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Abstract

We consider a phase field model for the formulation and solution of topology op-

timization problems in the minimum compliance case. In this model, the optimal

topology is obtained as the steady state of the phase transition described by the

generalized Cahn–Hilliard equation which naturally embeds the volume constraint

on the amount of material available for distribution in the design domain. We

reformulate the model as a coupled system and we highlight the dependency of

the optimal topologies on dimensionless parameters; also, we discuss the issue

of mesh dependency of the solution. We consider Isogeometric Analysis for the

spatial approximation which facilitates encapsulating the exactness of the repre-

sentation of the design domain in the topology optimization and is particularly

suitable for the analysis of phase field problems. We demonstrate the validity of

the approach and numerical approximation by solving two and three–dimensional

topology optimization problems.

Keywords: Topology optimization; minimum compliance; phase field model; Isogeo-
metric Analysis.

1 Introduction

In engineering it is often desired to apply some optimization techniques to the design
of a structure, component or device. Other than sizing [9, 108] and shape optimiza-
tion techniques [52, 69, 96], a significant contribution is given by topology optimization
[10, 12, 14, 84, 86], which represents the fundamental form of optimization; indeed, to-
pology optimization aims at finding the optimal distribution of a material in a design
domain such that an objective functional is minimized under certain constraints. The
minimum compliance case represents the most common topology optimization problem,
for which the goal is to generate the globally stiffest structure by distributing only a lim-
ited amount of material in the design domain [10, 12]; additionally, another interesting
problem consists in generating the lightest structure under stress constraints, see among
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the others e.g. [23, 36, 75]. Historically, topology optimization has been used principally
for structural static problems based on a linear elastic model, but many other cases have
also been successfully considered. For example, this is the case for applications in fluid
dynamics [1], heat conduction [45], vibration [58], multiphysics [92] and bioengineering
[110]; also topology optimization has been used for shell structures [65, 84] and with
different material models as in [88] for elastoplastic structures.

In most cases, topology optimization problems are defined in simplified geometries,
typically rectangles, representing the design domain. Even if this is a reasonable starting
point, in many cases it would be interesting to perform topology optimization for a
part or component of a structure for which an initial design already exists. Since it is
common practice in engineering to represent geometries with Computer Aided Design
(CAD) technologies, which are based on NURBS [80] or, more recently, T–splines [89],
it is desirable to include the exact representation of the design domain in the topology
optimization procedure. However, in current practice, the numerical approximation
scheme used for topology optimization, typically the Finite Element Method (e.g. [32,
54, 83]), requires the approximation of the design domain and disconnects the analysis,
and hence, the optimization from its geometrical representation.

In general, the capability to embed the CAD geometric representation in the analy-
sis and optimization provides not only accuracy advantages, but also has the potential
to considerably improve the efficiency of the overall design procedure. The importance
of establishing a suitable link between the optimization and the CAD representation is
recognized and discussed in [15] for shape optimization, in particular for shells struc-
tures; the authors propose a procedure combining design modeling, structural analysis
and optimization, for which these tasks are coordinated by means of a program system
named Computer Aided Research Analysis Tool [16] made available to the designer. In
[84] shape optimization problems are solved by considering the position of the control
points of B–spline [80] as design variables together with adaptive refinement strategies;
a similar procedure is extended to topology optimization problems, combining repeated
optimization steps with B–spline approximations of the optimal topologies and adaptive
refinement. In [69] the relation between CAD and shape parametrization is discussed
for shape optimization, especially for fluid dynamics; additionally, in [109] manipulation
of the splines is used to generate optimal geometries. Also, in [63] topology optimization
problems have been solved by using control points of B–spline curves as design variables
in an approach combing shape optimization and hole nucleation.

Isogeometric Analysis, a generalization of Finite Element Analysis for which basis
functions are defined by NURBS or T–splines [33, 55], provides the possibility to embed
the exact CAD representation of the design domain in topology optimization, in addition
to exhibiting several other advantages [8, 34, 39, 46]. Isogeometric Analysis has already
been introduced successfully and discussed for shape optimization in [29, 50, 70, 105]
and we believe that it also represents a potentially effective numerical approximation
method for topology optimization problems. Recently, Isogeometric Analysis has been
used in [91] to solve design optimization problems to generate optimal two–dimensional
structures by means of a procedure based on trimmed curves; this concept is further
extended in [90] for topology optimization problems. In this manner the final optimal
structure is represented by NURBS and T–splines and directly linked to the CAD rep-
resentation without the need of additional postprocessing of the topology optimization
result. However, even if this represents a great advantage and ideal situation, the to-
pology optimization results appear to be strongly dependent on the specific approach
used to generate the trimmed curves and surfaces. Additionally, B–spline bases are
considered in [61] for two–dimensional topology optimization problems. Ideally, a com-
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prehensive design optimization procedure based on Isogeometric Analysis could be used
to provide an optimized structure from an initial design domain passing through topo-
logy optimization, geometry generation and shape optimization, while maintaining the
centrality of the geometry in the overall procedure.

In its original formulation, topology optimization is a distributed and discrete valued
problem [12], for which only areas of material and void are allowed without intermedi-
ate states. However, this formulation leads to many difficulties both from the analysis
and the numerical points of view, and it requires efficient discrete optimizers, see e.g.
[98]. The most popular approach to overcome this difficulty is based on the material
distribution concept, for which the design variable corresponds to a density function
smoothly representing the distribution of the material in the design domain, with inter-
mediate values between the pure material and void states allowed. In this framework a
possible approach is the homogenization method [4], for which the macroscopic proper-
ties of the material are deduced from the microscopic properties of the porous material
represented by the density function; the first numerical approximation for an homog-
enized material was presented in [10]. However, in this approach solutions appear to
have an elevated number of microscopic holes and microstructures which are undesired
from a manufacturability point of view, when pure material and void states are re-
quired. In order to obtain these kinds of optimal topologies, the intermediate states can
be penalized by choosing suitable interpolation schemes for the dependency of macro-
scopic material properties on the density function; in the case of isotropic materials,
the Solid Isotropic Material Penalization (SIMP) model is the most successfully used
[11, 12, 67, 87]. Typically, topology optimization problems in this approach are solved
with suitable constrained optimization techniques and with low–order Finite Element
approximation for the density function, often piecewise constant over the elements.
However, additional stabilization and filtering techniques need to be introduced at the
level of the numerical approximation in order to remove or reduce the well–known mesh
dependency and checkerboard phenomena [12, 59] which affect the topology optimiza-
tion results. Different techniques have been considered to solve topology optimization
problems, among these are Evolutionary Structural Optimization (ESO) [111] and Bidi-
rectional ESO methods [113], heuristic procedures based on the identification of regions
of material with high and low contributions to the stiffness of the structure; also, other
optimization strategies based on the removal of material by the evaluation of topological
derivatives have been adopted [71]. However, in general, among the drawbacks of these
formulations there is the strong dependence of the optimal solution on the particular
optimizer utilized and its settings.

Recently, the use of the level set method [74] has been proposed to solve topology
optimization problems [3, 5, 35, 106]. In this approach, the introduction of a level set
function, which is associated with the density function, avoids directly tracking the
boundaries between the material and the void; the optimal solution is then obtained as
the evolution in time of the level set function, for which an optimizer is no longer needed.
However, topological changes are uni–directional, in the sense that holes can only be
removed in the design domain and inner front creation requires additional numerical
techniques [76, 112]; also, similar to other level set methods, repeated reinitializations
of the level set function are required while numerically solving the problem.

An alternative approach to topology optimization is provided by the multiphase
formulation, where the distribution of two phases, representing the material and void,
inside the design domain is described by a smooth function which coincides with the
density function. The geometrical information associated with the optimal topology is
then deduced from the sharp interfaces between the two phases, which are represented by
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thin layers. The definition of topology optimization problems in a multiphase approach
has recently been introduced for design dependent loads in [20] (and [21]), for problems
with stress constraints in [23] and for the minimum compliance case in [107, 115]; further
extensions are also considered in [102]. The concept at the basis of this approach is that
the objective functional to be minimized is penalized by means of additional terms
controlling the interfaces and the decomposition of the pure phases, which are typical of
multiphase problems [6, 25, 40]. In particular, the introduction of the interface term for
penalization allows the definition of a well–posed topology optimization problem [23],
and it provides at the discrete level optimal solutions not affected by mesh dependency
and checkerboard phenomena. Still the problem is formulated as an optimization one,
for which the optimal topology depends in general on the optimizer used.

Further, the topology optimization problem in the multiphase approach can be trans-
formed into a phase field problem for which the optimal topology is obtained as the
steady state of the phase transition; at the basis of this formulation there is the reinter-
pretation of the penalized objective functional introduced for the multiphase approach
as a total free energy. Traditional phase field models are represented by the Cahn–
Hilliard [25, 26, 27] and Cahn–Allen [6] equations, which have been introduced in met-
allurgy to describe phase segregation in binary alloy systems. More recently, phase field
approaches have been successfully considered to provide mathematical models for prob-
lems in different disciplines; for example, there are models for crack propagation [18, 66],
also with Cahn–Hilliard equation [97], image segmentation [104] and cancer and tumor
growth [41, 72]. The role of the phase field approach for topology optimization consists
in obtaining separated phases, material and void, divided by thin and sharp interfaces
for which the distribution of the material in the design domain is determined by the
optimization considerations. In this sense, this resembles the case of the Cahn–Hilliard
equation with elastic misfit, for which the distribution of the phases partially takes into
account the elastic properties of the materials; see e.g. [42]. In topology optimization,
this effect has to assume a leading role, and the distribution of the material depends
on the objective function of the topology optimization problem. Phase field models for
topology optimization have been considered firstly in [107, 114, 115] for the minimum
compliance case, also for multimaterials problems; a nonlinear fourth–order generalized
Cahn–Hilliard equation is derived and successfully solved for two and three–dimensional
problems by using a multigrid algorithm [114, 115] and with an approach which par-
tially decouples the phase and elasticity equations. The mass conservation property
of the Cahn–Hilliard equation is conveniently used to naturally take into account the
mass/volume constraint associated with the minimum compliance problem. More re-
cently, a similar approach based on the Cahn–Allen equation has been proposed in [102]
for shape and topology optimization, even if without the capability to introduce topo-
logical changes. In [30] a model based on the diffusion–reaction equation, with analogies
with the Cahn–Allen equation, is introduced for minimum compliance problems with
an augmented Lagrangian approach to take into account the mass/volume constraint.

Phase field models show many similarities with the level set approach, however, they
allow to naturally include hole nucleation in the formulation and avoid reinitializations
of level set functions while numerically solving the problem.

In this work we formulate the topology optimization problem for the minimum com-
pliance case by using a phase field approach following [114], since we feel that this kind
of formulation provides several advantages. Namely, it has the ability to naturally deal
with topological changes, to provide geometrical information, and to completely de-
scribe the topology optimization problem at the continuous level, without the necessity
of introducing any ad hoc numerical techniques at the discretization stage; also, since
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the problem of optimization is converted to a phase transition problem, the need to use
an optimizer, and hence the dependence of the solution on its settings, is eliminated
and replaced with the choice of a suitable time approximation scheme. We rederive the
generalized Cahn–Hilliard equation starting from the SIMP and multiphase approaches
on the basis of energy considerations, following the usual procedure for the derivation of
phase field models, and we highlight the parametric dependency of the problem intro-
duced by the penalization of the objective functional. Also, we rewrite the phase field
model as a coupled system of phase and elasticity equations, we provide its dimension-
less form, and we characterize it in terms of dimensionless parameters. We discuss the
choice of the parameters used to penalize the objective functional and the mesh depen-
dence of the optimal solution, and we extend the continuation method [20, 23, 71], an
optimization strategy based on the sequential solution of optimization subproblems, to
the phase field case.

For the numerical solution of the topology optimization problem in the phase field
approach we consider Isogeometric Analysis for the spatial approximation, since we be-
lieve that it provides several benefits for the solution of this kind of problem in analogy
with [46, 48] for phase field problems. Firstly, Isogeometric Analysis encapsulates the
CAD representation of the design domain in the topology optimization while providing
geometric flexibility; also, it ensures robustness, high–order accuracy, and the capability
to easily use compactly supported high–order basis functions for the approximation of
the nonlinear fourth–order generalized Cahn–Hilliard equation, whose numerical solu-
tion necessitates spatially C1–continuous functions. For the time approximation we use
the generalized–α method [31] together with a time–adaptive scheme that allows a very
efficient solution of the problem, which, in analogy to other phase field models, exhibits
fast and intermittent variations in time. We show the effectiveness of the proposed pro-
cedure by solving two and three–dimensional topology optimization problems in design
domains defined by NURBS geometries.

This work is organized as follows. In Sec. 2 the SIMP and multiphase approaches
for topology optimization in the minimum compliance case are recalled. In Sec. 3 the
derivation of the standard Cahn–Hilliard phase field model is recalled in anticipation of
the presentation in Sec. 4 of the phase field model for topology optimization. In Sec. 4
the generalized Cahn–Hilliard equation is derived, the coupled system presented, and
a dimensional analysis performed in order to highlight the dependency of the problem
on dimensionless parameters. In Sec. 5 we present the numerical approximation scheme
based on Isogeometric Analysis and the generalized–α method with time adaptivity. In
Sec. 6 we discuss the dependency of the optimal solution on the initial distribution of
material and the choice of the parameters upon which solutions depend; also, we present
the continuation method in the context of the phase field approach. In Sec. 7 we pro-
vide and discuss numerical results for two and three–dimensional topology optimization
problems. Finally, conclusions are presented in Sec. 8.
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Figure 1: Representation of a two–dimensional design domain Ω, boundaries ΓD, ΓN ,
surface force h and body force f .

2 Topology Optimization in the Minimum Compli-

ance Case

In this section we introduce the topology optimization problem in the minimum com-
pliance case by means of the SIMP and the multiphase approaches, which represent the
basis for the definition of the phase transition model of Sec. 4. Standard notation is used
through this work to denote the Sobolev spaces of functions with Lebesgue measurable
derivatives and norms; see e.g. [2].

