed to assess 129 normality of quantitative variables. The Pearson correlation coefficient r was determined to assess 130 the relationship between two variables. Statistical analysis was conducted using the Statistical 131 Package for Social Sciences, version 19 (SPSS ®, Chicago, IL, USA). The significance level was set at 132 0.05.

133

134 Immunocytochemistry

Washed human sperm were spread onto a glass coverslip, allowed to dry and fixed in 4%
formaldehyde (Fisher Scientific) for 10 min. After, sperm were permeabilized in 0.1% Tween (Fisher
Scientific) in 1% goat serum (Sigma-Aldrich Química, S.A., Sintra) and 5% BSA (NZYTech, Lisboa,

138 Portugal) for 20min. Blocking was performed with 1% goat serum and 5% BSA for 1h30min and then 139 incubated with primary antibodies: rabbit anti-GSK3A (Cell Signaling ref: #9338, 1:50) and rabbit 140 anti-GSK3B (Cell Signaling ref: #9315, 1:50) overnight at 4°C; rabbit anti-LRP6 (Cell Signaling, ref: 141 #2560, 1:50), rabbit anti-pLRP6 1490 (Cell Signaling, ref: #2568, 1:50) and rabbit anti-AKAP11 142 (Invitrogen, Fisher Scientific, ref: PA5-39868, 1:100) for 1h20min. The sperm cells were incubated 143 with anti-rabbit Alexa 594nm (Life Technologies S.A., Madrid, Spain, 1:800) for 45min at room 144 temperature. Coverslips were washed in PBSx1 + 0.1% Tween, followed by one wash step in PBS1x. 145 Finally, Hoechst was added, and coverslips were mounted onto a glass slide with ProLong[™] Gold 146 Antifade Mountant (Invitrogen, Fisher Scientific, ref: 10144). Negative controls were processed in 147 parallel. Fluorescence images were obtained using an Imager.Z1, Axio-Cam HRm camera and 148 AxioVision software (Zeiss, Jena, Germany). Three normospermic human sperm samples were 149 analyzed and around 100 cells per sample were assessed.

150 Yeast two-hybrid screen

151 Homo Sapiens GSK3A (NM_019884.2) was subcloned using EcoRI and BamHI (New England Biolabs, 152 Herts, UK) and Homo Sapiens GSK3B (NM_002093.3) was subcloned using Ndel and Sall (New 153 England Biolabs) into pAS2-1 plasmid. Both vectors were sequenced to ensure that GSK3A and 154 GSK3B were in frame with Gal-AD. The pAS2-1-GSK3A and pAS2-1-GSK3B vectors were transformed 155 into AH109 yeast strain by a standard lithium acetate method (Clontech, Takara). GSK3A and GSK3B 156 are not cytotoxic to AH109 yeast cells. Expression of GSK3A and GSK3B was confirmed and both 157 proteins did not activate per se the reporter genes (Supplementary Figure 1). For library screening, 158 AH109 transformed with either pAS2-1-GSK3A or pAS2-1-GSK3B was mated with yeast strain Y187 159 expressing human testis cDNA library in pGADT7-Rec (Mate&Plate Library – Human testis ref. 160 630470, Clontech, Takara) according to manufacture instructions. Half of the mating mixture was 161 plated onto high-stringency medium (Quadruple dropout medium: SD/-Ade/-His/-Leu/-Trp) and the 162 other half onto low-stringency medium (Triple dropout medium: SD/-His/-Leu/-Trp) and the plates

were incubated at 30°C. Colonies obtained in the low stringency plates were replica plated onto
 medium with X-A-Gal and incubated at 30°C to check for MEL-1 expression (blue color colonies).

For GSK3A, 93 positive clones were obtained from a total 2.64x10⁷ screened clones. For GSK3B, 54
 positive clones were obtained from a total of 2.75x10⁷ screened clones. The Matchmaker Insert

167 Check PCR mix 2 (Clontech, Takara, ref:630497) was used to identify positive clone cDNA. DNA

168 sequence were compared to the GeneBank database to identify the corresponding protein.

169 **Co-immunoprecipitation**

170 50x10⁶ sperm cells were lysed in 1xRIPA, supplemented with 1mM of Phenylmethylsulfonyl fluoride 171 (PMSF) (Fisher Scientific) and 0.2mM of sodium orthovanadate (Na_3VO_4) (Fisher Scientific) for 172 60min on ice and centrifuged at 16.000xG, 4°C, 15min. Sperm extracts were pre-cleared using 173 Dynabeads Protein G (ref: 10003D, Invitrogen, Fisher Scientific) and incubated with either rabbit 174 anti-GSK3A (Cell Signaling ref: #9338, 1:50), rabbit anti-GSK3B (Cell Signaling ref: #9315, 1:50) or 175 rabbit anti-IgG (ref: sc-2027, Santa Cruz Technologies) at 4°C ON with rotation. After incubation, 176 50µL of dynabeads were added and incubated for 2h. After washing with PBS1x, the dynabeads 177 were resuspended in 50mM glycine (Fisher Scientific) for 5min. Finally, the supernatant was 178 recovered and 1%SDS was added to the dynabeads, incubated 5min, boiled and recovered.

Alternatively, GSK3 antibodies were crosslinked using BS3 (bis(sulfosuccinimidyl)suberate) (Invitrogen, Fisher Scientific, ref: 21580) to Dynabeads Protein G, according to manufacturer instructions. Sperm extracts were pre-cleared and incubated with crosslinked beads for 1h. After washing the beads were resuspended in trypsin digestion buffer (20 mM Tris-HCl pH 8.0, 2 mM CaCl₂).

184 Mass spectrometry

185 Mass spectrometry studies of GSK3 human sperm interactors were performed in two facilities (two186 distinct samples).

187 The Lerner Research Institute's Proteomics and Metabolomics Laboratory: The LC-MS system was 188 a Dionex Ultimate 3000 nano-flow HPLC interfacing with a Finnigan Orbitrap LTQ Elite hybrid ion 189 trap mass spectrometer system. The HPLC system used an Acclaim PepMap 100 precolum (75 μm 190 x 2 cm, C18, 3 µm, 100 A) followed by an Acclaim PepMap RSLC analytical column (75 µm x 15 cm, 191 C18, 2 µm, 100 A). The data was analyzed by using all CID spectra collected in the experiment to 192 search the human UniProtKB protein database with the search programs Sequest and Mascot. Only 193 results with mascot score p<0.05 and at least two identifying peptides with mascot ion scores of at 194 least 40 were considered. Specifically, GSK3A and GSK3B sequences searches were performed in 195 Sequest program.

196 VIB Proteomics Core Facility: The LC-MS/MS system was Ultimate 3000 RSLCnano system in-line 197 connected to a Q Exactive mass spectrometer (Thermo, Fisher Scientific, Loures, Portugal). 198 Peptides were loaded on a reverse-phase column (made in-house, 75 µm I.D. x 20 mm, 3 µm beads 199 C18 Reprosil-Pur, Dr. Maisch). Each sample was injected 3 times and analyzed in triplicate. Data 200 analysis was performed with MaxQuant (version 1.5.6.5) (Cox and Mann, 2008) using the 201 Andromeda search engine with default search settings including a false discovery rate set at 1% on 202 both the peptide and protein level. Spectra were searched against the human proteins in the 203 UniProtKB database (database release version of January 2017). Only proteins with at least one 204 unique or razor peptide were retained. Proteins were quantified by the MaxLFQ algorithm 205 integrated in the MaxQuant software (Cox et al., 2014). A minimum ratio count of two unique or 206 razor peptides was required for quantification. Further data analysis was performed with the 207 Perseus software (version 1.5.5.3) (Tyanova et al., 2016) after loading the protein groups file from 208 MaxQuant. Proteins only identified by site, reverse database hits and contaminants were removed 209 and technical replicate samples of GSK3A, GSK3B, and the negative control were grouped. Proteins 210 with less than three valid values in at least one group were removed and missing values were

211 imputed from a normal distribution around the detection limit. Then, t-tests were performed

212 (FDR=0.0001 and S0=5) to compare samples of GSK3A and GSK3B with the negative control.

213 In silico analysis

214 Either UniProtKB or FASTA sequence was retrieved for all GSK3 interactors and used for subsequent 215 in silico analysis (only Homo sapiens information was considered). The presence of GSK3 consensus 216 phosphorylation site (xxx[ST]xxx[ST]P) (Wu et al., 2009) was analyzed in Eukaryotic Linear Motif 217 (ELM) resource (Dinkel et al., 2016); PhosphoSitePlus (Hornbeck et al., 2015); Kinase Net 218 (http://www.kinasenet.ca); NetPhos 3.1 Server (Blom et al., 2004) ; ScanProsite (de Castro et al., 219 2006) and GPS 3.0 (Xue et al., 2011). Only data obtained with high threshold, high conservation 220 scores and reported in at least 3 tools were considered. GSK3A and GSK3B interactomes were 221 retrieved from IMEx-curated databases (Orchard et al., 2012) and Human Integrated Protein-222 Protein Interaction rEference (HIPPIE) database (Alanis-Lobato et al., 2017). Only interactions for 223 human GSK3A and GSK3B with human proteins were considered (March 2018).

224 Gene expression patterns (mRNA) for all interactors (whether identified in this study or obtained 225 from databases) were retrieved from: The Human Protein Atlas (Uhlén et al., 2015); Pattern Gene 226 Database (PaGenBase) (Pan et al., 2013) Expression atlas EMBL-EBI (68 FANTOM5 project-adult; 32 227 Uhlen's Lab and GTEx) (Petryszak et al., 2014); BioGPS (Wu et al., 2016) and UniGene (Pontius et 228 al., 2003). mRNA expression values for all databases (Transcripts per million or fragments per 229 kilobase of exon model per million mapped reads) were retrieved and testis expression values were 230 normalized by calculating the percentage of testis expression taking into account the expression of 231 all tissues. Only interactors that presented more than 50% of expression in testis in at least 2 232 databases used were considered highly expressed in testis and were classified in three categories: 233 50-75%, 75-90%, and >90%. Differently expressed proteins in asthenozoospermic samples were 234 collected from peer reviewed papers and compared with GSK3 interactors (Cai et al., n.d.; Chen et

al., 2009; Li *et al.*, 2010, 2011; An *et al.*, 2011; Jing *et al.*, 2011; Shen *et al.*, 2013b; Amaral *et al.*,
2014; Bhagwat *et al.*, 2014; Salvolini *et al.*, 2014; Zhou *et al.*, 2015; Hashemitabar *et al.*, 2015;
Saraswat *et al.*, 2017).

238 Phenotypes associated with all interactors (genes) were retrieved form Mouse Genome Informatics 239 (MGI) (Eppig et al., 2015) and OMIM (Amberger et al., 2015). Manually curated genes associated 240 with phenotypes of male infertility retrieved from DisGeNet (Piñero et al., 2017), Phenopedia (Yu 241 et al., 2010) and DISEASE database. Altered accessory glands, genetic disorders, sexual behavior 242 and tumor incidence were excluded. Also, GSK3A and GSK3B interactors annotated to testis and 243 sperm physiology on GeneOntology enrichment tool (PANTHER version 12.0, 25 August 2017) 244 (Gene Ontology Consortium, 2015) were classified according to those annotations. GSK3A and 245 GSK3B protein-protein interaction (PPIs) networks were built using Cytoscape v 3.6.0 (Shannon et 246 al., 2003). The inner connections between those proteins were captured. To construct sperm 247 motility and testis related GSK3A and GSK3B PPI networks, GSK3A and GSK3B interactors associated 248 with sperm motility and testis phenotypes were extracted from GSK3A and GSK3B interactome 249 network.

250 Statistical analysis

The statistical measures used were the mean and standard error of the mean (SEM). A test of normality (Shapiro- Wilk test) was performed to assess normality of quantitative variables. The Pearson correlation coefficient, r, was determined to assess the relationship between two variables. Statistical analysis was conducted using the Statistical Package for Social Sciences, version 19 (SPSS [®], Chicago, IL, USA). The significance level was set at 0.05.

256

257

258 **Results**

259 **GSK3A** is required for human progressive spermatozoa motility

Characterization of GSK3 in mouse, bovine and primates sperm is well stablished (Vijayaraghavan *et al.*, 1996, 2000; Smith *et al.*, 1999) . Yet, in human spermatozoa, characterization of GSK3 is deficient. We evaluated the expression and activation of both GSK3 isoforms in human testis and ejaculated human sperm (Figure 1).

Figure 1A shows that GSK3A and GSK3B were expressed in human testis and sperm, similar to what was previously described in mouse and bovine. The levels of inhibited GSK3A and GSK3B (serine phosphorylation) were assessed in human testis and sperm. In human testis, no serine phosphorylated GSK3 was detected, while in human sperm both phosphorylated GSK3 isoforms were detected (Figure 1A.). Moreover, different lysis-buffer strength recovered different amounts of GSK3 in human sperm (Supplementary Figure 2).

270 To assess the correlation between GSK3 activity with ejaculated sperm motility, total and serine 271 phosphorylated GSK3A and GSK3B (low activity) were evaluated in normospermic and 272 asthenozoospermic samples (see Supplementary Table I for sample information). Total GSK3A and 273 serine phosphorylated GSK3A levels appear to be lower in asthenozoospermic samples compared 274 to normospermic (Figure 1B and C), while expression of total and serine phosphorylated GSK3B 275 appear to be similar in both normospermic and asthenozoospermic samples (Figure 1B and C). Also, 276 Figure 1D shows that there was a significant strong positive correlation (r=0.822, p=0.023) between 277 the percentage of progressive sperm and the levels of inhibited GSK3A, whereas inhibited GSK3B is 278 not significantly correlated with sperm motility (r=0.577, p=0.175). Although the levels of total GSK3 279 were not significantly correlated with the percentage of progressive motility, GSK3A presented an 280 apparent positive correlation with the percentage of progressive motile spermatozoa, while GSK3B 281 a negative correlation (Figure 1E). The correlation between GSK3 levels and the percentage of

immotile spermatozoa was also analysed, and the results comply with the previous described(Supplementary table II).

284 GSK3A and GSK3B have distinct distributions in human spermatozoa

285 The subcellular localization of GSK3A and GSK3B in ejaculated human sperm was analysed. Figure 286 2 shows that GSK3A was primarily located in the flagellum (98.0%) and 75.7% of sperm cells also 287 showed immunoreactivity in the head. Curiously, 24.2% of the spermatozoa showed a strong 288 immunoreactivity for GSK3A in the equatorial region, particularly at the edges. In contrast, GSK3B 289 was mainly located in the sperm head (97.0%), 23.9% of sperm showed GSK3B distributed 290 throughout the entire head and flagellum and in 76.0% of sperm cells it was present only in the 291 sperm head (Figure 2). Within the flagellum, both GSK3A and GSK3B present a punctured like 292 staining.

293 GSK3 human testis and sperm interactome

294 A yeast two-hybrid screen of a human cDNA testis library revealed 46 putative interactors for GSK3A 295 and 21 for GSK3B (Supplementary Table III and IV, respectively). For GSK3A, 76% were new putative 296 interactors while 24% were previously described as GSK3 interactors. 58.7% of GSK3A interactors 297 identified contained the GSK3 consensus phosphorylation site (xxx[ST]xxx[ST]P). Finally, 34.8% of 298 GSK3A interactors were already described to be present in either testis and/or sperm of mammals. 299 For GSK3B, 77.8% were identified for the first time as GSK3B putative interactors. Around 38% of 300 the GSK3B identified interactors had the GSK3 consensus phosphorylation site and 61.1% were 301 previously reported to be present in testis and/or sperm of mammals.

302 GSK3A and GSK3B interactors were isolated from ejaculated human sperm by co-303 immunoprecipitation using isoform-specific GSK3 antibodies in two independent experiments by 304 mass spectrometry analysis. Endogenous GSK3A and GSK3B were successfully immunoprecipitated 305 in both experiments (Supplementary Figure 3) and five GSK3A peptides and four GSK3B peptides 306 were identified in mass spectrometry (Supplementary Table V). Note that neither GSK3A nor GSK3B 307 were detected in the negative control. Seventeen and 34 interactors were identified as sperm 308 GSK3A and GSK3B interactors, respectively (Supplementary table V and VII, respectively). Regarding 309 GSK3A interactors, 82.4% were potentially novel interactors and 17.6% contained the GSK3 310 consensus phosphorylation site. Also, 58.8% of GSK3A identified interactors were described as 311 expressed in either mammalian testis and/or sperm by previous studies. For GSK3B interactors, 312 85.3% were new putative interactors and 47.1% were shown to be expressed in either mammalian 313 testis and/or sperm. Finally, the GSK3 consensus phosphorylation site was present in 14.7% of 314 GSK3B interactors.

315 GSK3 interactomes are associated with sperm motility and testis functions

316 To enrich the GSK3 human testis and spermatozoa interactome, GSK3A and for GSK3B interactomes 317 were retrieved from public available databases. Seventy-five GSK3A interactors and 413 GSK3B 318 have been previously identified (Supplementary table VIII and IX, respectively). With the goal of 319 identifying key GSK3 interactors for sperm and testis physiology, gene expression for GSK3 320 interactors was retrieved from 5 different tissue-expression databases (Supplementary Table VIII 321 and IX). Four GSK3A interactors are testis-enriched, with more than 90% of their expression 322 restricted to testis: DDI1, GOLGA6C (testis interactors), ACR and PRSS37 (sperm interactors). 323 Although not testis-enriched, TTC16 expression is enhanced in testis (Supplementary Table X). For 324 GSK3B interactors, besides ACR and PRSS37, TEKT5, CMTM2 (testis interactors), HIST1H1T, PRKACG, 325 TSKS (databases interactors) were classified as highly enriched in testis and CABYR expression is 326 enhanced in testis (Supplementary Table X). To further characterize the GSK3 interactome, 327 differently expressed proteins in asthenozoospermic samples were retrieved from proteomics 328 studies. Overall, eleven GSK3 testis or sperm interactors are increased, eight are decreased and one 329 has conflicting reports in asthenozoospermic samples (Supplementary Tables III, IV, VI and VII).

Protein-protein interaction networks were constructed using data obtained from this study and
retrieved from databases. The GSK3A interactome network (Supplementary Figure 4) presents 130
proteins, including GSK3A. Between GSK3A interactors 257 interactions are formed. The GSK3B
interactome is composed by 456 proteins that form 1813 interactions among them (Supplementary
Figure 5).

335 To add biological meaning to the GSK3 interactome, phenotype and Gene Ontology information 336 were retrieved (Supplementary Table XI and XII). Here, two subnetworks were extracted: sperm 337 motility- and testis-related GSK3-based networks. Twenty-six GSK3A interactors have been 338 associated with motility-related functions, phenotypes and/or subcellular locations (Figure 3). From 339 those, five (PRSS37; DRC1; RPS19; HSPA5 and AP3D1) were identified in this study as GSK3A 340 interactors and only one was classified as testis-enriched protein (PRSS37). PRKACA and DRC1 stand 341 out by presenting five motility-related annotations followed by GLI3 with four. Note that GSK3A 342 itself has been associated with locomotion and cell motility processes. For GSK3B, 100 interactors 343 are annotated to motility-related categories, and from those six are highly expressed in testis 344 (CABYR, TEKT5, PRKACG, PRSS37, TSKS, CMTM2) (Figure 3).

