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Abstract

In this work we provide a combination of isogeometric analysis with reduced order
modelling techniques, based on proper orthogonal decomposition, to guarantee
computational reduction for the numerical model, and with free-form deformation, for
versatile geometrical parametrization. We apply it to computational fluid dynamics
problems considering a Stokes flow model. The proposed reduced order model
combines efficient shape deformation and accurate and stable velocity and pressure
approximation for incompressible viscous flows, computed with a reduced order
method. Efficient offline–online computational decomposition is guaranteed in view of
repetitive calculations for parametric design and optimization problems. Numerical test
cases show the efficiency and accuracy of the proposed reduced order model.

Keywords: Isogeometric analysis (IGA), Reduced order models (ROM), Proper
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Focus andmotivation

The capability to perform fast simulations is becoming increasingly relevant for sev-

eral applications in engineering sciences, related for instance to naval and aeronautical

engineering, as well as biomedicine. To this end, reduced basis methods [1,2], proper

orthogonal decomposition [3–5], proper generalized decomposition [6,7], hierarchical

model reduction [8–10], or more in general reduced order modelling (ROM) techniques

[11], have received considerable attention in the last decades. ROMs do not replace, but

rather build upon as an add-on, high-fidelitymethods such as finite element, finite volume

or discontinuous Galerkin methods. Indeed, the choice of the high-fidelity solver can be

made depending on the particular problem at hand and on pre-existing expertise and

software availability. Current literature has explored a broad variety of options, including

reducedordermodels basedonafinite elementhigh-fidelity discretization (e.g. [2,12–15]),

finite volume (e.g. [16–19]) and finite difference methods (e.g. [20–22]). More recently,

investigations towards the coupling with discontinuous Galerkin methods for multiscale

problems [23] or domain-decomposition approaches [24–26], spectral element methods

[27,28], and extended finite element methods [29,30] have been carried out.
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The aim of this work is to embed isogeometric analysis (IGA) [31,32] as a high-fidelity

discretization option in a ROM setting, for the simulation of incompressible linear viscous

flows [33–36] and to propose a complete workflow (pipeline) integrated with free from

deformation (FFD) as efficient geometrical parametrisation. The latter is enhanced into

an IGA context ready to be used within reduced order method (POD). A considerable

advantage of IGAwith respect to classical finite element analysis is the possibility to avoid

any geometrical approximation error and to performdirect design-to-analysis simulations

by replacing classical mesh generation, and employing the same class of functions used

for geometry parameterization in CAD packages during the analysis process. Even though

most modern CAD tools are based on boundary representation (B-Rep) objects, it is

still possible to use them in three-dimensional isogeometric analysis, by extending the

computational domain inside (or outside) the enclosing (or enclosed)CADsurface (see, for

example, [37]). A robust and reliable solution for such passage is still lacking, making this

step an open question. However, the superior approximation properties of IGA methods

make their adoption appealing also in biomedical and bioengineering applications [38],

notwithstanding the fact that in this case the geometry is normally obtained through an

approximate NURBS reconstruction of medical images.

Once the three-dimensional tensor product representation of the geometry is available,

there is no distinction in computational cost or implementation complexity, with respect

to simulations done on elementary geometries.

Preliminary related IGA-ROMs have been applied to steady potential flows [39,40], par-

abolic problems [41] or shell structuralmodels [42]. In this work offline–online IGA-ROM

is applied for the development of stable computational reduction strategies for viscous

flows problems in parametrized shapes by FFD means. We investigate IGA-ROMs in a

different context with respect to earlier works [39,40]. In [40] the authors neglect viscous

terms and formulate the high-fidelity discretization in terms of boundary integral equa-

tions and boundary element methods (BEM) to study external flows. The main novelty

of the present work, besides the investigation of the other side of the spectrum of incom-

pressible regimes (that is, when the Reynolds number tends to zero), is the coupling of

FFD techniques applied to IGA geometries, for internal flows, and using finite element

based IGA, in view of studies dealing with nonlinear viscous flows, for which BEM is not

suited.

We would like to remark here that, although the background idea is the same as the

one presented in [40], several technical issues are fundamentally different. One of the

most obvious one is that the discrete systems obtained through boundary integral for-

mulations are in general full, which implies that higher order and higher continuity finite

element spaces do not influence the bandwidth of the resulting matrix. In finite element

formulations of IGA methods, however, this is an important issue, and it may result in

reduced performances also of the final reduced order model. In this work we show how

the increased bandwidth of the high fidelity solver does not influence negatively on the

combination IGA-ROM, provided that stable approximations are used for the high fidelity

solver.

The proposed integrated approach is composed of the following numerical techniques:

(i) isogeometric analysis, that integrates the geometrical representation of the domain and

the finite dimensional approximation of the fluid dynamics problem [32], (ii) free-form

deformation to efficiently deform the computational domain by means of few geometrical
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parameters [43], and (iii) proper orthogonal decomposition-based reduced ordermodelling

to generate a stable reduced basis to be queried to cut down the computational cost of

numerical simulations [44]. This integration has been introduced in a preliminary version

in [45].