2.1 The SIMP approach

Let us start by introducing a material density function ρ = ρ(x) to represent the dis-
tribution of a given material at any generic point x in a design domain Ω ⊂ R

d of
dimension d = 2, 3. By convention, ρ = 1 indicates the presence of the material, while
ρ = 0 corresponds to regions of Ω where the material is absent, which we will refer to
as void; intermediate states of ρ between 0 and 1 are allowed and indicate regions of
“soft” material. Also, we require that 0 ≤ ρ ≤ 1, since values outside this range do
not correspond to meaningful representations of the material distribution. We adopt a
formulation based on the linear elastic theory for small displacements with an isotropic
material [54], whose properties are fully described by the symmetric elastic tensor C0

which depends on the Young’s modulus E0, the Poisson ratio ν0 and the dimension d of
the problem (for d = 2, both the plane–stress and plane–strain cases can be considered).

The SIMP approach is based on the concept that the properties of the material
depend on the density function ρ for which the elastic tensor C(ρ) is a function of ρ; in
particular, we can write:

C(ρ) = g(ρ)C0, (1)

with g(ρ) a suitable function introducing the homogenization of the elastic properties
depending on the distribution of the material in Ω. The function g(ρ) assumes a crucial
role in the definition of the SIMP method, since the quality of the topology optimization
results strongly depend on it; we will return on this point later. It follows that the stress
tensor is dependent on ρ as:

σ̃(ρ,u) := C(ρ)ε(u), (2)

where ε(u) is the strain tensor associated to a given displacement u. We observe that
the stress tensor σ̃(ρ,u) is symmetric and linearly dependent on u; the superscript “∼”
is used to indicate the dependency on both ρ and u as independent variables.
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The elastic problem in strong form consists in finding the displacement u, for a given
material density function ρ, such that:

−∇ · σ̃(ρ,u) = f in Ω,

u = 0 on ΓD,

σ̃(ρ,u)n̂ = h on ΓN ,

ρ given,

(3)

where ΓD ⊂ ∂Ω is the Dirichlet partition of the design domain boundary ∂Ω where the
displacement is imposed, while ΓN := ∂Ω\ΓD is the part of the boundary where the
surface force h is applied (traction or pressure); for the sake of simplicity we assume a
null displacement on ΓD. Also, f is the body force acting in the domain Ω which we
consider independent on ρ. An example is presented in Fig. 1 for a two–dimensional
design domain.

Let us introduce, in view of the weak form of the elastic problem (3), the func-

tion spaces V :=
{
v ∈

[
H1(Ω)

]d
: v|ΓD

= 0
}
and H := {φ ∈ L∞(Ω) : g(ρ) ∈ L∞(Ω)};

moreover, we define the residual Ru(u; ρ)(v) ∈ R such that:

Ru(u; ρ)(v) :=

∫

Ω

σ̃(ρ,u) : ε(v) dΩ−
∫

Ω

f · v dΩ−
∮

ΓN

h · v dΓN , (4)

where we assume that all the Lebesgue integrals are well defined (this hypothesis holds

true for ρ ∈ H, u, v ∈ V, h ∈
[
L2(ΓN )

]d−1
and f ∈

[
L2(Ω)

]d
). Then, the elastic

problem (3) in weak form reads, for a given material distribution ρ ∈ H:

find u ∈ V : Ru(u; ρ)(v) = 0 ∀v ∈ V, ρ ∈ H. (5)

We observe that the displacement u ∈ V solving Eqs. (3) and (5) depends on the
prescribed ρ, for which u = u(ρ). In this manner the stress tensor of Eq. (2) associated
to the solution of Eq. (5) reads:

σ(ρ) := σ̃(ρ,u(ρ)) = C(ρ)ε(u(ρ)). (6)

We introduce the compliance energy of the system (5), say JE(ρ), as:

JE(ρ) :=

∫

Ω

ψE(ρ) dΩ, (7)

where ψE(ρ) is the strain energy function:

ψE(ρ) := ψ̃E(ρ,u(ρ)), (8)

with:
ψ̃E(ρ,u) := σ̃(ρ,u) : ε(u). (9)

We observe that the standard definition of the strain energy involves a factor of 1/2
which is neglected to maintain the formulation consistent with the typical one of the
topology optimization framework. Also, we notice that following from Eqs. (5) and (7),
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JE(ρ) ≡
∫

Ω

f · u(ρ) dΩ+

∮

ΓN

h · u(ρ) dΓN . Moreover, Eq. (7) can equivalently be writ-

ten as JE(ρ) = J̃E(ρ,u(ρ)), where from Eq. (9):

J̃E(ρ,u) :=

∫

Ω

ψ̃E(ρ,u) dΩ. (10)

In order to introduce the topology optimization problem in the minimum compliance
case, we recall that only a limited amount of material can be used, which means that
only a limited area/volume of Ω, say V < |Ω|, can be covered by the material, with V
defined as:

V :=

∫

Ω

ρ dΩ. (11)

In this sense, the topology optimization problem is constrained and the space of ad-
missible controls, say Had ⊂ H, in which we look for the optimal solution ρ∗ is defined

as Had :=

{
φ ∈ H : 0 ≤ φ ≤ 1 and

∫

Ω

φ = V

}
1. Then, the problem of topology op-

timization in the minimum compliance case corresponds to

find ρ∗ ∈ Had : ρ∗ = argmin ( JE(ρ) ) (12)

where JE(ρ) is the compliance energy (7) of the elastic system (5).
We recall that the elastic properties of the material are introduced in the topology

optimization problem by means of the interpolation function g(ρ) of Eq. (1). In general,
the topology optimization procedure allows “soft” regions of material in the design
domain, since ρ can assume intermediate values between 0 (void) and 1 (material).
However, these situations, even if consistent with the mathematical formulation, are
in general not desired as output of the optimization problem. Indeed, the goal is to
distribute a given material with its full elastic properties for which the desired values
of ρ are possibly only 0 (void) and 1 (material). In order to reduce or avoid these
situations, the function g(ρ) of Eq. (1) plays a crucial role. In the material interpolation
formulation, this function is typically chosen such that intermediate distributions of
material correspond to a material with poor stiffness properties; in this manner, due to
the area/volume constraint, the material is located to minimize the compliance energy
of the system. A typical choice for g(ρ) is based on the SIMP model, for which:

g(ρ) = ρP , (13)

with P ≥ max

{
2

1− ν0
,

4

1 + ν0

}
if d = 2 or P ≥ max

{
15

1− ν0
7− 5ν0

,
3

2

1− ν0
1− 2ν0

}
if d = 3;

the condition on the power P is to guarantee that the interpolation model represents a
material model [11, 12, 67]. Typically, since materials with ν0 = 1/3 are often consid-
ered, the power is chosen such that P ≥ 3 for both d = 2, 3; also this value is reasonable
even when a minimum value for ρ, say ρmin > 0, is introduced. We observe that other
choices of g(ρ) can be made, among these are rational functions [99] and B-splines [77],
which can be useful for vibration problems; see [12] for a wider discussion.

1In the standard definition of topology optimization problems in the minimum compliance case, the

area/volume constraint is an inequality one,

∫
Ω

ρ dΩ ≤ V ; see e.g. [12]. However, typically, the optimal

solution ρ∗ is such that V ∗ :=

∫
Ω

ρ∗ dΩ ≡ V in order to maximize the stiffness of the structure.
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The continuous topology optimization problem (12) does not admit, in general, the
existence of optimal solutions as pointed out and discussed in [12, 60]; moreover, the
uniqueness of the solution is also an issue, since multiple minima can be detected due to
the non–convex nature of the problem. However, even if in general ill–posed [60, 64, 95],
the topology optimization problem is discretized and then solved numerically. Typically,
see e.g. [11, 12, 99], low order Finite Element approximations are used to approximate
the density function ρ, even if other choices are possible (see [45] for a Finite Volume
Method). Then, the problem is solved by means of a suitable optimization method;
in this sense, the Method of Moving Asymptotes (MMA) represents one of the most
effective optimizers for the solution of topology optimization problems [100, 101]. The
fact that the continuous problem is ill–posed reflects on the numerical solution, even if
the discrete problem admits the existence of optimal solutions. This is revealed by the
so called mesh dependency effect, for which different optimal solutions are obtained with
different discretizations of the problem, specifically for different Finite Element meshes.
There are several techniques to contain or eliminate this effect, which are introduced
as global or local constraints; the most used ones are [12, 95]: local constraints on the
density gradient [79], local density and sensitivity filters [19, 79, 93, 94], global control
of the minimum length scale [49, 81], perimeter control or limitation, for which a global
constraint: ∫

Ω

∇ρ · ∇ρ dΩ ≤ PL, (14)

with PL > 0, is imposed [78]. The imposition of a perimeter constraint limits the number
of holes that a solution could exhibit. In practice, the constraint (14) is introduced to
make the topology optimization problem well posed, as shown in [7] for the continuous
case. An alternative approach to the inequality constraint on the perimeter has been
proposed in [51] and consists in perturbing the objective functional (7) with a smooth
penalty term for the perimeter PL.

Another undesired, but common, feature that optimal topologies can exhibit is the so
called checkerboard phenomenon, which indicates a numerical solution with patterns of
alternate 0–1 values (void–material) [12, 95]. As discussed in [59], this represents a form
of numerical instability associated with the approximation of the topology optimization
problem, which is a nonlinear mixed variational problem in the independent density and
displacement variables. Similarly to the case of linear mixed problems [22], stability
issues could arise at the discrete level even if the continuous problem is well posed.
Even if a comprehensive analysis of the stability properties has not been performed due
to the nonlinear nature of the problem, it has been shown in [59] for some particular
topology optimization problems, that using suitable pairs of Finite Element spaces for
the density and displacement variables eliminates the checkerboard issues 2. In general,
as pointed out in [12], any of the numerical techniques introduced to limit the mesh
dependency effect could be effectively used to avoid this phenomenon.

As a final remark, we observe that in order to properly solve the topology opti-
mization problem (12) in the SIMP approach, it is necessary to introduce additional
numerical techniques, which in general depend on the discretization chosen, with re-
spect to the original continuous formulation of the problem; also a suitable constrained
optimizer needs to be used.

2Other possibilities are the introduction of an augmented Lagrangian functional or the postprocessing
filtering of the numerical solution.
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2.2 The multiphase approach

In order to introduce the topology optimization problem in the multiphase approach, we
observe that the distribution of the phases, material and void, inside the design domain
Ω is represented by the material density function ρ. Also, we define the parameters
µ = (γ, λ) ∈ D, with γ and λ positive and the parameter set D ⊂ R

2, in order to intro-
duce a parametrization on the topology optimization problem. We define the following
penalized objective functional which depends on the parameters µ ∈ D:

J(ρ;µ) :=

∫

Ω

ψ(ρ;µ) dΩ, (15)

with the function ψ(ρ;µ) defined as:

ψ(ρ;µ) := γψE(ρ) + E0 (ψB(ρ) + λψI(ρ)) , (16)

where the strain energy function ψE(ρ) is defined in Eq. (8), ψB(ρ) is a suitable bulk
energy function and ψI(ρ) is the interface energy function:

ψI(ρ) :=
1

2
∇ρ · ∇ρ. (17)

The constant E0 is introduced to ensure that all the terms in Eq. (16) have the dimension
of an energy density 3. The objective functional J(ρ;µ) (15) can be rewritten as:

J(ρ;µ) = JE(ρ; γ) + JB(ρ;E0) + JI(ρ;λ;E0), (18)

where:

JE(ρ; γ) := γ

∫

Ω

ψE(ρ) dΩ, (19)

JB(ρ;E0) := E0

∫

Ω

ψB(ρ) dΩ, (20)

JI(ρ;λ;E0) := E0 λ

∫

Ω

ψI(ρ) dΩ. (21)

We observe that the objective functional (15) is penalized in the sense that two terms
proportional to ψB(ρ) and ψI(ρ) are added to the strain energy function ψE(ρ). In
particular, the bulk energy ψB(ρ) is a non–convex smooth function chosen in the form
of a double–well in the pure phases ρ = 0 and ρ = 1, for example, as ψB(ρ) = ρ(1−ρ) or
ψB(ρ) = ρ2(1− ρ)2 [23]; in this manner, the values assumed by ψB(ρ) for intermediate
values of ρ are larger than for the pure phases, which are preferred in the optimization
context. Also, further penalization terms can be added to ψB(ρ) in proximity of the
pure phases ρ = 0 and 1 in order to remove the inequality constraints 0 ≤ ρ ≤ 1 from the
formulation of the optimization problem; a possibility is to consider ψB(ρ) a logarithm–
type function with singularities in the pure phases. The interface energy function ψI(ρ)
plays an important role in the penalization of the compliance energy, since it represents
a measure of the perimeter of the interfaces between the phases; in this sense, it is the
relaxed version of the global perimeter limitation constraint (14) often introduced in
the SIMP method to remove the mesh dependency effect in the discretized problem.

3Eventually, the constant E0 could be included among the parameters µ ∈ D; however, the para-
metric dependence of the objective functional J(ρ;µ) (15) would still be completely represented by only
two parameters by means of suitable scalings.
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Also, this term assumes the role of controlling the thickness of the interfaces through
the parameter λ and thus the capability to capture the geometrical informations from
the optimal topology.