Analysing the GSK3 testis subnetwork (Figure 4), ten GSK3A interactors were associated with testisrelated annotations and two of those were identified in this study (PRSS37 and HSP90AA1) (Figure B2.8). Only PRSS37 was described as highly expressed in testis (Figure B2.8). With five testis-related annotations, we highlight AKAP9 and AR. For testis-related categories, GSK3B presents 45 interactors related to testis-related categories (Figure 4).

Although not directly related to sperm motility and testis function, several GSK3 interactors are associated to more general annotations linked to the male reproductive system (Supplementary Figure 6).

353 **AKAP11 and LRP6 subcellular localization in human sperm**

354 Two GSK3 interactors identified in this study, A-kinase anchor protein 11 (AKAP11) and low-density 355 lipoprotein receptor-related protein 6 (LRP6), were chosen for further characterization, since they 356 have been previously involved in male reproduction. Figure 5A shows that LRP6 is present in human 357 testis and sperm at 180kDa, the expected molecular weight of the protein. The band at the higher 358 molecular weight could be due to post translational modification, such as phosphorylation and N-359 glycosylation, known to occur in LRP6 (Khan et al., 2007; Niehrs and Shen, 2010). 360 Immunocytochemistry studies (Figure 5B), revealed that total LRP6 is localized to the entire length 361 of the flagellum and occasionally at the post-acrosomal area. However, phosphorylated LRP6 362 (p1490LRP6) is restricted to the midpiece. Moreover, a closer analysis showed that not all sperm 363 cells present immunoreactivity towards LRP6 and p1490LRP6. Only 18% and 29% of sperm cells 364 present immunoreactivity for LRP6 and p1490LRP6, respectively (Figure 5B). Regarding AKAP11, 365 this protein is localized on the anterior portion of the head and the equatorial area of ejaculated 366 human sperm (Figure 5B).

367

368 **Discussion**

369 GSK3 has been long associated with sperm motility acquisition and maintenance in mammals 370 (Somanath et al., n.d.; Smith et al., 1999; Vijayaraghavan et al., 2000). Recently, an isoform-specific 371 function of GSK3A in mice sperm primary motility acquisition has been suggested. However, the 372 characterization of both GSK3 isoforms (GSK3A and GSK3B) in human sperm and testis physiology 373 has been sparse. Assessment of a similar isoform-specific function of GSK3A in human sperm 374 motility acquisition is thus necessary. This work aimed to characterize GSK3 isoforms in human 375 sperm as well as identify and analyse GSK3A and GSK3B interactome in human sperm and testis. 376 Ultimately, this can help decipher the role of isoform-specific functions of GSK3 in human sperm 377 physiology.

378 In this study we proved that mature human sperm cells are unique in their need for GSK3A isoform 379 to achieve progressive motility. Similar to other mammals, both GSK3 isoforms are present in 380 human testis and sperm (Figure 1). Characterization of GSK3 levels in normospermic and 381 asthenozoospermic samples proved that in ejaculated human sperm serine phosphorylated GSK3A 382 presents a strong positive correlation with progressive sperm motility, but serine phosphorylation 383 GSK3B does not show any correlation with sperm motility (Figure 1). Furthermore, correlation 384 between the percentage of immotile spermatozoa (Supplementary Table II) and levels of serine 385 phosphorylated GSK3A is in accordance with the correlation observed with progressive motile 386 spermatozoa. This shows that GSK3A activity is strongly correlated with human sperm motility, 387 being a negative modulator, while GSK3B appears does not influence sperm motility. This is the first 388 observation that GSK3 activity is associated with human sperm motility and that this function is a 389 GSK3A isoform-specific function. The power of the study was limited by the relatively small samples 390 size (3 normozoospermic samples and 4 asthenozoospermic samples) However, recent studies 391 reinforce the results obtained. Using, knock out technology a GSK3A isoform-specific function in 392 mice sperm motility has been proved by Bhattacharjee and colleagues (Bhattacharjee *et al.*, 2015,
393 2018).

394 A possible explanation for the inability of GSK3B to substitute for GSK3A in human sperm relies in 395 a distinct spatial expression pattern between GSK3 isoforms in human sperm cells. The 396 immunocytochemistry studies performed, showed that GSK3A is primarily located in the tail and 397 GSK3B in the head of human spermatozoa. A more plausible explanation for isoform-specific 398 function of GSK3 in human sperm is GSK3 isoform-specific interactors that bind, target and 399 modulate each isoform in human sperm. Work by Zeidner et al., showed that RACK1 is a GSK3A 400 isoform-specific interactor in the central nervous system, and that this interaction requires the 401 unique glycine rich GSK3A N-termini (Zeidner et al., 2011).

402 With the purpose of identifying GSK3 isoform-specific interactions in the male reproductive system, 403 the GSK3A and GSK3B interactomes in human testis and sperm were identified and characterized 404 (Supplementary Tables III, IV, VI and VII). Due to technical restrains (human testis availability and 405 sperm physiology), the human testis GSK3 interactome was constructed using an yeast two hybrid 406 approach, while for human sperm GSK3 interactome co-IP followed by mass spectrometry was 407 undertaken. The yeast-two hybrid system relies on the yeast cell environment, not fully mimicking 408 mammalian cells. Yet, it is one of the only techniques that indicates binary interactions. Co-409 Immunoprecipitation does not prove direct interaction, and weak interactions are usually lost but 410 retains intracellular environment conditions. Approximately 27% of the GSK3 interactions identified 411 in this study have been previously described, which results in high confidence in the GSK3 412 interactomes identified. Furthermore, the interaction between GSK3 and AXIN2 was 413 acknowledged, for the first time, in testis. This interaction is extensively described in somatic cells 414 (Stamos and Weis, 2013; Voronkov and Krauss, 2013; Song et al., 2014; Pronobis et al., 2015), 415 reinforcing our confidence in the results obtained for the GSK3 interactome.

416 With the purpose of constructing the most complete GSK3 interactome, GSK3 interactions available 417 on PPIs databases were retrieved and GSK3-centered networks were constructed (Supplementary 418 Figures 4 and 5). To identify GSK3 interactions key for sperm physiology (more specifically sperm 419 motility), tissue-expression, phenotypes and gene ontology annotations were integrated into the 420 GSK3 networks. It may be noted that the knowledge of protein tissue expression is still limited and 421 typically does not take into account tissue-specific alternatively spliced transcripts. This is 422 particularly relevant for testis, since testis is the tissue with a higher number of alternative 423 transcripts splice variants (Elliott and Grellscheid, 2006; Uhlén et al., 2015). None of GSK3A 424 interactors listed on databases showed a testis-specific or -enriched expression. We identified the 425 first testis-enriched or -specific GSK3A interactors which reflects the importance for deepening the 426 knowledge on sperm physiology of our results. Regarding GSK3A interactions, 20.1% have a motility 427 related annotation and for GSK3B 21% of interactors have been previously link to cell motility. This 428 is relevant considering the sperm cells are the only human cells that possesses a progressive motile 429 function. The fact that almost a quarter of GSK3 interactome may be involved in the motility cell 430 function reflects that the molecular mechanisms that control sperm cell motility are still partially 431 unknown. Focusing on GSK3A interactions that may have a prominent role in sperm motility we 432 highlight PRSS37. This protein is the only GSK3A interactor that is known to be associated with 433 sperm motility, testis annotations, and categorized as enriched in testis (Figure 3). Previous studies 434 demonstrated that when PRSS37 is absent in mice testis, fertilization is compromised due to 435 inadequate spermatogenesis, decreased sperm oviduct-migration, and decreased sperm-zona 436 binding (Shen et al., 2013a). Concerning testis functions, our analysis revealed that AR, PPP1CC, and 437 AKAP9 appear to have a prominent role since germ cells and other types of testicular cells are 438 greatly affected by their absence (Figure 4). These findings are in accordance with former studies 439 (Varmuza et al., 1999; Wang et al., 2009; Schimenti et al., 2013).

440 LRP6 and AKAP11, two GSK3 interactors identified in this study, were chosen for further 441 characterization, as being previously involved in male reproduction. LRP6 was already described as 442 involved in sperm motility and testis physiology, and AKAP11 in mouse spermatogenesis (Reinton 443 et al., 2000; Koch et al., 2015). While the interaction between AKAP11 and GSK3B has been 444 previously described (Tanji et al., 2002), to our knowledge this is the first description of the 445 interaction with GSK3A and the first time the interaction is described in human testis. Opposing to 446 earlier studies in human sperm (Reinton et al., 2000), we showed that AKAP11 is localized in the 447 anterior portion of the head and equatorial region (Figure 5B). In somatic cells, AKAP11 has been 448 associated with cell migration (Logue et al., 2011) and in 2002, Tanji et al showed that AKAP11, 449 PPP1, PRKACA, and GSK3B formed a multimeric complex in which PPP1 and PRKACA controlled 450 GSK3B activity. Since both PPP1 and PRKACA have been extensively described in mammalian testis 451 and sperm (Smith et al., 1996; Davidson et al., 2005; Schimenti et al., 2013), we may assume that 452 similar multimeric complex may be formed to control GSK3 activity.

453 Bioinformatics analysis revealed that in mice, LRP6 absence correlates to male infertility 454 (Supplementary Figure 6 and Supplementary Table XI). Expression studies showed that LRP6 is 455 present in human testis and sperm and is localized along the entire flagellum (Figure 5A and B). 456 Furthermore, when LRP6 is phosphorylated on S1490 (in somatic cells a GSK3 substrate (Davidson 457 et al., 2005; Zeng et al., 2005)) its subcellular location is restricted to the human sperm midpiece 458 (Figure 5B). This is in accordance to earlier studies in mice and bovine sperm (Koch et al., 2015). 459 Interestingly, only a small percentage of the sperm cells within the same sample present staining 460 for both LRP6 and S140 phosphorylated LRP6. Further studies to understand why this expression 461 pattern occurs may prove useful. In 2015, Koch et al explored the non-genetic effects of B-catenin 462 signaling on human sperm and suggested that the interaction between LRP6 and GSK3 is required 463 for protein stabilization and consequently sperm motility (Koch et al., 2015). Therefore, despite the

- 464 fact that in somatic cells GSK3/LRP6 interaction is involved in gene expression, our results reinforce
- that in human sperm this interaction can be fundamental for sperm physiology.
- 466 In conclusion, our data revealed an isoform-specific need for GSK3A in human progressive sperm
- 467 motility modulation. The GSK3 interactome identified in this work uncoveres the extent to which
- 468 GSK3 can be involved in sperm motility and reveals new potential players in the molecular
- 469 mechanism of sperm motility. Even more, study of GSK3A interactors such as PRSS37 deserve to be
- 470 pursuit since the likelihood of this protein being involved in sperm motility is high. Furthermore,
- 471 Although we attempted to identify specific GSK3A interactors, no interaction was validated as
- 472 GSK3A-unique. Selective GSK3A inhibitors and identification of specific targets of GSK3A can
- 473 facilitate the development of a new group of male contraceptives based on sperm motility arrest.

474 Supplementary data

475 Supplementary data are available at

476 Acknowledgments

477 We would like to thank Dr. Phiel for providing the original vector containing the GSK3A and GSK3B

478 ORF.

479 Author's Roles

- 480 M.J.F designed the study, performed experiments, acquired, analysed and interpreted the data and
- 481 produced the manuscript. J.V.S performed experiments, interpreted the data and drafted the
- 482 manuscript. C.B performed experiments and analysed the data. B.R.C analysed and interpreted the
- 483 data (statistical analysis). M.F and S.V designed the study, analysed and interpreted the data. All
- 484 authors critically revised the manuscript and approved the final version.
- 485 Funding

486 This work was financed by FEDER funds through the "Programa Operacional Competitividade e 487 Internacionalização- COMPETE 2020" and by National Funds through the FCT- Fundação para a 488 Ciência e Tecnologia (PTDB/BBB-BQB/3804/2014). We are thankful to Institute for Biomedicine – 489 iBiMED (UID/BIM/04501/2013 and POCI-01-0145-FEDER-007628) for supporting this project. 490 iBiMED is supported by the Portuguese Foundation for Science and Technology (FCT), 491 Compete 2020 and FEDER fund. Also, this worked was financed by the NIH grant R15 HD068971-01. 492 Image acquisition was performed in the LiM facility of iBiMED, a node of PPBI (Portuguese Platform 493 of BioImaging): POCI-01-0145-FEDER-022122. This work was also supported by an individual grant 494 from FCT of the Portuguese Ministry of Science and Higher Education to M.J.F. 495 (SFRH/BD/84876/2012).

496 **Conflict of interest:** The authors declare that there are no conflicts of interest.

AREN ONL

497 **References**

- Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing meaningfulness and
 reliability of protein-protein interaction networks. *Nucleic Acids Res* 2017;45:D408–D414.
- 500 Amar S, Belmaker RH, Agam G. The possible involvement of glycogen synthase kinase-3 (GSK-3) in
- 501 diabetes, cancer and central nervous system diseases. *Curr Pharm Des* 2011;**17**:2264–2277.
- 502 Amaral A, Paiva C, Attardo Parrinello C, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R.
- Identification of proteins involved in human sperm motility using high-throughput differential
 proteomics. *J Proteome Res* 2014;**13**:5670–5684.
- Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian
 Inheritance in Man (OMIM[®]), an online catalog of human genes and genetic disorders. *Nucleic Acids Res* 2015;43:D789-98.
- 508An C-N, Jiang H, Wang Q, Yuan R-P, Liu J-M, Shi W-L, Zhang Z-Y, Pu X-P. Down-regulation of DJ-1509protein in the ejaculated spermatozoa from Chinese asthenozoospermia patients. Fertil Steril
- 510 2011;**96**:19–23.e2.
- 511Azoulay-Alfaguter I, Yaffe Y, Licht-Murava A, Urbanska M, Jaworski J, Pietrokovski S, Hirschberg K,512Eldar-Finkelman H. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme
- 513 controlled by its N-terminal region: functional role in calcium/calpain signaling. J Biol Chem
- 514 2011;**286**:13470–13480.
- 515 Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases.
- 516 *Pharmacol Ther* 2015;**148**:114–131.
- 517 Bhagwat S, Dalvi V, Chandrasekhar D, Matthew T, Acharya K, Gajbhiye R, Kulkarni V, Sonawane S,
- 518 Ghosalkar M, Parte P. Acetylated α-tubulin is reduced in individuals with poor sperm motility.
- 519 *Fertil Steril* 2014;**101**:95–104.e3.

520	Bhattacharjee R, Goswami S, Dey S, Gangoda M, Brothag C, Eisa A, Woodgett J, Phiel C, Kline D,
521	Vijayaraghavan S. Isoform specific requirement for GSK3 α in sperm for male fertility ⁺ . Biol
522	Reprod 2018;
523	Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted
524	disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in
525	male infertility. <i>Biol Reprod</i> 2015; 92 :65.
526	Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational
527	glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics
528	2004; 4 :1633–1649.
529	Cai Z-M, Gui Y-T, Guo X, Yu J, Guo L-D, Zhang L-B, Wang H, Yu J. Low expression of glycoprotein
530	subunit 130 in ejaculated spermatozoa from asthenozoospermic men. <i>J Androl</i> 27:645–652.
531	Castro E de, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo
532	N. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional
533	and structural residues in proteins. <i>Nucleic Acids Res</i> 2006; 34 :W362-5.
534	Chen J, Wang Y, Xu X, Yu Z, Gui Y, Cai Z. [Differential expression of ODF1 in human ejaculated
535	spermatozoa and its clinical significance]. <i>Zhonghua Nan Ke Xue</i> 2009; 15 :891–894.
536	Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free
537	quantification by delayed normalization and maximal peptide ratio extraction, termed
538	MaxLFQ. Mol Cell Proteomics 2014;13:2513-2526.
539	Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.brange
540	mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008;26:1367–

- 541 1372.
- 542 Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C. Casein kinase 1 gamma

- 543 couples Wnt receptor activation to cytoplasmic signal transduction. *Nature* 2005;**438**:867–
- 544872.
- 545 Dinkel H, Roey K Van, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kühn
- 546 H, Behrendt A, *et al.* ELM 2016--data update and new functionality of the eukaryotic linear
- 547 motif resource. *Nucleic Acids Res* 2016;**44**:D294-300.
- 548 Elliott DJ, Grellscheid SN. Alternative RNA splicing regulation in the testis. *Reproduction* 549 2006;**132**:811–819.
- 550 Eppig JT, Richardson JE, Kadin JA, Ringwald M, Blake JA, Bult CJ. Mouse Genome Informatics (MGI):
- 551 reflecting on 25 years. *Mamm Genome* 2015;**26**:272–284.
- Gao C, Hölscher C, Liu Y, Li L. GSK3: a key target for the development of novel treatments for type
- 553 2 diabetes mellitus and Alzheimer disease. *Rev Neurosci* 2011;**23**:1–11.
- 554 Gene Ontology Consortium. Gene Ontology Consortium: going forward. *Nucleic Acids Res* 555 2015;**43**:D1049-56.
- 556 Guo TB, Chan KC, Hakovirta H, Xiao Y, Toppari J, Mitchell AP, Salameh WA. Evidence for a role of
- 557 glycogen synthase kinase-3 beta in rodent spermatogenesis. *J Androl* 2003;**24**:332–342.
- 558 Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on
- human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist
 Reprod Genet 2015;**32**:853–863.
- 561 Hornbeck P V, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014:
- 562 mutations, PTMs and recalibrations. *Nucleic Acids Res* 2015;**43**:D512-20.
- Jing X, Xing R, Zhou Q, Yu Q, Guo W, Chen S, Chu Q, Feng C, Mao X. [Expressions of cysteine-rich
 secretory protein 2 in asthenospermia]. *Zhonghua Nan Ke Xue* 2011;17:203–207.
- 565 Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional Insights from Cell Biology and Animal Models.

566 *Front Mol Neurosci* 2011;**4**:40.