The approach we present is completely integrated and automatic from CAD to sim-

ulation, taking advantage of IGA and FFD perspectives for the accurate and efficient

management of parametrized domains and shapes. The split between offline and online

computational steps is crucial and it allows the versatility of bringing this proposed com-

putational approach on very different devices, scenarios and situations in design and

optimization, for instance.

The structure of the work is as follows. The parametrized formulation and the IGA

method are introduced in “Problem formulation and isogeometric analysis-based high-

fidelity approximation” section; necessary assumptions related to the offline–online

decomposition are also summarized. “Shape parametrization by free-form deformation”

section summarizes the free-form deformation map which is employed to prescribe geo-

metrical variations. The proposed stable POD–Galerkin ROM is introduced in “A POD-

Galerkin ROM for parametrized Stokes equations” section, and 2D and 3Dnumerical tests

are performed in “Numerical results” section into an optimisation framework. Finally,

conclusions and perspectives follow in “Conclusions and future work” section.

Problem formulation and isogeometric analysis-based high-fidelity

approximation

Parametrized formulation

The problem of interest throughout this work is a parametrized incompressible steady

Stokes problem, obtained as a simplification of Navier–Stokes equations when inertial

forces can be neglected, compared to viscous forces. Parameters of interest, denoted by

µ ∈ D ⊂ R
G , are related to the geometrical representation of the domain � = �(µ) ⊂

R
d . The parametrized Stokes problem reads: find (u(µ), p(µ)) such that

⎧

⎨

⎩

−ν�u(µ) + ∇p(µ) = f (µ), in �(µ),

∇ · u(µ) = 0, in �(µ),
(1)

with boundary conditions

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u(µ) = g , on ŴD �= ∅,

u(µ) = 0, on ŴW (µ),

ν∇u(µ) · n − p(µ)n = h, on ŴN �= ∅,

(2)

representing essential and natural boundary conditions for Stokes equations, respectively.

Here ν is a constant kinematic viscosity, while f (µ), g and h are prescribed forcing terms,

boundary velocity profiles, and boundary tractions, respectively. For simplicity we assume

that the sections ŴD and ŴN do not depend on the geometrical parameters, while the

remaining part of the boundary ŴW (µ) = ∂�(µ) \ (ŴD ∪ ŴN ) may depend on µ.

Isogeometric formulationsof Stokesflowshavebeenextensively studied in the literature.

We refer to [46] for a comprehensive analysis of stable choices of isogeometric finite

element spaces, and to [47] for an alternative formulation based on boundary integral

equations.
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Isogeometric description of the parametrized domain

A CAD representation of the domain is usually obtained through a set of control points

{Pi}
Ng

i=1, where in general Pi ∈ R
d is a d-dimensional IGA control point,1 whose position

depends on the geometrical parameters µ.

A d-dimensional geometrical representation is obtained by tensor product of d one-

dimensional B-spline basis functions, denoted by
{

ξdi (s)
}Nd

i=1
, ξdi : [0, 1] → R, and defined

recursively as

ξdi,k (s) =
s − θdi

θd
i+k

− θdi

ξdi,k−1(s) +
θd
i+k+1

− s

θd
i+k+1

− θdi+1

ξdi+1,k−1(s) k = 1, . . . , pd , (3)

where

ξdi,0(s) =

{

1, θdi ≤ s ≤ θdi+1,

0, otherwise.

and ξdi (s) := ξdi,pd
(s). Here θd = {θd1 , θ

d
2 , . . . , θ

d
n+p+1}

T , θdi ∈ R, is the d-th knot vector, a

non-decreasing set of coordinates in the s parameter space, whereas pd is the polynomial

order of the basis functions along the direction d.

Multivariate B-spline basis functions in R
d (see for example Fig. 1) can then be defined

by tensor product as

Bi(s) = ξ1i1 (s1) . . . ξ
d
id
(sd), ik = 1 . . . Ng,k , i = 1 . . . Ng :=

d
∏

k=1

Ng,k .

For simplicity of exposition we work on single patch geometries, where the reference

domain is [0, 1]d , and we refer to [32,48] and the references therein for possible general-

izations to multipatch geometries.

The reference domain � = [0, 1]d can be deformed into the computational (parame-

trized) domain �(µ), by introducing a parametrized map c(·;µ) : � → R
d :

c(s;µ) :=

Ng
∑

i=1

Bi(s)Pi(µ), �(µ) = c(�;µ), (4)

that depends on the parameter vectorµ through the set ofNg IGA control points {Pi}
Ng

i=1,

where the subscript g indicates geometry. Different parameter valueswill produce different

IGA control points and, thus, different computational domains. We will characterize in

“Shape parametrization by free-form deformation” section how to efficiently prescribe the

dependence of Pi onµ to obtain a broad range of admissible shapes. This parametrization

is crucial to embed IGA in a ROM setting dealing with parametric shapes.