Finally, we notice that the objective functional (15) can be rewritten as J(ρ;µ) =

J̃(ρ,u(ρ);µ), where:

J̃(ρ,u;µ) :=

∫

Ω

ψ̃(ρ,u;µ) dΩ, (22)

with, following from Eq. (9):

ψ̃(ρ,u;µ) := γψ̃E(ρ,u) + E0 (ψB(ρ) + λψI(ρ)) . (23)

Similarly to Eqs. (18)–(21) we can write:

J̃(ρ,u;µ) = J̃E(ρ,u; γ) + JB(ρ;E0) + J(ρ;λ;E0), (24)

with:

J̃E(ρ,u; γ) := γ

∫

Ω

ψ̃E(ρ,u) dΩ. (25)

If we consider the penalized objective functional J(ρ;µ) (15) with the bulk energy
function ψB(ρ) embedding the penalization terms for the inequality constrains 0 ≤ ρ ≤
1, we can take the space of admissible controls as Had =

{
φ ∈ H :

∫
Ω
φ = V

}
, where

only the area/volume constraint is explicitly imposed and H = {φ ∈ L∞(Ω) ∩H1(Ω) :
g(φ) ∈ L∞(Ω)}; the extra regularity of H with respect to the SIMP approach is due to
the presence of the interface energy ψI(ρ) in the formulation. The topology optimization
problem in the multiphase approach corresponds to:

find ρ∗ ∈ Had : ρ∗ = argmin ( J(ρ;µ) ) , (26)

for any given parameter µ ∈ D. We observe that the optimal distribution of material in
the design domain is ρ∗ = ρ∗(x;µ) in the sense that it depends on the parametrization
introduced in the penalized objective functional (15).

The parameters µ = (γ, λ) ∈ D in Eq. (16) play a crucial role in the optimization
problem, since they regulate the balance of the different terms contributing to the pe-
nalized objective functional J(ρ;µ). For example, if γ is very large, the optimization
problem assumes a similar behavior to the SIMP approach. Conversely, if γ = 0, then
the optimal result ρ∗ is dominated by the bulk and interfaces terms only; this last case
corresponds to a pure multiphase problem, where the total free energy of the system is
minimized [26, 40] (see Sec. 3 for the Cahn–Hilliard equations).

Remark 2.1 A third positive parameter, say κ ∈ R, can be added to the parameter
vector µ ∈ D, such that µκ := (γ, λ, κ) ∈ Dκ, with Dκ ⊂ R

3. In this case, the penalized
objective functional (15) is redefined as:

Jκ(ρ;µκ) :=

∫

Ω

ψκ(ρ;µκ) dΩ, (27)

with the function ψκ(ρ;µκ):

ψκ(ρ;µκ) := γψE(ρ) + E0

(
1

k
ψB(ρ) + kλψI(ρ)

)
. (28)
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Then, the formulation of the topology optimization problem follows similarly to the pre-
vious case. The role of κ is twofold. Firstly, it ensures that the penalized objective func-
tional is convex for κ “sufficiently” large and the topology optimization problem (26) is
well–posed, as shown in [23] for a minimum weight topology optimization problem with
stress constraints in a relaxed approach. Secondly, it ensures that the optimal topology
converges to the pure phases 0 and 1 for κ → 0 [23], according to the properties of
Γ–convergence (see e.g. [68]) for functionals with interface terms [20]. On this basis the
parameter κ introduces the possibility to solve the topology optimization problem (26)
by means of the continuation method [12, 20, 23, 71]. In this procedure, the optimal
topology ρ∗ is obtained as the last step of a sequence of minimizers of locally convex
(or quasi–convex) optimization problems parametrized for decreasing values of κ and
initialized with the optimal solution of the previous step; this means that a non–convex
topology optimization problem without interface term, which corresponds to the ideal
formulation, is obtained as the limit for κ→ 0.

Finally, we observe that the topology optimization problem in the multiphase ap-
proach is completely defined at the continuous level and, eventually, for suitable choices
of the parameters, also well–posed. This is not the case of the SIMP formulation, which
is in general ill–posed at the continuous level and it requires the introduction of addi-
tional numerical techniques at the discrete level. However, a non–convex optimizer is
still required to solve the topology optimization problem in the multiphase context.

3 Phase Field Model: the Cahn–Hilliard Equation

In Sec. 2.2 we have considered the topology optimization problem as a multiphase ap-
proach for which a penalized objective functional is minimized; the formulation is how-
ever still set in an optimal control context, for which an optimization problem needs
to be solved to find ρ∗. However, the penalized objective functional can be interpreted
as a total free energy and the topology optimization problem recast in a phase transi-
tion setting. Indeed, in this case, the evolution of the phases is such that an energy is
minimized in time with respect to the initial configuration. In this section we provide
the derivation of the standard Cahn–Hilliard phase field model [25, 26, 27, 28] and we
highlight its properties in view of the phase field model for topology optimization in
Sec. 4. For further details in the analysis of the Cahn–Hilliard equation we refer the
interested reader to [24, 37, 38, 40, 85], while e.g. to [37, 46, 103] for its numerical
solution.

Let us consider a two phase problem, for which the phase transition is described by
the variable ρ = ρ(t,x), which corresponds to the concentration of one of the phases
in the domain Ω (the other one is obtained as 1 − ρ in the 0–1 binary representation).
The total free energy (Ginzburg–Landau free energy), which we indicate with F (ρ;λ)
[26, 27, 40], is expressed in the case of interest as:

F (ρ;λ) :=

∫

Ω

ψF (ρ;λ) dΩ, (29)

with the total free energy function ψF (ρ;λ) defined as:

ψF (ρ;λ) := C0 (ψB(ρ) + λψI(ρ)) , (30)

for a positive parameter λ ∈ D ⊂ R and the bulk and interface energies given in Sec. 2.2;
the parameter C0 is introduced to ensures that the function ψF (ρ;λ) assumes the di-
mension of an energy density. Typically, a double–well logarithm or quartic function is
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chosen for ψB(ρ) [26, 38, 40, 103], even if other type of functions can be conveniently
used.

The definition of the phase transition model is based on the concept of gradient flow
gradF (ρ, λ) of the functional F (ρ;λ) in the norm of a Hilbert space Z [28, 40], for which
the corresponding equation in strong form reads:

∂ρ

∂t
= −gradF (ρ;λ) in Ω, ∀t ∈ [0, T ), (31)

with ρ = ρ0 for t = 0 in Ω. Depending on the choice of the function space Z, different

phase transition models can be obtained; if Z =
{
ϕ ∈

(
H1(Ω)

)′
: 〈ϕ, 1〉 = 0

}
[40], the

Cahn–Hilliard gradient flow and the corresponding equation are obtained [25, 26, 27],
otherwise, if Z = L2(Ω), the Cahn–Allen equation is derived [6]. In particular, in the
Cahn–Hilliard case, the gradient flow gradF (ρ, λ) reads:

gradF (ρ;λ) = −∇ · (M(ρ)∇zF (ρ;λ)) , (32)

whereM(ρ) ≥ 0 is a sufficiently regular function called the mobility, which is typically a
constantM0 or degenerateM(ρ) =M0ρ(1−ρ), and zF (ρ;λ) is the potential associated to
the total free energy function ψF (ρ;λ); in the Cahn–Allen case, the gradient flow would
read gradF (ρ;λ) =M(ρ)zF (ρ;λ). The potential zF (ρ;λ), which we introduce for the
sake of simplicity, depends specifically on the choice made for the functional (29) and
in this case is obtained as the Gâteaux derivative in L2(Ω) of the total free energy (29):

(zF (ρ;λ), φ)L2(Ω) =
1

C0

dF

dρ
(ρ;λ)[φ] ∀φ ∈ H1(Ω), (33)

for some λ ∈ D; if further we assume that the boundary condition ∇ρ · n̂ = 0 is imposed
on ∂Ω, the potential zF (ρ;λ) simply reads:

zF (ρ;λ) = zB(ρ) + λzI(ρ), (34)

where:

zB(ρ) :=
dψB

dρ
(ρ), (35)

zI(ρ) := −∆ρ, (36)

for ρ sufficiently regular.
A standard formulation of the Cahn–Hilliard equation in strong form is:

∂ρ

∂t
= ∇ · (M(ρ)∇zF (ρ;λ)) in Ω, ∀t ∈ [0, T ),

M(ρ)∇zF (ρ;λ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(37)

for some λ ∈ D. We define the function space H :=
{
φ ∈ H2(Ω) : ∇φ · n̂ = 0

}
. Let us

assume that ρ ∈ C1 ([0, T );H) and so
∂ρ

∂t
∈ C0 ([0, T );H). That is, ρ is a C1–continuous

mapping from the time interval [0, T ) into H and
∂ρ

∂t
is a C0–continuous mapping from

13



[0, T ) into H. Consequently, for each t ∈ [0, T ), ρ ∈ H and
∂ρ

∂t
∈ H. From Eq. (37), for

each t ∈ [0, T ), the residual RCH(ρ;µ)(φ) ∈ R is given by:

RCH(ρ;λ)(φ) :=

∫

Ω

∂ρ

∂t
φ dΩ+

∫

Ω

M(ρ)∇zF (ρ;λ) · ∇φ dΩ. (38)

Then, the Cahn–Hilliard equation in weak form reads:

find ρ ∈ W : RCH(ρ;λ)(φ) = 0 ∀φ ∈ H, ∀t ∈ [0, T ),

with ρ = ρ0 in Ω, t = 0,
(39)

for some λ ∈ D. The Cahn–Hilliard equation (39) (or Eq. (37)) is endowed with the
following properties:

• Its solution ρ exists and is unique for the case of constant mobility as shown in
[85] for problems in dimensions d = 1, 2, 3 under suitable hypothesis for the bulk
function ψB(ρ) including its smoothness; existence of solutions is discussed in [38]
for the case of degenerate mobility.

• It is mass conservative in the sense that the area/volume covered by the phases in
Ω is constant in time; indeed, by using the definition (11), we can easily deduce
from Eq. (39) for φ = 1 that:

dV

dt
= 0 ⇐⇒ V ≡

∫

Ω

ρ0 dΩ ∀t ∈ [0, T ). (40)

• The total free energy functional (29) is a Liapunov functional; indeed, it is possible
to show from Eq. (39) that:

dF

dt
(ρ;λ) = −C0

∫

Ω

M(ρ)∇zF (ρ;λ) · ∇zF (ρ;λ) dΩ ≤ 0 ∀t ∈ [0, T ). (41)

This implies that the phase transition occurs in such a manner that the energy
associated to the Cahn–Hilliard equation is decreasing or at most conserved in
time; this property also holds true for the Cahn–Allen equation, since in general:

dF

dt
(ρ;λ) = −C0‖gradF (ρ;λ)‖2Z ≤ 0, (42)

in the norm induced by Z, see [40].

• Under suitable hypothesis on the function ψB(ρ) including its analyticity, in [85]
it is proved that, for a given ρ0, the unique solution ρ converges to an equilibrium

(steady state) and
∂ρ

∂t
→ 0 for t→ ∞ in the topology of the corresponding function

spaces. This implies from Eqs. (31) and (42) that the steady state solution is a

critical one for the total free energy F (ρ;λ) [37], with
dF

dt
(ρ;λ) → 0 for t→ ∞; it

follows that F (ρ;λ) evolves to a local minimum through the phase transition from
the initial solution ρ0.
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4 Topology Optimization with the Phase Field Model

We derive now the phase field model for topology optimization similarly to [114]. First,
we provide the generalized Cahn–Hilliard equation based on the multiphase approach
of Sec. 2.2; then, we reformulate the problem as a coupled system with phase and dis-
placements as independent variables and, finally, we discuss the dimensionless problem
highlighting its dependence on dimensionless parameters.

4.1 The generalized Cahn–Hilliard equation

In Sec. 3 we derived the Cahn–Hilliard equation starting from a total free energy func-
tional. We have observed that this phase field model is area/volume conservative and
the phase transition occurs in such a manner that the energy of the system decreases in
time. These two properties are crucial to recast the multiphase approach for topology
optimization of Sec. 2.2 in a phase transition model, since an area/volume constraint is
set in the minimum compliance case and a penalized objective functional needs to be
minimized.

The derivation of the generalized Cahn–Hilliard equation for the topology optimiza-
tion problem in the minimum compliance case follows in similar manner to Sec. 3 by
using the penalized objective functional (15). In particular, we have that:

∂ρ

∂t
= −grad J(ρ;µ) in Ω, ∀t ∈ [0, T ), (43)

where ρ = ρ0 for t = 0 in Ω,

grad J(ρ;µ) = −∇ · (M(ρ)∇z(ρ;µ)) , (44)

and the potential z(ρ;µ) deduced from the Gâteaux derivative in L2(Ω) of the penalized
objective functional (15):

(z(ρ;µ), φ)L2(Ω) =
1

E0

dJ

dρ
(ρ;µ)[φ] ∀φ ∈ H1(Ω), (45)

for some µ ∈ D. If we assume that ∇ρ · n̂ = 0 on ∂Ω, we have from Eq. (16) that:

z(ρ;µ) =
γ

E0
zE(ρ) + zB(ρ) + λzI(ρ), (46)

where zB(ρ) and zI(ρ) are defined in Eqs. (35) and (36), respectively, and:

zE(ρ) :=
dψE

dρ
(ρ). (47)

In order to evaluate zE(ρ), further elaborations are needed since
dψE

dρ
(ρ) =

dψ̃E

dρ
(ρ,u(ρ))

from Eq. (8); in particular, we have that:

zE(ρ) =
∂ψ̃E

∂ρ
(ρ,u(ρ)) +

∂ψ̃E

∂u
(ρ,u(ρ))

[
du

dρ
(ρ)

]
. (48)

From Eq. (9) we deduce that:

∂ψ̃E

∂ρ
(ρ,u) =

∂σ̃

∂ρ
(ρ,u) : ε(u); (49)
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similarly, by recalling that σ̃(ρ,u) depends linearly on u and the elastic tensor C(ρ) is
symmetric, we have:

∂ψ̃E

∂u
(ρ,u)

[
du

dρ

]
=

[
σ̃

(
ρ,
du

dρ

)
: ε(u) + σ̃(ρ,u) : ε

(
du

dρ

)]

= 2σ̃

(
ρ,
du

dρ

)
: ε(u).