- Khan Z, Vijayakumar S, la Torre TV de, Rotolo S, Bafico A. Analysis of endogenous LRP6 function
 reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. *Mol Cell Biol* 2007;**27**:7291–7301.
- 570 Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs 571 Epididymal Sperm Maturation. *Cell* 2015;**163**:1225–1236.
- Li H, Yu N, Zhang X, Jin W, Li H. Spermatozoal protein profiles in male infertility with
 asthenozoospermia. *Chin Med J (Engl)* 2010;**123**:2879–2882.
- Li Y-S, Feng X-X, Ji X-F, Wang Q-X, Gao X-M, Yang X-F, Pan Z-H, Sun L, Ma K. [Expression of SEPT4
- 575 protein in the ejaculated sperm of idiopathic asthenozoospermic men]. *Zhonghua Nan Ke Xue*576 2011;**17**:699–702.
- Logue JS, Whiting JL, Tunquist B, Sacks DB, Langeberg LK, Wordeman L, Scott JD. AKAP220 protein
 organizes signaling elements that impact cell migration. *J Biol Chem* 2011;**286**:39269–39281.
- 579 Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. *Cell Mol Life Sci* 2010;**67**:2551–2562.
- 580 Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, Bridge A, Briganti L, Brinkman FSL,
- 581 Brinkman F, et al. Protein interaction data curation: the International Molecular Exchange
- 582 (IMEx) consortium. *Nat Methods* 2012;**9**:345–350.
- 583 Organization WH. *Examination and processing of human semen*. *World Health* 2010;**Fifth Edit**:
- Pan J-B, Hu S-C, Shi D, Cai M-C, Li Y-B, Zou Q, Ji Z-L. PaGenBase: a pattern gene database for the
- 585 global and dynamic understanding of gene function. *PLoS One* 2013;**8**:e80747.
- 586 Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M, Hastings E, Huber W, Jupp S, Keays
- 587 M, Kryvych N, et al. Expression Atlas update--a database of gene and transcript expression
- 588 from microarray- and sequencing-based functional genomics experiments. *Nucleic Acids Res*

589 2014;**42**:D926-32.

- Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García
 J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform integrating information on human
 disease-associated genes and variants. *Nucleic Acids Res* 2017;45:D833–D839.
- 593 Pontius JU, Wagner L, Schuler GD. UniGene: a unified view of the transcriptome. *NCBI Handb*594 2003;1:, p. 1–12.
- 595 Pronobis MI, Rusan NM, Peifer M. A novel GSK3-regulated APC:Axin interaction regulates Wnt
 596 signaling by driving a catalytic cycle of efficient βcatenin destruction. *Elife* 2015;**4**:e08022.
- 597Reinton N, Collas P, Haugen TB, Skâlhegg BS, Hansson V, Jahnsen T, Taskén K. Localization of a novel598human A-kinase-anchoring protein, hAKAP220, during spermatogenesis. Dev Biol
- 5992000;**223**:194–204.
- 600 Salvolini E, Buldreghini E, Lucarini G, Vignini A, Giulietti A, Lenzi A, Mazzanti L, Primio R Di, Balercia
- 601 G. Interleukin-1 β , cyclooxygenase-2, and hypoxia-inducible factor-1 α in asthenozoospermia.
- 602 *Histochem Cell Biol* 2014;**142**:569–575.
- Saraswat M, Joenväärä S, Jain T, Tomar AK, Sinha A, Singh S, Yadav S, Renkonen R. Human
 Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia.
 Mol Cell Proteomics 2017;16:57–72.
- Schimenti KJ, Feuer SK, Griffin LB, Graham NR, Bovet CA, Hartford S, Pendola J, Lessard C, Schimenti
 JC, Ward JO. AKAP9 is essential for spermatogenesis and sertoli cell maturation in mice.
 Genetics 2013;194:447–457.
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T.
 Cytoscape: a software environment for integrated models of biomolecular interaction
 networks. *Genome Res* 2003;13:2498–2504.

612	Shen C, Kuang Y, Liu J, Feng J, Chen X, Wu W, Chi J, Tang L, Wang Y, Fei J, et al. Prss37 is required
613	for male fertility in the mouse. <i>Biol Reprod</i> 2013a; 88 :123.
614	Shen S, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm
615	and idiopathic asthenozoospermia. World J Urol 2013b; 31 :1395–1401.
616	Smith GD, Wolf DP, Trautman KC, Cruz e Silva EF da, Greengard P, Vijayaraghavan S. Primate sperm
617	contain protein phosphatase 1, a biochemical mediator of motility. <i>Biol Reprod</i> 1996; 54 :719–
618	727.
619	Smith GD, Wolf DP, Trautman KC, Vijayaraghavan S. Motility potential of macaque epididymal
620	sperm: the role of protein phosphatase and glycogen synthase kinase-3 activities. J Androl
621	1999; 20 :47–53.
622	Somanath PR, Jack SL, Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine
623	phosphorylation and activity accompany motility initiation and stimulation. J Androl25:605–
624	617.
625	Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling
626	pathway. Protein Cell 2014; 5 :186–193.

- 627 Stamos JL, Weis WI. The β-catenin destruction complex. *Cold Spring Harb Perspect Biol*628 2013;**5**:a007898.
- 629 Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A. A-kinase anchoring protein AKAP220
- binds to glycogen synthase kinase-3beta (GSK-3beta) and mediates protein kinase Adependent inhibition of GSK-3beta. *J Biol Chem* 2002;**277**:36955–36961.
- Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus
 computational platform for comprehensive analysis of (prote)omics data. *Nat Methods*2016;13:731–740.

635	Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C,
636	Sjöstedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science
637	2015; 347 :1260419.

638 Varmuza S, Jurisicova A, Okano K, Hudson J, Boekelheide K, Shipp EB. Spermiogenesis is impaired
 639 in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene. *Dev Biol*

- 640 1999;**205**:98–110.
- 641 Vijayaraghavan S, Mohan J, Gray H, Khatra B, Carr DW. A role for phosphorylation of glycogen

642 synthase kinase-3alpha in bovine sperm motility regulation. *Biol Reprod* 2000;**62**:1647–1654.

- 643 Vijayaraghavan S, Stephens DT, Trautman K, Smith GD, Khatra B, Cruz e Silva EF da, Greengard P.
- 644 Sperm motility development in the epididymis is associated with decreased glycogen synthase
- 645 kinase-3 and protein phosphatase 1 activity. *Biol Reprod* 1996;**54**:709–718.
- 646 Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. *Curr Pharm Des*647 2013;19:634–664.
- Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ. Glycogen synthase kinase-3 beta is a dual specificity
 kinase differentially regulated by tyrosine and serine/threonine phosphorylation. *J Biol Chem*1994;**269**:14566–14574.
- Wang R-S, Yeh S, Tzeng C-R, Chang C. Androgen receptor roles in spermatogenesis and fertility:
 lessons from testicular cell-specific androgen receptor knockout mice. *Endocr Rev* 2009;**30**:119–132.
- Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI. BioGPS: building your own mash-up of gene annotations
 and expression profiles. *Nucleic Acids Res* 2016;44:D313-6.
- 656 Wu G, Huang H, Garcia Abreu J, He X. Inhibition of GSK3 phosphorylation of beta-catenin via
- 657 phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. *PLoS One* 2009;**4**:e4926.

658	Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J. GPS 2.1: enhanced prediction
659	of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein
660	Eng Des Sel 2011; 24 :255–260.

Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and Genopedia: disease-centered and genecentered views of the evolving knowledge of human genetic associations. *Bioinformatics*2010;**26**:145–146.

- Zeidner LC, Buescher JL, Phiel CJ. A novel interaction between Glycogen Synthase Kinase-3α (GSK 3α) and the scaffold protein Receptor for Activated C-Kinase 1 (RACK1) regulates the circadian
- 666 clock. *Int J Biochem Mol Biol* 2011;**2**:318–327.
- 667 Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase
- 668 mechanism for Wnt co-receptor phosphorylation and activation. *Nature* 2005;**438**:873–877.
- 669 Zhou J-H, Zhou Q-Z, Lyu X-M, Zhu T, Chen Z-J, Chen M-K, Xia H, Wang C-Y, Qi T, Li X, *et al.* The
- 670 expression of cysteine-rich secretory protein 2 (CRISP2) and its specific regulator miR-27b in
- 671 the spermatozoa of patients with asthenozoospermia. *Biol Reprod* 2015;**92**:28.
- 672
- 673

674 Captation Supplementary Data

575 Supplementary Figure 1. Expression and auto-activation of the reporter genes tests of pAS2-1-576 GSK3A and pAS2-1-GSK3B in AH190 yeasts. A. Yeast protein extracts previously transformed with 577 pAS2-1-GSK3A or pAS2-1-GSK3B were probed with an anti-GSK3B antibody (Cell Signaling 578 ref:#9338,1:1000) and an anti- GSK3B antibody (Cell Signaling ref: #9315, 1:1000). The calculated 579 molecular weight of hybrid protein is presented. B. Yeast transformed with pAS2-1; pAS2-1-GSK3A 580 or pAS2-1-GSK3B were plated in different levels of stringency mediums.

Supplementary Figure 2. Solubilizing effect of different lysis buffers for GSK3A and GSK3B. A. 1% SDS is very effective on solubilizing GSK3. For GSK3A, 1XRIPA and 1XRIPA modified solubilized approximately half of the protein and 20mM Tris-HCl only 30%, when compared with 1%SDS. For GSK3B, 1xRIPA and 1XRIPA modified solubilized around 70% of GSK3B and 20mM of Tris-HCl only30%, when compared with 1%SDS. GSK3A and GSK3B were detected using an anti-GSK3A/B (Invitrogen, ref: 44-610, 1:2000).

687 Supplementary Figure 3. Co-Immunoprecipitation of GSK3 from normospermic human 688 spermatozoa sample. Both co-immunoprecipitations were also used for identification of GSK3 689 interactors by mass spectrometry. GSK3A and GSK3B were detected using an anti-GSK3A/B 690 (Invitrogen, ref: 44-610, 1:2000). A. After co-immunoprecipitation with either a GSK3A or GSK3B 691 specific antibody, proteins were eluted with 1% SDS or 50mM glycine. B. After co-692 immunoprecipitation with crosslink of GSK3A or GSK3B antibodies to dynabeads beads, 1/4 of the 693 beads were eluted with 1%SDS and GSK3A or GSK3B presence was evaluated. C. Prior to GSK3 694 immunodetection, APP presence was evaluated by probing with 6E10 antibody. Although the 695 reason is unknown, upon incubation with the 6E10 antibody (Sigma-Aldrich, ref: A-1474), two 696 unspecific bands appear on the negative control eluted with 50mM of glycine.

697 **Supplementary Figure 4**. GSK3A-centred protein-protein interactome network. All GSK3A 698 interactors (testis, sperm and databased) were used to build the network. Node size: degree 699 (number of neighbors of a protein).

Supplementary Figure 5. GSK3B-centred protein-protein interactome network. All GSK3B interactors (testis, sperm and databased) were used to build the network. Node size: degree (number of neighbors of a protein).

http://molehr.oxfordjournals.org/

Supplementary Figure 6. GSK3-centered subnetwork for male infertility annotations extracted from GSK3 interactome network. GSK3 interactors associated with male infertility annotations were used to build the network. Solid lines: testis or sperm GSK3©interactions; Dashed lines: Databased retrieved GSK3 interactions. Node size: according to testis expression. Node colors: represent male infertility related phenotypes, biological processes (BP) or cellular components (CC).

Supplementary Table I. Characterization of human sperm samples used for GSK3 analysis in
 normospermic and asthenozoospermic samples.

Supplementary Table II: Correlation coefficient between % of immotile, progressive motility and
 progressive motility + non-progressive motility sperm and total and serine phosphorylated GSK3 in

human sperm samples.

Supplementary Table III: GSK3α human testis interactors. Gene name, UniProtKB, nr of clones, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammalian testis and sperm, alteration on asthenozoospermic samples and tissue expression (HPA RNA expression) of testis GSK3α interactors. Mixed expression is defined as being expressed in at least one tissue but in neither ubiquitous or tissue-enriched. *Although RNA expression described for HMBS is enriched for bone-marrow, protein expression reveals that is expressed in several tissues.
Supplementary Table IV. GSK3B human testis interactors. Gene name, UniProtKB, nr of clones,

GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammalian testis and sperm and alteration on asthenozoospermic samples and tissue expression (HPA RNA expression) of testis GSK3B interactors. Mixed expression is defined as being expressed in at least one tissue but in neither ubiquitous or tissue-enriched.

724

Supplementary Table V. GSK3 isoforms peptides detected on mass spectrometry. Peptide sequence, first and last aminoacid of the peptide, peptide % of coverage for the complete protein and peptide spectral count.

Supplementary Table VI. GSK3A human sperm interactors. Gene name, UniProtKB, nr of clones, GSK3 phosphorylation site, previously described GSK3 interactor, presence on mammalian testis and sperm and alteration on asthenozoospermic samples and tissue expression (HPA RNA expression) of testis GSK3A interactors. Mixed expression is defined as being expressed in at least one tissue but in neither ubiquitous or tissue-enriched.

Supplementary Table VII. GSK3B human sperm interactors. Gene name, UniProtKB, mass
 spectrometry score, GSK3 phosphorylation site, previously described GSK3 interactor, presence on
 mammalian testis and sperm, alteration on asthenozoospermic samples and tissue expression (HPA
 RNA expression) of sperm GSK3b interactors.

Supplementary Table VIII. Testis expression levels of GSK3A interactome. Expression levels of all
GSK3 interactors were retrieved form the Human Protein Atlas, PaGeneBase, Expression atlas,
BioGPS and UniGene. Testis expression values were normalized. Yellow: GSK3A testis interactors;
Green: GSK3A sperm interactors; Orange: GSK3A database interactors.

Supplementary Table IX: Testis expression levels of GSK3B interactome. Expression levels of all
GSK3 interactors were retrieved form the human protein atlas, PaGeneBase, Expression atlas,
BioGPS and UniGene were retrieved and testis expression values were normalized. Yellow: GSK3B
testis interactors; Green: GSK3B sperm interactors; Orange: GSK3B database interactors.

745 Supplementary Table X. Testis enriched GSK3 interactors. To be classified as testis enriched,

746 expression must be > 50% in testis in at least 2 databases. Interactors were classified in three

- 747 categories: 50-75%; 75%-90 and >90%.
- 748

749 Supplementary Table XI. Testis and sperm related phenotypes/diseases/annotations of GSK3A 750 interactome. Testis and sperm related phenotypes/diseases/annotations of all GSK3A interactors 751 were retrieved and categorized. Yellow: GSK3A testis interactors; Green: GSK3A sperm interactors; 752 Orange: GSK3 α database interactors. 753 Supplementary Table XII. Testis and sperm related phenotypes/diseases/annotations of GSK3B 754 interactome. Testis and sperm related phenotypes/diseases/annotations of all GSK3B interactors 755 were retrieved and categorized. Yellow: GSK3B testis interactors; Green: GSK3B sperm interactors; , tors.

- 756 Orange: GSK3B database interactors.
- 757

758

http://molehr.oxfordjournals.org/
KORRA ONL

Figure 1. GSK3 in human testis and spermatozoa and correlation with sperm motility. A. Western blot analysis of total GSK3 and serine phosphorylated GSK3 isoforms in human testis and spermatozoa, mouse testis and HeLa cells. 30µg of protein obtained in RIPA1x were loaded per sample. From up to down GSK3 was immunodetected with the following antibodies: anti-GSK3A/B antibody; anti-GSK3A antibody and anti-GSK3B antibody; anti-GSK3A pS21 and anti-GSK3B pS9 B. Immunoblot of total and serine phosphorylated GSK3 isoforms in human normospermic (n=3) and asthenozoospermic (n=4) ejaculated spermatozoa. C. Total and serine phosphorylated GSK3 isoforms protein levels in human normospermic and asthenozoospermic (bar chart with error bars (SEM)). D. Pearson Correlation between the percentage of progressive motile ejaculated sperm and protein levels of serine phosphorylated GSK3A and GSK3B (scatter plot with regression line). E. Pearson Correlation between the percentage of progressive motile ejaculated sperm and protein levels of total GSK3A. Blots were cropped. * Correlation is statistically significant at the 0.05 level

159x162mm (300 x 300 DPI)

Figure 2. Subcelular localization of GSK3A and GSK3B in normospermic ejaculated human sperm. GSK3A is located in the flagellum (star) and head (arrowhead), more specifically in the equatorial region. GSK3B is located through the entire head (arrowhead) and occasionally in the flagellum (star). 100 sperm cells were counted per samples. Experiment done in triplicate. Scale bar is 5 µm. Nucleus is marked in blue. ROI: region of interest. All images were obtained with 63X magnification.

190x275mm (300 x 300 DPI)

Figure 3. GSK3-centered subnetwork for sperm motility extracted from GSK3 interactome network. All GSK3 interactors associated with motility-related annotations were used to build the network. Solid lines: testis or sperm GSK3 interactions; Dashed lines: Databased-retrieved GSK3 interactions. Node size: according to testis expression. Node colors: represent motility-related phenotypes, biological processes (BP) or cellular components (CC).

166x157mm (300 x 300 DPI)

Figure 4. GSK3-centered subnetwork for testis-related annotations extracted from GSK3 interactome network. All GSK3 interactors associated with testis annotations were used to build the network. Solid lines: testis or sperm GSK3 interactions; Dashed lines: Databased retrieved GSK3 interactions. Node size: according to testis expression. Node colours: represent testis related phenotypes, biological processes (BP) or cellular components (CC).

158x160mm (300 x 300 DPI)

Figure 5. LRP6 and AKAP11 in human testis and ejaculated normospermic sperm. A. Western blot analysis of LRP6 in human testis and ejaculated sperm, mouse testis and HeLa cells. For human testis, mouse testis and HeLa cells 30µg of protein were loaded per sample. For ejaculated human sperm 100µg of proteins were loaded. Note according to the antibody datasheet that the antibody only recognizes human and rat LRP6. Arrow highlights the LRP6 presence in human sperm. B. Subcellular localization of LRP6, p1490LRP6 and AKAP11 in mature human sperm. Total LRP6 is located in the entire flagellum (star) and occasionally in the post-acrosomal area (arrowhead). The phosphorylated form of LRP6 at serine 1490 is restricted to the midpiece (circle). AKAP11 is located to the head, specifically to the anterior and equatorial area (plus sign). Blots were cropped. 100 sperm cells were counted per samples. Experiment done in triplicate. Scale bar is 10µm. Nucleus is marked in blue. ROI: region of interest. All images were obtained with 63X magnification.

1523x1702mm (72 x 72 DPI)

102x152mm (300 x 300 DPI)

77x82mm (300 x 300 DPI)

128x132mm (300 x 300 DPI)

109x109mm (300 x 300 DPI)

115x106mm (300 x 300 DPI)

Supplementary Table	I. Characterization of	of human sperm samp	les used for GSK3 a
---------------------	------------------------	---------------------	---------------------

Samples	Volume (ml)	Concentration (million/mL)	
			Progressive (%)
32-000252	2	300	71
32-000309	4.8	80	42
32-000255	4	85	41
32-000335	3.5	229	30
32-000307	4.3	24	23
32-000310	4	130	23
	10309 4	20	10

Lower references of normospermic samples classification criteria according to WHO Volume: 1.5mL

Concentration: 15x106/mL or 39x106/ejaculate Motility:

Progressive+non-progressive: 40% Progressive: 32%

Morphology: 4%

analysis in normospermic and asthenozoospermic samples

Motility		Morphology (%)
Non-progressive (%)	Immotile (%)	Normal
7	22	14
19	39	9
10	49	8
14	56	12
18	59	8
5	72	8
15	75	1

) laboratory manual for the Examination and processing of human semen, fifth edition

2 75 nination and p.

