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In the present paper we shall give a complete classification of isogeny

classes of abelian varieties over finite fields in terms of Frobenius endomor-

phism and indicate some of its applications.

Let $p$ be a fixed prime number and $\Omega$ the algebraic closure of the prime

field of characteristic $p$ . Let $k_{a}$ denote the finite field with $p^{a}$ elements. We

consider $ k_{a}\subset\Omega$ . By an algebraic number field we mean a subfield of the

complex number field $C$ which is of finite degree over the rational number field
$Q$ . We identify an ideal of an algebraic number field $K$ with its extensions to

over-fields of $K$ as usual. We denote by $Z$ the ring of rational integers and

by $Z_{l}$ its l-adic completion for a prime number $l$ .
We shall say that an algebraic integer $\pi$ (resp. an integral ideal $\mathfrak{a}$ of an

algebraic number field) is of type $(A_{0})$ , if we have

$\pi^{\sigma}\pi^{\sigma\rho}=p^{a}$ (resp. $\mathfrak{a}^{\sigma}\mathfrak{a}^{\sigma\rho}=(p^{a})$)

with a positive integer $a$ for any conjugate $\pi^{\sigma}$ of $\pi$ (resp. $\mathfrak{a}^{\sigma}$ of $\mathfrak{a}$), where $\rho$

denotes the complex conjugacy of $C$. The integer $a$ is called the order of $\pi$

(resp. a). It is well-known that to every $k_{a}$-simple abelian variety $A$ over $k_{a}$

corresponds a conjugacy class of numbers of type $(A_{0})$ with order $a$ by con-
sidering the Frobenius endomorphism of $A$ . Thus we obtain a map

$\Phi_{a}$ : { $k_{a}$-isogeny classes of $k_{a}$-simple abelian varieties over $k_{a}$ }
$\rightarrow$ { $conjugacy$ classes of numbers of type $(A_{0})$ with order $a$ }.

Our main result is as follows:
MAIN THEOREM. The map $\Phi_{a}$ is bijective for every $a\geqq 1$ .
In \S 1 of this paper we shall study basic properties of numbers and ideals

of type $(A_{0})$ . It is shown that any ideal of type $(A_{0})$ can be represented as a
principal ideal with a number of type $(A_{0})$ in a suitable extension field (Theo-

rem 1). Our aim in \S 1 is to prove Theorem 2, which asserts that some power

of an ideal of type $(A_{0})$ has a prime ideal decomposition attached to a suitable

CM-type. This implies that some power of a number of type $(A_{0})$ is in fact

a value of a suitable “ Grossencharakter “ of type $(A_{0})$ . (For the definition of
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such a character, see Weil [20].)

In \S 2 we shall prove the main theorem. First we consider $\Omega$ -simple abelian

varieties over $\Omega$ . Let $\pi_{1}$ and $\pi_{2}$ be numbers of type $(A_{0})$ . We shall say that
$\pi_{1}$ is equivalent to $\pi_{2}$ and write $\pi_{1}\sim\pi_{2}$ , if $\pi_{1}^{\nu_{1}}$ is conjugate to $\pi_{2}^{\nu_{2}}$ for some
positive integers $\nu_{1}$ and $\nu_{2}$ . The same definition applies also to ideals of type
$(A_{0})$ . With this definition we have a map

$\Phi$ : { $\Omega$ -isogeny classes of $\Omega$ -simple abelian varieties over $\Omega$ }
$\rightarrow$ { $equivalence$ classes of numbers of type $(A_{0})$ }.

By Theorem 1 of Tate [17] the map $\Phi_{a}$ , a fortiori $\Phi$ , is injective. Moreover
the surjectivity of $\Phi_{a}$ follows from that of $\Phi$ by the standard method of des-

cending the field of definition. Since we have a bijection
$\Psi$ : {equivalence classes of numbers of type $(A_{0})$ }

$\rightarrow$ { $equivalence$ classes of ideals of type $(A_{0})$ }
by Theorem 1, we have only to prove the surjectivity of $\Psi\circ\Phi$ . Our idea to
prove it consists in combining Theorem 2 with a basic theorem in the theory

of complex multiplication which determines the prime ideal decomposition of

the Frobenius endomorphism of the abelian variety obtained by reducing an
abelian variety of a CM-type (cf. Shimura-Taniyama [13]). The criterion of

Neron-Ogg-Safarevic (Serre [7], Serre-Tate [9]) then guarantees a good reduc-

tion by a finite extension of the field of definition. In this way we see that

for a given ideal $a$ of type $(A_{0})$ there is a CM-type with the following property:

let $A$ be an abelian variety of this type defined over a sufficiently large algebraic

number field and let $\tilde{A}$ be the reduction of $A$ at a prime divisor of $p$ . Then an
$\Omega$ -simple component of

$\tilde{A}$ is mapped to the class of $a$ by $\Psi\circ\Phi$ . In some cases
we can find a CM-type such that $\tilde{A}$ itself is $\Omega$ -simple. In these cases we can
also determine the endomorphism algebra $End_{\Omega}(\tilde{A})\otimes Q$ explicitly as a certain
cyclic algebra, proving the formula (7) of Tate [17].

In \S 3 we shall indicate a few ideas to apply the main theorem to certain

important problems. Firstly our main theorem is most directly applied to

various types of existence problems. For example we can easily give an

affirmative answer to the conjecture of Manin [5] that the formal group

$G_{m,n}\times G_{n,m}$ is algebroid for any $(m, n)$ . Secondly our main theorem, combined

with that of Tate [17], allows us an analytic construction of abelian varieties

over finite fields by considering the representations of the Frobenius endomor-

phism in the Tate and Dieudonn\’e modules. Thirdly the results of Tate and

us will also make it possible to generalize Deuring’s results [1] on endomor-

phism rings of elliptic curves over finite fields to those of abelian varieties of

higher dimensions. These ideas will be developped in forthcoming papers.