(50)

In order to evaluate the term σ̃

(
ρ,
du

dρ

)
, we need to differentiate the weak form of the

elasticity equation (5) with respect to ρ; by assuming that the function
du

dρ
∈ V, we

obtain: ∫

Ω

σ̃

(
ρ,
du

dρ

)
: ε(v) dΩ+

∫

Ω

∂σ̃

∂ρ
(ρ,u) : ε(v) dΩ = 0 ∀v ∈ V, (51)

and hence for v = u:

σ̃

(
ρ,
du

dρ

)
: ε(u) = −∂σ̃

∂ρ
(ρ,u) : ε(u) = −∂ψ̃E

∂ρ
(ρ,u). (52)

By replacing the result (52) in Eq. (50), and then Eqs. (49) and (50) in Eq. (48), we
obtain:

zE(ρ) = z̃E(ρ,u(ρ)), (53)

with:

z̃E(ρ,u) := −∂ψ̃E

∂ρ
(ρ,u). (54)

The potential (46) can also be written as:

z(ρ;µ) := z̃(ρ,u(ρ);µ), (55)

where:
z̃(ρ,u;µ) :=

γ

E0
z̃E(ρ,u) + zB(ρ) + λzI(ρ), (56)

and equivalently:

z̃(ρ,u;µ) := − γ

E0

∂ψ̃E

∂ρ
(ρ,u) +

dψB

dρ
(ρ)− λ∆ρ. (57)

It is now possible to introduce the strong form of the generalized Cahn–Hilliard
equation for topology optimization from Eq. (43), which reads:

∂ρ

∂t
= ∇ · (M(ρ)∇z(ρ;µ)) in Ω, ∀t ∈ [0, T ),

M(ρ)∇z(ρ;µ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(58)

for some µ ∈ D. By recalling from Sec. 3 that ρ ∈ H for all t ∈ [0, T ), with
H :=

{
φ ∈ H2(Ω) : ∇φ · n̂ = 0

}
, we introduce the residual Rρ(ρ;µ)(φ) ∈ R such that:

Rρ(ρ;µ)(φ) :=

∫

Ω

∂ρ

∂t
φ dΩ+

∫

Ω

M(ρ)∇z(ρ;µ) · ∇φ dΩ. (59)
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It follows that the weak form of the generalized Cahn–Hilliard equation is:

find ρ ∈ W : Rρ(ρ(t;µ);µ)(φ) = 0 ∀φ ∈ H, ∀t ∈ [0, T ),

with ρ = ρ0 in Ω, t = 0,
(60)

for some µ ∈ D. We observe that Eq. (60) is obtained with the natural boundary
conditionM(ρ)∇z(ρ;µ) ·n̂ = 0 and the essential one ∇ρ ·n̂ = 0 defined on the boundary
∂Ω; due to its nature, the latter is embedded in the space H.

The generalized Cahn–Hilliard equation (60) (or Eq.(58)) represents a model for
topology optimization problems in the minimum compliance case, for which the following
properties hold similarly to the Cahn–Hilliard equation:

• The unique solution ρ exists by extending the result of [85] under suitable hy-
pothesis on the bulk and strain energy functions ψB(ρ) and ψE(ρ), in the case of
constant mobility.

• The area/volume covered by the material in the design domain Ω is constant
during the phase transition; see Eq. (40).

• The penalized objective functional J(ρ;µ) (15) is a Liapunov functional which
evolves in time by decreasing from the initial value corresponding to ρ0; indeed,
from Eq. (42) in analogy with Eq. (41), we have:

dJ

dt
(ρ;µ) = −E0

∫

Ω

M(ρ)∇z(ρ;µ) · ∇z(ρ;µ) dΩ ≤ 0 ∀t ∈ [0, T ). (61)

• If the functions ψB(ρ) and ψE(ρ) satisfy the hypothesis made in [85] for the bulk
energy of the Cahn–Hilliard equation, the unique solution ρ converges to a steady
state which minimizes the penalized objective functional J(ρ;µ) of the multiphase
approach with respect to the initial solution ρ0; in this manner, the optimization
problem is converted to a time dependent one and its optimal solution ρ∗ is ob-
tained as ρ for t→ ∞.

• The topology optimization problem is completely defined in the formulation by
choosing the data h, f , C0 and Ω, the function g(ρ) in Eq.(1), the mobility M(ρ),
the initial condition ρ0 (which also introduces the area/volume constraint V ) and
the parameters µ ∈ D.

In the current work we do not provide a rigorous analysis of the generalized Cahn–
Hilliard equation for topology optimization problems. At this point, we only speculate
on the possibility that the bulk ψB(ρ) and especially the strain energy ψE(ρ) functions
could satisfy the hypothesis made in [85] for the existence and uniqueness of the solution
ρ and its convergence to a steady state, the minimizer of J(ρ;µ); further limitations
on the material interpolation model could be eventually deduced to fit such hypothesis.
However, we observe that numerical tests exhibit the convergence of the solution to a
steady state for any given initial solution, for which we feel that the validity of the
considered phase field model could be shown also from an analytical point of view.

4.2 The coupled system

The generalized Cahn–Hilliard equation (60) (or Eq. (58) in strong form) is written in
terms of the phase variable ρ. However, in order to solve the problem it is necessary to
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evaluate the displacement u(ρ) by solving the elasticity equation (5) for a given value
of ρ. In practice, for each t ∈ [0, T ), there is a corresponding displacement u ∈ V.
For this reason, it is convenient to consider the phase ρ and the displacement u as two
independent variables and rewrite the generalized Cahn–Hilliard equation as a coupled
system of equations.

By recalling Eqs. (58), (56) and (3), the strong form of the coupled system is:

∂ρ

∂t
= ∇ · (M(ρ)∇z̃(ρ,u;µ)) in Ω, ∀t ∈ [0, T ),

−∇ · σ̃(ρ,u) = f in Ω, ∀t ∈ [0, T ),

M(ρ)∇z̃(ρ,u;µ) · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

∇ρ · n̂ = 0 on ∂Ω, ∀t ∈ [0, T ),

u = 0 on ΓD, ∀t ∈ [0, T ),

σ̃(ρ,u)n̂ = h on ΓN , ∀t ∈ [0, T ),

ρ = ρ0, in Ω, t = 0,

(62)

for some µ ∈ D. Also, for each t ∈ [0, T ), we define the residual R̃ρ(ρ,u;µ)(φ) ∈ R

from Eq. (59) by recalling the potential z̃(ρ,u;µ) (56):

R̃ρ(ρ,u;µ)(φ) :=

∫

Ω

∂ρ

∂t
φ dΩ+

∫

Ω

M(ρ)∇z̃(ρ,u;µ) · ∇φ dΩ; (63)

similarly, from Eq. (4), for each t ∈ [0, T ), we redefine R̃u(ρ,u;µ)(v) ∈ R to highlight
the explicit dependency on ρ and u as:

R̃u(ρ,u;µ)(v) :=

∫

Ω

σ̃(ρ,u) : ε(v) dΩ−
∫

Ω

f · v dΩ−
∮

ΓN

h · v dΓN . (64)

Then, the coupled system of generalized Cahn–Hilliard and elasticity equations in weak
form, which we will indicate as TO(µ), reads:

TO(µ)

find ρ ∈ W, u ∈ V :

R̃ρ(ρ,u;µ)(φ) = 0 ∀φ ∈ H, ∀t ∈ [0, T )

R̃u(ρ,u;µ)(v) = 0 ∀v ∈ V, ∀t ∈ [0, T ),

with ρ = ρ0 in Ω, t = 0,

(65)

for some µ ∈ D and the associated energy J̃(ρ,u;µ) defined in Eq. (22). We observe
that the displacement u depends on the time t ∈ [0, T ) implicitly trough the variation
of the phase ρ. Indeed, in the elasticity equation no time derivatives appear, meaning
that the displacement adapts instantaneously to the variation of the phase.

The reformulation of the generalized Cahn–Hilliard equation (60) (or Eq. (58)) into
the coupled system TO(µ) (65) provides an approach to analyze the problem in terms of
existence and uniqueness. Indeed, we notice that the coupled system (65) shows many
analogies with the Cahn–Hilliard equation with elastic misfit, also known as the Cahn–
Larchè model [62], for which the phase transition is also driven by elastic interactions
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of the material [42, 73]. In [42] the existence of a solution of such a system is proved as
well as its uniqueness for a specific choice of the elastic energy; in [43] the corresponding
discretized problem is analyzed. However, we remark that the Cahn–Larché equations
and the coupled system TO(µ) (65) corresponding to the generalized Cahn–Hilliard
equations are derived from different concepts. Indeed, the first equations follow from
thermodynamical considerations and balance laws for the species and the momentum
with ρ and u as independent variables. Conversely, the generalized Cahn–Hilliard equa-
tion is developed by considering the displacement variable as dependent on the phase
variable u(ρ) and only the balance of the species is taken into account; the coupled
system TO(µ) only represents a reformulation of such an equation.

4.3 Dimensionless form of the coupled system

We now rewrite the coupled system (65) in dimensionless form. With this aim, we
introduce the dimensionless space and time coordinates:

x⋆i = xi/L0, i = 1, . . . , d, t⋆ = t/T0 (66)

and the phase and displacement variables:

ρ⋆ = ρ, u⋆ = u/L0, (67)

where L0 and T0 are representative length and time scales, while the superscript ⋆ indi-
cates dimensionless variables. Also, if we use E0 as the representative Young modulus,
we obtain:

ε⋆(u⋆) = ε(u), σ̃⋆(ρ⋆,u⋆) = σ̃(ρ,u)/E0, (68)

and
z̃⋆E(ρ

⋆,u⋆) = z̃E(ρ,u)/E0, ψ̃⋆
E(ρ

⋆,u⋆) = ψ̃E(ρ,u)/E0,

z⋆B(ρ
⋆) = zB(ρ), ψ⋆

B(ρ
⋆) = ψB(ρ),

z⋆I (ρ
⋆) = L2

0 zI(ρ), ψ⋆
I (ρ

⋆) = L2
0 ψI(ρ),

(69)

while defining the reference surface and body forces h0 and f0, we have:

h⋆ = h/h0, f⋆ = f/f0; (70)

finally, the dimensionless mobility is:

M⋆(ρ⋆) =M(ρ)/M0. (71)

Let us define the following dimensionless parameters which we indicate with the vector
D = (D1, . . . , D5) such that:

D1 :=
L4
0

T0λM0
, D2 :=

L2
0

λ
, D3 := γ

L2
0

λ
,

D4 :=
E0

h0
, D5 :=

f0L0

h0
;

(72)

we observe that the parameter γ is dimensionless, while the parameter λ assumes the
same dimension as L2

0. Moreover, we define the dimensionless potential:

z̃⋆(ρ⋆,u⋆;D) := D3 z̃
⋆
E(ρ

⋆,u⋆) +D2 z
⋆
B(ρ

⋆) + z⋆I (ρ
⋆), (73)
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for which z̃⋆(ρ⋆,u⋆;D) = D2z̃(ρ,u;µ) and the dimensionless energy function:

ψ̃⋆(ρ⋆,u⋆;D) := D3 ψ̃
⋆
E(ρ

⋆,u⋆) +D2 ψ
⋆
B(ρ

⋆) + ψ⋆
I (ρ

⋆), (74)

for which ψ̃⋆(ρ⋆,u⋆;D) =
D2

E0
ψ̃(ρ,u;µ). With these, we define from Eq. (63) the di-

mensionless residual R̃⋆
ρ(ρ

⋆,u⋆;D)(φ⋆) ∈ R ∀t ∈ [0, T ):

R̃⋆
ρ(ρ

⋆,u⋆;D)(φ⋆) := D1

∫

Ω⋆

∂ρ⋆

∂t⋆
φ⋆ dΩ⋆

+

∫

Ω⋆

M⋆(ρ)∇⋆z̃⋆(ρ⋆,u⋆;D2, D3) · ∇⋆φ⋆ dΩ⋆,

(75)

for which R̃⋆
ρ(ρ

⋆,u⋆;D)(φ⋆) =
L4−d
0

λM0
R̃ρ(ρ,u;µ)(φ); similarly, from Eq. (64) we define

R̃⋆
u
(ρ⋆,u⋆;D)(v⋆) ∈ R ∀t ∈ [0, T ) as:

R̃⋆
u
(ρ⋆,u⋆;D)(v⋆) := D4

∫

Ω⋆

σ̃⋆(ρ⋆,u⋆) : ε⋆(v⋆) dΩ⋆

−D5

∫

Ω⋆

f⋆ · v⋆ dΩ⋆ −
∮

Γ⋆
N

h⋆ · v⋆ dΓ⋆
N ,

(76)

with R̃⋆
u
(ρ⋆,u⋆;D)(u⋆) =

1

h0Ld
0

R̃u(ρ,u;µ)(v). It follows that the dimensionless topo-

logy optimization problem in the phase field approach reads:

TO⋆ (D)

find ρ⋆ ∈ W, u⋆ ∈ V :

R̃⋆
ρ(ρ

⋆,u⋆;D)(φ⋆) = 0 ∀φ⋆ ∈ H, ∀t⋆ ∈ [0, T ⋆)

R̃⋆
u
(ρ⋆,u⋆;D)(v⋆) = 0 ∀v⋆ ∈ V, ∀t⋆ ∈ [0, T ⋆),

with ρ⋆ = ρ⋆0 in Ω⋆, t⋆ = 0,

(77)

with ρ⋆0 = ρ0 and T ⋆ = T/T0. The corresponding dimensionless penalized objective
functional (energy) follows from Eq. (74) as:

J̃⋆(ρ⋆,u⋆;D) =

∫

Ω⋆

ψ̃⋆(ρ⋆,u⋆;D2, D3) dΩ
⋆, (78)

with J̃⋆(ρ⋆,u⋆;D) =
1

E0

L2−d
0

λ
J̃(ρ,u;µ); the same scaling occurs for J̃⋆

E(ρ
⋆,u⋆), J⋆

B(ρ
⋆)

and J⋆
I (ρ

⋆).
We notice that the topology optimization problem (77) fully depends on the dimen-

sionless parameters D and the initial solution ρ⋆0, for which the principle of dimensional
similitude can be applied. Also, it is possible to reduce the parametric dependence by

setting D1 = 1 and hence choosing the representative time scale as T0 =
L4
0

λM0
; it follows

that the problem TO⋆ (D) (77) depends on D = (D2, . . . , D5).
We observe from Eq. (76) that the dimensionless parameters D4 and D5 of Eq. (72)

only affect the linear elasticity equation. The dimensionless parameters D2 and D3 are
responsible for changing the optimal solution of TO⋆ (D) once the data are set; indeed
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they control the balance of the strain, bulk and interfaces energies in the penalized
objective functional (78). From Eq. (74), we deduce that if D3 is very large, then the
phase field solution is dominated by the minimum compliance term of the penalized
objective functional. Conversely, if D3 → 0, specifically if due to γ → 0, TO⋆ (D) solves
the standard Cahn–Hilliard equation for the phase problem with the displacement u⋆

depending on the distribution of ρ⋆ in Ω⋆. Also, since from Eq. (72) D3 = γD2 and
D2 ∼ 1/λ, with λ related to the control of the thickness of the interfaces, we have that
D2 and D3 ≫ 1, when sharp interfaces are required.