Supplementary Table II: Correlation coefficient between % of immotile, progressi

% Immotile sperm

**. Correlation is significant at the 0.01 level (2-tailed); very strong (negative)

% Progressive motility

*. Correlation is significant at the 0.05 level (2-tailed); very strong (positive)

% Progressive motility+non progressive motility

**. Correlation is significant at the 0.01 level (2-tailed), very strong (positive)

ive motility	and	progressive	motility+no	n progresiv	e motility s	sperm and to	otal and serine
		p. 08. 000. 10		. 6.08.001	c mounty a		

	Total GSI	K3₀pS21 GSI	K3(Total GSK	(3β pS9 GS	кзβ
Pearson Correlation	-,648	- <i>,</i> 878**	-,149	-,418	
Sig. (2-tailed)	,116	,009	,750	,351	
Ν		7	7	7	7
	Total GS	<3₀pS21 GSI	K3(Total GSK	(3β pS9 GS	КЗβ
Pearson Correlation	,716	,822*	-,118	,577	
Sig. (2-tailed)	,070	,023	,801	,175	
Ν		7	7	7	7
	Total GSI	(3apS21 GS	K3(Total CSK	128 n50 C5	K 2 R
Dearson Correlation	652	0000	100	(30 p33 d3 27/	кэр
Sig (2 tailed)	,032	,009	,190	,374	
Sig. (Z-taileu)	,115	,008	,064	,400 7	7
Ν			CZ		/

phosphorylated GSK3 in human sperm samples.

to Review Only

Supplementary Table III

Gene Name	UniProtKB
AKAP11	Q9UKA4
ALKBH3	Q96Q83
AP3D1	014617
AURKAIP1	Q9NWT8
AXIN2	Q9Y2T1
BCCIP	Q9P287
C11orf98	E9PRG8
CCDC174	Q6PII3
СНТОР	Q9Y3Y2
CNTROB	Q8N137
DCAF8	Q5TAQ9
DCP1B	Q8IZD4
DDI1	Q8WTU0
DEAF1	075398
DNAJB1	P25685
DRC1	Q96MC2
FBXO42	Q6P3S6
GOLGA6C	A6NDK9
H2AFV	Q71UI9
HMBS	P08397
HMGN1	P05114
HNRNPM	P52272
HSP90AA1	P07900
HSP90AB1	P08238
LDHA	P00338
LRP6	075581
LRRC37A2	A6NM11
MAEA	Q7L5Y9
MTCH1	Q9NZJ7
MYL12A	P19105
NBR1	Q14596
PSMD8	P48556
PTMA	P06454
RPL15	P61313
RPL19	P84098
RPL29	P47914
RPS15	P62841
RPS19	P39019
RUNX1	Q01196
SBNO1	A3KN83
SMARCA5	060264
SMG7	Q92540
SUGP2	Q8IX01

TTC16 Q8NEE8 UBTF P17480 VCPIP1 Q96JH7 Homo Sapiens Chromosor Human Dna sequence froi RefSeqGene on chromoso

to Review Only

I: GSK3α human testis interactors. Gene name, UniProtKB, nr of clones, GSK3 phosphorylatic

Name

A-kinase anchor protein 11 Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3 AP-3 complex subunit delta-1 Aurora kinase A-interacting protein Axin-2 BRCA2 and CDKN1A-interacting protein Uncharacterized protein C11orf98 Coiled-coil domain-containing protein 174 Chromatin target of PRMT1 protein Centrobin DDB1- and CUL4-associated factor 8 mRNA-decapping enzyme 1B Protein DDI1 homolog 1 Deformed epidermal autoregulatory factor 1 homolog DnaJ homolog subfamily B member 1 Dynein regulatory complex protein 1 F-box only protein 42 Golgin subfamily A member 6C Histone H2A.V Porphobilinogen deaminase Non-histone chromosomal protein HMG-14 Heterogeneous nuclear ribonucleoprotein M Heat shock protein HSP 90-alpha Heat shock protein HSP 90-beta L-lactate dehydrogenase A chain Low-density lipoprotein receptor-related protein 6 Leucine-rich repeat-containing protein 37A2 Macrophage erythroblast attacher Mitochondrial carrier homolog 1 Myosin regulatory light chain 12A Next to BRCA1 gene 1 protein 26S proteasome non-ATPase regulatory subunit 8 Prothymosin alpha 60S ribosomal protein L15 60S ribosomal protein L19 60S ribosomal protein L29 40S ribosomal protein S15 40S ribosomal protein S19 Runt-related transcription factor 1 Protein strawberry notch homolog 1 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Protein SMG7 SURP and G-patch domain-containing protein 2

Tetratricopeptide repeat protein 16 Nucleolar transcription factor 1 Deubiquitinating protein VCIP135 me 21 clone CTD-250 3J9 map p11-q21.1 m clone RP11-543N17 >me 5 Chromosome 5: 150,401,911-150,402,122

FOR REVIEW ONLY

e, previously described GSK3 interactor

Nr of clones	GSK3 phosphorylation site
1	Yes
1	
1	Yes
2	Yes
1	Yes
7	Yes
1	
1	Yes
1	
1	Yes
1	Yes
5	Yes
1	Yes
1	Yes
1	
1	Yes
1	Yes
1	
1	
1	
1	
12	Yes
4	
1	
1	Yes
1	
1	Yes
3	
2	
1	
1	
1	
1	
1	
1	Yes
2	Yes
1	Yes
1	Yes
1	Yes

- 1 Yes 1 Yes 1 Yes 1 1
- 2

for Review Only

r, presence on mammalian testis and sperm, alteration on asthenozoospermic samples and tis

Previously known GSK3 interactor (DOI or PMID) GSK3β [10.1074/jbc.M206210200]

GSK3α and GSK3β [10.1016/j.celrep.2013.03.027] [10.1038/nmeth.2400] [10.1038/79039] [1

GSK3α and GSK3β [10.1074/mcp.M900568-MCP200]

GSK3α and GSK3β [10.1038/nmeth.2400] [10.1016/j.cell.2012.06.047] [10.1038/onc.2012.31 GSK3α and GSK3β [10.1038/nmeth.2400] [10.1016/j.cell.2012.06.047] [10.1038/onc.2012.31

Serik

GSK3α and GSK3β [10.1074/jbc.M508657200] [10.1016/j.devcel.2006.07.003]

GSK3α and GSK3β [10.1074/mcp.M900568-MCP200] [10.4161/auto.28479]

GSK3β [10.1038/nmeth.2400] GSK3β [10.1038/nmeth.2400]

GSK3β [10.1038/nmeth.2400]

GSK3β [10.1038/nmeth.2400]

to Review Only

(HPA RNA expression) of testis GSK3 α interactors. Mixed expression is defined as being expr

Present in testis and/or sperm (DOI or PMID) Human testis and human sperm [10.1006/dbio.2000.9725]

Mouse testis [10.1073/pnas.1601461113]

Mouse testis (spermatocyte and spermatids) [10.1095/biolreprod.109.078980]

Human sperm (midpiece and principle piece) [10.1038/nrurol.2016.89]

Mouse testis and human sperm (mRNA) [10.1371/journal.pgen.1004825] [10.1371/journal.pone.012 Mouse testis (mRNA) and human sperm [10.1177/1933719112452939] [10.1371/journal.pone.01158 Rat testis (Sertoli cells) and human sperm (equatorial region) note that does not distinct AA1 from AB Human sperm (principal piece) [https://doi.org/10.1095/biolreprod32.5.1201] Human sperm (flagellum more intense in midpiece) [10.1016/j.cell.2015.10.029]

Human testis (mRNA) [https://doi.org/10.1016/S0378-1119(00)00549-7] Boar sperm (acrosome) [10.1016/j.jri.2009.11.002] Rat testis (Leydig cells, panchytene spermatocyte and spermatids) and human sperm (acrosome) [10.1

Human sperm [10.1371/journal.pone.0127007] Mouse testis [10.4103/1008-682X.133318]

Mouse testis [10.1016/j.jmb.2011.11.041] Mouse testis (spermatocytes and spermatids) [10.1371/journal.pgen.1005863] to Review Only

one tissue but in neither ubiquitous or tissue-enriched. *Although RNA expression

Asthenozoospermic alteration (DOI or PMID)	Tissue expression (HPA)
	Ubiquitous
	Ubiquitous
	Ubiquitous
	Ubiquitous
	Mixed
	Ubiquitous
	Testis-enriched
	Ubiquitous
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
	Group enriched (testis, epi
	Ubiquitous
	Testis-enriched
	Ubiquitous
	Bone marrow-enriched*
	Ubiquitous
	Ubiquitous
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
Downregulated[36]	Ubiquitous
	Mixed
Upregulated [10.1074/mcp.M116.061028]	Testis-enriched
	Ubiquitous
0.1002/jcp.24332]	Ubiquitous
	Mixed
	Ubiquitous
	Ubiquitous
	Ubiquitous
	Ubiquitous

Group enriched (testis and fallopian tube Ubiquitous Mixed

to Review Only

described for HMBS is enriched for bone-marrow, protein expression reveals

allopian tube)

to Reiewong

e)

for Review Only

Supplementary Table IV. GSK3β human testis interactors. Gene name, UniProtKB, nr of clones,

Gene Name	UniProtKB	Name
AXIN2	Q9Y2T1	Axin-2
BCCIP	Q9P287	BRCA2 and CDKN1A-interacting protein
C10orf90	Q96M02	Centrosomal protein C10orf90
C11orf98	E9PRG8	Uncharacterized protein C11orf98
CASC4	Q6P4E1	Protein CASC4
CMTM2	Q8TAZ6	CKLF-like MARVEL transmembrane domain-containing protein 2
DCP1B	Q8IZD4	mRNA-decapping enzyme 1B
HNRNPM	P52272	Heterogeneous nuclear ribonucleoprotein M
HSP90AA1	P07900	Heat shock protein HSP 90-alpha
HSP90AB1	P08238	Heat shock protein HSP 90-beta
LYAR	Q9NX58	Cell growth-regulating nucleolar protein
MYL6	P60660	Myosin light polypeptide 6
PRKRIP1	Q9H875	PRKR-interacting protein 1
PSMD8	P48556	26S proteasome non-ATPase regulatory subunit 8
RPS15	P62841	40S ribosomal protein S15
SMG7	Q92540	Protein SMG7
TEKT5	Q96M29	Tektin-5
YBX1	P67809	Nuclease-sensitive element-binding protein 1
Human DNA	sequence from	clone RP11-5/3N17 on chromosome 10, complete sequence

Human DNA sequence from clone RP11-543N17 on chromosome 10, complete sequence

EZ ONI

GSK3 phosphorylation site, previously des

Nr of clones	GSK3 phosphorylation site
1	Yes
1	Yes
1	Yes
1	
1	Yes
1	
2	Yes
2	
2	
1	
1	
2	
2	
2	
2	
1	Yes
1	Yes
1	
1	

cribed GSK3 interactor, presence on mammalian testis and sperm and alteration on asthenozoospei

Previously known GSK3 interactor (DOI or PMID) GSK3α and GSK3β [10.1016/j.celrep.2013.03.027] [10.1038/nmeth.2400] [10.1038/79039] [1

GSK3 α and GSK3 β [10.1038/nmeth.2400] [10.1016/j.cell.2012.06.047] [10.1038/onc.2012.31 GSK3 α and GSK3 β [10.1038/nmeth.2400] [10.1016/j.cell.2012.06.047] [10.1038/onc.2012.31

GSK3β [10.1016/j.febslet.2005.08.075]

http://molehr.oxfordjournals.org/

issue expression (HPA RNA expression) of testis GSK3β interactors. Mixed expression is defined as I

Present in testis and/or sperm (DOI or PMID) Human testis and human sperm [10.1006/dbio.2000.9725] Human testis [10.1038/sj.onc.1204098]

Human testis and sperm (elongating spermatids, pachytene spermatocytes, posterior head of mature

Mouse testis and human sperm [10.1371/journal.pgen.1004825] [10.1371/journal.pone.0127007] Mouse testis (mRNA) and human sperm [10.1177/1933719112452939] [10.1371/journal.pone.01158 Rat testis (Sertoli cells) and human sperm [10.1095/biolreprod.107.062679] [10.1128/MCB.25.10.425 Mouse testis [10.1007/s10059-013-2271-3] Mouse sperm (manchete of elongating spermatids) [0.1073/pnas.1424648112]

Boar sperm (acrosome) [10.1016/j.jri.2009.11.002]

Mouse testis (spermatocytes and spermatids) [10.1371/journal.pgen.1005863] Mouse sperm (flagellum, more intense in midpiece) [10.2164/jandrol.109.009456] tissue-enriched.

Asthenozoospermic alteration (DOI or PMID)	Tissue expression (HPA)
	Mixed
	Ubiquitous
	Group enriched (breast, cerebral cotex,
	Ubiquitous
	Ubiquitous
	Testis-enriched
	Ubiquitous
	Ubiquitous
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
	Testis-enriched
Upregulated [10.1074/mcp.M116.061028]	Ubiquitous
	Ubiquitous
	Ubiquitous
	Ubiquitous
	Ubiquitous
Downregulated [10.1074/mcp.M116.061028]	Testis-enriched
	Ubiquitous

alivary glands, testis)

KORRIGN ONL
Supplementary Table V. GSK3 isoforms peptides detected on mass spectrometry. Peptide

Sequence	Start	End	Coverage	Spectral Count
Mass spectrometry eluted with 50n	nM gly	cine a	and 1% SDS	
GSK3a (UniProtKB: F	249840)		
TSSFAEPGGGGGGGGGGGGGGSASGPGGTGGGK	19	50	10%	5
VTTVVATLGQGPER	100	113		
GSK3b (UniProtKB: F	P49841)		
TPPEAIALCSR	309	319	3%	1
Mass spectrometry on-bead	trypsin	dige	stion	
GSK3a (UniProtKB: F	249840)		
VTTVVATLGQGPER	100	113	8%	13
SQEVAYTDIK	114	123		
DIKPQNLLVDPDTAVLK	244	260		
GSK3b (UniProtKB: F	P49841)		
VTTVVATPGQGPDRPQEVSYTDTK	37	60	17%	32
DTPALFNFTTQELSSNPPLATILIPPHAR	355	383		
IQAAASTPTNATAASDANTGDR	384	405		

sequence, first and last aminoacid of the peptide, peptide % of coverage for the complete proteir

to Reiewony

n and peptide spectral count.

Supplementary Table VI.GSK3a human sperm interactors. Gene name, UniProtKB, n

Gene Name	UniProtKB	Name	Spectral Count ratio*†
ARG1	P05089	Arginase-1	GSK3a only
GGCT	075223	Gamma-glutamylcyclotransferase	GSK3a only
HIST1H2AD	P20671	Histone H2A type 1-D	3
TLR9	Q9NR96	Toll-like receptor 9	GSK3a only
SBSN	Q6UWP8	Suprabasin	GSK3a only
HIST1H4A	P62805	Histone H4	3
HIST1H2BK	A0A024RCL8	Histone H2B	GSK3a only
HSPA5	P11021	78 kDa glucose-regulated protein	GSK3a only
ACR	P10323	Acrosin	
CPZ	Q66K79	Carboxypeptidase Z	
EEF1G	P26641	Elongation factor 1-gamma	
LTF	P02788	Lactotransferrin	
PRSS37	A4D1T9	Probable inactive serine protease 37	
RPL13	P26373	60S ribosomal protein L13	
RPL6	Q02878	60S ribosomal protein L6	
RPS18	P62269	40S ribosomal protein S18	
RPS8	P62241	40S ribosomal protein S8	

* Spectral counts ratios: total number of spectral counts for each protein in GSK3a condition ±+Logarithm of GSK3a/Negative control:

⁺ Mass spectrometry results present distinct scoring methods, since the technique was perfo

r of clones, GSK3 phosphorylation site,	previously described GSK3 interactor, preser
---	--

Log of GSK3a/NC ratio± ⁺	GSK3 phosphorylation site	Previously known GSK3 interactor (
	Yes	
	Yes	
	Yes	GSK3β [10.1038/nmeth.2400]
8		GSK3β [10.1038/nmeth.2400]
4.8		
4.3		GSK3β [10.1038/nmeth.2400]
6.7		
4.8		
6.9		
4.8		
8.1		
4.4		

divided by the number of total number of spectral counts for each protein in negative control

prmed in two different facilities, VIB Proteomics Expertise Center and Proteomic Core Lab, Lei

21

nce on mammalian testis and sperm and alteration on asthenozoospern

Present in testis and/or sperm (DOI or PMID)

Human sperm (activity) [10.1007/s002400050004] Human testis (Sertoli and Leydig cells) and epididymis [10.1369/0022155411⁴

Mouse sperm (acrosome), human testis and sperm(mRNA) [https://doi.org/1

Mouse testis (spermatocyte) and human sperm [10.1262/jrd.2014-018] Human testis (mRNA) and sperm [10.1074/jbc.M206065200]

Yes, human testis and sperm (acrosome) [1821849] [4262344] [https://doi.or

Human sperm [10.1074/mcp.M110.007187] Human sperm (acrosome) [10.1093/abbs/gmw096]

Human sperm [10.1021/pr500652y] Yes, human testis and sperm (acrosome) [1821849] [4262344] [https://doi.or

ol. Only rations higher than 2 were considered relevant (increase of 100% of n

rner Research Institute

nic samples and tissue expression (HPA RNA expression) of testis GSK3a interactors. Mixe

Asthenozoospermic alteration (DOI or PMID)

428468] Upregulated [10.1074/mcp.M116.061028] L0.1274/jmor.27.136] [10.1111/and.12149] [24639717]

Downregulated and Upregulated [10.1007/s00345-013-1023-5] [10.1074/mcp.M116.061028] Downregulated [10.1074/mcp.M116.061028]

Downregulated [10.1074/mcp.M116.061028] Downregulated [10.1074/mcp.M116.061028]

rg/10.1016/S0015-0282(16)60021-3]

number of spectral counts in the condition GSK3a). Please note that "GSK3a only" means that spectral

http://molehr.oxfordjournals.org/

ed expression is defined as being expressed in at least one tissue but in neither ubiquitou

Tissue expression (HPA) Tissue enhanced (bone marrow, liver) Ubiquitous Tissue enhanced (bone marrow, prostate) Tissue enhanced (lymph node) Group enriched (esophagus, skin) Mixed Ubiquitous Ubiquitous Testis-enriched Ovary-enriched Ubiquitous Tissue enhanced (bone marrow, cervix, uterine) Testis-enriched Ubiquitous Ubiquitous Ubiquitous Ubiquitous

al counts were only detected in GSK3a condition.

http://molehr.oxfordjournals.org/

Supplementary Table VII. GSK3 β human sperm interactors. Gene name, UniProtKB, mass spec