The fact, that the surjectivity of $\Phi_{a}$ follows from that of $\Phi$ , was pointed

out by Professor J. Tate to the author who had at first considered only $\Omega\rightarrow$
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isogeny classes. The endomorphism $\mu$ in Proposition 9 is due to Professor G.
Shimura. The author wishes to express his hearty thanks to them.

\S 1. Numbers and ideals of type $(A_{0})$ .

Following Shimura [12], we mean by a CM-field a totally imaginary qua-

dratic extension of a totally real algebraic number field. The following pro-

perties of CM-fields can be easily verified.

PROPOSITION 1. An algebraic number field $K$ is a CM-field if and only if
the following two conditions are satisfied.

(a) The complex conjugacy $\rho$ induces a non-trivial automorphism of $K$.
(b) $\rho\sigma=\sigma\rho$ for every isomorphism $\sigma$ of $K$ into $C$ .
PROPOSITION 2. The composite of a finite number of CM-fields is again a

CM-field. In particular the normal closure of a CM-field over $Q$ is a CM-field.
For a number $\pi$ of type $(A_{0})$ we denote by $[\pi]$ the conjugacy class of $\pi$

and by $\langle\pi\rangle$ its equivalence class. The same notations are applied also to ideals.

PROPOSITION 3. Let $\pi_{1}$ and $\pi_{2}$ be numbers of type $(A_{0})$ . Then we have
$(\pi_{1})\sim(\pi_{2})$ , if and only if $\pi_{1}\sim\pi_{2}$ .

PROOF. ” If ” part is obvious. Assume that $(\pi_{1})\sim(\pi_{2})$ . This implies $\pi_{1}^{\nu_{1}}$

$=\epsilon\pi_{2}^{\nu_{2}}$ with positive integers $\nu_{1},$ $\nu_{2}$ and a unit $\epsilon$ . Since every conjugate of $\epsilon$

has absolute value 1, $\epsilon$ must be a root of unity. Thus we have $\pi_{1}\sim\pi_{A}$ .
PROPOSITION 4. Let $\pi$ be a number of type $(A_{0})$ and let $a$ be its order. If

$\pi$ is real, $\pi=\pm p^{a/2}$ . If $\pi$ is imaginary, $Q(\pi)$ is a CM-field.
PROOF. The first assertion is clear. The second follows from the defini-

tion of type $(A_{0})$ and Proposition 1.

Let $\pi$ be a number of type $(A_{0})$ . We put $Q(\pi^{\infty})=\bigcap_{\nu=1}^{\infty}Q(\pi^{\nu})$ . This is an

algebraic number field determined by $\langle\pi\rangle$ up to conjugacy.

LEMMA 1. Let $a$ be an ideal of type $(A_{0})$ of an algebraic number field $L$

normal over Q. Put $H=\{\tau\in Ga1(L/Q)|\mathfrak{a}^{\tau}=\mathfrak{a}\}$ and let $K$ be the corresponding

subfield of L. Then we can find an integer $\nu\geqq 1$ and a number $\pi$ of type $(A_{0})$

in $K$ such that $(\pi)=\mathfrak{a}^{\nu}$ .
PROOF. Let $\mathfrak{p}$ be a prime divisor of $p$ in $L$ and let $Z$ (resp. $D$) be the

decomposition group (resp. field) of $\mathfrak{p}$ for $L/Q$ . For a left coset decomposition
$G=Ga1(L/Q)=Z\sigma_{1}+$ $+Z\sigma_{g}$ , we have a prime ideal decomposition of $p$ in

$L:(p)=\prod_{J=1}^{g}\mathfrak{p}^{e\sigma_{j}}$, where $e$ denotes the ramification index of $p$ in $L$ . Let $a$ be the

order of $a$ and let $\mathfrak{a}=\prod_{j=\perp}^{g},$
$\mathfrak{p}^{\nu_{\gamma}\sigma_{j}}$ be the prime ideal decomposition of $tI$ . For

$\tau\in G$ , let $Z\sigma_{\tau Cj)}$ be the coset containing $\sigma_{J^{T}}$ . We have

(1) $\nu_{\tau(j)}=\nu_{j}$ for $\tau\in H$
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and

(2) $\nu_{j}+\nu_{\rho(j)}=ae$ .

Since $\mathfrak{p}^{e}$ is an ideal of $D$ , we can find $h\geqq 1$ and $\xi\in D$ such that $\mathfrak{p}^{eh}=(\xi)^{\backslash _{\alpha}}$

Put $\Gamma\iota=\prod_{j--1}^{g}\xi^{\nu}J^{\sigma_{j}}$ . By (1) we see $\pi\in K$. Moreover we have by (2)

$\pi\pi^{\rho}=\prod_{j=t}^{g}(\xi^{ae})^{\sigma_{j}}=N_{D/Q}\xi^{ae}\in Q$

and the same holds for every conjugate of $\pi$ . As $(\pi)=\mathfrak{a}^{eh}$ , we have $\pi^{0}\pi^{\sigma\rho}=p^{aeh}$

for every conjugate $\pi^{\sigma}$ of $\pi$ . Hence $\pi$ is of type $(A_{0})$ . This completes our
proof.

For an ideal $\mathfrak{a}$ of type $(A_{0})$ , we denote by $Q(\mathfrak{a}^{\infty})$ the field $K$ defined as
above. It is easy to see that this is independent of the choice of $L$ .