Remark 4.1 For the sake of simplicity, we henceforth omit the superscript ⋆ to indicate
dimensionless quantities.

5 Numerical Approximation

In this section we discuss the numerical approximation of the topology optimization
problem TO(D) (77) by using a similar approach to the one used in [46, 48] for phase
field problems. In particular, for the spatial approximation we consider Isogeometric
Analysis [33, 55], while for the temporal approximation we use the generalized–αmethod
[31] with time adaptivity.

5.1 The spatial approximation

We consider design domains Ω described by a NURBS (or B–spline basis) [80], for both
the two and three–dimensional cases. The use of Isogeometric Analysis for the spatial
approximation of the PDEs allows us to encapsulate directly the geometry representation
in the analysis, by using the same basis functions used to represent the geometry [33, 55].
In this manner, no geometrical approximations are introduced in the analysis of the
topology optimization problem TO(D) (77).

Isogeometric Analysis provides a way to easily achieve high–order continuity in the
approximated solution without introducing extra degrees of freedom. In particular, for
the TO(D) problem, the use of globally C1(Ω)–continuous basis functions is necessary
to approximate the functional space H of the phase variable ρ. Specifically, we consider
basis functions of degree p ≥ 2 defined by open knot vectors with equally spaced internal
knots repeated at most p − 1 times; in this manner we ensure that the basis functions
are globally C1(Ω)–continuous. We consider the same basis functions for the phase ρ
and the displacement u.

We introduce the finite dimensional spaces Hh ⊂ H and Vh ⊂ V , with the above
mentioned properties, of dimensions nh,ρ := dim (Hh) and nh,u := dim (Vh). Due to the
properties of the NURBS basis, the essential boundary condition ∇ρ · n̂ = 0 is easily
introduced in the space Hh by imposing equality of two consecutive control values of
ρ normal to the boundary. We illustrate strong imposition of the essential boundary
condition in Fig. 2 for a one–dimensional B–spline basis of degree 2. This also holds for
NURBS and for the multidimensional case. For each t ∈ [0, T ), ρh ∈ Hh and uh ∈ Vh

have the representations:

ρh(t,x) =

nbf∑

A=1

ρA(t)NA(x), uh(t,x) =

nbf∑

A=1

uA(t)NA(x), (79)
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Figure 2: B–spline basis of degree 2 and knot vector Ξ =
{{0}3i=1, 0.2, 0.4, 0.6, 0.8, {1}3i=1}; the two external pairs of basis functions are
marked with squares and circles to indicate that the corresponding control variables
need to be equal to impose the boundary condition ∇ρ · n̂ = 0 on ∂Ω.

with NA(x) the NURBS basis and nbf the number of basis functions; the corresponding
test functions are:

φh(x) =

nbf∑

A=1

φANA(x), vh(x) =

nbf∑

A=1

vANA(x). (80)

Then the discrete TOh(D) coupled problem for any t ∈ [0, T ) is:

TOh (D)

find ρh ∈ Hh, uh ∈ Vh :

R̃ρ(ρh,uh;D)(φh) = 0 ∀φh ∈ Hh,

R̃u(ρh,uh;D)(vh) = 0 ∀vh ∈ Vh,

(81)

where the discrete initial condition ρ0,h is obtained as the L2(Ω) projection of ρ0 in the
space Hh. The total number of degrees of freedom of TOh(D) is nh := nh,ρ + nh,u.
Finally, we introduce from Eq. (79) the vectors of control variables:

Ṗ(t) := {ρ̇A(t)}nbf

A=1, P(t) := {ρA(t)}nbf

A=1, U(t) := {uA(t)}nbf

A=1 , (82)

and, from Eqs. (75) and (76), the discrete residuals:

Rρ

(
Ṗ(t),P(t),U(t)

)
:=

{
R̃ρ(ρh,uh;D)(NA)

}nbf

A=1
,

Ru

(
Ṗ(t),P(t),U(t)

)
:=

{{
R̃u(ρh,uh;D)(NAêi)

}d

i=1

}nbf

A=1

,
(83)

where êi, with i = 1, . . . , d, represent the orthonormal basis of the space R
d; for the

sake of simplicity, we neglected the explicit dependency of the discrete residuals on D

in Eq. (83).
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5.2 The time approximation

The time approximation of the TO(D) problem (77) represents a challenge similar
to that for the Cahn–Hilliard equation due to the fourth–order term and significant
nonlinearities. We use the generalized–α method; see [31, 57] and also [8, 46]. Moreover,
since the solution of the topology optimization problem is obtained as the steady state
solution of the coupled system (77), i.e. for t→ ∞ (or T sufficiently large), we need an
adaptive time scheme that reduces the time step size when necessary and increases it as
the solution approaches the steady state. We employ the same procedure proposed in
[46] for the Cahn–Hilliard equation, which is based on an accuracy criterion and reduces
the computational costs of the simulation while maintaing an adequate level of accuracy.

Very recently, a new second–order accurate, provably unconditionally stable, time
integration algorithm for phase field models has been developed in [47]. This would
provide a viable alternative to the generalized–α method.

5.2.1 Time step scheme

Let us subdivide the time interval [0, T ) by introducing the discrete time vector {tn}nts

n=0,
with ∆tn := tn+1− tn the width of the time interval at the step tn, for which the control
variables (82) are Ṗn+1 = Ṗ(tn), Pn+1 = P(tn) and Un+1 = U(tn). Then, if we
interpret the variables Ṗn+1 and Pn+1 as independent, the generalized–α method for
the TOh(D) problem at time step tn+1 reads from Eq. (83):

find Ṗn+1, Pn+1, Ṗn+αm
, Pn+αf

, Un+1 :

Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)
= 0,

Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)
= 0,

Pn+1 = Pn +∆tnṖn + δ∆tn

(
Ṗn+1 − Ṗn

)
,

Ṗn+αm
= Ṗn + αm

(
Ṗn+1 − Ṗn

)
,

Pn+αf
= Pn + αf (Pn+1 −Pn) ,

(84)

with Ṗn and Pn given; the parameters αm, αf and δ ∈ R, chosen on the basis of stability
and accuracy considerations, define a specific generalized–α method. As described in
[54, 57] we select αm, αf and δ as follows:

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
, αf =

1

1 + ρ∞
, δ =

1

2
+ αm − αf , (85)

where ρ∞ ∈ [0, 1] is the spectral radius of the amplification matrix at ∆t → ∞. See
[54, 57] for further details.

The nonlinear system (84) is solved for each time step tn+1, for n = 0, . . . , nts−1, by
means of a two stage predictor–multicorrector algorithm, for which the control variables
at the time step tn+1 are obtained iteratively, where Ṗn+1,(i), Pn+1,(i) and Un+1,(i),
for i = 0, 1, . . . , imax, are the iterates and where i = 0 indicates the predictor. At the

23



predictor stage the control variables are initialized as:

Ṗn+1,(0) =
δ − 1

δ
Ṗn,

Pn+1,(0) = Pn,

Un+1,(0) = Un.

(86)

At the multicorrector stage the following iteration steps are repeated for i = 1, . . . , imax:

1. Update the control variables following the last two relations of Eq. (84):

Ṗn+αm,(i) = Ṗn + αm

(
Ṗn+1,(i−1) − Ṗn

)
,

Pn+αf ,(i) = Pn + αf

(
Pn+1,(i−1) −Pn

)
,

Un+1,(i) = Un+1,(i−1).

(87)

2. Assemble the residuals:

Rρ,(i) := Rρ

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
,

R
u,(i) := Ru

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
.

(88)

3. If the following stopping criteria on the relative norms of the residuals:

‖Rρ,(i)‖
‖Rρ,(0)‖

< tolR and
‖R

u,(i)‖
‖R

u,(0)‖
< tolR (89)

are satisfied for a prescribed tolerance tolR, set the control variables at time step
tn+1 as Ṗn+1 = Ṗn+1,(i−1), Pn+1 = Pn+1,(i−1) and Un+1 = Un+1,(i−1) and exit
the multicorrector stage; else proceed to step 4.

4. Define the consistent tangent matrices from Eq. (83):

Kρρ,(i) := Kρρ

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
,

Kρu,(i) := Kρu

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
,

K
uρ,(i) := Kuρ

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
,

K
uu,(i) := Kuu

(
Ṗn+αm,(i),Pn+αf ,(i),Un+1,(i)

)
,

(90)
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where, by using Eq. (84), we have:

Kρρ

(
Ṗn+αm

,Pn+αf
,Un+1

)
:=

∂Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Ṗn+αm

∂Ṗn+αm

∂Pn+1

+
∂Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Pn+αf

∂Pn+αf

∂Pn+1

=
αm

δ∆tn

∂Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Ṗn+αm

+αf

∂Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Pn+αf

,

Kρu

(
Ṗn+αm

,Pn+αf
,Un+1

)
:=

∂Rρ

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Un+1
,

Kuρ

(
Ṗn+αm

,Pn+αf
,Un+1

)
:=

∂Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Ṗn+αm

∂Ṗn+αm

∂Pn+1

+
∂Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Pn+αf

∂Pn+αf

∂Pn+1

=
αm

δ∆tn

∂Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Ṗn+αm

+αf

∂Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Pn+αf

,

Kuu

(
Ṗn+αm

,Pn+αf
,Un+1

)
:=

∂Ru

(
Ṗn+αm

,Pn+αf
,Un+1

)

∂Un+1
.

(91)

5. Solve the following linear system in the variables ∆Pn+1,(i) and ∆Un+1,(i):

Kρρ,(i)∆Pn+1,(i) +Kρu,(i)∆Un+1,(i) = −Rρ,(i)

K
uρ,(i)∆Pn+1,(i) +K

uu,(i)∆Un+1,(i) = −R
u,(i).

(92)

6. Update the control variables:

Ṗn+1,(i) = Ṗn+1,(i−1) +
1

δ∆tn
∆Pn+1,(i),

Pn+1,(i) = Pn+1,(i−1) +∆Pn+1,(i),

Un+1,(i) = Un+1,(i−1) +∆Un+1,(i).

(93)

and return to step 1.
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5.2.2 Time adaptivity

We consider an adaptive scheme similar to the one proposed in [46], which is based
on the comparison of the solutions obtained with the generalized–α method and the
backward Euler method [82]. The backward Euler method can be obtained by setting
αm = αf = δ = 1 in the generalized–α method.

The adaptive time scheme starts, for each time step tn+1, n = 0, . . . , nts − 1, with
the given control variables Ṗn, Pn and Un, and a given time step ∆tn, typically that
used at the previous time step. Then, in the adaptive algorithm the following steps
are repeated for l = 1, . . . , lmax, starting with ∆tn,(0) = ∆tn−1 (or, if n = 0, with
∆tn,(0) = ∆t0):

1. Compute the control variables Ṗn+1,(l−1), Pn+1,(l−1) and Un+1,(l−1) with the
generalized–α method of Sec. 5.2.1 for ∆tn,(l−1).

2. Compute the control variables ṖBE
n+1,(l−1), P

BE
n+1,(l−1) and UBE

n+1,(l−1) by means of
the backward Euler method for ∆tn,(l−1).

3. If the generalized–α or the backward Euler methods are not converging (i.e. the
predictor–multicorrector algorithm of Sec. 5.2.1 is not convergent), reduce the time
step by means of a safety coefficient χNC ∈ (0, 1), update ∆tn,(l) as:

∆tn,(l) = χNC ∆tn,(l−1), (94)

and return to step 1; else proceed to step 4.

4. Evaluate the relative error associated to ∆tn,(l−1):

en+1,(l−1) :=
‖Pn+1,(l−1) −PBE

n+1,(l−1)‖
‖Pn+1,(l−1)‖

+
‖Un+1,(l−1) −UBE

n+1,(l−1)‖
‖Un+1,(l−1)‖

. (95)

5. Update the time step size according to the following formula:

∆tn,(l) = χn,(l−1)∆tn,(l−1), (96)

where:

χn,(l−1) := min

{
χA

(
tolA

en+1,(l−1)

)1/2

, 1 + χGR

}
, (97)

with tolA a prescribed tolerance, χA ∈ (0, 1) a suitable safety coefficient and
χGR > 0 the maximum growth rate admitted.

6. If en+1,(l−1) ≥ tolA, return to step 1. Otherwise, update the control variables

Ṗn+1 = Ṗn+1,(l−1), Pn+1 = Pn+1,(l−1), Un+1 = Un+1,(l−1) and the time step
∆tn = ∆tn,(l), and exit the loop.

We observe that on the basis of the previous algorithm, one of following three situ-
ations occurs after step 6:

• if en+1,(l−1) < χ2
AtolA, the time step size is increased, the control variables of

step 1 are considered valid and the loop ends;

• if χ2
AtolA ≤ en+1,(l−1) < tolA, the time step size is reduced, the control variables

of step 1 are still considered valid and loop terminates;
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• if en+1,(l−1) ≥ tolA, the time step size is reduced, the control variables of step 1
are invalid and the steps 1–6 are repeated.

Since the steps 1 and 2 are computationally expensive, the occurrence of the last case
should be minimum; as pointed out in [46], this is the case if good choices for the
parameters tolA and χA are made.