Gene Name	UniProtKB	Name
ANXA1	P04083	Annexin A1
ARG1	P05089	Arginase-1
BPIFB1	Q8TDL5	BPI fold-containing family B member 1
CASP14	P31944	Caspase 14
CAT	P04040	Catalase
CTSG	P08311	Cathepsin G
LYZ	B2R4C5	C-type lysozyme
DMBT1	Q9UGM3	Deleted in malignant brain tumors 1 protein
GGCT	075223	Gamma-glutamylcyclotransferase
GSN	P06396	Gelsolin
GAPDH	P04406	Glyceraldehyde-3-phosphate dehydrogenase
HP	P00738	Haptoglobin
HSP90AB1	P08238	Heat shock protein HSP 90-beta
HSPA2	P54652	Heat shock-related 70 kDa protein 2
HIST1H2AD	P20671	Histone H2A
HIST1H2BK	A0A024RCL8	Histone H2B
H3F3B	P84243	Histone 3.3
HIST1H4A	P62805	Histone H4
HIST1H3A	P68431	Histone H3
MUC5AC	A7Y9J9	Mucin 5AC, oligomeric mucus/gel-formin
MPO	P05164	Myeloperoxidase
PFN1	P07737	Profilin-1
S100A8	P05109	Protein S100-A8
DKFZp686J11235	Q6MZW0	Putative uncharacterized protein DKFZp686J11235
SERPINB4	P48594	Serpin B4 (Fragment)
TLR9	Q9NR96	Toll-like receptor 9
n/a	Q6GMV8	Uncharacterized protein
ZG16B	Q96DA0	Zymogen granule protein 16 homolog B
ACR	P10323	Acrosin
LTF	P02788	Lactotransferrin
PRSS37	A4D1T9	Probable inactive serine protease 37
RPL13	P26373	60S ribosomal protein L13
RPL6	Q02878	60S ribosomal protein L6
RPS18	P62269	40S ribosomal protein S18

* Spectral counts ratios: total number of spectral counts for each protein in GSK3 β condition div

 \pm ⁺Logarithm of GSK3 β /Negative control:

⁺ Mass spectrometry results present distinct scoring methods, since the technique was perform

Spectral counts ratio*	Log of GSK3b/NC ratio± ⁺	GSK3 phosphorylation site
GSK3b only		
GSK3b only		Yes
GSK3b only		
GSK3b only		Yes
GSK3b only		Yes
GSK3b only		
2		
GSK3b only		
GSK3b only		
3		
4		
GSK3b only		
GSK3b only		
13		
GSK3b only		
GSK3b only		
GSK3b only		Yes
GSK3b only		
3		
GSK3b only		Yes
GSK3b only		
	7.7	
	6.45	
	4.4	
	4.79	
	4.75	

:trometry score, GSK3 phosphorylation site, previously described GSK3 interact

vided by the number of total number of spectral counts for each protein in neganed in two different facilities, VIB Proteomics Expertise Center and Proteomic Cor

tor, presence on mammalian testis and sperm, alte

Previously known GSK3 interactor (DOI or PMID)

GSK3β [10.1126/scisignal.2001699] GSK3β [10.1038/nmeth.2400] GSK3α and GSK3β [10.1038/nmeth.2400]

GSK3β [10.1038/nmeth.2400]

GSK3β [10.1038/nmeth.2400]

tive control. Only rations higher than 2 were conside

re Lab, Lerner Research Institute

ration on asthenozoospermic samples and tissue expression (HPA RNA expression) of sperm GSK3b

Present in testis and/or sperm (DOI or PMID)

Human sperm (activity) [10.1007/s002400050004]

Human sperm (catalase activity) [10.1002/mrd.1120240206]

Human testis (Sertoli and Leydig cells) and epididymis [10.1369/0022155411428468]

Boar sperm (fibrous sheat of the flagellum) [9264469]

Rat testis (mRNA) [9432136]

Rat testis (Sertoli cells) and human sperm [10.1095/biolreprod.107.062679] [10.1128/MCB.25.10.425

Mouse testis (spermatogonia, leptotene spermatocytes, pachytene spermatocytes and elongating spe Mouse testis (spermatocyte) and human sperm [https://doi.org/10.1262/jrd.2014-018] [10.1002/jcb Human sperm (nuclear) [10.1186/1471-213X-8-34]

Seminal plasma [10.1111/andr.12327] Rat testis (Leydig and Sertoli cells) [https://doi.org/10.1002/j.1939-4640.2004.tb03175.x] Human sperm [10.1002/pmic.200600094]

Mouse sperm (acrosome) and human testis and sperm (mRNA) [https://doi.org/10.1274/jmor.27.136

Yes, human testis and sperm (acrosome) [1821849] [4262344] [https://doi.org/10.1016/S0015-0282(Human sperm (mRNA) [10.1093/humrep/des074] Human sperm [10.1074/mcp.M110.007187]

ered relevant (increase of 100% of number of spectral counts in the condition GSK3β). Please note tha

Asthenozoospermic alteration (DOI or PMID)

Upregulated [10.1021/pr500652y] Upregulated [10.1074/mcp.M116.061028]

Downregulated [10.1074/mcp.M116.061028] Upregulated [10.1074/mcp.M116.061028] Downregulated [10.1074/mcp.M116.061028]

Downregulated [10.1074/mcp.M116.061028]

vere only detected in GSK3 β condition.

Tissue Expression Esophagus-enriched Tissue enhanced (bone marrow, liver) Tissue enhanced (cervix, uterine, stomach) Skin-enriched Ubiquitous Bone marrow-enriched Ubiquitous Tissue enhanced (duodenum, small intestine) Ubiquitous Ubiquitous Ubiquitous Liver-enriched Ubiquitous Testis enhanced Tissue enhanced (bone marrow, prostate) Ubiquitous Ubiquitous Mixed Group enriched (bone morow, epididymis, testis) Stomach-enriched Bone marrow-enriched Ubiquitous Group enriched (bone morow, esophagus, tonsil) no information Esophagus-enriched Tissue enhanced (lymph node) no information Salivary gland-enriched **Testis-enriched** Tissue enhanced (bone marrow, cervix, uterine) **Testis-enriched** Ubiquitous

Ubiquitous

Ubiquitous

Supplementary Table VIII. Testis expression levels of GSK3 α interactome. Expression

Gene Name	UniProtKB
TTC16	Q8NEE8
DDI1	Q8WTU0
LRRC37A2	A6NM11
GOLGA6C	A6NDK9
DRC1	Q96MC2
BCCIP	Q9P287
HSP90AB1	P08238
RUNX1	Q01196
HSP90AA1	P07900
DCP1B	Q8IZD4
MAEA	Q7L5Y9
SBN01	A3KN83
NBR1	Q14596
SUGP2	Q8IX01
PSMD8	P48556
MYL12A	P19105
ALKBH3	Q96Q83
HMGN1	P05114
DNAJB1	P25685
DEAF1	075398
H2AFV	Q71UI9
CCDC174	Q6PII3
AURKAIP1	Q9NWT8
SMG7	Q92540
RPL19	P84098
C11orf98	E9PRG8
AP3D1	014617
CNTROB	Q8N137
PTMA	P06454
RPS15	P62841
VCPIP1	Q96JH7
LDHA	P00338
SMARCA5	060264
LRP6	075581
DCAF8	Q5TAQ9
FBXO42	Q6P3S6
AXIN2	Q9Y2T1
MTCH1	Q9NZJ7
AKAP11	Q9UKA4
RPL29	P47914
UBTF	P17480
СНТОР	Q9Y3Y2
RPS19	P39019

RPL15	P61313
HNRNPM	P52272
HMBS	P08397
RefSeqGene on chromosome 5 Chromosome 5: 150,401,911-150,402,122	2
Human Dna sequence from clone RP11-543N17	
Homo Sapiens Chromosome 21 clone CTD-250 3J9 map p11-q21.1	
ARG1	P05089
GGCT	075223
HIST1H2AD	P20671
TLR9	Q9NR96
SBSN	Q6UWP8
HIST1H4A	P62805
HIST1H2BK	A0A024RCL8
HSPA5	P11021
ACR	P10323
PRSS37	A4D1T9
RPS18	P62269
RPL13	P26373
LTF	P02788
RPL6	Q02878
CPZ	Q66K79
RPS8	P62241
EEF1G	P26641
TUBG1	P23258
RAE1	P78406
FOXM1	Q08050
AXIN1	015169-2
CTNNB1	B4DGU4
РКМ	P14618-1
AXIN1	015169
YWHAG	P61981
FRAT1	Q92837
GSKIP	Q9P0R6
NBR1	Q14596
MAPT	P10636
PRKACA	P17612
DEAF1	075398
GSK3A	P49840
AIM1	Q9Y4K1
АКАР9	Q99996
AR	P10275
AXIN2	Q9Y2T1
CTNNA1	P35221
PPP1R2	P41236
MDN1	Q9NU22
PSMD1	Q99460

POLR3B	Q9NW08
ZDHHC17	Q8IUH5
AKT1	P31749
PRKCA	P17252
PRKCB	P05771
PRKCD	Q05655
PRKCG	P05129
АРР	P05067
ARHGEF11	015085
РКМ	P14618
KRBA1	A5PL33
LRP6	075581
MAP3K11	Q16584
MYC	P01106
SPICE1	Q8N0Z3
VTA1	Q9NP79
EIF2B5	Q13144
PRKD3	O94806
SGK3	Q96BR1
CTNNB1	P35222
FCGR2B	P31994
HDAC6	Q9UBN7
HSP90AA1	P07900
HSP90AB1	P08238
PPP3CC	P48454
RCAN2	Q14206
SPG21	Q9NZD8
TRAK2	O60296
BICD1	Q96G01
CREM	Q03060
GSK3B	P49841
HSF1	Q00613
PRKCZ	Q05513
MCL1	Q07820
SGK1	000141
BCL3	P20749
CREB1	P16220
EBNA1BP2	Q99848
GLI3	P10071
PRKCH	P24723
LRSAM1	Q6UWE0
PXN	P49023
PRKDC	P78527
RICTOR	Q6R327
ARSG	Q96EG1
PPP1CA	P62136

PPP1CB	P62140
PPP1CC	P36873
РРРЗСВ	P16298
RCAN1	P53805
SAMHD1	Q9Y3Z3
SRBD1	Q8N5C6

levels of all GSK3 interactors were retrieved form the human protein atlas, PaGeneBase, I

HPA protein expression	HPA mRNA expression values	BioGPS	PaGenBAse	Expression Atlas
Group enriched	58.280	n/a	97.390	62.500
Testis enriched	100	8.1872	99.980	100.000
Testis enriched	77.632	6.9583		4.501
Testis enriched	n/a	n/a	99.130	100.000
Group enriched	33.981	6.7664		42.182
		7.465		1.989
		2.813		0.638
		4.153		1.989
		7.716		6.215
		9.249		6.215
		3.224		2.942
		6.099	90.270	3.279
		6.828		4.008
		10.4925	94.970	8.165
		7.0089		4.278
		4.2957		0.894
		5.2179		3.084
		3.0988		2.702
		13.3536		6.369
		2.7794		2.212
		3.5285		1.729
		5.3921		3.024
		11.6677		7.807
		7.2974	100.000	5.770
		3.8772		1.342
		5.8485		3.237
		4.0967		4.061
		n/a 🛁		10.087
		1.9029		2.292
		3.1992		2.331
		4.8426		3.950
		2.9166		1.275
		4.4525		4.536
		5.1604		2.004
		3.7098		2.476
		4.9336		2.722
		5.2514		2.618
		2.1634		1.506
		2.6625		3.315
		3.3782		1.518
		3.5255		1.845
		3.4345		2.404
		2.9667		1.669

	4.0430		1.884
	3.2171		1.632
	0.5810		1.548
	1.5534		0.372
	2.6738		1.359
	4.4163		5.946
	n/a	n/a	
	n/A	-	0.018
	4.2962		0.000
	3.0936		4.816
	5.2981		2.576
Testis enriched	88.003 13.1225	99.243	97.074
Testis enriched	98.039 n/a	95.190	100.000
	4.0987		1.034
	4.0238		1.730
	0.2265		0.000
	1.9018		0.875
	4.5534		1.011
	1.9940		0.801
	4.5537		0.801
Testis enriched	22.926 33.6003	96.310	47.926
Testis enriched	22.507 33.1143	92.760	37.495
Testis enriched	8.1761	100.000	10.832
	4.0168		2.963
	3.3887		1.586
	2.8176		70.164
	4.0168		2.963
	n/a 🌙		1.277
	1.1796		8.910
	7.7826		2.839
	6.8276		4.008
	1.3419		0.426
	6.2514		9.405
	2.7794		3.318
	5.8364		3.139
	0.6990		1.106
	1./124		1.356
	4.4957		1.3/6
	5.2514		2.618
	2.2363		1.191
			4.351
	5.4885		4.111
	3.4812		2.533

5.5611	77.500
1.6730	2.241
2.0556	1.754
1.6213	0.357
0.4333	1.599
1.3960	1.970
4.9301	1.055
2.6173	1.707
5.2436	4.937
2.8176	1.809
n/a	3.116
5.1604	2.004
3.3841	1.820
1.6741	0.896
5.2394	3.075
4.1524	1.801
3.2238	1.834
4.4915	4.739
3.6034	2.622
3.3887	1.586
1.6268	0.000
6.2662	4.036
7.7165	6.215
2.8133	0.638
9.1377	7.567
0.8041	0.722
3.4387	2.117
0.8052	1.024
4.5969	0.958
18.4107 100.000	13.194
9.7621	3.821
8.9501 100.000	10.395
6.5738	6./12
2.1370	1.019
2.2366	1.617
2.5430	1.364
8.8291	31.770
4.7800	5.125
5.8729	1.051
	1.245
5.1593	1.042
3.4225	
1.9427	2.029
	1.900 1 777
0.9808	1.///
0.5964	1.321

http://molehr.oxfordjournals.org/

0.4761	1.355
1.0016	2.781
0.7151	1.223
0.2592	0.886
1.1670	1.139
69.8440	3.390

Expression atlas, BioGPS and UniGene testis ex

Unigene
54.5455
94.6809
6.4039
76.4706
35.6322
1.8802
2.3966
0.5076
2.4068
9.9469
2.6919
4.7818
9.0416
17.3305
2.1676
0.4758
4.7364
1.9984
6.1558
2.1662
n/a
1.8692
1.9175
4.3344
0.5235
1.1065
2.4658
2.3272
0.7693
0.8969
3.4043
1.3008
4.4765
1.5734
3.1735
5.0871
5.2439
2.1710
0.9194
0.4976
1.4398
3.4414
0.7131

1.5560
0.8464
0.9382

0.0000 0.3583 16.6667 0.0000 0.0000 0.0000 0.8604 1.9065 56.5217 20.6107 0.3479 0.6172 0.0442 1.1071 1.4129 0.5373 0.9917 5.6788 9.4287 1.8096 1.5810 2.0449 1.8676 1.5810 0.8662 2.4658 1.8685 9.0416 1.4540 1.8443 2.1662 0.6224 1.4870 1.1595 4.4776 5.2439 2.3746 6.8942 2.0619 3.0429

KOLPELIER ONL

3.8570	
1.5069	
0.4581	
0.0000	
1.5704	
2.7434	
4.6243	
3.1995	
2.6675	
1.8676	
2.0067	
22.8298	
3.8974	
0.2859	
1.5134	
1.4496	
1.2312	
2.8740	
2.3013	
2.0449	
0.0000	
6.0943	
2.4068	
2.3966	
8.3790	
4.4461	
1.3519	
1.2016	
2.5400	
13.3431	
2.3665	
3.3739	
4.4717	
2.0599	
1.0382	
0.1428	
3.8528	
1.9390	
3.6165	
1.7349	
1.2432	
3.9199	
1.1814	
0.6587	
1.5326	
0.6517	

1.5075	
3.3235	
3.7766	
0.9187	
0.9662	
6.7864	

Kor Review Only

cpression values were normalized. Yellow: GSK3α testis interactors; Green: GSK3α sp

Testis YTH identified interactors

Sperm Mass Spectometry identified interactors

Databases retrieved interactors

e normalized and presented in % of testis expression compared to the total tissues tested no information available

sion in testis in at least 2 databases. Interactors were classified in three categories: 50-75%; 7

FOR PRIMA

perm interactors; Orange: (

'5%-90 and >90%.

Supplementary Table IX: Testis expression levels of GSK3β interactome. Expression levels (

Gene Name
YBX1
C10orf90
TEKT5
MYL6
DCP1B
BCCIP
HSP90AA1
RPS15
PSMD8
CASC4
CMTM2
LYAR
AXIN2
PRKRIP1
HNRNPM
C11orf98
SMG7
HSP90AB1
Human DNA sequence from clone RP11-543N17 on chromosome 10, complete sequence
HSPA2
ANXA1
ARG1
BPIFB1
CASP14
CAT
CTSG
LYZ
DMBT1
GGCT
GSN
GAPDH
НР
HSP90AB1
HIST1H2AD
HIST1H2BK
H3F3B
HIST1H3A
HIST1H4A
MUC5AC
MPO
PFN1
\$10048
510040

SER	PINB4
TLR	
n/a	
ZG1	5B
LTF	
ACR	
PRS	37
RPL	5
RPS	.8
LTF	
RPL	3
TUB	B1
PFK	B4
AUF	КА
IQC	i de la construcción de la constru
TUB	G1
ТОР	2A
DDX	20
IGF2	BP1
PBK	
SP7	
RGS	22
HIST	1H1T
CAB	Ϋ́R
TSK	
PRK	ACG
FOX	M1
AXI	11
MA	PT isoform Tau-F
EGL	13
CAB	YR isoform 5
CAB	YR isoform 3
MA	T isoform Tau-E
DAE	2IP isoform 2
CIN	NB1
APC	
GSK	38
	211
	L
125	
USK DDK	
PKK	
АЛ	

FRAT1	
PPP1R2	
MUC1	
NOTCH1	
SGK3	
SMAD3	
SNAI1	
DNM1L	
NIN	
ACLY	
PPP1CA	
PTPN1	
STRAP	
TSC2	
ATXN3	
PSEN1	
AXIN2	
PTK2	
FRAT2	
APP	
GYS1	
PRKAR1A	
PPP1CC	
VIM	
CCNE1	
SMAD1	
BTRC	
BICD1	
EPM2A	
NOTCH2	
AKT2	
HSPA1A	
HSPA1B	
LRRK2	
RELB	
UBR5	
DEAF1	
DHX36	
EWSR1	
SINKINP7U	
2F3B1	
XPU6	

HSP90AA1
KLF5
MAP3K1
SNAI2
CDH1
FZR1
ANKRD6
CLASP2
DAB2IP
DYNLL1
E2F1
EPB41L3
PRKAR2A
PRUNE1
RPF2
RELA
TRAF2
TANK
TSC1
MAPK1
NBR1
BCL3
HSPA4
FIF2B5
JUN
PRKCB
CREB1
DACT1
DDIT4
EYA1
FOXO1
PRKCA
PRKCZ
MDM2
IKBKG
NFE2L1
NFE2L3
PHLPP1