PROPOSITION 5. For every ideal $a$ of type $(A_{0})$ , there exists a positive integer
$\nu_{0}$ such that every $\mathfrak{a}^{\nu}$ with $v_{0}|v$ is an ideal of $Q(a^{\infty})$ , but an ideal of no proper
subfield of it.

PROOF. This follows immediately from the definition and Lemma 1.
THEOREM 1. Let $a$ be an ideal of type $(A_{0})$ . Then we can find a number

$\pi$ of type $(A_{0})$ such that $(\pi)=\mathfrak{a}$ . For a given $a$ such a number $\pi$ is determined

uniquely up to roots of unity. Moreover we have $Q(a^{\infty})=Q(\pi^{\infty})$ .
PROOF. By Lemma 1 we can find $\pi^{\prime}\in Q(\mathfrak{a}^{\infty})$ of type $(A_{0})$ such that $(\pi^{\prime})=\mathfrak{a}^{\nu}$

with $\nu\geqq 1$ . Let $\pi$ be a number such that $\pi^{\nu}=\pi^{\prime}$ . We have $\pi^{\prime}\pi^{\prime\rho}=p^{a\nu}$ , where
$a$ denotes the order of $\mathfrak{a}$ . Therefore we have $\pi\pi^{\rho}=\zeta p^{a}$ with $\zeta^{\nu}=1$ . Since
$\zeta>0$ , we must have $\zeta=1$ . Applying the same reasoning to conjugates of $\pi$,

we see in fact $\pi$ is of type $(A_{0})$ . Now the second assertion is obvious. The

last is contained in Lemma 1.
COROLLARY. Put $\Psi(\langle\pi\rangle)=\langle(\pi)\rangle$ for a number $\pi$ of type $(A_{0})$ . Then $\Psi$

gives a bijection: {equivalence classes of numbers of type $(A_{0})$ } $\rightarrow\{equivalence$

classes of ideals of type $(A_{0})$ }.
PROOF. The injectivity of $\Psi$ follows from Proposition 3 and the surjec-

tivity from Theorem 1.

Now it is an easy excercise to determine all the ideals of type $(A_{0})$ in a
given CM-field $L$ normal over $Q$ , whenever we know the prime ideal decom-

position of $p$ in $L$ .

PROPOSITION 6. Let $a$ be an ideal of type $(A_{0})$ and $L$ the normal closure

of $Q(\mathfrak{a}^{\infty})$ over Q. If the decomposition field $D$ of a prime divisor $\mathfrak{p}$ of $p$ in $L$

is normal over $Q$ , we must have $L=D$ ; in other words $p$ decomposes completely
$i_{7}\iota Q(a^{\infty})$ .

PROOF. We may assume $\mathfrak{a}$ is an ideal of $Q(\mathfrak{a}^{\infty})$ . Let $(p)=\prod_{j=1}^{g}\mathfrak{p}^{e(I}j$ be the

prime ideal decomposition of $p$ in $L$ and put $\mathfrak{a}=\prod_{J=1}^{g}\mathfrak{p}^{\nu_{i}\sigma_{i}}$ . By our assumption
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$\mathfrak{p}^{\sigma_{i}e}$ is an ideal of $D$ for $1\leqq j\leqq g$ . Hence $\mathfrak{a}^{e}$ is an ideal of $D$ , which implies,
$Q(\mathfrak{a}^{\infty})\subset D$ . Therefore we have $L\subset D$ and hence $L=D$ .

PROPOSITION 7. Let $S(a, n)$ be the set of conjugacy classes of numbers $\pi$

of type $(A_{0})$ with order $a$ such that $[Q(\pi):Q]=2n$ . Then $S(a, n)$ is a finite set

for any $a,$ $n\geqq 1$ .
PROOF. $Let[\pi]\in S(a, n)andletf(X)=X^{2n}+c_{1}X^{2n-1}+\cdots+c_{f}X^{2n-j}+\cdots+p^{an}$

be the minimal polynomial of $\pi$ in Q. Denoting by $\pi_{1},$
$\cdots$ , $\pi_{2n}$ the complete

set of conjugates of $\pi$ , we have

$|c_{j}|=|\sum_{i_{1}<\cdots<i_{j}}\pi_{i_{1}}\cdots\pi_{\iota_{j}}|\leqq\sum_{1\dot{\eta}<\cdots<\tau_{j}}.|\pi_{i_{1}}|\cdots|\pi_{i_{j}}|=\left(\begin{array}{l}2n\\j\end{array}\right)p^{aj/2}$

for $1\leqq j\leqq 2n-1$ . Therefore the number of such polynomials $f(X)$ is bounded
by a suitable constant depending only on $a$ and $n$ .

Now let $F$ be a CM-field of degree $2n$ over $Q$ and $\{\varphi_{1}, \cdots , \varphi_{n}\}$ be $n$ isomor-
phisms of $F$ into $C$ such that no two of them are complex conjugate. Then
$(F;\{\varphi_{i}\})$ is a CM-type, that is, there is an abelian variety $A$ over an algebraic

number field such that there is an injection $f:F\rightarrow End_{C}(A)\otimes Q$ and such that

the representation of $c(F)$ in the space of invariant differential forms on $A$ is
equivalent to $\varphi_{1}\oplus\cdots\oplus\varphi_{n}$ (cf. [13, Chap. II]). Now our aim in \S 1 is to prove

THEOREM 2. For any ideal $a$ of type $(A_{0})$ there is a CM-type $(F;\{\varphi_{i}\})$ with

the following properties:

(a) $F$ is a CM-field normal over $Q$ .
(b) For a prime divisor $\mathfrak{p}$ of $p$ in $F$ we have

$\mathfrak{a}\sim\prod_{i}\mathfrak{p}^{\psi_{i}}$

with $\psi_{i}=\varphi_{i^{-1}}$ .
PROOF. By Proposition 5 we may assume that $\mathfrak{a}$ is an ideal of $Q(\mathfrak{a}^{\infty})$ .