Weak formulation on the reference domain and discrete problem

In order to derive a discrete approximation of the parametrized Stokes problem (1)–(2),

we introduce a weak formulation on the reference domain�. For simplicity of exposition,

we will use the same notation we used in Eq. (1) for the velocity and pressure fields, even

though here the domain is different. Denote byV = [H1(�)]d andQ = L2(�) the velocity

and pressure spaces. Multiplying (1) by test functions v ◦ c and q ◦ c (for the velocity and

1In the next section we will introduce another set of control points, related to the free-form deformation, which will

be denoted FFD control points.
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Fig. 1 An example of 1-D and 2-D B-splines basis functions. The two dimensional basis functions are
obtained by tensor product of the one dimensional ones

pressure field, respectively), integrating by parts and pulling back to the reference domain,

we obtain the following problem: given µ ∈ D, find u ∈ V and p ∈ Q such that
{

a(u, v;µ) + b(p, v;µ) = F (v;µ), ∀v ∈ V ,

b(q,u;µ) = 0, ∀q ∈ Q,
(5)

where the bilinear forms appearing in (5) are:

a(u, v;µ) :=

∫

�

∇u J−1(µ)J−T (µ) det(J (µ)) : ∇v ds, ∀u, v ∈ V ,

b(p, v;µ) := −

∫

�

p tr(J−1(µ) det(J (µ))∇v) ds, ∀v ∈ V , p ∈ Q.

Here, J (µ) is the Jacobian of the mapping c(s;µ). The linear form F (v;μ) encodes forcing

terms, essential boundary conditions (by divergence-free lifting) and natural boundary

conditions.

Isogeometric approximations of Stokes flows (see, for example [46]) violate somehow

the isogeometric paradigm, in the sense that we require two different B-spline spaces for

the velocity and pressure fields in order to satisfy the inf-sup condition, and only one of

the two is usually taken to be the same as the geometrical B-spline space. We introduce

VN ⊂ V and QN ⊂ Q, of dimensions Nu and Np respectively. To differentiate w.r.t.

to the geometric basis functions (which are always taken to be scalar, since we encode

the dimensional information in the control points), we use the following, more general,

notation

u(s) ≈ uN (s) =

Nu
∑

i=1

φi(s)ui, p(s) ≈ pN (s) =

Np
∑

i=1

ϕi(s)pi, (6)

to indicate objects of VN ⊂ V and QN ⊂ Q, where

VN = span {φi, i = 1, . . . ,Nu} and QN = span
{

ϕi, i = 1, . . . ,Np

}

, (7)

respectively. An alternative notation, that allows one to distinguish between the properties

of the different isogeometric spaces (see, for example, [36,46]) is given by the following:

VN ≡ S
p1 ,...,pd
α1,...,αd := span{φi}

Nu
i=1, QN ≡ S

p1 ,...,pd
α1 ,...,αd := span{ϕi}

Np

i=1, (8)
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where pi and αi represent respectively the degree and the maximal regularity in the ith

direction.

If one chooses to use the same basis functions for the geometry and the velocity (for

example), then φi are vector versions of Bi, andNu = dNg , whereNg is the number of the

geometry basis functions. For an extensive discussion on the choices of stable pairs of iso-

geometricfinite element approximationsof Stokesflows,we refer the reader to [46] and the

references therein. In this work we used a Taylor-Hood approximation (as presented, for

example, in [36]), in which the pressure space is taken to be one degree less of the velocity

space,maintaining the same knot vectors of the geometry and velocity spaces, i.e., we con-

sider pairs of spaces given by (S
p ,...,p
p−1,...,p−1−S

p−1,...,p−1
p−2,...,p−2 ) which satisfy the inf-sup condition

and represent a good balance between attainable accuracy and computational efficiency.

The isogeometric Galerkin formulation of the problem becomes: given µ ∈ D, find

uN ∈ VN and pN ∈ QN such that
{

a(uN , vN ;µ) + b(pN , vN ;µ) = F (vN ;µ) ∀vN ∈ VN

b(qN ,uN ;µ) = 0 ∀qN ∈ QN
(9)

where uN = uN (µ) ∈ VN and pN = pN (µ) ∈ QN denote the high-fidelity velocity and

pressure solutions, respectively. Equation (9) can be written in matrix form as
[

K(µ) BT (µ)

B(µ) 0

]{

u(µ)

p(µ)

}

=

{

f (µ)

0

}

, (10)

where

Kij(µ) = a(φj ,φi;µ), Bij(µ) = b(ϕi,φj ;µ), f i(µ) = F (φi;µ), (11)

and we indicate with u(µ) and p(µ) theR
Nu andR

Np vector of coefficients of the discrete,

high-fidelity, velocity and pressure fields respectively.

Affine parametric dependence assumption

In this work we seek for an offline–online decomposition of the computational stages,

as required in the reduced order modelling context for an efficient evaluation of the

ROM [1]. During the offline stage, which we will summarize in “Reduced basis con-

struction through proper orthogonal decomposition” section, we carry out all expensive

computations (related to the IGA high-fidelity model); in contrast, we look for an online

phase (related to the ROM) which is extremely fast (see “Reduced order approximation

through Galerkin projection on the reduced spaces” section). In order to achieve this, we

require thatmatrices and vectors in (11) fullfil the following affine parametric dependence

assumption:

K(µ) =

QK
∑

q=1

�K
q (µ)K

q , B(µ) =

QB
∑

q=1

�B
qB

q , f (µ) =

Qf
∑

q=1

�
f
q(µ)f

q . (12)

Weemploy the empirical interpolationmethod (EIM) [49] to approximate this assumption

up to a desired tolerance. See also [50–53] for the application of EIM to viscous flows in

parametrized domains.