PPARGC1A			
TAZ			
WWTR1			
YWHAZ			
PPP2R5D			
EIF4EBP1			
ACACA			
ACSBG1			
DBI			
ACTL6B			
ACTBL2			
ADAP1			
ADIRF			
PMAIP1			
ASRGL1			
ATF3			
ATPIF1			
BAG6			
BEX1			
BHLHE41			
BIRC2			
BIRC3			
BRIX1			
BZW2			
CAMSAP3			
СНОЗ			
CRELD2			
CSAD			
CSF3R			
CSNK2B			
COPS5			
GJB5			
CSTB			
CST6			
DCD			
DCTN3			
DDX5			
BHLHE40			
DEC1			
DEFA1			
HSD17B4			
Page	108	of	236
------	-----	----	-----
------	-----	----	-----

DHX34	
DNAJC13	
DNMT3L	
DNMT1	
DUSP9	
EEF1A1	
EEF1G	
ELAVL1	
ІКВКАР	
MPP1	
ENTPD6	
C14orf1	
FAM83D	
FBN3	
FBXW11	
FBXW7	
FEN1	
IFT46	
VPS51	
FIBP	
FIP1L1	
FKBP14	
KHSRP	
FUS	
FZD5	
GAPDH	
GNB2	
GBP2	
GIPC1	
GPR39	
HSPA9	
HSPA5	
HIST1H1C	
HIST1H1E	
H1FX	
HAX1	
HBA1	
HDAC6	
HECW2	
HRNR	
HP	
HSP90AB1	
HSPA8	
CLNS1A	
IGHM	
IGSF21	

ILK
ITLN1
KANK1
KIF5B
LUC7L2
LMO4
MID1IP1
MAP3K11
MAP1A
MAP4
MASP1
MCCC2
MED24
MICAL1
MKL1
MAP2K5
MTF2
MTOR
MYCN
MYH9
NAT9
MGEA5
ΚΙΔΔ1191
PIM2
PPP3CC
PRDX1
РТВРЗ
PTN
QPCTL
RAI1
RASSF1
RCAN2
UPF3A
RPL13
RPL19
RPL23
RPL23A
RPL27A
RPL29
RPI31

Page	1	10	of	236
------	---	----	----	-----

RPL35	
RPL36A	
RPL36AL	
RPL37	
RPL37A	
RPL8	
RPLP1	
RNF220	
POLR2B	
RPS11	
RPS14	
RPS16	
RPS17	
RPS18	
RPS19	
RPS23	
RPS24	
RPS25	
RPS27A	
RPS29	
RPS2	
FAU	
RPS4X	
RPS6	
RSU1	
RXRA	
SAP30BP	
SF3A1	
SHROOM3	
SLA	
SMARCA2	
SMARCA5	
SMURF2	
SPTBN4	
STK11	
RBPJ	
SYNE4	
EPRS	
QARS	
TUBA1A	
TUBB	
TBC1D4	
CLEC3B	
TLE1	
TMEM44	
TONSL	

IRAK2	
IRAP1	
HSP90B2P	
TRIM29	
PRSS3	
EFTUD2	
JBE2D1	
JBR1	
JBXN6	
JFM1	
NSB1	
(IAP	
ERCC4	
(PO1	
(PNPEP1	
/AP1	
ZHX1	
ZKSCAN2	
ZNF135	
ZNF227	
ZNF746	
INRNPD	
/BX3	
/BX1	
SNCA	
CREM	
DPYSL2	
GSK3A	
MCL1	
MYOCD	
CRPΔ	
REB313	
DYNC111	
DCTN1	

Page	11	2	of	236

DCTN2
HDAC4
KLF2
RPS6KA1
MAP3K4
MAP1B
MARK2
MITF
NCOA3
NFE2L2
PIK3R1
PXN
PDE4D
PRKDC
RCAN1
RICTOR
SREBF1
TMEM132A
FZD1
GRB14
ILKAP
MAP2K7
PPP2CA
PTPN11
AMMECR1
STYK1
YWHAQ
APC2
APOC2
SLC25A23
ANAPC2
CDKN1B
CREB3
DVL2
DVL3
GLI2
GYS2
PIN1
PRKX
CD274
PIAS1
DEFA5
DKK3
KIAA0317
MAP3K2
NFATC1

NFATC2	
PPP1CB	
SAMHD1	
TBK1	
U2AF1	
UBE3A	
UBXN2B	
SOX10	
LPCAT1	
SOX9	

http://molehr.oxfordjournals.org/

UniProtKB	HPA protein expression	HPA mRNA expression values	BioGPS	PaGenBAse
P67809	Testis enriched	10.069	19.344	
Q96M02	Group enriched	29.524	5.686	
Q96M29	Testis enriched	90.982	5.810	99.940
P60660			3.752	
Q8IZD4			9.249	
Q9P287			7.465	
P07900			7.716	
P62841			3.199	
P48556			7.009	
Q6P4E1			5.355	
Q8TAZ6			91.946	99.050
Q9NX58			8.383	
Q9Y2T1			5.251	
Q9H875			4.487	
P52272			3.217	
E9PRG8			5.849	
Q92540			7.297	100.000
P08238			2.813	
		L.		
P54652	Testis enhanced	21.975	25.788	
P04083			0.328	
P05089			1.553	
Q8TDL5			0.101	
P31944				
P04040			0.304	
P08311			1.405	
B2R4C5			0.053	
Q9UGM3			0.616	
075223			2.674	
P06396			3.658	
P04406			2.819	
P00738			0.241	
P08238			2.813	
P20671			4.416	
A0A024RCL8			3.094	
P84243			6.526	
P68431			3.865	
P62805			4.296	
A7Y9J9			2.936	
P05164			0.188	
P07737			1.098	
P05109			0.040	
Q6MZW0				

of all GSK3 interactors were retrieved form the human protein atlas, PaGeneBase, Expressior

P48594			4.316	
Q9NR96				
Q6GMV8				
Q96DA0			0.205	
P02788			0.226	
P10323	Testis enriched	88.003	13.123	99.243
A4D1T9	Testis enriched	98.039	n/a	99.243
Q02878			1.902	
P62269			4.099	
P02788			0.226	
P26373			4.024	
Q9H4B7	Group enriched	7.772	4.396	
Q16877	Testis enhanced	15.403	4.979	
O14965	Testis enhanced	21.176	5.346	100.000
Q9H095	Group enriched	21.801	27.314	
P23258	Testis enriched	22.926	33.600	96.310
P11388	Testis enhanced	23.397	5.582	98.940
Q9UHI6	Testis enriched	34.621	21.891	96.290
Q9NZI8	Group enriched	46.392	5.675	99.760
Q96KB5	Testis enriched	49.521	35.900	99.620
Q8TDD2	Testis enhanced	52.000	5.707	
Q8NE09	Testis enriched	67.038	18.230	94.990
P22492	Testis enriched	82.353	4.893	100.000
075952	Testis enriched	83.106	84.722	100.000
Q9UJT2	Testis enriched	89.728	69.429	99.400
P22612	Testis enriched	100.000	8.082	100.000
Q08050	Testis enhanced	17.914	8.176	100.000
015169			4.017	
P10636-8				
Q9H6Z9			4.615	
075952-5				
075952-3				
P10636-7				
Q5VWQ8-2				
P35222			3.389	
P25054			2.634	
P49841			9.762	
O9UKA4			2.662	
P31749			2.056	
P04637			2.093	
O9POR6			7 783	
P17612			6 251	
075581			5 160	
D01106			1 67/	
D10626			1.0/4	
P10275			1.342	
PT0712			4.496	

Q92837	1.180	
P41236	13.666	
P15941	2.606	
P46531	3.232	
Q96BR1	3.603	
P84022	2.954	
O95863	4.945	
000429	3.544	
Q8N4C6	4.587	
P53396	1.748	
P62136	1.388	
P18031	3.272	
09Y3F4	3 863	
P49815	5 839	
P54252	4 578	
P49768	5 176	
09771	5.251	
005397	5.014	
075474	0 799	
P05067	2 617	
P13807	1.417	
P10644	3.654	
P36873	9,123	
P08670	3.105	
P24864	2.436	
Q15797	5.823	
Q9Y297	5.068	99.790
Q96G01	4.597	
B3EWF7	4.544	99.000
Q04721	7.617	
P31751	4.826	
P0DMV8	2.114	
P0DMV9	2.104	
Q5S007	4.442	
Q01201	2.857	
095071	14.209	
075398	2.779	
Q9H2U1	5.258	
Q01844	6.700	
Q8IX07	5.725	100.000
P57678	35.724	
P08621	3.412	
075533	3.605	
Q16637	5.355	
Q9NRG4	9.587	
Q96QU8	5.139	

P07900	7.716	
Q13887	2.608	
Q13233	4.621	
O43623	0.973	
P12830	0.331	
Q9UM11	6.686	100.000
Q9Y2G4	4.378	
075122	0.813	
Q5VWQ8	3.848	
P63167	8.488	
Q01094	4.478	
Q9Y2J2	3.368	
P13861	7.101	99.200
Q86TP1	4.064	
Q9H7B2	5.364	
Q04206	3.570	
Q12933	4.580	
Q92844	3.249	
Q92574	4.056	
P28482	2.857	
Q14596	6.828	
P20749	2.543	
P24385	0.613	
P34932	6.069	
P19838	1.102	
Q9Y6H5	4.759	
O15085	5.244	
A5PL33	n/a	
P23246	3.975	
Q8N0Z3	5.239	
Q9NP79	4.152	
Q13144	3.224	
P05412	2.210	
P05771	0.433	
P16220	8.829	
Q9NYF0	2.416	
Q9NX09	0.625	
Q99502	3.458	
Q12778	4.173	
P17252	1.621	
Q05513	6.574	
Q00987	4.676	
Q9Y6K9	3.245	
Q14494	4.183	
Q9Y4A8	2.715	
O60346	2.016	

Q9UBK2	4.077	
Q16635	4.449	
Q9GZV5	2.574	
P63104	3.277	
Q14738	5.583	
Q13541	2.082	
Q13085	4.044	
Q96GR2	2.867	
P07108	5.130	
O94805	2.644	
Q562R1	5.664	
075689	2.714	
Q15847	1.455	
Q13794	0.565	
Q7L266	58.457	95.510
P18847	1.832	
Q9UII2	8.739	
P46379	17.144	
Q9HBH7	3.275	
Q9C019	0.644	
Q13490	3.321	
Q13489	1.109	
Q8TDN6	4.631	
Q9Y6E2	1.855	
Q9P1Y5	5.633	
Q16204	4.519	
Q16543	2.577	
P17676	0.620	
Q03701	7.483	
P07199	4.280	
Q12873	3.290	
Q6UXH1	6.428	
Q9Y600	3.559	
Q99062	0.365	
P67870	14.192	
Q92905	7.232	
095377	4.401	
P04080	1.903	
015828	2.907	
P81605	0.602	
075935	1 961	
P17844	4 325	
014503	0.936	
09P2X7	۵.550 ۸ ۹ 7 7	
P59665	4.527 0 074	
D51659	1 /11	
L DTOD2	1.411	

Q14147	6.216	
075165	4.549	
Q9UJW3	4.913	
P26358	3.734	
Q99956	2.464	
P68104	4.440	
P26641	4.554	
Q15717	4.892	
O95163	n/a	
Q00013	1.314	
075354	3.796	
Q9UKR5	4.979	100.000
Q9H4H8	1.490	
Q75N90	5.543	
Q9UKB1	4.321	
Q969H0	1.393	
P39748	1.389	
Q9NQC8	6.212	
Q9UID3	1.850	
043427	7.377	
Q6UN15	5.734	
Q9NWM8	3.908	
Q92945	6.472	
P35637	5.013	
Q13467	2.929	
P04406	2.819	
P62879	3.486	
P32456	2.010	
014908	3.942	
043194	3.955	
P38646	2.771	
P11021	5.298	
P16403	1.193	
P10412	4.780	
Q92522	1.090	
O00165	6.033	
P69905	5.211	
Q9UBN7	6.266	
Q9P2P5	5.688	
Q86YZ3	5.668	
P00738	0.241	
P08238	2.813	
P11142	2.905	
P54105	1.619	
P01871	0.579	
Q96ID5	0.832	

P42766	3.285	
P83881	1.656	
Q969Q0	2.755	
P61927	3.393	
P61513	6.239	
P62917	2.167	
P05386	3.007	
Q5VTB9	3.978	
P30876	3.979	
P62280	4.564	
P62263	3.387	100.000
P62249	2.831	
P08708	2.864	
P62269	4.099	
P39019	2.967	
P62266	3.349	
P62847	3.360	
P62851	3.320	
P62979	3.500	
P62273	4.707	
P15880	2.518	
P35544	3.214	
P62701	2.634	
P62753	4.570	
Q15404	2.768	
P19793	1.586	
Q9UHR5	2.823	
Q15459	7.101	
Q8TF72	n/a	
Q13239	0.929	
P51531	7.183	
O60264	4.452	
Q9HAU4	5.061	
Q9H254	3.828	
Q15831	3.907	
Q06330	6.047	
Q8N205	5.728	
P07814	2.434	
P47897	2.718	
Q71U36	1.063	
P07437	2.518	
O60343	2.936	
P05452	7.676	
Q04724	5.653	
Q2T9K0	5.573	
Q96HA7	4.906	

O60296	0.805	
Q12931	4.509	
Q58FF3	n/a	
Q14134	1.574	
P35030	0.130	
Q15029	5.751	
P51668	3.664	
Q8IWV7	5.447	
Q9BZV1	7.823	
P61960	2.910	
Q9Y6I7	2.676	
P98170	4.737	
Q92889	5.280	100.000
O14980	4.321	
Q9NQW7	4.185	100.000
P46937	4.339	
Q9UKY1	4.068	
Q63HK3	5.676	
P52742	4.748	
Q86WZ6	4.697	100.000
Q6NUN9	n/a	
Q14103	2.527	
P16989	20.175	
P67809	19.344	
P37840	0.775	
Q03060	18.411	100.000
Q16555	0.305	
P49840	5.836	
Q07820	2.137	
Q8IZQ8	5.678	
015294	1.207	
Q15154	21.706	
Q9UIS9	5.084	
000141	2.237	
094811	1.200	
Q9Y243	2.588	
P49407	2.563	
Q8TD16	2.170	
P33076	4.938	
Q00535	3.838	
Q99626	4.954	
P49715	1.229	
Q68CJ9	4.283	
060716	5.780	
014576	0.968	
Q14203	4.442	

Q13561	4.752	
P56524	3.483	
Q9Y5W3	1.413	
Q15418	2.157	
Q9Y6R4	3.714	100.000
P46821	0.729	
Q7KZI7	4.757	
075030	2.523	
Q9Y6Q9	2.886	
Q16236	4.934	
P27986	1.115	
P49023	3.422	
Q08499	3.364	
P78527	1.943	
P53805	2.791	
Q6R327	5.425	
P36956	4.388	
Q24JP5	1.780	
Q9UP38	2.861	
Q14449	10.469	
Q9H0C8	2.308	
014733	4.908	
P67775	2.166	
Q06124	2.381	
Q9Y4X0	1.287	
Q6J9G0	4.669	
P27348	5.277	
O95996	3.249	
P02655	1.967	
Q9BV35	4.550	
Q9UJX6	n/a	
P46527	1.814	
O43889	6.065	
014641	5.552	
Q92997	3.667	
P10070	5.422	
P54840	4.313	
Q13526	5.277	
P51817	2.364	
Q9NZQ7	0.686	
075925	1.000	
Q01523	0.100	
Q9UBP4	0.700	
015033	2.405	
Q9Y2U5	0.118	
095644	0.690	

Q13469	0.100
P62140	0.476
Q9Y3Z3	0.208
Q9UHD2	1.186
Q01081	0.704
Q05086	0.752
Q14CS0	0.708
P56693	0.114
Q8NF37	0.232
P48436	1.528

For Review Only

n atlas, BioGPS and UniGene were retrieved and testis ex

Expression Atlas	Unigene	
9.768	1.213	
21.151	9.143	
100.000	74.627	All values wer
1.087	0.558	n/a
6.215	9.947	50% of expres
3.279	1.880	
3.831	2.407	
2.331	0.897	
4.278	2.168	
1.951	1.231	
95.434	65.517	
48.011	9.365	
3.313	0.000	
3.680	1.251	
3.145	0.846	
3.237	1.107	
5.770	4.334	
10.335	2.397	
44.756	15.831	
0.106	0.135	
0.372	0.000	
4.800	0.164	
0.000	0.000	
0.584	0.946	
1.402	0.440	
0.057	0.000	
0.522	0.073	
1.359	0.358	
1.069	0.775	
33.284	0.914	
0.062	4.468	
1.989	0.090	
5.946	16.667	
4.816	0.860	
3.023	1.478	
n/a	0.000	
0.000	0.000	
0.000	0.000	
0.000	0.064	
1.642	0.495	
0.072	0.167	
n/a	0.154	

n/a	
n/a	

0.000

0.135 0.000

.., c

n/a

n/a n/a n/a n/a

	n7a	
0.024	0.000	
0.000	0.044	
97.074	56.522	
100.000	20.611	
0.875	1.107	
1.034	0.348	
0.000	0.044	
1.730	0.617	
7.816	2.721	
16.322	11.277	
21.512	6.491	
14.232	6.737	
47.926	5.679	
21.396	3.892	
28.066	16.397	
55.000	9.295	
48.805	18.671	
100.000	0.844	
68.887	60.400	
100.000	100.000	
65.792	60.983	
95.210	60.563	
99.187	81.967	
10.832	1.810	
2.963	1.581	
0.210	0.845	
1.586	2.045	
1.456	3.853	
3.821	2.367	
3.315	0.919	
1./54	0.458	
2.1/6	1.296	
2.839	1.868	
9.405	1.844	
2.004	1.573	
0.896	0.286	
1.068	1.454	
1.376	4.478	

8.910	2.466	
4.351	6.894	
3.616	0.180	
0.980	0.281	
2.622	2.301	
0.704	0.673	
2.427	1.500	
2.855	5.705	
0.742	1.078	
2.648	3.603	
1.235	0.652	
2.624	3.634	
2.455	5.362	
4.390	2.689	
2.585	2.058	
2.864	3.783	
3.937	0.000	
2.536	2.999	
3.540	0.830	
1.707	3.199	
0.707	1.609	
1.946	2.667	
3.306	3.324	
0.914	0.793	
9.355	4.691	
3.599	3.574	
6.153	3.213	
1.438	2.540	
2.537	6.888	
31.308	3.278	
3.246	1.678	
1.559	0.435	
1.449	0.435	
0.586	0.246	
1.026	1.453	
10.031	1.891	
3.318	2.166	
4.241	3.359	
3.733	1.934	
7.206	5.172	
13.305	16.493	
2.113	1.155	
2.552	0.484	
3.844	1.006	
3.247	1.437	
9.910	2.106	