Moreover we may suppose that $Q(\mathfrak{a}^{\infty})$ is a CM-field by Proposition 4 and by

Theorem 1 excluding the trivial case $Q(\mathfrak{a}^{\infty})=Q$ . Let $a$ be the order of $\mathfrak{a}$ and

let $C$ be a cyclic extension of $Q$ for which the degree of $p$ is a multiple of $a$ .
Denoting by $L$ the normal closure of $Q(\mathfrak{a}^{\infty})$ over $Q$ , we see that the composite

field $F=L\circ C$ is a CM-field normal over $Q$ . Let $\mathfrak{p}$ be a prime divisor of $p$ in
$F$ and denote by $f,$ $e$ and $Z$ its degree, its ramification index and its decom-
position group respectively. For Gal $(F/Q)=G=Z\sigma_{1}+\cdots+Z\sigma_{g}$ we have

$(p)=\prod_{J=1}^{g}\mathfrak{p}^{e\sigma_{j}}$ . Put $a=\prod_{J=1}^{g}\mathfrak{p}^{\nu_{j}\sigma_{j}}$ . Now $d=f/a$ is an integer. By taking $d\nu_{j}$ ele-

ments of $Z\sigma_{j}$ for all $1\leqq j\leqq g$ , we obtain $\sum_{j=1}^{g}d\nu_{j}=efg/2=[F:Q]/2$ elements of

$G$ . As is shown in the following, we can choose these so that no two of them

are complex conjugate. First assume $\rho(1)\neq 1$ , that is, $Z\sigma_{1}\rho\neq Z\sigma_{1}$ . Take any

subset $S_{1}$ of $Z\sigma_{1}$ with $d\nu_{1}$ elements and put $S_{\rho(I)}=Z\sigma_{1}\rho-S_{1}\rho$ . Since $ef-dv_{1}$

$=d(ae-v_{1})=dv_{\rho(1)}$ by (2), the subset $S_{\beta(1)}$ of $Z\sigma_{\rho(1)}$ has $d\nu_{\rho(1)}$ elements. If $\rho(1)$
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$=1$ , that is, $Z\sigma_{1}\rho=Z\sigma_{1}$ , we choose a subset $S_{1}$ of $Z\sigma_{1}$ with $ef/2=d\nu_{1}$ elements so
that no two of them are complex conjugate. By repeating the same procedure

for the remaining cosets of $G/Z$, we derive the subset $S=\cup S_{j}g$ which is the
$j=1$

required one. Denote the elements of $S$ by $\{\psi_{i}\}$ and put $\varphi_{i}=\psi_{i^{-1}}$ . Then
$(F:\{\varphi_{i}\})$ is a CM-type and we have

$\prod_{i}\mathfrak{p}^{\psi_{i}}=(\prod_{J=1}^{g}\mathfrak{p}^{\nu_{j}\sigma_{j}})^{d}\sim \mathfrak{a}$ .

This completes the proof.

REMARK. In the same way we can prove that a generalized CM-type in

the sense of Shimura [11], [12] can be obtained by “ restricting ” a suitable

CM-type.

\S 2. The proof of the main theorem.

In order to prove the main theorem we have only to prove the surjectivity

of $\Psi\circ\Phi$ and to deduce the surjectivity of $\Phi_{a}$ from that of $\Phi$ , as was men-
tioned in the introduction. The surjectivity of $\Psi\circ\Phi$ follows directly from

Theorem 2 and the following two theorems:

THEOREM A. Let $(F;\{\varphi_{i}\})$ be a CM-type and let $(A, c)$ be an abelian variety

of that type, defined over an algebraic number field K. Suppose $K$ is large

enough so that $F^{\varphi_{i}}\subset K$ for all $i$ . Suppose $A$ has non-degenerate reduction at

a prime $\mathfrak{P}$ of $K$, and let $\tilde{A}$ be the reduction of $Amod \mathfrak{P}$ . Then there exists an
element $\pi_{0}\in F$ such $that\sim c(\pi_{0})$ is the Frobenius endomorphism of $\tilde{A}$ relative to

the residue field of $\mathfrak{P}$ , and we have

$(\pi_{0})=\prod_{i}(N_{K/F^{\varphi}i}\mathfrak{P})^{\psi_{i}}$ with $\psi_{i}=\varphi_{i^{-1}}$ .

THEOREM B. (Serre-Tate [9].) Let $(A, f)$ be an abelian variety of a CM-

type, defined over an algebraic number field K. Then there exist a finite exten-

sion $K^{\prime}$ of $K$ and an abelian variety $(A‘, t^{\prime})$ defined and isomorphic to $(A, c)$

over $K^{\prime}$ such that $A^{\prime}$ has non-degenerate reduction at every prime of $K^{\prime}$ .
For a given ideal $a$ of type $(A_{0})$ , let $(F;\{\varphi_{i}\})$ be a CM-type satisfying the

conditions of Theorem 2 and take $(A, f)$ and $K$ as in Theorem A. By Theorem
$B$ we may suppose A has non-degenerate reduction at every prime of $K$. Let

$\mathfrak{p}$ be a prime of $F$ above $p$ and $\mathfrak{P}$ a prime of $K$ above $\mathfrak{p}$ . By [13, II, Proposi-

tion 3] $\tilde{A}$ is $\Omega$-isogenous to a power of an $\Omega$-simple abelian variety $B$ . Let $\xi$

be the Frobenius endomorphism of $B$ (relative to a finite field of definition).