Shape parametrization by free-form deformation

In this section we show how to relate geometrical parameters µ to the IGA control points

position Pi(µ). Unfortunately, choosing the IGA control points position as geometrical
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parameters (i.e. G = dNg and [Pi(µ)]j = µ(i−1)d+j , i = 1, . . . ,Ng , j = 1, . . . , d) results in

an extremely high parameter space dimension G ≫ 1 which, in turn, may lead to poor

performance of the reduced ordermodel [e.g. due to an intractable number of terms in the

affine expansions (12)]. The aim of this section is to introduce an efficient representation

of the deformation of parametrized domains described by the IGA transformation (4).

Free-form deformation map

Free-form deformation (FFD) techniques, introduced in [43] in the late 80s, are a powerful

tool for the deformation of a computational domain by means of a small number of

displacements. FFDmaps have been employed in the reduced ordermodelling framework

for the first time in [54], as well as applied to shape optimization problems in [55], in

both cases considering an underlying finite element high-fidelity discretization. FFD has

been exploited in [54,55] to handle the deformation of � into �(µ) as the result of the

application of the FFD map to each node of the finite element mesh. In contrast, in this

work, we apply FFD to IGA control points to obtain their deformed position
{

Pi(µ)
}Ng

i=1,

and then rely on the map c(s; ·) in (4) to describe the deformed domain �(µ). To further

highlight the sequential nature between the high-fidelity IGA spatial description and the

application of FFD map to its control points we will follow the original derivation in [43],

that uses a different set of basis functions (Bernstein polynomials) than the more general

ones employed in “Problem formulation and isogeometric analysis-based high-fidelity

approximation” section. In any case, further extensions to B-splines or NURBS can also

be pursued [56].

Denote by D ⊂ R
d a box that contains all IGA control points

{

Pi(0)
}Ng

i=1 obtained (e.g.)

for µ = 0. Moreover, in order to apply Bernstein polynomials defined on the reference

hypercube2 D = [0, 1]d , let ψ(p) be the affine function that maps D to D. A (second) set

of equispaced control points {Qj}
Ng

j=1, namely the FFD control points is introduced, where

Ng :=
∏d

k=1Ng,k beingNg,k the number of FFD control points in the coordinate direction

k . The deformed position of the j-th control point is then obtained as Qj + µj . Since

it is possible for some FFD control points to be fixed or to be allowed to move only in

some prescribed coordinate direction, the parameter vector µ ∈ R
G will contain only the

non-zero displacement components, so thatG ≤ dNg . Effective computational reduction

is obtained ifNg ≪ Ng ; numerical tests will show that only a small number of FFD control

points will be necessary to obtain a large range of admissible shapes.

The Free-Form Deformationmap T (·;µ) : D → R
d is defined as the composition

T (p;µ) = ψ−1(T (ψ(p);µ)),

where T (·;µ) : D → R
d is

T (p;µ) =

Ng
∑

j=1

bj(p) [Qj + µj], (13)

and bj(p) is the tensor product of one-dimensional Bernstein polynomials

bj(p) = bj1 (p1) . . . bjd (pd), bjk (pk ) =

(

Nk

jk

)

(1 − pjk )
Ng,k−jk p

jk
k
.

2Even though actually D = �, we use different symbols to stress the fact that the two reference domains can be, in

principle, different depending on the choice of IGA and FFD basis functions.
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Finally, the parametrized position of each IGA control point is obtained applying the

FFD as follows:

Pi(µ) = T (Pi(0);µ).

More practical geometrical parameters in channel configurations

One of the drawbacks of FFD from practical point of view is the lack of immediate inter-

pretation of its parameters. Indeed, FFD is not interpolatory, so the magnitude of the

displacement of a control point is not exactly equal to the actual deformation obtained at

that spatial location. Recent works have improved the versatility (from the user point of

view) of complex shape parametrization techniques thanks to the automatic prescription

of control points position based on more intuitive geometrical parameters [57,58]. In

particular, for the test cases of “High-fidelity IGA solver validation” and “Reduced order

approximation of Poiseuille-like ows with meanline FFD” sections, we take advantage of

similiar ideas to propose a meanline FFD based on two (and four) intuitive geometrical

parameters related to two (and four) admissible rotations of themeanline of a channel con-

figuration. For the case of two rotations, a summary of themeanline FFD is shown in Fig. 2.

For the four rotation case, the extension is straightforward. Starting from a referencemesh

� and associated IGA control points
{

Pi(0)
}Ng

i=1 (Fig. 2a), a bounding boxD and a lattice of

FFD control points {Qj}
Ng

j=1 are introduced (Fig. 2b). The referencemeanline ofD is divided

in four intervals (Fig. 2c). In particular, in view of obtaining different channel configura-

tions, we employ two intuitive geometrical parameters θ1 and θ2 related to the rotation of

the second and third interval (Fig. 2d). FFD geometrical parameters {µj}
Ng

j=1 are then auto-

matically updated, being zero for all FFD control points in the first and last section, and

rotated by θ1 (θ2, respectively) in the second (third, respectively) section, as shown in Fig.