Page	128	of	236

3.831	2.407	
20.580	2.672	
3.124	1.682	
0.955	0.000	
2.510	0.217	
5.163	2.554	
2.767	9.430	
1.898	1.864	
2.379	1.393	
4.132	0.691	
7.945	1.907	
8.300	6.552	
5.658	7.746	
3.733	3.316	
3.091	3.101	
1.827	1.526	
2.330	3.582	
1.573	5.071	
4.031	3.598	
2.305	2.266	
4.008	9.042	
1.364	0.143	
0.261	0.604	
4.339	2.073	
1.376	1.875	
4.097	6.584	
4.937	2.668	
3.116	2.007	
2.623	1.094	
3.075	1.513	
1.801	1.450	
1.834	1.231	
1.003	0.504	
1.599	1.570	
31.770	3.853	
5.692	6.355	
0.736	0.632	
3.351	2.008	
1.567	1.819	
0.734	0.000	
6.712	4.472	
1.894	1.881	
3.128	0.111	
1.671	2.697	
1.201	0.688	
4.393	2.492	

http://molehr.oxfordjournals.org/

26.78	9 2.281	
0.898	8 0.429	
0.82	6 1.159	
1.73	2 2.760	
3.93	3 2.643	
0.67	6 0.987	
4.08	8 1.531	
145.00	0 5.744	
3.67	7 1.119	
1.51	6 2.326	
	0.000	
0.29	0 0.480	
	1.731	
1.23	1 1.964	
15.964	4 7.424	
0.47	5 0.609	
5.89	0 0.757	
9.143	3 6.444	
4.943	3 3.161	
0.90	9 0.406	
2.60	9 2.140	
2.60	9 0.000	
2.84	5 1.255	
0.88	7 0.722	
4.45	6.809	
1.684	4 1.026	
2.42	6 1.410	
0.334	4 0.990	
3.59	9 7.971	
0.94	9 0.128	
2.24	9 0.740	
4.94	3 4.116 c 1.270	
2.83	b 1.379	
	0 0.219	
5.04	5 $3.05/$	
5.45	2 2.513 0 000	
0.97	0.000 0.000	
0.59	5 0.440 6 2.244	
0.50	0 2.244 0 0.000	
1 21	0.000 0 1.262	
1.010 1.70	7 2120 7 2122	
1.72 0.57	, 2.122 2 0.567	
0.57	2 0.307 2 0.000	
0.57	0.000	
1 040	9 1.517	
T.04.	~ <u></u>	

Page 130 of 236

10.194	6.122	
1.965	2.198	
0.000	3.226	
5.025	3.102	
2.914	0.000	
1.714	0.813	
31.776	0.992	
4.686	3.593	
2.114	2.451	
2.984	1.104	
3.048	2.137	
12.792	3.431	
2.366	1.776	
0.000	0.000	
1.888	3.571	
3.239	1.541	
4.952	1.394	
4.714	3.862	
2.108	1.728	
4.512	3.052	
5.634	3.491	
1.438	1.048	
4.592	2.426	
3.561	1.721	
0.332	0.798	
33.284	0.914	
2.121	0.420	
2.605	0.258	
1.334	0.729	
11.964	10.092	
1.896	1.845	
2.576	1.907	
2.313	1.263	
2.911	0.000	
1.408	0.269	
3.271	2.072	
0.065	0.052	
4.036	6.094	
3.781	5.000	
	18.182	
0.093	0.090	
10.335	2.397	
3.674	1.756	
2.079	0.807	
0.126	0.162	
0.364	2.326	

n/a

1.616	1.008		
0.382	0.235		
2.620	1.584		
2.874	1.488		
2.621	3.793		
1.732	1.024		
2.064	1.100		
1.820	3.897		
2.351	0.406		
2.763	1.407		
0.000	1.461		
1.341	0.665		
3.394	8.950		
2.241	2.813		
3.894	4.331		
3.824	4.326		
6.975	2.694		
7.161	2.948		
7.750	0.000		
1.007	0.270		
2.811	1.233		
2.125	1.381		
0.830	0.588		
3.774	2.258		
1.637	2.196		
2.176	2.380		
3.217	2.122		
4.259	6.299		
4.259	1.419		
1.503	3.278		
7.567	8.379		
1.205	1.936		
3.426	1.754		
2.731	0.487		
2.162	0.000		
2.182	0.000		
3.480	1.467		
0.722	4.446		
5.177	5.974		
7.123	0.617		
1.342	0.523		
1.004	0.580		
24.620	0.506		
1.018	0.590		
1.518	0.498		
1.235	0.901		

Page	132	of 23	36

1.765	0.495	
1.366	1.280	
1.788	1.063	
1.409	0.264	
22.033	0.427	
1.308	0.403	
1.027	0.335	
5.164	4.186	
2.954	4.286	
1.150	0.734	
1.306	0.345	
1.083	0.279	
0.921	0.227	
1.040	0.348	
1.669	0.713	
0.962	1.133	
1.086	0.537	
1.394	0.517	
1.020	1.271	
1.623	0.759	
0.933	0.351	
1.520	0.581	
0.712	1.080	
1.238	0.631	
0.976	0.891	
1.231	0.478	
2.401	1.086	
4.758	3.772	
0.418	0.739	
1.915	0.739	
3.670	1.636	
4.536	4.476	
6.838	1.375	
3.856	0.952	
40.645	3.115	
1.775	2.078	
0.606	2.078	
2.481	1.563	
1.854	1.904	
1.196	1.924	
9.645	1.582	
1.174	1.684	
4.513	3.767	
3.400	1.612	
1.518	1.373	
4.575	1.916	

1.024	1.202	
2.068	2.929	
1.212	0.000	
0.280	0.433	
0.124	0.257	
3.856	3.328	
1.252	1.144	
2.806	2.387	
19.471	0.571	
1.271	2.149	
1.707	2.531	
1.204	0.311	
6.243	12.060	
4.404	3.081	
2.056	1.836	
1.323	0.320	
1.515	1.487	
10.231	4.124	
4.572	4.083	
3.274	3.602	
6.086	11.170	
2.823	0.853	
7.483	4.208	
9.768	1.213	
0.260	0.645	
13.194	13.343	
0.905	4.220	
3.139	0.622	
1.019	2.060	
1.376	2.429	
0.961	0.786	
6.572	4.713	
5.699	11.124	
1.617	1.038	
0.307	0.932	
0.535	2.278	
0.535	0.372	
2.215	0.553	
0.451	0.467	
1.315	1.299	
0.000	0.000	
0.000	0.000	
0.279	0.000	
2.061	2.359	
0.685	0.650	
3.646	9.848	

Page	134	of 236
------	-----	--------

2 286	2 012
2.200 4 037	9 103
1 745	0.000
0.866	1 239
4 329	1 984
1 613	0.899
1 666	0.892
0.493	0.417
1.384	1.560
3.728	1.398
0.788	0.390
1.606	3.920
0.643	3.920
5.699	1.181
0.924	0.919
2.955	0.659
4.546	3.437
1.059	0.143
1.049	1.693
9.840	6.250
2.707	1.347
3.498	7.545
1.948	2.513
0.970	1.057
0.891	2.324
0.000	0.000
2.835	3.247
1.770	0.404
0.000	0.000
0.604	1.050
5.461	3.553
2.211	1.487
3.345	4.973
3.800	5.148
2.099	1.908
5.260	4.962
0.000	0.000
5.338	8.111
5.174	1.643
0.981	1.293
3.401	4.208
0.000	0.000
1.285	2.294
3.883	2.502
2.343	1.888
2.530	2.596

1.429	0.627
1.355	1.508
1.139	0.966
5.418	5.071
2.196	3.192
1.896	2.032
1.667	2.371
0.123	0.718
1.026	0.640
4.476	6.588

κpression values were normalized. Yellow: GSK3β testis interactors; Green: GSK3β sperm int

Testis YTH identified interactors

Sperm Mass Spectometry identified interactors

Databases retrieved interactors

e normalized and presented in % of testis expression compared to the total tissues tested no information available

sion in testis in at least 2 databases. Interactors were classified in three categories: 50-75%; 7

to Reie on

For Review Only

For Review Only
For Review Only

to Review Only

For Review Only

teractors; Orange: GSK3β database interactors.

'5%-90 and >90%.

FOR REVIEW ONLY

Supplementary Table X. Testis enriched GSK3 interactors. To be classified as

GSK3a interactors			
Gene Name	UniProtKB	Expression	
DDI1	Q8WTU0	>90%	
GOLGA6C	A6NDK9	>90%	
TTC16	Q8NEE8	50% - 75%	50% of expr
ACR	P10323	>90%	
PRSS37	A4D1T9	>90%	
GSK3β interactors			
Gene Name	UniProtKB	Expression	
TEKT5	Q96M29	>90%	
CMTM2	Q8TAZ6	>90%	
ACR	P10323	>90%	
PRSS37	A4D1T9	>90%	
RGS22	Q8NE09	50% - 75%	
HIST1H1T	P22492	>90%	
PRKACG	P22612	>90%	
CABYR	075952	75% - 90%	
TSKS	Q9UJT2	>90%	

s testis enriched, expression must be > 50% in testis in at least 2 databases. Interactors were

Testis YTH identified interactors Sperm Mass Spectometry identified interactors Databases retrieved interactors sion in testis in at least 2 databases. Interactors were classified in three categories: 50-75%; 7

to Reiewony

e classified in three categories: 50-75%; 75%-90 and >90%.

'5%-90 and >90%.

to Review Only

Supplementary Table XI. Te

Gene Name	UniProtKB
BCCIP	Q9P287
HSP90AB1	P08238
RUNX1	Q01196
HSP90AA1	P07900
DCP1B	Q8IZD4
MAEA	Q7L5Y9
SBNO1	A3KN83
NBR1	Q14596
SUGP2	Q8IX01
PSMD8	P48556
MYL12A	P19105
ALKBH3	Q96Q83
HMGN1	P05114
DNAJB1	P25685
DEAF1	075398
H2AFV	Q71UI9
CCDC174	Q6PII3
TTC16	Q8NEE8
AURKAIP1	Q9NWT8
DDI1	Q8WTU0
SMG7	Q92540
RPL19	P84098
LRRC37A2	A6NM11
C11orf98	E9PRG8
AP3D1	O14617
GOLGA6C	A6NDK9
CNTROB	Q8N137
PTMA	P06454
RPS15	P62841
VCPIP1	Q96JH7
LDHA	P00338
SMARCA5	O60264
LRP6	075581
DCAF8	Q5TAQ9
FBXO42	Q6P3S6
AXIN2	Q9Y2T1
MTCH1	Q9NZJ7
AKAP11	Q9UKA4

RPL29	P47914
UBTF	P17480
СНТОР	Q9Y3Y2
RPS19	P39019
RPL15	P61313
HNRNPM	P52272
DRC1	Q96MC2
HMBS	P08397
RefSeaGene or	chromosome
Human Dna seo	guence from clo
Homo Sapiens	Chromosome 2
ARG1	P05089
GGCT	075223
HIST1H2AD	P20671
TLR9	Q9NR96
SBSN	Q6UWP8
HIST1H4A	P62805
HIST1H2BK	A0A024RCL8
HSPA5	P11021
RPS18	P62269
ACR	P10323
RPL13	P26373
LTF	P02788
PRSS37	A4D1T9
RPL6	Q02878
CPZ	Q66K79
RPS8	P62241
EEF1G	P26641
AXIN1	015169-2
CTNNB1	B4DGU4
РКМ	P14618-1
AXIN1	O15169
YWHAG	P61981
FRAT1	Q92837
GSKIP	Q9P0R6
MAPT	P10636
PRKACA	P17612

GSK3A AIM1	P49840 Q9Y4K1
АКАР9	Q99996
AR	P10275
CTNNA1	P35221
PPP1R2	P41236
MDN1	Q9NU22
PSMD1	Q99460
POLR3B	Q9NW08
ZDHHC17	Q8IUH5
AKT1	P31749
PRKCA	P17252
	P17232 D05771
FINCD	r 0 <i>377</i> I
PRKCD	Q05655
PRKCG	P05129
APP	P05067
ARHGEF11	015085
РКМ	P14618
KRBA1	A5PL33

MAP3K11	Q16584	
MYC	P01106	
SPICE1	Q8N0Z3	
VTA1	Q9NP79	
EIF2B5	Q13144	
PRKD3	094806	
SGK3	Q96BR1	
CTNNB1	P35222	
FCGR2B	P31994	
НПАСА		
IIDACO	QJODN7	
DDD3CC		
	C14206	
SPGZI	Q9NZD8	
TRAK2	060296	
BICD1	Q96G01	
CREM	Q03060	
GSK3B	P49841	
HSF1	Q00613	
PRKCZ	Q05513	
MCL1	Q07820	
SGK1	O00141	
TUBG1	P23258	
BCL3	P20749	
CREB1	P16220	
EBNA1BP2	Q99848	
GLI3	P10071	
PRKCH	P24723	
LRSAM1	O6UWF0	
PXN	P49023	
1 ///		

PRKDC	P78527
RAE1	P78406
RICTOR	Q6R327
ARSG	Q96EG1
PPP1CA	P62136
PPP1CB	P62140
PPP1CC	P36873
РРРЗСВ	P16298
RCAN1	P53805
SAMHD1	Q9Y3Z3
SRBD1	Q8N5C6
FOXM1	Q08050

estis and sperm related phenotypes/diseases/annotations of GSK3a interac

Phenotyope category

Germ cell line abnormalitities Spermatogenesis abnormalities Oligozoospermia Morphological male reproductive system defects Male infertility

Male infertility

Male infertility

Morphological male reproductive system defects Morphological male reproductive system defects

Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities

5 Chromosome 5: 150,401,911-150,402,122 one RP11-543N17 21 clone CTD-250 3J9 map p11-q21.1

Male infertility

Male infertility

Spermatogenesis abnormalities Male infertility

Male infertility Morphological male reproductive system defects

Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility Morphological male reproductive system defects

http://molehr.oxfordjournals.org/

Male infertility

- Morphological male reproductive system defects
- Other testicular cells abnormalities
- Germ cell line abnormalitities
- Spermatogenesis abnormalities
- Morphological male reproductive system defects
- Oligozoospermia
- Teratozoospermia
- Male infertility
- Other testicular cells abnormalities
- Spermatogenesis abnormalities
- Morphological male reproductive system defects
- Germ cell line abnormalitities
- Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities
- Oligozoospermia
- Male infertility
- Inflamation of male reproductive system components

Morphological male reproductive system defects

Spermatogenesis abnormalities Morphological male reproductive system defects Oligozoospermia Male infertility

Male infertility

Jien

Morphological male reproductive system defects

Male infertility Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility

Spermatogenesis abnormalities Morphological male reproductive system defects Male infertility Oligozoospermia Teratozoospermia

Spermatogenesis abnormalities

Morphological male reproductive system defects Oligozoospermia

Morphological male reproductive system defects

Morphological male reproductive system defects

Spermatogenesis abnormalities Morphological male reproductive system defects Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Teratozoospermia Male infertility to Review only Germ cell line abnormalitities Oligozoospermia Germ cell line abnormalitities

Male infertility

http://molehr.oxfordjournals.org/

ctome. Testis and sperm related phenotypes/diseases/a

GeneOntology Annotations

FOR REVIEW ONLY

Microtuble-based movement

ATP metabolic process

Locomotion Cell motility

Locomotion Cell motility

Locomotion Cell motility

Locomotion Cell motility

Cilium

Microtuble-based movement Sperm capacitation Motile cilium Cilium Sperm flagellum Spermatogenesis

to Review Only

Locomotion Cell motility

Spermatogenesis Cilium movement Locomotion Cell motility

Cilium Locomotion Cell motility Locomotion Cell motility

Locomotion Cell motility

Microtuble-based movement Cilium Locomotion

ATP metabolic process

Locomotion Cell motility

Microtuble-based movement Locomotion Cell motility

Microtuble-based movement Microtuble-based movement

Spermatogenesis

Spermatogenesis Microtuble-based movement Locomotion Cell motility

Locomotion
Cell motility
Cilium

Locomotion

Axoneme Locomotion Cilium Cell motility ATP metabolic process

Locomotion

to periodo de la constante de

annotations of all GSK3a interactors were retrieved and categorized. Yellow: GSK3a to

Testis YTH identified interactors Sperm Mass Spectometry identified interactors Databases retrieved interactors

to Review Only

For Review Only

For Review Only

to Review Only

to Review Only

estis interactors; Green: GSK3a sperm interactors; Orange: GSK3a database

to Reie on on the

Supplementary Table XII. Te

Gene Name	UniProtKB
MYL6	P60660
DCP1B	Q8IZD4
BCCIP	Q9P287
HSP90AA1	P0/900
RPS15	P62841
PSMD8	P48556
C10orf90	Q96M02
TEKT5	Q96M29
YBX1	P67809
CASC4	Q6P4E1
CMTM2	Q8TAZ6
LYAR	Q9NX58
AXIN2	Q9Y2T1
PRKRIP1	Q9H875
HNRNPM	P52272
C11orf98	E9PRG8
SMG7	Q92540
HSP90AB1	P08238
Human DNA s	equence from
ANXA1	P04083
ARG1	P05089
BPIFB1	Q8TDL5
CASP14	P31944
CAT	P04040
CAT	P08211
CISG	
	BZK4CD
DMBT1	Q9UGM3
GGCT	075223

GSN	P06396
GAPDH	P04406
НР	P00738
HSP90AB1	P08238
HOI SOUDI	100200
HSPA2	P54652
HIST1H2AD	P20671
HIST1H2BK	A0A024RCL8
H3F3B	P84243
HIST1H3A	P68431
HIST1H4A	P62805
MUC5AC	A7Y9J9
MPO	P05164
DENI1	DU125
PFINI	PU//3/
610040	D05400
STOOA8	P05109
DKFZp686J11	Q6MZW0
SERPINB4	P48594
TLR9	Q9NR96
n/a	Q6GMV8
ZG16B	Q96DA0
ACR	P10323
PRSS37	A4D1T9
RPI 6	002878
RDS18	P67760
	02203
	FUZ/00
KPL13	P203/3
AXIN1	015169
MAPT isoform	P10636-8
EGLN3	Q9H6Z9
CABYR isoforr	075952-5
CABYR isoform	075952-3
MAPT isoform	P10636-7
DAB2IP isofor	Q5VWQ8-2
CTNNB1	P35222
ADC	
	r23034
G2K3B	P49841
AKAP11	()9UKA4

	P31749
TP53 GSKIP	P04637 Q9P0R6
PRKACA LRP6	P17612 O75581
МҮС МАРТ	P01106 P10636
AR FRAT1 PPP1R2 MUC1	P10275 Q92837 P41236 P15941
NOTCH1	P46531
SGK3	Q96BR1
SMAD3	P84022
SNAI1 DNM1L NIN ACLY PPP1CA PTPN1	O95863 O00429 Q8N4C6 P53396 P62136 P18031
STRAP	Q9Y3F4
TSC2	P49815

ATXN3	P54252
PSEN1	P49768
PTK2	Q05397
FRAT2	075474
APP	P05067
GYS1	P13807
PRKAR1A	P10644
	P3(072
PPPICC	P36873
VIM	P08670
CCNE1	P24864
SMAD1	Q15797
BTRC	Q9Y297
BICD1	Q96G01 🛛 🔪
EPM2A	B3EWF7
NOTCH2	Q04721
AKT2	P31751
HSPA1A	P0DMV8
HSPA1B	PODMV9
LRRK2	Q5S007
RFLB	001201
LIBR5	095071
0010	000071