Then we have, with the notations of Theorem $A$ ,

$(\xi)\sim(\pi_{0})=\prod_{j}(N_{R/F}\mathfrak{P})^{\psi_{i}}\sim\prod_{i}\mathfrak{p}^{\psi_{i}}\sim \mathfrak{a}$ ,
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which completes our proof.

Now Theorem A was first mentioned in Taniyama [14], where he reduced

the proof to the case $\mathfrak{P}$ was of absolute degree 1. In this case the proof is

direct (Shimura [10], Taniyama [14]). But there was an error in this reduc-

tion of the proof and a complete proof was given by Shimura (cf. the footnote

(2) of [15]). According to his letter to the author, it is as follows: let 1 be a
prime number prime to as and prime to $\zeta-1$ for all the roots of unity $\zeta\neq 1$

in $F$ . We may suppose l-section points of $A$ are rational over $K$. Now we
can find $h\geqq 1$ and $\xi\in K$ such that $\mathfrak{P}^{h}=(\xi)$ and $\xi\equiv 1(mod l)$ . Let $\sim c(\pi_{1})$ be the
$N(\mathfrak{P})^{h}$-power endomorphism of $\tilde{A}$ with $\pi_{1}\in F$ and put $\mu=\prod_{i}(N_{K/F^{\varphi}i}\xi)^{\psi_{i}}$ . It

suffices to prove $\pi_{1}=\mu$ Suppose there were $\nu>0$ with $\pi_{1}\not\equiv\mu(mod l^{\nu})$ . Let
$K^{\prime/}$ be the extension of $K$ obtained by adjoining the coordinates of $l^{\nu}$ -section
points of $A$ and the ray class field $mod 1^{\nu}$ over K. $K^{\prime\prime}$ is an abelian

extension of $K$ in which $\mathfrak{P}$ is unramified. Put $\sigma=\left(K^{/\prime}/_{h}K\mathfrak{P} & -\right)$ . We can find a

prime $\mathfrak{Q}$ of $K$ with absolute degree 1 such that $\left(\begin{array}{l}K^{/\prime}/K\\\mathfrak{O}\end{array}\right)=\sigma$ and $\mathfrak{Q}=(\eta)$

with $\eta\in K,$ $\eta\equiv\xi(mod l^{\nu})$ . Let $\sim c(\lambda)$ be the $N(\mathfrak{Q})$ -th power endomorphism of
$A$ $mod \mathfrak{Q}$ with $\lambda\in F$. Since Theorem A holds for $\mathfrak{Q}$ , we have $(\lambda)=\prod_{i}(N_{K/F^{\varphi}i}\mathfrak{Q})^{\psi_{i}}$ .
More precisely we have $\lambda=\prod_{i}(N_{x/F^{\varphi}i}\eta)^{\psi_{i}}$ , because the both members of the

last equality $\equiv 1(mod 1)$ and their ratio is a root of unity in $F$ . Since $\lambda\equiv\mu$

$(mod 1^{\nu})$ , we have $\pi_{1}t=t^{\sigma}=\lambda t=\mu t$ for any $1^{\nu}$ -section point $t$ of $A$ . This implies

$\pi_{1}\equiv\mu(mod l^{\nu})$ , a contradiction. Theorem 1 in [13, Chap. III], proved in an
alternative way, is somewhat weaker than Theorem A in that it assumes
unramifiedness of $p$ in $F$ .

Now we have proved the surjectivity of $\Phi$ . Let us prove that of $\Phi_{a}$ . Let
$\pi$ be a number of type $(A_{0})$ of order $a$ . Then there are $\nu\geqq 1$ and an abelian

variety $A$ defined and simple over $k_{a\nu}$ such that there is an imbedding of
$Q(\pi^{\nu})$ into End $k_{a\nu}(A)\otimes Q$ mapping $\pi^{\nu}$ to the Frobenius endomorphism of $A$ .
Denote by $\sigma$ the Frobenius substitution of $k_{a\nu}/k_{a}$ and by $\xi_{V}$ the $p^{a}$-th power

morphism of $V$ onto $V^{\sigma}$ for an algebraic variety $V$ over $k_{a\nu}$ . Put $B=A\times A^{\sigma}$

$\times\cdots\times A^{\sigma^{\nu-1}}$ and let $g$ be an isomorphism of $B^{\sigma}$ onto $B$ obtained by the obvious
permutation of the factors. We see easily $ g\circ g^{\sigma}\circ$ $\circ g^{\sigma^{\nu-1}}=1$ . Put

$f_{ij}=g^{\sigma^{j}}$ , $...\circ g^{\sigma^{i+1}}$ for $0\leqq i\leqq j\leqq\nu-1$

and
$f_{ij}=f_{ji}^{-1}$ for $0\leqq j\leqq i\leqq\nu-1$ .

We have easily

(i) $f_{jk}\circ f_{ij}=f_{ik}$

(ii) $f_{i+j,i+k}=f_{j.k}^{\sigma^{i}}$ ,
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which imply the consistence conditions of Weil [21] (see also Lang [4]), and

by [21, Theorem 3] there exists an abelian variety $A_{0}$ over $k_{a}$ and an isomor-
phism $f:B\rightarrow A_{0}$ over $k_{a\nu}$ such that $f^{\sigma}=f\circ g$ . Now put $\alpha=g\circ\xi_{B}(\in End_{k_{a\nu}}(B))$ .
Since