2e. Finally, the position of IGA control points
{

Pi(µ)
}Ng

i=1 is updated and (4) is applied to

get the deformeddomain�(µ) (see Fig. 2f). Since the relation between (θ1, θ2) and the FFD

parameters {µj}
Ng

j=1 can be automatically obtained in “High-fidelity IGA solver validation”

and “Reduced order approximation of Poiseuille-like ows withmeanline FFD” sections we

will refer to the former as geometrical parameters. Nevertheless, for the sake of exposition

in the next section we still maintain the more general notation µ to denote them.

In a similar way, FFD can also be employed to perform local variations to the section

area. In particular, FFD is applied in Fig. 3 to enlarge the outlet section of 3D channel

with rectangular section. This requires one geometrical parameter in 2D (related to the

height of the outlet section) and two geometrical parameters in 3D (related to the width

and height of the outlet section).

A POD-Galerkin ROM for parametrized Stokes equations

In this section we summarize a reduced order model (ROM) for parametrized Stokes

equations based on a PODmethod and a Galerkin projection (see [59] for a deeper insight

in the subject).

Reduced basis construction through Proper Orthogonal Decomposition

In the offline stage, denote by train = {µ1, . . . ,µNtrain} ⊂ D a (usually large) training set

ofNtrain points. For each sample point µi the high-fidelity IGA solver is queried to obtain

truth velocity and pressure solution. The following snapshotmatrices are then considered
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θ1

θ2

a f

b e

c d

with IGA control points {Pi(0)}
Ng

i=1
control points {Pi(µ)}

Ng

i=1

reference FFD control lattice
{ψ−1(Qj)}

Ng

j=1

{ψ−1(Qj+

µj)}
Ng

j=1

Reference mesh obtained by (4) Deformed mesh obtained by (4) with IGA

FFD bounding box and Deformed FFD control lattice

Reference meanline Deformed meanline

Fig. 2 Pipeline of the meanline free-form deformation for the 2 parameter case

Fig. 3 Change of the outflow section for problem 4: reference geometry (red), morphed geometry (blue)
and free form control points movement (dashed line)
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Su = [u(µ1) | . . . | u(µNtrain )] ∈ R
Nu×Ntrain ,

Sp = [p(µ1) | . . . | p(µNtrain )] ∈ R
Np×Ntrain .

A POD basis for the velocity and pressure reduced spaces are then obtained by a thin

singular value decomposition (SVD) of the snapshot matrices, i.e.

X1/2
u Su = Uu6uW

T
u , X1/2

p Sp = Up6pW
T
p

where

• Xu ∈ R
Nu×Nu (Xp ∈ R

Np×Np , respectively) is the matrix representing the velocity

(pressure, respectively) inner product;

• Uu ∈ R
Nu×Ntrain (Up ∈ R

Np×Ntrain , respectively) contains the velocity (pressure,

respectively) left singular vectors of Su (Sp, respectively);

• Wu ∈ R
Ntrain×Ntrain (Wp ∈ R

Ntrain×Ntrain , respectively) is an orthogonal matrices of the

velocity (pressure, respectively) right singular vectors of Su (Sp, respectively);

• 6u ∈ R
Ntrain×Ntrain (6p ∈ R

Ntrain×Ntrain , respectively) is a diagonal matrix, containing

the singular values of Su (Sp, respectively) sorted in descending order.

Moreover, the so-called supremizer enrichment is employed in this work in order to

satisfy the inf-sup stability also at the reduced order level [59–61]. Thus, for each training

sample the following elliptic problem is solved

Xus(µ
i) = BT (µi)p(µi), i = 1, . . . , Ntrain.

The resulting supremizer snapshots s(µi), i = 1, . . . , Ntrain are then stored in a snapshot

matrix Ss, on which a thin SVD is performed as described previously.

Finally, the reduced spaces dimensions Nu are chosen such that the retained energy Iu,

given by the sum of the squares of the singular values up to Nu normalized by the sum

up to Ntrain, is larger than a prescribed treshold. A similar procedure is applied to choose

Ns andNp. The basis functions of the reduced velocity space VN are then obtained as the

union of the first Nu left singular vectors of X
1/2
u Su to the first Ns left singular vectors of

X
1/2
u Ss. Similarly, the basis functions of the reduced pressure space QN are given by the

first Np left singular vectors of X
1/2
p Sp. The corresponding basis function matrices, that

hold the basis functions as column vectors, are denoted by Zu,s and Zp, respectively.