6 Selection of Parameters

In Sec. 4.3 we provided the dimensionless form of the topology optimization prob-
lem (77), which we proposed to solve numerically by means of Isogeometric Analysis
and the generalized–α method in Sec. 5. However, as already pointed out, the solution
of the TO(D) problem depends on the dimensionless parameters D, which depend on
parameters µ ∈ D introduced in Sec. 2.2. In this section we address the issue of the
choice of the parameters µ ∈ D and the mesh dependency effect, we select the interpo-
lation function g(ρ) (13) and the bulk energy ψB(ρ) (16), we describe the continuation
method which could be used for topology optimization in the phase field approach, and
we discuss the choice of the initial solution ρ0.

6.1 The choice of the parameters µ ∈ D and mesh dependency

The dimensionless parameters D (72) depend both on the data of the problem and the
parameters µ = (λ, γ) ∈ D; in particular, only the dimensionless parameters D2 and
D3 and the representative time scale T0 are related to µ ∈ D, since we set D1 = 1.

For the choice of the parameter λ we adopt similar considerations to the ones made
in [46, 48]. The Cahn–Hilliard equation converges for λ→ 0 (see Eq. (30)) to a thermo-
dynamically consistent sharp–interface model, for which the representative length scale
of the interface is related to

√
λ. Similarly, for the generalized Cahn–Hilliard equation

for topology optimization, the value of λ should be sufficiently small in order to provide
realistic results with sharp interfaces between the material and the void. Moreover, λ is
responsible for the number of holes appearing in the optimal topology, since in general
it is associated with the interface energy ψI(ρ) of Eq. (17) controlling the perimeter of
the interfaces.

From a numerical point of view, we observe that the computational mesh used for
the spatial approximation should be fine enough to capture the thin layers between the
material and void. For these reasons, following from the dimensional considerations of
Sec. 4.3, we assume that the thickness of the interfaces depends on the computational
mesh and the parameter λ is chosen as [46]:

λ = λh2, (98)

where h is the characteristic length of the computational mesh, defined as:

h := max
i=1,...,nel

V
1/d
i , (99)

with Vi the area/volume of the i–th element of the mesh composed by nel elements.
The parameter λ is dimensionless and it is chosen by the user. Indeed, it is difficult to
specify at this point what value λ should assume since it depends in general on the data
of the topology optimization problem; for example, in [46] it is shown that for the Cahn–
Hilliard equation λ should depend on the area/volume V covered by the material in Ω.
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According to this choice, the thickness of the interfaces is roughly equal to
√
λ =

√
λh,

with shaper interfaces for finer meshes, which in turn allow more detailed topologies to
be obtained. On the other hand, the parameter λ introduces a mesh dependency in the
topology optimization problem through D2, D3 and T0; this represents an undesired
issue in topology optimization since the optimal distribution of the material in the
design domain Ω changes with the spatial approximation used. However, in the phase
field and multiphase approaches, the mesh dependency of the optimal topology could
be eliminated by using a fixed value of h, say h0, for the evaluation of the parameter λ
for all the computational meshes having h ≤ h0.

The choice of the parameter γ is important. A value of γ that is too small will
cause the objective functional to be dominated by the interface and bulk energy terms;
if γ is too large, divergence may occur. The role of γ is to properly balance the strain
energy function ψE(ρ) with respect to the bulk and interface energy functions, ψB(ρ)
and ψI(ρ), in Eq. (16). However, it is difficult to determine a priori a suitable value for γ
by means of dimensional analysis; this is due to the fact that the strain energy strongly
depends on data of the topology optimization problem, which are not represented by the
dimensionless parameters, such as the shape of the design domain Ω and the direction
of the body and surface forces f and h. In [114, 115], the values differ from one test case
to another; in [23, 102] the choice of γ appears to be arbitrary, while in [20] it is made
by trial and error. In order to ensure a proper balance of the strain energy with respect
to the other energies in (22), we propose to decompose the dimensionless parameter γ
as:

γ = γ γE , (100)

where γ is a positive parameter chosen by the user and γE is computed from Eqs. (72)
and (74) as:

γE =

∫

Ω

(
D2ψB(ρ0) + ψI(ρ0)

)
dΩ

∫

Ω

D2ψ̃E(ρ0,u(ρ0)) dΩ

, (101)

with ρ0 the initial density, ψE(ρ0) = ψ̃E(ρ0,u(ρ0)) from Eq. (69) and, in order to make
γE independent of λ, from Eqs. (72) and (98) we set

D2 := λD2 =
L2
o

h2
. (102)

Finally, from Eqs. (98) and (101), we obtain from Eq. (72) that the dimensionless
parameters D2 and D3 are:

D2 =
L2
0

λh2
, D3 = γγED2 = γγE

L2
0

λh2
, (103)

while T0 =
L4
0

λh2M0

, since we have set D1 = 1.

At this point, the topology optimization problem TO(D) still depends on the arbi-
trary choices made for the parameters λ and γ. However, numerical tests reveal that
these dimensionless parameters vary in a limited range of values for different topology
optimization problems; indeed, we typically select λ ∈ [0.5, 6.0] and γ ∈ [0.5, 4.0]. On
the other hand, these parameters allow the user to modify the outcome of the topology
optimization results. In particular, the number of holes of the optimal topology can be
increased or decreased by decreasing or increasing λ, respectively.
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Figure 3: Functions f(ρ) (—) and fSIMP (ρ) (- -) (left) and interpolation functions g(ρ)
(—) and gSIMP (ρ) (- -) (right).

6.2 The choice of the interpolation function g(ρ) and the bulk

energy function ψB(ρ)

As anticipated in Sec. 2.1 the interpolation function g(ρ) is typically chosen as g(ρ) = ρP

(see Eq. (13)), with P ≥ 3 for an isotropic material with ν0 = 1/3. We consider a similar
interpolation rule which ensures that ρ exceeds a minimum value ρmin and, to avoid
numerical issues, the condition that the first and second derivatives of such interpolation
function are zero at the pure phases 0 and 1. In particular, we consider:

g(ρ) = f(ρ)P , (104)

with f(ρ) the following C2–continuous function:

f(ρ) :=





ρmin if ρ < ρ1,

ρmin + (1− ρmin)b(ρ) if ρ1 ≤ ρ < ρ6,

1 if ρ ≥ ρ6,

(105)

and b(ρ) a C2–continuous third–degree B–spline in ρ obtained with the open knot vector
S = {{ρ1}4i=1, ρ2, . . . , ρ5, {ρ6}4i=1} and the control points P = {0, 0, 0, 0, 1, 1, 1, 1}; see
[80]. In Fig. 3 we compare the function f(ρ) with the typical SIMP function, fSIMP (ρ),
which is only C0–continuous in [0, 1], where:

fSIMP (ρ) :=

{
ρmin if ρ < ρmin,

ρ if ρ ≥ ρmin;
(106)

also, we compare the interpolation function g(ρ) (104) with the SIMP function say
gSIMP (ρ) = fSIMP (ρ)

P for P = 3; in particular, we choose ρmin = 0.1 and S =
{{0.055}4i=1, 0.065, 0.075, 0.925, 0.935, {0.945}4i=1}.
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For the bulk energy function ψB(ρ) we select the following C∞–continuous function
in ρ:

ψB(ρ) = ρ2 (1− ρ)
2
+ β1

[
10−β2ρ + 10β2(ρ−1)

]
, (107)

with β1, β2 ∈ R
+
0 . This choice allows naturally steep bounds on the pure phases 0 and

1 but avoids any singularities. In Fig. 4 we plot ψB(ρ) for ρ in [0, 1] corresponding to
the values β1 = 0.5 and β2 = 50, which we will select for the numerical tests.

6.3 The continuation method

In Remark 2.1 we introduced the parameter κ in view of the use of the continuation
method to solve topology optimization problems in the multiphase approach as done
for example in [20, 23]. This procedure can be extended to the case of the topology
optimization problem in the phase field approach by following the formulation outlined
in Sec. 4 with the penalized objective functional Jκ(ρ;µk) (27). The dimensionless
parameters D1, D2 and D3 of Eq. (72) are modified as:

Dκ,1 :=
1

κ
D1 Dκ,2 :=

1

κ2
D2, Dκ,3 :=

1

κ
Dκ

3 , (108)

for which Dκ := (Dκ,1, Dκ,2, Dκ,3, D4, D5) and D
κ
3 can be chosen as:

Dκ
3 := γκD2, (109)

for some γκ, similar to Eq. (103). The characteristic time is Tκ,0 :=
1

κ
T0, corresponding

to the choice Dκ,1 = 1, while the penalized objective functional scales with the quantity

1

E 0

L2−d
0

κλ
.

We propose the following procedure for the continuation method:

1. set the data for the topology optimization problem;

2. choose an initial solution ρ0 such that

∫

Ω

ρ0 dΩ = V ;

3. select the parameters λ and γ of Eqs. (98) and (100), respectively;
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4. choose the computational mesh for the spatial approximation and compute h as
in Eq. (103);

5. compute the parameter λ from Eq. (98) and the dimensionless parameter D2 from
Eq. (72);

6. select a discrete set K of values for the parameter κ, where K := {κm}Mm=1, with
κ1 > . . . > κM > 0 and M the number of continuation levels;

7. repeat the following operations for the m = 1, . . . ,M continuation levels:

1. if m = 1 set ρ0,h,(1) = ρ0,h, otherwise, for m ≥ 2, set ρ0,h,(m) = ρh,(m−1) for
t = T , where ρh,(m−1) is the steady state solution obtained at the continuation
level m− 1;

2. set κ = κm and compute the dimensionless parametersDκ,(m) from Eqs. (72),
(108) and (109) for γκ = γ γE,κ, where γE,κ is computed from Eq. (101) by
replacing ρ0 with ρ0,h,(m)

4; also compute Tκ,0,(m);

3. solve the TOh(Dκ,(m)) problem (81) by using Isogeometric Analysis and the
generalized–α method with the adaptive scheme outlined in Sec. 5 to obtain
the steady state solution ρh,(m) for t = T .

The choice of the set K is arbitrary as well as are the choices of the parameters λ and
γ. As a general indication, if the number of continuation levels M is too large, high
computational cost is associated with the solution of the topology optimization problem
with this approach. On the other hand, if M is too small or the ratios κm−1/κm ≫ 1,
then convergence may not occur.

The use of the continuation method allows, for a proper selection of the set K, to
use smaller values for λ than typically used when the TOh(D) problem (81) is solved as
a single simulation; this is due to the property of the continuation method to approach
the optimal solution as a sequence of intermediate optimal results.

6.4 The choice of the initial solution ρ0

In the phase field approach the topology optimization problem allows one to obtain the
optimal solution as the steady state of the phase field model which minimizes a penalized
objective functional starting from an initial solution ρ0. In the previous sections we only

required that ρ0 satisfy the area/volume constraint,

∫

Ω

ρ0 dΩ = V . It follows that, even

with this constraint satisfied, the choice of ρ0 is arbitrary.
Different strategies for the choice of ρ0 have been considered in the literature, since

the initial distribution of the material could largely influence the optimal topology in
the minimum compliance case depending on the approach used. In general, the more
ρ0 is similar to the optimal solution, the more rapid will be the convergence of the
topology optimization method; however, this situation prefigures an a priori knowledge
of the optimal solution. For the SIMP approach [12] the initial solution is chosen as
ρ0 = ρV , with ρV := V/|Ω|, even if ρ0 often is allowed to violate the area/volume
constraint, which is later restored during the optimization procedure. In the level set
approach [5, 35] ρ0 is chosen as a 0–1 distribution of material with holes such that
the area/volume constraints is satisfied; the initial number of holes affects the number

4This choice allows a proper balance between the strain energy function ψE and the bulk and
interface energies ψB and ψI through all the continuation levels.
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of holes in the optimal topology and plays a crucial role in the definition of the final
topology. However, it is shown in [112] by means of numerical examples that when the
capability of hole nucleation is introduced in the level set method, the dependence of the
optimal solution on the initial one is reduced. Initial solutions in the 0–1 configurations
are also chosen in [102] for topology optimization problems formulated with the Cahn–
Allen equation, which shows a strong dependence of the optimal solution on the initial
one. For the phase field approach of [114, 115] using the generalized Cahn–Hilliard
equation, ρ0 is a random distribution around the average value ρV .

In this work, we typically choose ρ0 = ρV . However, the continuation method of
Sec. 6.2 can be effectively used to provide a suitable initial solution ρ0 without any a
priori knowledge of the optimal solution.

7 Numerical Tests

In this section we solve and discuss numerical problems in two and three–dimensions; we
also highlight the features of the proposed method by means of two–dimensional tests.
The numerical values considered for the numerical simulations and the implementation
aspects are also reported.

7.1 Numerical values and implementation aspects

For all the simulations reported the following numerical values are considered:

• for the tensor C0 (see Eq. (1)), we choose E0 = 200 · 109 J/m and ν0 = 1/3 for
the plane strain two–dimensional problems and the three–dimensional problems;

• for the representative quantities of Sec. 4.3, we choose L0 = 1m, T0 such that
D1 = 1, M0 = 1m2/s, h0 = 200 · 106 Pa (for which D4 = 1000) and f0 = 0N/m3

(no body force is considered for which D5 = 0);

• the interpolation g(ρ) and the bulk energy ψB(ρ) functions are chosen as in Sec. 6.2
with P = 3 and the mobility is assumed constant, M(ρ) =M0.