$f\circ\alpha=f\circ g\circ\xi_{B}=f^{\sigma}\circ\xi_{B}=\xi_{A_{0}}\circ f$

$\xi_{A_{0}}$ has the same eigenvalues as $\alpha$ . Let $\mathfrak{B}$ be a basis of the Tate module $ T_{\iota}(A\rangle$

of $A$ with respect to a prime $l\neq p$ . Then $(\mathfrak{B}, \mathfrak{B}^{\sigma}, \cdot.. , \mathfrak{B}^{\sigma^{\nu\rightarrow 1}})$ is a basis of $T_{\iota}(B)$ .
The matrix representation of $\alpha$ with respect to this basis has a form

$(_{\dot{0}\cdot\cdot\cdot 0.X^{\dot{0}}}X0\cdot 00.\cdot..\cdot X.\cdot.\cdot....\cdot..\cdot.0...\cdot.\cdot.\cdot..\cdot...\cdot 0)$

where $X^{\nu}$ is the representation matrix of the Frobenius endomorphism $\xi_{A}^{\nu}$ of
$A$ with respect to $\mathfrak{B}$ and has an eigenvalue $\pi^{\nu}$ . From this it is easily verified
that every v-th root of $\pi^{\nu}$ is an eigenvalue of $\alpha$ . In particular $\pi$ is an eigen-

value of $\alpha$ and hence that of $\xi_{A_{0}}$ . Therefore there exists a $k_{a}$-simple com-
ponent of $A_{0}$ which is mapped to $[\pi]$ by $\Phi_{a}$ . This proves the surjectivity of
$\Phi_{a}$ and completes the proof of our main theorem.

Now let us come back to consideration of $\Omega$-isogeny classes. From now
on until the end of \S 2 we shall consider every homomorphism of an abelian

variety a homomorphism over an algebraically closed field. Let $\mathfrak{a}$ be an ideal
of type $(A_{0})$ of order $a$ , let $(A, c)$ be an abelian variety of a CM-type $(F;\{\varphi_{i}\}\lambda$

satisfying the conditions of Theorem 2, and let $\tilde{A}$ be the reduction of $A$ at a
prime divisor of $p$ . In general $\tilde{A}$ is not simple, but isogenous to some power
of a simple abelian variety $A_{1}$ such that $\Psi\circ\Phi(\langle A_{1}\rangle)=\langle(r\rangle$ , where $\langle A_{1}\rangle$ denotes

the $(\Omega-)$ isogeny class of $A_{1}$ . But in certain cases we can find a CM-type

such that $\tilde{A}$ itself is simple. We shall say that an ideal $b$ of an algebraic

number field $K$ is primitive, if there is no ideal $b^{\prime}$ of $K$ such that $\mathfrak{b}=b^{\prime\nu}$ with
$\nu>1$ .

PROPOSITION 8. Let $a$ be an ideal of type $(A_{0})$ of order $a$ and suppose $a$ is
a primitive ideal of $Q(\mathfrak{a}^{\infty})$ . Suppose the following conditions are satisfied;

(a) $p\neq 2$ or 8 $I^{\prime}a$ .
(b) $Q(\mathfrak{a}^{\infty})$ is normal over $Q$ .
(c) The degree of $p$ in $Q(\mathfrak{a}^{\infty})$ is 1.
Then we can find a CM-type $(F;\{\varphi_{i}\})$ such that $\tilde{A}$ is simple and $\Psi\circ\Phi(\langle\tilde{A}\rangle\rangle$

$=\langle \mathfrak{a}\rangle$ for an abelian variety $A$ of this type.

By (a) there is a cyclic extension $C$ of $Q$ of degree $a$ in which $p$ remains
prime (Hasse [2]). Put $F=Q(\mathfrak{a}^{\infty})\circ C$ and construct a CM-type $(F;\{\varphi_{i}\})$ as in
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the proof of theorem 2. We have to prove the simplicity of $\tilde{A}$ for an abelian

variety $(A, c)$ of this type. This follows immediately from a result of Tate

[17, p. 142] taking the primitivity of $\mathfrak{a}$ into account. But we shall prove Pro-
position 8 by determining $End_{\Omega}(\tilde{A})\otimes Q$ explicitly as a cyclic algebra. In the

following we shall use definitions and results of [13, Chap. II] freely without
referring to them. Suppose $(A, \zeta)$ is principal and defined over a sufficiently

large algebraic number field $K$ normal over $Q$ . Let $\mathfrak{P}$ be a prime divisor of
$p$ in $K$ and let $\sigma$ be a Frobenius substitution of $K/Q$ at $\mathfrak{P}$ . We can choose $\sigma$

so that $\sigma|F\in Ga1(F/Q(a^{\infty}))$ . (We may assume $K\supset F$, because $K$ is ”sufficiently”

large. We omit the same kinds of remarks in the following.) This $\sigma$ induces

the Frobenius substitution of the residue field $k$ of $Kmod \mathfrak{P}$ . We shall denote

it by the same letter $\sigma$ .
LEMMA 2. Let $(A, c)$ be as above and put $\zeta_{1}(\alpha)=t^{\sigma}(\alpha^{\sigma^{\rightarrow 1}})$ for $\alpha\in F$ . Then

$(A^{\sigma}, \prime_{1})$ is of type $(F_{j}\{\varphi_{i}\})$ .
PROOF. Let $\{\omega_{1}, \cdots , \omega_{n}\}$ be a basis of invariant differential forms on $A_{\iota}$

such that
$\delta(\alpha)\omega_{i}=\alpha^{\prime\rho_{i}}\omega_{i}$ for $\alpha\in F$ .

We have
$\partial\zeta^{\sigma}(\alpha)\omega_{i}^{\sigma}=\alpha^{\varphi_{i}\sigma}\omega_{t^{\sigma}}$

and hence
$\delta\zeta_{1}(\alpha)\omega_{i}^{\sigma}=\alpha^{\sigma^{-1(p}i^{\sigma}}\omega_{i}^{\sigma}=\alpha^{\varphi_{i}}\omega_{i}^{\sigma}$ ,

since $\sigma|F$ belongs to the center of Gal $(F/Q)$ . This completes the proof.