Reduced order approximation through Galerkin projection on the reduced spaces

In the online stage, we let µ ∈ D be a new value and we seek an approximation of the

form

u(µ) ≈ Zu,suN (µ), p(µ) ≈ ZppN
(µ)

through a Galerkin projection over the reduced spaces VN and QN . Therefore, the fol-

lowing problem has to be solved:
[

KN (µ) BT
N (µ)

BN (µ) 0

] {

uN (µ)

p
N
(µ)

}

=

{

fN (µ)

0

}

, (14)

where (see e.g. [1] for a detailed description)

KN (µ) = ZT
u,s K(µ) Zu,s, BN (µ) = ZT

p B(µ) Zu,s, fN (µ) = ZT
u,s f (µ)

and we indicate with uN (µ) and p
N
(µ) the R

Nu+Ns and R
Np vectors of coefficients of

the reduced order approximation of velocity and pressure fields. Moreover, thanks to the
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affine dependence assumption (12), during the online stage each block the ROM linear

system (14) can be assembled as

KN (µ) =

QK
∑

q=1

�K
q (µ)K

q
N , BN (µ) =

QB
∑

q=1

�B
qB

q
N , fN (µ) =

Qf
∑

q=1

�
f
q(µ)f

q
N ,

where the following matrices have been built at the end of the offline stage and stored in

memory:

K
q
N = ZT

u,s K
q Zu,s, B

q
N = ZT

p Bq Zu,s, f
q
N = ZT

u,s f
q ,

resulting in very efficient (N independent) online queries.We refer to Fig. 4 for a summary

of the proposed reduced order model, where the offline stage is shown in red, while the

online phase is displayed in green.

Numerical results

High-fidelity IGA solver validation

In order to validate our framework,wefirst perform some tests on the high-fidelitymethod

for problem with known, exact solution, both for the two dimensional and three dimen-

sional case. The first test is to recover the divergence-free solution:

Proper Orthogonal

Decomposition

basis functions

matrices Zu,s,Zp

assembly of structures

K
q
N = ZT

u,sK
q
Zu,s

B
q
N = ZT

p Bq
Zu,s

f
q
N = ZT

u,sf
q

assembly

KN (µ) =
QK

q=1
θK

q (µ)Kq
N

BN (µ) =
QB

q=1
θB

q (µ)Bq
N

fN (µ) =
Qf

q=1
θf

q (µ)fq
N

solution of the online problem

KN (µ)uN + BT
N (µ)p

N
= fN (µ)

BN (µ)uN = 0

θ•
q (µ)

Affine

assumption

recovery

uN (µ), p
N

(µ)µ ∈ D

offline

online

High fidelity structures

(affine decomposition)

Kq, Bq, f
q

Empirical Inter-

polation Method

Parametrized formulation

High-fidelity IGA Stokes problem

Fig. 4 Pipeline of the computational reduction paradigm “at large” for the problem at hand [60]



Salmoiraghi et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:21 Page 12 of 22

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ux = π cos(πx) cos(πy)

uy = π sin(πx) sin(πy)

uz = 0

p = π2 cos(2πx) sin(2πy)

in �

on a unitary cube � = [0, 1]3. The corresponding forcing term is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

fx = 2π3(cos(πx) cos(πy) − sin(2πx) sin(2πy))

fy = 2π3(sin(πx) sin(πy) + cos(2πx) cos(2πy))

fz = 0

in �. (15)

The exact solution is imposed as a Dirichlet boundary condition3 at ∂�.

In Fig. 5 we plot the convergence test for the solution over several refinement cycles on

a uniform grid. The rate of convergence is the one predicted by an a priori analysis, as

shown in [46]. In Fig. 6 the numerical solution for the last iteration is shown.

As a second test, we consider the two-dimensional Poiseuille flow in a rectangular

channel � = [0, L] × [−l, l] (see Fig. 7), whose solution is analytical:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u = u(y) = (1 − (y/l)2)ex

p = p(x) s.t. ∇p = −cex

u = u(0) on ŴD

u = 0 on ŴW

ν∇u · n − pn = 0 on ŴN

(16)

In this case, the error on the numerical solution reaches the machine epsilon already for a

single IGA element, that is, for 18 DoFs for u and 4 for p. This behaviour is related to the

fact that the solution is quadratic in the velocity and linear in the pressure and the fact that

we are using (S2,2
1,1 − S

1,1
0,0 ) for the solution of the problem for both the preliminary tests.

In Fig. 8 we plot the solution for Poiseuille flow on a rectangular domain with L = 10 and

l = 0.5.

Reduced order approximation of Poiseuille-like flows with meanline FFD

Once the code for the Poiseuille flow has been validated, we keep the same model and

boundary conditions and deform the original rectangle (for the two dimensional problem)

or parallelepiped (for the three dimensional case) domain through FFD, obtaining a family

of possible different configuration of Poiseuille-like flows, such as the one depicted in

Figs. 9, 10, 21, and provide main results regarding the ROM framework explained in “A

POD-Galerkin ROM for parametrized Stokes equations” section.