For the numerical approximation we consider:

• for the Isogeometric spatial approximation of Sec. 5.1, we choose a NURBS (or
B–splines) basis of degree p = 2 and numerical integration is performed using
3× 3 Gauss quadrature (3× 3× 3 in three–dimensional problems); this represents
a very conservative approach. The study of more efficient quadrature schemes for
NURBS was initiated in [56]; further investigations are ongoing;

• for the time step scheme of Sec. 5.2.1 we choose ρ∞ = 1/2 (for which αm =
5/6, αf = 2/3 and δ = 2/3 from Eq. (85)), with the tolerance for the stopping
criterion (89) tolR = 10−4 and the maximum number of steps set equal to imax = 7;

• for the time adaptivity of Sec. 5.2.2 we select the initial time step ∆t0 = 10−12

and the final time T = 102, χNC = 0.5 in Eq. (94) to reduce the time step in case
of divergence of the generalized–α or backward Euler methods, and χA = 0.85,
χGR = 1.2 and tolA = 10−3 in Eq. (97) for the time update and stopping criterion;
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• the numerical solution of the spatial approximation is obtained by using the Bézier
extraction methods presented in [17] (Bézier extraction provides a localized repre-
sentation of the globally smooth basis that can be implemented in shape function
routines in existing finite element codes);

• the problem is solved using a parallel C++ code based on Trilinos [53] and MPI;

• the linear system (92) is solved with the “monolithic” approach by means of
the GMRES method preconditioned by an Algebraic Multigrid strategy with
Smoothed Aggregation [44]; the dimension of the Krilov space is set equal to 700–
1, 000 and the stopping criterion is based on the relative residual with tolerance
equal to 10−6 5.

Remark 7.1 The solution of the linear system (92) is particularly challenging for fine
meshes, especially for three–dimensional problems; this is due to the nature of the block
matrices involved in the global matrix. Indeed, the matrix Kρρ,(i) radically changes
behavior as time evolves: when ∆t is small, far from the steady state, the mass matrix
dominates over the fourth–order stiffness matrix in Kρρ,(i) and convergence occurs in
a relatively small number of GMRES steps. On the contrary, when ∆t is large, many
more steps are required. The block matrix K

uu,(i) represents the stiffness matrix of the
linear elastic problem, with elastic properties depending on the distribution of the phase
variable ρ; see Eqs. (1) and (104). The properties of such a matrix abruptly change when
passing through the interfaces and GMRES could suffer divergence issues when sharp
interfaces are generated, especially in the parallel setting. If necessary, a way to partially
overcome this inconvenience consists of enforcing the development of the interfaces over
a sufficiently high number of mesh elements by suitably tuning the parameter λ (98).
Additionally, the off–diagonal block matrices Kρu,(i) and K

uρ,(i) could further degrade
the conditioning properties by rendering the full matrix “less symmetric.” We believe
that an ad hoc preconditioner should be developed to take into account all these features
while solving the linear system in the “monolithic” approach; we notice that this could be
required even if the system (92) is eventually solved with a “staggered” approach. This
was not pursued in the present work.

On the basis of the parameters above mentioned, a typical two–dimensional sim-
ulation with a mesh with 320 × 160 elements converges in about nts = 1, 000–1, 200
time steps; time adaptivity converges in one iteration with few exceptions for a limited
number of time steps (typically only 1–10). In each time step the generalized–α method
typically converges in one to four Newton iterations (likewise for the backward Euler
method) and no, or a few, restarts with forced reduction of the time step are required
due to divergence. For the same simulation, the solution of the linear system (92) re-
quires a number of GMRES iterations comprised between 7 and 500 depending on the
time step ∆t and time t. In general, the smaller is the thickness of the interface for a
given mesh (related to the parameter λ of Eq. (98)) and/or the larger the parameter γ
of Eq. (100), the slower is the convergence of the simulation to the steady state solu-
tion; indeed, in these cases, we could incur a large number of time steps and time step

5When the norm of the residual associated to the solution of the linear system is below the 10−5

threshold, we progressively increase the tolerance on the relative residual. This situation occurs for
“large” ∆t, which in turn occurs in proximity of the steady state solution, i.e. when the solution of the
problem at the previous time step yields a very small residual in the linear system at the current time
step. In this case, a fixed tolerance on the relative residual would be too restrictive and would lead to
an unnecessary large number of GMRES iterations.
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Figure 5: Test 1. Design domain Ω, surface force h and displacement constraints.

adaptions, and a large number of Newton iterations in the generalized–α and backward
Euler methods and, consequently, slow convergence of the GMRES linear solver.

7.2 Two–dimensional problems

We discuss two–dimensional topology optimization problems in order to highlight the
features and properties of the method. We consider design domains represented by
B–splines and NURBS bases.

7.2.1 Test 1

The topology optimization problem for Test 1 is represented in Fig. 5. We consider a
rectangular design domain Ω with zero displacement boundary conditions on the left
edge and the vertical traction h = −h0n̂ acting on the d2–part of the right edge. We
assume L = 2.00m, H = 1.00m, d1 = 0.45m and d2 = 0.10m. The fraction of the
volume of Ω to be covered by the material is V/|Ω| = 0.35. The design domain Ω is
represented with a B–spline basis with the control points such that there is a linear
mapping between the parametric domain and Ω.

For the numerical solution of the problem we consider a mesh with 320×160 elements,
for which the dimensionless mesh size is h = 0.00625. Also, we select the parameters
λ = 6.0 and γ = 1.0 for the definition of the dimensionless parameters D2 and D3 (see
Eqs. (98), (100) and (103)); the parameter γE = 1.247 · 104 is selected from Eq. (101).
The dimensionless parameters are D2 = 4.267 · 103 and D3 = 5.322 · 107, with the
characteristic time T0 = 4.267 · 103. We indicate this problem as Test 1.1. In Fig. 6
we present the evolution of the phase (material density) variable ρ by showing it at
significant time steps; the initial solution is set as ρ0 = ρV = V/|Ω|. The color scale is
from blue to red for values of ρ from 0 to 1. As we can deduce from Fig. 7(left), the
distribution of the material is driven at the initial steps by the above–average values
of the strain energy function ψE ; in this case, the material is distributed around the
ΓD boundary and where the load h is applied. The phase separation occurring in
these areas of the design domain is due to the generalized Cahn–Hilliard model which
is mass/volume conservative. As time evolves, the separation of the phases is mostly
completed and the structure tends to simplify; this is due to the fact that the bulk,
interface and strain energies (i.e., JB , JI and JE , respectively) are all contributing to
the minimization of the objective functional J (see Eqs. (18) and (24)). The steady state
represents the optimal topology in terms of the objective functional J , which reaches
its minimum with respect to the initial value (for ρ = ρ0 at t = 0); it is also possible
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t = 9.000 · 10−9 t = 1.529 · 10−7

t = 1.644 · 10−6 t = 1.683 · 10−5

t = 6.528 · 10−4 (minimum JE) steady state

Figure 6: Test 1.1. Evolution of the phase (material density) variable ρ in time for mesh
size 320×160 with λ = 6.0 and γ = 1.0.

t = 0 steady state

Figure 7: Test 1.1. Distribution of the strain energy function ψE (dimensionless) in the
design domain Ω (initial and at the steady state); logarithm scale.

to see from Fig. 7(right) that the average value of the strain energy function ψE is also
much lower at the steady state. However, the optimal topology at the steady state
does not necessarily represents the stiffest structure with the specified data; indeed, as
is occurring in this case, the minimum value of JE is obtained at an intermediate step
and before the steady state is reached. This fact is highlighted in Fig. 8 where the
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Figure 8: Test 1.1. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t (left) and detail (right); the minimum value of JE is indicated by an ×.
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Figure 9: Test 1.1. Time step ∆t vs. time t (dimensionless) as selected by the adaptive
time scheme (left) and detail (right).

behavior of the objective functional J and the energies JE , JB and JI is plotted vs. the
dimensionless time t. The objective functional J is monotonically decreasing in time as
expected since it is a Liapunov functional (see Eq. (61)), even if this property does not
hold for the energies JE , JB and JI . The large drop of JB is due to the phase separation
and the evolution of JI to the creation of the interfaces and the following simplification
of the topology during the evolution in time. The strain energy JE is also subject to
a large and desired drop, even if its minimum value is reached at an intermediate step.
In particular, we obtain that the initial value of the objective functional J decreases by
79.29% at the steady state, while JE decreases by 86.33%; the minimum value of JE ,
representing the real goal of the topology optimization is obtained at t = 6.528·10−4 with
a drop of 87.84%; this represents a significant value smaller by 11.05% with respect to
the one reached at the steady state. The topologies of these configurations are radically
different; consequently, we can select the configuration for which JE is minimum as
the optimal topology from a design point of view. The geometrical information can be
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λ = 12.0, γ = 1.0 λ = 6.0, γ = 0.2

minimum JE minimum JE

steady state steady state

Figure 10: Test 1.2. Phase (material density) variable ρ for mesh size 320×160 with
λ = 12.0 and γ = 1.0 (left) and λ = 6.0 and γ = 0.2 (right); solutions for minimum
value of JE (top) and at the steady state (bottom). The contour lines represent the
topologies obtained in Test 1.1 for λ = 6.0 and γ = 1.0.

extracted from the solution by the contour lines corresponding to the value ρ = 0.5.
In Fig. 9 we show the evolution of the time step ∆tn vs. time t, which is chosen
adaptively according to the scheme presented in Sec. 5.2.2. We observe the large change
in the value of ∆tn from 10−12 to 18.8 occurring in a relatively small number of time
steps, 1, 198 in this case; also, we observe how the intermittent nature of the phase field
model is apparent in the drop of the value of ∆tn required at some times steps. As a
final consideration regarding the numerical scheme, we observe that the mass/volume
constraint is adequately satisfied during the evolution in time, since the relative error
with respect to the initial value of the volume fraction is practically negligible and below
the 4.90 · 10−6% threshold for all the time steps.

Finally, we discuss the results of the topology optimization for different values of the
parameters λ and γ with respect to the ones previously selected; this test is referred to as
Test 1.2. The goal is to show that a large value of λ leads to optimal topologies with large
interfaces and eventually to reduced minimizations of the strain energy JE . Similarly,
if the value of γ is too small, the phase transition leads to solutions principally driven
by the Cahn–Hilliard terms, the reduction of JE would be limited in this case and the
topology would have few or no holes. Ideally, as discussed in Sec. 6.1, one would select
the smallest possible value of λ and the largest of γ which would lead to the steady state
without the occurrence of divergence issues 6. In Fig. 10(left) we present the topologies
corresponding to the minimum value of JE (top) and to the steady state (bottom) for
the parameters λ = 12.0 (twice that for Test 1.1) and γ = 1.0; the contour lines for

6Divergence issues are revealed in the current numerical setting by increasing values in time of the
Liapunov objective functional J or by the recursive selection of excessively small values of the adaptive
time step ∆tn.
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Figure 11: Test 2. Design domain Ω, surface force h and displacement constraints.

ρ = 0.5 of the solutions of Test 1.1 are highlighted. We can observe larger interfaces
with respect to the previous case (about

√
2 larger) and, even if the configuration at the

steady state is very similar to the one of Test 1.1, the decrease in the values of J and JE
is significantly different. Indeed, the drops of J and JE at the steady state are 74.71%
and 85.27%, respectively (for Test 1.1 they were 79.29% and 86.33%); at its minimum,
the drop of the strain energy JE is 86.61%, a value larger by 10.12% with respect to the
one obtained in Test 1.1. Even more significant differences can be obtained for larger
values of the parameter λ. In Fig. 10(right) we highlight the topologies obtained with
the parameters λ = 6.0 and γ = 0.2 (1/5 of Test 1.1); the configurations corresponding
to the minimum value of JE and at the steady state are presented together with the
contour lines for ρ = 0.5 corresponding to Test 1.1. The thickness of the interfaces
between the phases is the same as in Test 1.1, even if the topologies exhibit significant
changes. Also, the relatively “small” value of γ leads to a nonsymmetric solution at
the steady state since the symmetric configuration is unstable from the point of view of
the phase field problem (a bifurcation from a symmetric configuration occurs during the
phase transition). The decrease of J and JE at the steady state are 79.62% and 80.21%,
respectively, with the value of JE being 34.35% larger than in Test 1.1; similarly, the
drop of JE at its minimum is 83.05%, 39.39% larger than in Test 1.1. Notice that in
the limit case γ = 0.0, the solution coincides with the Cahn–Hilliard one, which in this
case exhibits a topology with a vertical rectangle.

7.2.2 Test 2

For Test 2, we consider a quarter ring with inner radius RIN = 1.00m and outer radius
ROUT = 2.00m as shown in Fig. 11. The surface force h is applied at the top–left tip of
the design domain Ω along a boundary segment of length s = π/10m; no displacement
boundary conditions are applied at the bottom of Ω. The volume fraction of Ω to be
occupied by the material is set equal to V/|Ω| = 0.35. We represent the design domain Ω
by means of a NURBS basis of degree 2 [80] for which, by using Isogeometric Analysis,
the exact representation of the geometry is maintained through the analysis and the
topology optimization procedure.

We solve the topology optimization problem with a mesh composed by 320×160
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t = 1.953 · 10−6 t = 9.933 · 10−6

t = 5.420 · 10−5 (minimum JE) steady state

Figure 12: Test 2.1. Evolution of the phase (material density) variable ρ in time for
mesh size 320×160 with λ = 5.0 and γ = 1.5.

elements with the larger number along the circumferential direction; the dimensionless
mesh dimension is h = 9.818 · 10−3. We select the parameters λ = 5.0 and γ = 1.5, for
which we have D2 = 2.075 ·103 and D3 = 2.275 ·107 with the computed γE = 7.309 ·103.
We indicate this test as Test 2.1. In Fig. 12 we present the evolution in time of the
material density starting from the initial solution ρ0 = ρV = V/|Ω| toward the steady
state; intermediate significant solutions are presented, including the one corresponding
to the minimum value of the strain energy JE . We observe that, even if such solution
does not exhibit a complete phase separation, useful topological information can still be
obtained and the configuration can be used for further design investigation. In Fig. 13
we highlight the behavior of the objective functional J and the energies JE , JB and JI
vs. the time; a detailed view around the minimum value of JE is also presented. The
decrease of the value of J is 75.56% at the steady state, while for JE it is 84.35%; at
its minimum, which occurs at t = 5.420 · 10−5 (dimensionless), the decrease of JE is
86.25%, 12.12% smaller than at the steady state.
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Figure 13: Test 2.1. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t (left) and detail (right); the minimum value of JE is indicated by an ×.