By Lemma 2 there are an integral ideal $\mathfrak{b}$ of $F$ and a b-multiplication $\lambda$ of
$(A^{\sigma}, c_{1})$ onto $(A, \zeta)$ . Denote by $\xi$ the p-th power homomorphism of abelian

varieties and put $\mu=\tilde{\lambda}\xi(\in End_{\Omega}(\tilde{A}))$ . Since we have

$\mu c\sim(\alpha)=\tilde{\lambda}\xi_{C}^{\sim}(\alpha)=\tilde{\lambda}_{C}^{\sim\sigma}(\alpha)\xi=\tilde{\lambda}c\sim_{1}(\alpha^{\sigma})\xi$

$=c\sim(\alpha^{\sigma})\tilde{\lambda}\xi=c\sim(\alpha^{\sigma})\mu$ ,

$\mu^{a}$ commutes with $\sim\zeta(F)$ and $\in\sim c(F)$ . Thus we obtain a cyclic subalgebra

$(\mu^{a},c\sim(F),$ $\sigma$) of $E=End_{\Omega}(\tilde{A})\otimes Q$ . Now the simplicity of $\tilde{A}$ is contained in

PROPOSITION 9. With the notations and assumptions as above, $(\mu^{a}, \overline{f}(F),$ $\sigma$))

is a division algebra and coincides with E. Moreover, for the prime ideal de-

composition $\mathfrak{a}=_{j}1_{=}^{g}I_{1}\mathfrak{p}_{j^{\nu_{J}}}$ in $Q(\mathfrak{a}^{\infty})$ , we have

$inv_{0_{j}}E\equiv v_{j}/a(mod Z)$ for $1\leqq j\leqq g$ .

PROOF. By Theorem 1 and the proof of the main theorem there is an
integer $\nu_{0}\geqq 1$ such that $Q(\xi^{\nu})=c\sim(Q(\mathfrak{a}^{\infty}))$ for $\nu_{0}|\nu$ . But $\xi^{\nu}$ belongs to the center

of $E$ , when $k_{\nu}$ is a field of definition for $End_{\Omega}(\tilde{A})$ . Hence $c\sim(Q(\mathfrak{a}^{\infty}))$ , the center

of $E^{\prime}=(\mu^{a}, \overline{\prime}(F),$ $\sigma$), is contained in the center of $E$ . This implies $E=E^{\prime}$ by
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$i[he$ well-known theorem on simple algebras, since both $E$ and $E^{\prime}$ have the

maximal subfield $\sim c(F)$ in common. Let $p^{ah}$ be the number of elements of $k$ .
Putting $c_{i}(\alpha)=c^{\sigma^{i}}(\alpha^{\sigma^{\rightarrow i}})$ , we have

$\lambda c^{\sigma}(\alpha^{\sigma^{-1}})=c(\alpha)\lambda$ ,

$\lambda^{\sigma^{i}}c^{\sigma^{i+1}}(\alpha^{\sigma^{-1}})=f^{\sigma^{i}}(\alpha)\lambda^{\sigma^{i}}$

and
$\lambda^{\sigma^{i}}c_{i+1}(\alpha)=c_{i}(\alpha)\lambda^{\sigma^{i}}$ .

This shows that $\lambda^{\sigma^{i}}$ is a $\mathfrak{b}^{\sigma^{i}}$-multiplication of $(A^{\sigma^{i+1}}, c_{i+1})$ onto $(A^{\sigma^{i}}, c_{i})$ . Thus

we have
$\mu^{ah}=(\tilde{\lambda}\xi)\cdots(\tilde{\lambda}\xi)$

$=\tilde{\lambda}^{1+ae+\cdots+\sigma^{ah-1}}\xi^{ah}$

and hence
$(\mu^{ah})=(N_{F/L}b)^{h}(\xi^{ah})$ ,

writing $Q(\mathfrak{a}^{\infty})=L$ . Let $m_{j}$ be an integer such that $\mathfrak{p}_{j}^{m_{j}}|\mu^{\alpha}$ , but $\mathfrak{p}_{j}^{m_{j^{+1}}}+\mu^{a}$ for

every $1\leqq j\leqq g$ . Since $(\xi^{ah})=\mathfrak{a}^{h}$ and the degree of $\mathfrak{p}_{j}$ for $F/L$ is $a$ , we have

$hm_{j}\equiv h\nu_{j}$ $(mod ah)$

and then

$m_{j}\equiv\nu_{j}$ $(mod a)$ .

As $\mathfrak{p}_{j}$ is unramified in $F/L$ , this implies

$inv_{\mathfrak{p}_{j}}E\equiv m_{j}/a\equiv v_{j}/a$ (mod Z).

Since the primitivity of $a$ implies $(\nu_{1}, \cdots , v_{g})=1,$ $E$ is a division algebra. Thus

all the assertions of our proposition are proved.

This idea of the explicit determination of $E$ already appeared in Honda

[3], where we determined $E$ for the jacobian of the curve $y^{2}=1-x^{\iota}$ with an
odd prime 1. I have not been able to construct a CM-type for an arbitrary

ideal $\mathfrak{a}$ of type $(A_{0})$ so that $\tilde{A}$ is simple.

\S 3. Applications. (Sketches.)