A summary of the computational details is given in Table 1. In Fig. 11 we provide

the geometry of the four problems we treat during the model order reduction: problem

1 characterized by two rotations and 2D (S2,2
1,1 − S

1,1
0,0 ) elements, problem 2 featuring

two rotation problem and an approximation by high-order 2D (S5,5
4,4 − S

4,4
3,3 ) elements,

problem 3 considering four rotation problem and 2D (S2,2
1,1 −S

1,1
0,0 ) elements, and problem

4 characterized by two rotations, change of the dimensions of the outflow section and

3D (S2,2,2
1,1,1 − S

1,1,1
0,0,0 ) elements. Thus, two geometrical parameters, namely angles θ1 and θ2

3Since in this case ŴN = ∅ we take Q = L20(�) := {q ∈ L2(�)s.t.
∫

�
q ds = 0}
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1 · 10−1 2 · 10−1 4 · 10−1

10−4

10−3
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eu L2

eu H1

ep L2

h2

h3

Fig. 5 Error convergence for sinusoidal solution test (velocity and pressure) according to the dimension of
the mesh elements ((S2,2

1,10 − S1,1
0,0 ) elements)

Fig. 6 Pressure (left) and velocity (right) solution for the sinusoidal preliminary test ((S2,2
1,1 − S1,1

0,0 ) elements);
DoFs: 20577 for u; 4913 for p

Fig. 7 Sketch of the domain and boundary conditions for Poiseuille viscous flow test

of the meanline FFD introduced in “More practical geometrical parameters in channel

configurations” section, are considered for problems 1, 2 and 4, with parameter range

D = [−75 deg, 75 deg]2. In a similar way, four geometrical parameters are considered for

problem 3, with parameter range D = [−45 deg, 45 deg]4. Moreover, for problem 4 we

also consider variation of the outlet section, that is,D = [−45 deg, 45 deg]2×[0, 2]2, being

µ = [θ1, θ2, δ lout , δ hout ] ∈ D the parameter vector encoding variation of the meanline

channel configuration (angles θ1 and θ2) and of the outlet area (width δ lout and height

δ hout increments with respect to the undeformed configuration).

The offline stage is carried out sampling from a random set train ⊂ D of cardinality

|train| = 500. This requires the solution of 500 IGA problems and the computation of

the SVD of the snapshot matrix (as explained in “Reduced basis construction through

proper orthogonal decomposition” section). The resulting singular values are depicted (in
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Fig. 8 Pressure (top) and velocity magnitude (bottom) solution for the Poiseuille viscous flow test
((S2,2

1,1 − S1,1
0,0 ) elements); DoFs: 18 for u; 4 for p

Fig. 9 Pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow test
((S2,2

1,1 − S1,1
0,0 ) elements), problem 1; DoFs: 2178 for u; 1024 for p

Fig. 10 Pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow test
((S2,2

1,1 − S1,1
0,0 ) elements), problem 3; DoFs: 2178 for u; 1024 for p

Table 1 Computational details about the high-fidelity model and themodel order

reduction

Problem number 1 2 3 4

Space dimension 2D 2D 2D 3D

IGA space dimension (Nv ,Np) (2178, 1024) (2592, 1225) (2178, 1024) (6591, 343)

Number of geometrical parameters 2 rotations 2 rotations 4 rotations 4 = 2 rotations+ outflow

variation (length and width)

Geometrical parameters range [−75◦ , 75◦]2 [−75◦ , 75◦]2 [−45◦ , 45◦]4 [−75◦ , 75◦]2 × [0, 2]2

Number of IGA control points 1089 1296 1089 2197

Number of FFD control points 10 10 20 40

EIM tolerance 10−3 10−3 10−3 10−3

EIM terms QK + QB + Qf 27 + 14 + 0 89 + 22 + 0 50 + 22 + 0 104 + 44 + 0

Number of snapshots 500 500 500 500

POD tolerance I(N) 10−3 10−2 10−2 2 ∗ 10−2

POD space dimension (Nu,s , Np) (20, 10) (20, 10) (20, 10) (40, 20)

HF evaluation time 1.5 s 6.1 s 1.5 s 27 s

POD offline construction time 250 s 2344 s 250 s 12325 s

POD evaluation time 0.07 s 0.08 s 0.08 s 0.11 s

Computational speedup POD 20 76 18 245
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Fig. 11 Sketch of the four different problems

decreasing order) in Figs. 12 (Problem 1), 13 (Problem 2), 14 (Problem 3), 15 (Problem 4).

The time required for this offline stage ranges from about 250 seconds for problems 1 and

3 to more than 12000 seconds for the three-dimensional problem 4.

In Fig. 16 we perform an error analysis on the solution of the reduced model compared

to the high-fidelity one for the geometry configuration of problem 1. In particular, they

show that 10 basis functions are enough to have an error lower than 10−3 for both pressure

and velocity. For the sake of visualization, we also report the reconstructed velocity and

pressure fields in Fig. 17 obtained for 10 basis functions. We can compare it with the

visualization of the high-fidelity solution of Fig. 9. Similar considerations apply for the

other problems: see Fig. 18 for problem 2, Figs. 9, 19 and 20 for problem 3, and Figs. 21,

22 and 23 for problem 4.
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10−11

10−5

101

N

S
in

gu
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r
V
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u
es

σu

σs

σp

Fig. 12 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 1
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Fig. 13 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 2
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Fig. 14 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 3
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Fig. 15 POD Singular Values for velocity, supremizers and pressure as a function of N, problem 4

Table 1 also highlights several factors that slightly affect the online performance in

terms of CPU time. A first point to take into account is related to the number of terms

resulting from the EIM approximation of parametrized tensors: comparing problems 1 to