Page 176 of 23

CABYR DEAF1 DDX20 DHX36 EWSR1 ZFPM1	O75952 O75398 Q9UHI6 Q9H2U1 Q01844 Q8IX07
GEMIN4	P57678
SNRNP70	P08621
SF3B1	075533
SMN1	Q16637
SMYD2	Q9NRG4
KLF5	013887
MAP3K1	Q13233
SNAI2	O43623
FZR1	Q9UM11
AURKA	014965
SP7	Q8TDD2
ANKRD6	Q9Y2G4
CLASP2	075122
DAB2IP	Q5VWQ8
DYNLL1	P63167
E2F1	Q01094

EPB41L3	Q9Y2J2
PRKAR2A	P13861
PRUNE1	Q86TP1
RPF2	Q9H7B2
RELA	Q04206
TRAF2	Q12933
TANK	092844
TSC1	Q92574
MAPK1	P28482
NBR1	014596
BCL3	P20749
CCND1	P24385
001101	
HSPA4	P34932
NFKB1	P19838
SNCAIP	0976H5
ARHGEF11	015085
KRBA1	A5PI 33
SEPO	P23246
SPICE1	08N073
VTA1	09NP79
FIF2B5	013144
211205	
IUN	P05412
PRKCB	P05771
THREE	103771
CREB1	P16220
	09NYF0
	OGNIXOO
	000502
	Q10770
10/01	Q12//0

PRKCA	P17252
PRKCZ	Q05513
MDM2	Q00987
IKBKG NFE2L1 NFE2L3 PHLPP1	Q9Y6K9 Q14494 Q9Y4A8 O60346
PPARGC1A	Q9UBK2
TAZ WWTR1 YWHAZ PPP2R5D EIF4EBP1 ACACA	Q16635 Q9GZV5 P63104 Q14738 Q13541 Q13085
ACSBG1 DBI ACTL6B ACTBL2 ADAP1 ADIRF PMAIP1 ASRGL1 ATF3 ATFIF1 BAG6 BEX1 BHLHE41 BIRC2 BIRC3 BRIX1 BZW2 CAMSAP3 CCDC6	Q96GR2 P07108 O94805 Q562R1 O75689 Q15847 Q13794 Q7L266 P18847 Q9UII2 P46379 Q9UI12 P46379 Q9HBH7 Q9C0J9 Q13490 Q13490 Q13489 Q8TDN6 Q9Y6E2 Q9P1Y5 Q16204

CDC37	016543
CEBPR	P17676
CEBP7	003701
CLDI Z	000/01
CENER	P07199
	012873
CSAD	
CSAD	091000
CSE3B	099062
CSI SI	Q39002
CSNK2B	P67870
CODSE	092905
CUPE	005277
COLD	
CSTB	P04080
CS16	Q15828
DCD	P81605
DCTN3	075935
DDX5	P17844
BHLHE40	014503
DEC1	Q9P2X7
DEFA1	P59665
	254650
HSD17B4	P51659
DHX34	Q14147
DNAJC13	075165
DNIATO	0011111/2
DINIVITSL	Q201M3
	D76259
	r20330
005P9	Q33320
EEFIAI	200104
EEF1G	P26641
ELAVL1	Q15717
	00000
ІКВКАР	095163
1001	000010
MPP1	Q00013
ENTPD6	075354
----------	----------------
C14orf1	Q9UKR5
PFKFB4	Q16877
FAM83D	Q9H4H8
FBN3	075N90
FBXW/11	
	020749
FEINT	F35/40
	001002
VP551	
FIBP	043427
FIP1L1	Q60N15
FKBP14	Q9NWM8
KHSRP	Q92945
FUS	P35637
FZD5	Q13467
GAPDH	P04406
GNB2	P62879
GBP2	P32456
GIPC1	014908
GPR39	043194
HSPA9	P38646
HSPA5	P11021
HIST1H1C	P16403
HIST1H1F	P10412
HIST1H1T	P72492
	<u>0</u> 02522
	000165
HAVI	000105
	DEODOLE
IDAT	20202
HDAC6	CAORN \
HECW2	Q9P2P5
HRNR	Q86YZ3
НР	P00738
HSPA8	P11142
CLNS1A	P54105

IGHM IGSF21	P01871 Q96ID5	
ILK	Q13418	
IQCG	Q9H095	
IILN1	Q8WWAU	
KANK1	Q14678	
KIF5B	P33176	
LUC7L2	Q9Y383	
LMO4	P61968	
MID1IP1	Q9NPA3	
MAP3K11	Q16584	
MAP1A	P78559	
MAP4	P27816	
MASP1	P48740	
MCCC2	Q9HCC0	
MED24	075448	
MICAL1	Q8TDZ2	
MKL1	Q969V6	
MAP2K5	Q13163	
MTF2	Q9Y483	
MTOR	P42345	
MYCN	P04198	
МҮН9	P35579	
NAT9	Q9BTE0	
MGEA5	060502	
NOTCH3	Q9UM47	
NRBP1	Q9UHY1	
IVNS1ABP	Q9Y6Y0	

NSFL1C	Q9UNZ2	
NUB1	Q9Y5A7	
NUFIP1	Q9UHK0	
KIAA1191	Q96A73	
PIM2	Q9P1W9	
PPP3CC	P48454	
PRDX1	Q06830	
PTBP3	095758	
PTN	P21246	
QPCTL	Q9NXS2	
RAI1	Q7Z5J4	
RASSF1	Q9NS23	
RCAN2	Q14206	
UPF3A	Q9H1J1	
RGS22	Q8NE09	
RPL13	P26373	
RPL19	P84098	
RPL23	P62829	
RPL23A	P62750	
RPL27A	P46776	
RPL29	P47914	
RPL31	P62899	
RPL35	P42766	
RPL36A	P83881	
RPL36AL	Q969Q0	
RPL37	P61927	
RPL37A	P61513	
RPL8	P62917	
RPLP1	P05386	
RNF220	Q5VTB9	
POLR2B	P30876	
RPS11	P62280	
RPS14	P62263	
RPS16	P62249	
RPS17	P08708	
RPS18	P62269	
RPS19	P39019	
RPS23	P62266	
RPS24	P62847	
RPS25	P62851	
RPS27A	P62979	
RPS29	P62273	

RPS2	P15880
FAU	P35544
RPS4X	P62701
RPS6	P62753
RSU1	Q15404
RXRA	P19793
SAP30BP	Q9UHR5
SF3A1	Q15459
SHROOM3	Q8TF72
SLA	Q13239
SMARCA2	P51531
SMARCA5	O60264
SMURF2	Q9HAU4
SPTBN4	Q9H254
STK11	Q15831
RBPJ	Q06330
SYNE4	Q8N205
EPRS	P07814
QARS	P47897
TUBA1A	Q71U36
TUBB1	Q9H4B7
TUBB	P07437
TBC1D4	060343
CLEC3B	P05452
TLE1	Q04724
TMEM44	Q2T9K0
TONSL	Q96HA7
TOP2A	P11388
РВК	Q96KB5
TRAK2	O60296
TRAP1	Q12931
HSP90B2P	Q58FF3
TRIM29	Q14134
PRSS3	P35030
FFTUD2	015029
UBF2D1	P51668
UBR1	08IWV7
UBXN6	Q9BZV1

UFM1	P61960
WSB1	Q9Y6I7
XIAP	P98170
ERCC4	Q92889
XPO1	014980
XPNPFP1	09NOW7
YAP1	P46937
7HX1	09UKY1
ZKSCAN2	Q63HK3
ZNF135	P57742
ZNF227	086WZ6
ZNE7/6	
	01/103
	D16080
IDAD	F10303
6N/6A	227040
SNCA	P37840
CREM	Q03060
DPYSL2	Q16555
GSK3A	P49840
MCL1	Q07820
MYOCD	Q8IZQ8
OGT	015294
PCM1	Q15154
MBD1	Q9UIS9
SGK1	000141
TUBG1	P23258
ТРРР	O94811
АКТЗ	Q9Y243
ARRB1	P49407
BICD2	08TD16
CIITA	P33076
	, .
	000535
	000626
CDAZ	QJJ020

CEBPA	P49715	
CRFB3L3	068CJ9	
CTNND1	060716	
	01/1576	
DCTN1	014202	
DCTN1	Q14205	
DCTN2	Q13561	
HDAC4	P56524	
KLF2	Q9Y5W3	
RPS6KA1	Q15418	
MAP3K4	Q9Y6R4	
MAP1R	P46821	
	1 40021	
	Q7KZI7	
IVIT F	075030	
NCOA3	Q9Y6Q9	
NFE2L2	Q16236	
PIK3R1	P27986	
PXN	P49023	
PDE4D	Q08499	
PRKDC	P78527	
RCAN1	P53805	
RICTOR	Q6R327	
SRFBF1	P36956	
TMFM132A	024IP5	
F7D1		
CDD14	014440	
	Q14449	
MAP2K7	014/33	
PPP2CA	P67775	

PTPN11	006124
AMMECR1	0974X0
/ WINECKI	
SIYKI	
YWHAQ	P27348
APC2	O95996
APOC2	P02655
SLC25A23	Q9BV35
ANAPC2	Q9UJX6
CDKN1B	P46527
CDED2	043880
CREB3	043889
DVL2	014641
DVL3	Q92997
GLI2	P10070
GYS2	P54840
0102	
DDVACC	022612
PRKACG	P22012
PIN1	Q13526
PRKX	P51817
тѕкѕ	09UIT2
CD274	09NZ07
	075025
PIASI	001522
DEFAS	
DKK3	Q9UBP4
KIAA0317	015033
MAP3K2	Q9Y2U5
NFATC1	O95644
NFATC2	Q13469
PPP1CR	P62140
	097373
IBKI	
UZAF1	QU1081
UBE3A	Q05086

UBXN2B	Q14CS0
SOX10 LPCAT1	P56693 Q8NF37
SOX9	P48436
FOXM1	Q08050

to Reie on

estis and sperm related phenotypes/diseases/annotations of GSK3ß inte

Phenotyope category

Germ cell line abnormalitities Spermatogenesis abnormalities Oligozoospermia Morphological male reproductive system defects Male infertility

Ja

clone RP11-543N17 on chromosome 10, complete sequence

Oligozoospermia Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male Infertility

Spermatogenesis abnormalities Morphological male reproductive system defects Male infertility

Spermatogenesis abnormalities Male infertility Spermatogenesis abnormalities Male infertility

Male infertility Spermatogenesis abnormalities Male infertility

Male infertility Morphological male reproductive system defects

Male infertility

Spermatogenesis abnormalities Morphological male reproductive system defects Oligozoospermia Oligozoospermia Male Infertility

Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility Morphological male reproductive system defects

Male infertility Other testicular cells abnormalities

Other testicular cells abnormalities Spermatogenesis abnormalities Morphological male reproductive system defects Germ cell line abnormalitities Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Oligozoospermia Male infertility Inflamation of male reproductive system components

Male infertility

Morphological male reproductive system defects Other testicular cells abnormalities Spermatogenesis abnormalities Germ cell line abnormalitities Male infertility

Male infertility

Male infertility Morphological male reproductive system defects Spermatogenesis abnormalities Morphological male reproductive system defects Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Teratozoospermia Male infertility Germ cell line abnormalitities Oligozoospermia Germ cell line abnormalitities Male infertility Male infertility Morphological male reproductive system defects Male infertility Male infertility Spermatogenesis abnormalities Oligozoospermia

Morphological male reproductive system defects

Inflamation of male reproductive system components Male infertility

Morphological male reproductive system defects Oligozoospermia Male hormonal abnormalities Male infertility

Male infertility Morphological male reproductive system defects

Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Oligozoospermia Male Infertility

Other testicular cells abnormalities Morphological male reproductive system defects Oligozoospermia Male Infertility Male infertility

Male infertility

Morphological male reproductive system defects Other testicular cells abnormalities Spermatogenesis abnormalities Germ cell line abnormalitities

Male infertility Germ cell line abnormalitities Morphological male reproductive system defects Spermatogenesis abnormalities Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility Oligozoospermia

Morphological male reproductive system defects Oligozoospermia

Male infertility

Male Infertlity

Male infertility Male infertility Oligozoospermia

Male infertility Spermatogenesis abnormalities .ts Morphological male reproductive system defects Germ cell line abnormalitities Oligozoospermia Male infertility Male infertility

Other testicular cells abnormalities Male infertility Male hormonal abnormalities Male infertility

Male infertility

Male infertility

Oligozoospermia Morphological male reproductive system defects Male infertility

Male infertility

Morphological male reproductive system defects

Morphological male reproductive system defects Spermatogenesis abnormalities Germ cell line abnormalitities Male infertility

Morphological male reproductive system defects Spermatogenesis abnormalities Oligozoospermia Germ cell line abnormalitities Male infertility Oligozoospermia Male Infertility Spermatogenesis abnormalities Male infertility Morphological male reproductive system defects Oligozoospermia

Male infertility

Male infertility Oligozoospermia

Male infertility Morphological male reproductive system defects

Male infertility

Spermatogenesis abnormalities Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Oligozoospermia Male infertility Teratozoospermia

Morphological male reproductive system defects

Male infertility

Male infertility

Male infertility Morphological male reproductive system defects Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility

Male infertility

Male infertility

Morphological male reproductive system defects

Male infertility

Male infertility Morphological male reproductive system defects

Male infertility

Morphological male reproductive system defects

Other testicular cells abnormalities

Spermatogenesis abnormalities

Germ cell line abnormalitities

Male infertility

+ς Morphological male reproductive system defects

Male infertility Morphological male reproductive system defects Male infertility

Male infertility

Spermatogenesis abnormalities Morphological male reproductive system defects Male infertility Oligozoospermia Teratozoospermia

Male infertility

Morphological male reproductive system defects Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male infertility Oligozoospermia

Male infertility Morphological male reproductive system defects Male infertility Male infertility Morphological male reproductive system defects Male infertility Asthenozoospermia and flagellum, cillium and mitochondrial abnormalities Male Infertility

Male infertility Morphological male reproductive system defects

Male infertility

Male infertility

Male infertility Morphological male reproductive system defects Spermatogenesis abnormalities Male infertility Morphological male reproductive system defects Male infertility

Male infertility

Morphological male reproductive system defects Morphological male reproductive system defects Germ cell line abnormalitities Oligozoospermia

Morphological male reproductive system defects Male Infertility

Oligozoospermia Morphological male reproductive system defects Male infertility

Morphological male reproductive system defects Oligozoospermia Male infertility Morphological male reproductive system defects Male infertility

Morphological male reproductive system defects Oligozoospermia Male infertility Male hormonal abnormalities Other testicular cells abnormalities

FOR REVIEW ONLY

ractome. Testis and sperm related phenotypes/diseases/annotations of all GSK3β inte

GeneOntology Annotations

ORE READING Motile cilium Microtuble-based movement Sperm motility Cilium movement Cilium Sperm flagellum Locomotion Cell motility

Locomotion

http://molehr.oxfordjournals.org/

Locomotion Cell motility ATP metabolic process

Spermatogenesis

Locomotion Cell motility Locomotion Cell motility

Locomotion Cell motility to Review Only

Locomotion Cell motility Locomotion Cell motility Cilium Locomotion Cell motility

Motile cilium Cilium Sperm flagellum Spermatogenesis

to period of the second s Microtuble-based movement

Spermatogenesis

Spermatogenesis Locomotion Cell motility Locomotion Cell motility Locomotion Cell motility Locomotion Cell motility ATP metabolic process Cilium

Locomotion Cell motility

Locomotion

Cilium Locomotion Cell motility Locomotion Cell motility

Microtuble-based movement Cilium Locomotion

Cilium

to Review Only

Microtuble-based movement

Locomotion Cell motility ATP metabolic process ATP metabolic process Locomotion Cell motility Sperm capacitation Motile cilium Microtuble-based movement Cilium movement Cilium Sperm flagellum Spermatogenesis

FOR REVIEW ONLY

Locomotion Cell motility

Cilium

Locomotion Cell motility Locomotion Cell motility

Microtuble-based movement Cilium

Spermatogenesis

Cilium

Locomotion Cell motility to Reien Only

Locomotion Cell motility

Locomotion

ATP metabolic process Locomotion Cell motility Locomotion Cell motility Microtuble-based movement Locomotion Cell motility Locomotion Cell motility

ATP metabolic process Locomotion Cell motility

ATP metabolic process

ATP metabolic process Spermatogenesis

Spermatogenesis

Locomotion Cell motility Cilium Locomotion Cell motility

Locomotion Cell motility

Spermatogenesis

Locomotion Cell motility Locomotion Cell motility

http://molehr.oxfordjournals.org/

to Review Only

ATP metabolic process Locomotion Cell motility

Motile cilium Cilium

Locomotion Cell motility

Locomotion Cell motility

Spermatogenesis

Microtuble-based movement Locomotion Cell motility

ATP metabolic process

to Reiewony

Locomotion Cell motility

Locomotion Cell motility Motile cilium Sperm motility Cilium Sperm flagellum Spermatogenesis Locomotion Cell motility

Locomotion Cell motility Microtuble-based movement Cilium Locomotion

Locomotion Cell motility

Axoneme Microtuble-based movement Cilium

Microtuble-based movement

Locomotion Cell motility

Locomotion Cell motility

Locomotion Cell motility Spermatogenesis

Locomotion Cell motility to Reliew Only

Locomotion Cell motility Locomotion Cell motility

Spermatogenesis

Locomotion Cell motility Locomotion

Spermatogenesis

to periodo of the second

Microtuble-based movement

Locomotion Cell motility
ATP metabolic process Spermatogenesis Locomotion

Spermatogenesis Locomotion Locomotion Cell motility

Locomotion Cell motility ATP metabolic process Microtuble-based movement Cilium Locomotion Cell motility

Locomotion Cell motility Cilium

Microtublle-based movement

Locomotion Cell motility Microtuble-based movement Microtuble-based movement

ATP metabolic process Locomotion Cell motility

Microtuble-based movement Cilium Locomotion Cell motility

Locomotion Cell motility Locomotion Cell motility

Locomotion Cell motility Locomotion Cell motility Locomotion Cell motility

Locomotion Cell motility

ATP metabolic process

Locomotion Cell motility

Axoneme Motile cilium Cilium Locomotion

Cilium Spermatogenesis

Locomotion Cell motility Locomotion Cell motility Cilium movement Locomotion Cell motility Spermatogenesis Locomotion Cell motility Locomotion Cell motility

Spermatogenesis Locomotion Cell motility

eractors were retrieved and categorized. Yellow: GSK3β testis interactors; Green: GSK3β sperm in

Testis YTH identified interactors Sperm Mass Spectometry identified interactors Databases retrieved interactors

FOR REVIEW ONLY

teractors; Orange: GSK3β database interactors.