3.1. Algebroid formal groups.
By the fundamental theorem 4.1 of Manin [5] the prime ideal decomposi-

tion of the Frobenius endomorphism of an abelian variety $A$ over a finite field

determines the formal structure of $A$ over $\Omega$ up to isogeny. (The condition
imposed on the roots of the characteristic polynomial in that theorem is super-

fluous. For this see Tate [18].) Thus all the existence problems of commuta-

tive algebroid formal groups over $\Omega$ have now been reduced to excercises on
algebraic number theory, that is, problems of finding ideals of $typ\circ$. $(A_{0})$ with
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preappointed properties. For example we can easily give an affirmative an-

swer to the conjecture of Manin [5].

THEOREM 3. The formal group $G_{m,n}\times G_{n,m}$ is algebroid over $\Omega$ for any
$(m, n)$ .

PROOF. As a formal group isogenous to an algebroid group is also alge-

broid, we have only to prove $G_{m,n}\times G_{n,m}$ is algebroid up to isogeny. Moreover

we may assume $(m, n)=1$ . Let $K$ be an imaginary quadratic field in which $p$

decomposes: $(p)=\mathfrak{p}\mathfrak{p}^{\rho}$ . Then $(\Psi\circ\Phi)^{-J}(\langle \mathfrak{p}^{m}\mathfrak{p}^{n\rho}\rangle)$ answers to our requirement.

Problem (15.9) of Oort [6] is not less trivial. Examples of simple abelian

varieties of mixed type in the sense of Oort are already found in the jacobians

of the curves $y^{2}=1-x^{l}$ (Honda [3]). We can also give examples of $\Omega$-simple

abelian varieties of dimension 2 whose formal completions are isogenous to
$G_{1,0}\times G_{1,1}$ . Let $K_{0}$ be a real quadratic field in which $p$ decomposes and let $K$

be a totally imaginary quadratic extension of $K_{0}$ in which one of the prime

divisors of $p$ decomposes and the other is ramified: $(p)=\mathfrak{p}_{1}\mathfrak{p}_{1}^{\rho}\mathfrak{p}_{2}^{2}$ in $K$. It is easy

to see that $a=\mathfrak{p}_{1}\mathfrak{p}_{2}$ is of type $(A_{0})$ and that $A\sim G_{1,0}\times G_{1,1}$ for $A\in(\Psi\circ\Phi)^{-1}(\langle a\rangle)$

by Manin’s theorem.

3.2. Analytic construction of abelian varieties over finite fields.

The most important consequence of our main theorem is that it allows
us an analytic construction of abelian varieties over finite fields.

Let $A$ be an abelian variety of dimension $n$ over $k_{a}$ . For a prime number
$l\neq p$ , denote by $T_{\iota}(A)$ the Tate module of $A$ . This is a vector space of dimen-

sion $2n$ over $Z_{\iota}$ . Let $M_{\iota}(A)$ be the representation matrix of the p’-th power
endomorphism of $A$ in $T_{\iota}(A)$ with respect to some basis of $T_{\iota}(A)$ . This matrix
determines the isogeny class of $A$ by the main theorem of Tate [17]. More
precisely $M_{\iota}(A_{1})$ is conjugate to $M_{\iota}(A_{2})$ over $Z_{\iota}$ , if and only if there is an
isogeny $\lambda:A_{1}\rightarrow A_{2}$ over $k_{a}$ such that $l+the$ degree of $\lambda$ . Moreover, for any
semi-simple matrix $M^{\prime}$ of order $2n$ over $Z_{\iota}$ which has the same eigenvalues

as $M_{\iota}(A)$ , there is an abelian variety $A^{\prime}$ such that $M_{\iota}(A^{\prime})$ is conjugate to $M^{r}$

over $Z_{\iota}$ . Now our main theorem gives necessary and sufficient conditions in

order that the conjugacy class of a matrix $M$ of order $2n$ over $Z_{\iota}$ corresponds

to some abelian variety. ’ These conditions are quite analogous to those of

Riemann matrices in case of complex tori.

For $l=p$ we consider the Dieudonn\’e module $T_{p}(A)$ of the $p$-divisible group
$A(p)$ obtained from $A$ (cf. Manin [5], Serre [8]). It is a vector space of dimen-

sion $2n$ over the Witt vector ring $W(k_{a})$ . The theorem of Tate [18], which
gives a canonical bijection: $Hom_{k}(A, B)\otimes Z_{p}\rightarrow Hom_{k}(A(p), B(p))$ for abelian

varieties $A,$ $B$ over a finite field $k$ , makes it possible to generalize the results

for $l\neq p$ to those for $p$ . It should be noted that there is an essential difference

between two cases: the matrix $M_{\iota}(A)$ is an l-adic unimodular matrix for $l\neq p$ ,
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whereas $M_{p}(A)$ is not unimodular over $W(k_{a})$ and $p$-adic values of its eigen-

values (considered in some extension of $W(k_{a})$) determines the class $\langle A\rangle$ .
Finally we can deal with the isomorphism class of $A$ by working in the ad\‘ele

space

$\prod_{\ell\neq p}Z_{l}^{2n}\times W(k_{a})^{2n}$ .

These considerations would be applicable to the construction of higher

jacobian varieties over finite fields and perhaps to the conjecture of Weil.
3.3. Types of the endomorphism rings of abelian varieties over finite

fields.

Our main theorem together with results of Tate [17], [18] will make it
possible to study endomorphism rings of abelian varieties over finite fields.
This was completely carried out in Deuring [1] for elliptic curves and some
of his theorems extend almost trivially to higher dimensions. (In fact some
results for any dimensions are already given in [13, Chap. II, 7].) Moreover
his results on p-adic representations of endomorphism rings can be replaced

by more complete ones by using Dieudonn\’e modules. Of course the explicit

determination of types of endomorphism rings would be complicated in case of

higher dimensions and we should have to overcome ring-theoretical difficulties.

Osaka University
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