2 and 3 we can see that both an increased high-fidelity discretization order and an higher

number of parameters result in a larger number of EIM terms. A second factor to take

into account is related to the reduced space dimension. This can be observed comparing

problems 1 and 4, where the latter requires a larger reduced space due to a slower decay

of POD singular values. In any case, computational speedups are of at least an order of

magnitude. Moreover, problem 4 is characterized by a speedup of order 102.
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Fig. 16 Error of the POD solution for pressure and velocity as a function of N, problem 1

Fig. 17 Pressure (left) and velocity magnitude (right) solution for the reduced order solution, problem 1;
DoFs: 10 for u; 10 for p
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Fig. 18 Error of the POD solution for pressure and velocity as a function of N, problem 2

Shape optimization of Poiseuille-like flows with ROM andmeanline FFD

We now present the results of the shape optimization routine for the deformable pipe.

Motivated by the error analysis of the previous section, we choose N = 10. The aim is

to find the parameter values that minimize the pressure drop in the pipe, for prescribed

inflow section and parametrizedmeanline variation (and outlet section, in case of problem

4). For prescribed outlet section, the exact result of the optimization procedure is the

straight pipe, obtained for null value of the angles; for parametrized outlet section, the

exact solution is characterized by null angles and maximum outlet area. The optimal

parameter is denoted by µ∗.

Details about the optimization algorithm are summarized in Table 2. In Table 3 we

summarize the main results for the optimization process, both for the high fidelity solver

and for the reduced order model. The error on the angles and on the pressure drop is

negligible in the case of the high fidelity solver. The error for the ROM is of the order



Salmoiraghi et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:21 Page 18 of 22

2 4 6 8 10

10−2

100

N

e
r
r

eu L2

eu H1

ep L2

Fig. 19 Error of the POD solution for pressure and velocity as a function of N, problem 3

Fig. 20 Pressure (left) and velocity magnitude (right) solution for the reduced order solution, problem 3;
DoFs: 10 for u; 10 for p

Fig. 21 Section of pressure (left) and velocity magnitude (right) solution for the Poiseuille-like viscous flow
test ((S2,2

1,1 − S1,1
0,0 ) elements), problem 4; DoFs: 6591 for u; 343 for p

Fig. 22 Section of pressure (left) and velocity magnitude (right) solution for the reduced order solution,
problem 4; DoFs: 20 for u; 20 for p
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Fig. 23 Error of the POD solution for pressure and velocity as a function of N, problem 4

Table 2 Details about the optimization algorithm

Geometrical parameters range Problem 1 Problem 2 Problem 3 Problem 4

[−75 deg, 75 deg] [−45 deg, 45 deg] [−75 deg, 75 deg]

Optimization algorithm MATLAB fmincon

Cost functional J
∫

Ŵin
p dŴ −

∫

Ŵout
p dŴ

Table 3 Main results for the optimization process

Problem 1 Problem 2 Problem 3 Problem 4

IGA POD IGA POD IGA POD IGA POD

Opt. CPU time (s) 90 2.5 280 2.5 151 7 1994 5

Opt. speedup – 36 – 112 – 21 – 400

‖µ − µ∗‖ 10−7 10−4 10−5 10−2 10−5 10−3 10−6 10−2

Pressure drop (J) 80 79.997 80 79.997 80 80.0003 126.43 126.43

Relative error on J 0 O (10−5) 0 O (10−5) 0 O (10−6) 0 O (10−6)

of 10−4 (10−4, respectively), and we obtain a computational speedup of about 36, for the

two rotation case. Interestingly, such speedup is considerably higher than the speedup

for a single simulation (which is around 20), most likely because it is generally easier for

optimization software to explore a smaller state space, and some smarter procedure may

be used internally to save computational effort. This behaviour is less evident for the four

rotation case (problem 3). We expect that also in the nonlinear case the computational

speedup would increase more considerably.

This simple shape optimization test case highlights the capability of the proposed

reduced order model (in terms of reducing the computational cost). In future more

complex applications will deal with the optimal design process of aero-hydrodynamic

components.

Conclusions and future work

We have presented a complete parametric design pipeline fromCAD to accurate and effi-

cient numerical simulation, by introducing geometrical parametrization based on FFD,

high order simulations based on IGA and efficient and stable computational reduction

strategies based on proper orthogonal decomposition, after the enrichment of the veloc-

ity space with suited supremizers. This setting is motivated and developed by industrial

applications in mechanical, nautical and naval engineering at low Reynolds number (e.g.

microfluidics devices characterized by low velocity flows and in small geometrical con-
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figurations). Results look promising to continue with the implementation of a viscous

non-linear model and more complex physical and geometrical problems in order to deal

with more advanced fluid mechanics indexes (vorticity, viscous stresses, viscous energy

dissipation), derived from the state equations. For example, we mention the project UBE

(Underwater Blue Efficiency) whose goal is the shape optimization of immersed parts of

motor yachts, including exhaust flow devices, for the reduction of emissions and vibra-

tions , in order to increase on-board comfort. This parametric design automatic embedded

pipeline is motivating also the investigation and improvement of some computational

aspects related with FFD and the already mentioned EIM.
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