We now discuss the mesh dependency effect in Test 2.2. With this aim, we solve the
same problem discussed previously with different mesh sizes and values of the parameter
λ affecting the dimensionless parameters D2 and D3 (see Eq. (72)). If the goal of the
topology optimization is to obtain sharp interfaces and detailed optimal topologies, fine
meshes need to be used since, from Eq. (98), the parameter λ is selected as λ = λh2, with
h indicative of the mesh size. However, as already mentioned in Sec. 6.1, this introduces
a mesh dependency effect on the solution, since the dimensionless parameters D2 and
D3 vary with the mesh. On the other hand, the mesh dependency issue can be quickly
eliminated in the phase field approach by using a fixed value of h = h0 for all the
meshes having h ≤ h0. In Fig. 14(right) we show the optimal topologies obtained at
the steady states for different mesh sizes (80×40, 160×80 and 320×160) for λ = 5.0 and
γ = 1.5; once h0 is set to be the representative dimensionless size of the mesh 80×40
(h0 = 0.03927), we select h = h0, h0/2, h0/4 for the three meshes, respectively. In this
case, we observe that, not only does the thickness of the interfaces change from one mesh
to the other, but also the optimal topologies significantly vary. Conversely, if we assume
a constant value of h = h0 for all the meshes, the thickness of the interfaces between the
phases and the optimal topologies remain the same; see Fig. 14(left) where we considered
λ = 1.0 and γ = 2.0 to show shaper interfaces (the same result of Fig. 14(top–right)
would have been obtained for all three meshes with λ = 5.0 and γ = 1.5). These facts
are better highlighted in Fig. 15 in terms of the behavior of the objective functional J
and strain energy JE for the three meshes with and without a fixed value of h. As we
can observe in Fig. 15(left) the choice of a fixed h = h0 leads to a good match between
the energies for all the meshes, with only minor differences; at the steady state the
maximum discrepancy on J with respect to the finer mesh is 0.03630%, and 0.4021%
for JE . On the contrary, the mesh dependency effect is clearly visible in Fig. 15(right)
with the mesh dependent h = h0, h0/2, h0/4. Additionally, we observe that the finer
meshes allow a more significant reduction of the objective functional J and strain energy
JE with respect to the coarse one, due to the ability to deal with sharper interfaces.
In particular, the reduction of J at the steady state is 51.56%, 67.93% and 75.56% for
the three meshes, while for JE it is 77.73%, 83.63% and 84.35%; at their minimum the
reductions of JE are 78.46%, 83.79% and 86.25%, with the maximum stiffness obtained
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mesh 80×40, h = h0 mesh 80×40, h = h0

mesh 160×80, h = h0 mesh 160×80, h = h0/2

mesh 320×160, h = h0 mesh 320×160, h = h0/4

Figure 14: Test 2.2. Steady states of the phase (material density) variable ρ for the
mesh sizes 80×40, 160×80 and 320×160 with fixed h = h0 (λ = 1.0, γ = 2.0) (left) and
with mesh dependent h = h0, h0/2 and h0/4 (λ = 5.0, γ = 1.5) (right); h0 = 0.03925.
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Figure 15: Test 2.2. Normalized energies J (black) and JE (red) vs. time t for the
mesh sizes 80×40 (– ·), 160×80 (– –) and 320×160 (—) for fixed h = h0 (λ = 1.0,
γ = 2.0) (left) and mesh dependent h = h0, h0/2 and h0/4 (λ = 5.0, γ = 1.5) (right).

with the finer mesh.
Finally, we solve the topology optimization problem by means of the continuation

method described in Sec. 6.3; the goal is to show that this approach can be conveniently
used to generate solutions with sharp interfaces even if a coarse mesh is used. We
refer to this problem as Test 2.3. With this aim, we consider a mesh of size 80×40
(dimensionless h = 0.03927 from Eq. (99)) with a two–level continuation procedure for
which the parameters κ are chosen as κ ∈ K = {4.0, 1.0}; additionally, we select λ = 1.0
and γ = 4.0 (see Eqs. (98) and (100)). The resulting dimensionless parameters (108) are:
Dκ,2 = 4.053 ·101 and Dκ,3 = 4.742 ·106, with γE,κ = 7.313 ·103, for continuation level 1,
and Dκ,2 = 6.485 · 102 and Dκ,3 = 7.544 · 107, with γE,κ = 2.907 · 104, for level 2. In
Fig. 16 we present the result of the topology optimization with the two–level continuation
method in which we highlight the steady states as well as the solution at significant
time steps for levels 1 and 2; the optimal topology is represented by the steady state of
level 2. The evolution of the normalized energy J in time t (dimensionless) is presented
in Fig. 17 for the two levels. The total and elastic energies decrease 72.16% and 82.09%
for continuation level 1, and 27.68% and 35.64% for level 2; for the whole procedure,
the decrease of J and JE with respect to the values corresponding to the initial solution
ρ0 = ρV is 79.87% and 88.47%, respectively. For comparison, we observe that divergence
issues appear for the topology optimization of the current test without the continuation
method for λ = 1.0 and γ = 4.0 (the same values used for the continuation method with
D2 = Dκ,2 for κ = 1.0). It follows that in order to maintain the same thickness of the
interfaces of the solution as for the continuation method, the value of γ would need to
be lowered (the value γ = 2.0 would suffice for the current mesh), even if the reduction
of JE would be smaller than with the continuation method.
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Level 1, t = 2.935 · 10−3 Level 1, steady state

Level 2, t = 2.070 · 10−5 Level 2, steady state

Figure 16: Test 2.3. Evolution of the phase (material density) variable ρ in time t for
mesh size 80×40 with the continuation method for K = {4.0, 1.0}, λ = 1.0 and γ = 4.0;
continuation levels 1 (top) and 2 (bottom) with steady states (right).
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Figure 17: Test 2.3. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t for the continuation method at levels 1 (left) and 2 (right).

Figure 18: Test 3. Design domain Ω, surface force h and displacement constraints.

7.2.3 Test 3

For this test case, we consider the topology optimization problem depicted in Fig. 18.
The surface forces, h, are applied over segments of the boundary of length d3. We
enforce zero displacement condition on a segment of the boundary on the left end of the
bottom edge and we fix the vertical displacement over a segment on the right end of
the bottom edge 7. We assume L = 4.00m, H = 1.00m, d1 = 0.125m, d2 = 0.9375m,
d3 = 0.125m and d4 = 0.875m; the volume fraction to be occupied by the material
is V/|Ω| = 0.40. The design domain Ω is represented by means of a B–spline basis of
degree 2 with a linear mapping.

With this test problem, we discuss the solution of topology optimization problems
in the presence of local peak values of the strain energy function ψE inside the design

7In the framework of Isogeometric analysis, we impose the displacement constraints on the degrees
of freedom corresponding to the control points on the Dirichlet boundary segments ΓD.
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Figure 19: Test 3. Distribution of the strain energy function ψE (dimensionless) in the
design domain Ω at t = 0 for ρ0 = ρV with mesh size 128×80; logarithm scale.

Level 1, steady state

Level 2, steady state

Figure 20: Test 3.1. Evolution of the phase (material density) variable ρ in time t with
the continuation method for K = {8.0, 1.0}, λ = 2.0 and γ = 1.0; continuation levels 1
(top) and 2 (bottom) at the steady states.

domain. An example is highlighted in Fig. 19, where the distribution of ψE is shown
for this test problem at the initial step (ρ0 = ρV = V/|Ω|). In such cases, the phase
separation is rapid and locally driven by such peak values and convergence may not occur
if the values of the parameter γ are too “large” and/or those of the parameter λ are too
“small.” However, since the goal is to obtain a significant reduction of the strain energy
JE with sharp interfaces, the choice of the parameters cannot be excessively limited by
such issues. In practice, “small” values of γ and “large” values of λ should be chosen
at the early stages of the phase transition and modified during its evolution. However,
we realize that this procedure needs to be calibrated for each topology optimization
problem. In order to overcome this deficiency, we propose two approaches. The first
one consists in using the continuation method, while the second one considers an initial
phase (material) distribution ρ0 in which “bubbles” of material are located ab initio
in correspondence with peak values of the strain energy function ψE . The mesh size
chosen for the simulations is 512×128 and h = 0.007813.

In Fig. 20 we present the solution of the topology optimization problem using the
continuation method; the two steady state solutions, corresponding to the values κ =
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Figure 21: Test 3.1. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t for the continuation method at levels 1 (left) and 2 (right).

{8.0, 1.0}, are presented. For this simulation, which we indicate as Test 3.1, we choose
λ = 2.0 and γ = 1.0. We obtain the following dimensionless parameters from Eq. (108):
Dκ,2 = 1.280 · 102 and Dκ,3 = 1.074 · 107, with γE,κ = 1.049 · 104, for continuation
level 1, and Dκ,2 = 8.192 ·103 and Dκ,3 = 1.989 ·108, with γE,κ = 2.428 ·104, for level 2.
In Fig. 21 we present the normalized energies vs. the dimensionless time t. The overall
decrease of the total and strain energies with respect to the initial solution ρ0 = ρV is
81.31% and 85.14%, respectively (the decrease of J and JE at the continuation level 1
is 72.49% and 81.54%, while at level 2 it is 38.07% and 19.48%). The minimum value
of JE is obtained at the steady state of continuation level 2.

In Fig. 22(bottom) we present the steady state of the phase (material) variable ob-
tained by solving the topology optimization problem starting from the initial solution ρ0
depicted in Fig. 22(top); notice the “bubbles” of material distributed in correspondence
of the peak values of the strain energy function ψE (see Fig. 19). This test is referred as
Test 3.2. The volume fraction of this case is V/|Ω| = 0.4067 due to the presence of the
initial “bubbles”; also, we choose λ = 6.00 and γ = 1.00. The dimensionless parameters
of Eq. (72) are D2 = 2.731 · 103 and D3 = 3.452 · 107 with γE = 1.264 · 104. In Fig. 23
we present the behavior of the normalized energies with respect the dimensionless time
t. The overall reductions of J and JE at the steady state are 77.58% and 80.85%, re-
spectively. The maximum reduction of JE (82.03%) is obtained at t = 1.818 · 10−4; the
corresponding solution is shown in Fig. 22 together with another significant topology
obtained during the phase transition (at t = 9.217 · 10−5 the reduction of JE is 81.74%,
4.650% smaller than at the steady state), which can be selected for further design and
analysis investigation.
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t = 0

t = 9.217 · 10−5

t = 1.818 · 10−4 (minimum JE)

steady state

Figure 22: Test 3.2. Evolution of the phase (material density) variable ρ in time t with
λ = 6.0 and γ = 1.0; prescribed initial solution ρ0 with “bubbles” (top) and steady
state (bottom).
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Figure 23: Test 3.2. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t (left) and detail (right); the minimum value of JE is indicated by an ×.

Figure 24: Test 4. Design domain Ω, surface force h and displacement constraints.

7.3 Three–dimensional problems

In this section, we solve topology optimization problems defined in three–dimensional
design domains Ω.

7.3.1 Test 4

We consider the topology optimization problem represented in Fig. 24 in which the
design domain Ω is a solid beam of size H×H×L, the surface force h = −h0ŷ is applied
on a subdomain of the front face and zero displacements are imposed on the back face
(the plane z = 0). We assume L = 4.00m, H = 1.00m, d = 0.375m and s = 0.250m;
the volume fraction to be occupied by the material is set equal to V/|Ω| = 0.35. By
using symmetry properties, only half of the domain Ω (whose size is H/2×H×L) is
considered for the computations. The design domain is represented by a B–splines basis
of degree 2 composed of 10×20×80 elements. To enforce the symmetry of the solution
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t = 4.401 · 10−5 t = 2.577 · 10−4

t = 5.760 · 10−3 (minimum JE) t = 1.940 · 10−1

t = 1.946 · 10−1 steady state

Figure 25: Test 4.1. Evolution of the phase (material density) variable ρ in time t for
mesh size 10 × 20 × 80 with λ = 1.0 and γ = 1.5; the volume to be occupied by the
material (for ρ ≥ 0.5) is displayed; the color gray indicates ρ = 0.5.

with respect to the plane y = H/2 and prevent the detection of a nonsymmetric local
minimum, we impose the same values of the phase variable on the planes y = 0 and
y = H.

We solve the problem by considering λ = 1.0 and γ = 1.5 with the dimensionless
size of the mesh h = 0.05 (Test 4.1); the computed parameter γE takes the value γE =
2.040·104. The corresponding values of the dimensionless parameters areD2 = 4.000·102
and D3 = 1.224 · 107 with the characteristic time T0 = 4.000 · 102. In Fig. 25 we depict
the phase variable ρ at significant time steps (dimensionless), including the steady state
solution and the solution corresponding to the minimum value of JE ; the regions of the
design domain Ω occupied by material, which are obtained for ρ ≥ 0.5, are highlighted.
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minimum JE steady state

Figure 26: Test 4.1. Optimal topologies corresponding to the minimum value of JE (left)
and to the steady state (right) obtained for λ = 1.0 and γ = 1.5.
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Figure 27: Test 4.1. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t (left) and detail (right); the minimum value of JE is indicated by an ×.

The capability of the method to handle hole nucleation is highlighted in Fig. 25 for
the solutions at the time steps t = 1.940 · 10−1 and t = 1.946 · 10−1, in which a hole
(specific volume of the design domain with ρ < 0.5) is generated. In Fig. 26(left) we
show the optimal configuration for which the value of JE is minimum; in Fig. 26(right)
the configuration at the steady state is shown for comparison. The evolution of the
objective functional J and the energies JE , JB and JI vs. the dimensionless time are
shown in Fig. 27(left); in Fig. 27(right) a detail around the minimum value of JE is
presented. At the steady state, the drops of the values of J and JE with respect to the
initial solution ρ0 = ρV are 75.78% and 87.38%, respectively. The minimum compliance
is obtained at t = 5.760 · 10−3 with an 88.66% decrease; at its minimum, the value of
JE is 10.13% smaller than at the steady state. In general, all the topologies obtained in
the range t = 1.200 ·10−3 – 10−2 could be eventually considered for further analysis and
design investigation since the values of JE are close to the minimum (less than 2.00%
difference).

For comparison, we solve the same problem with different parameters λ and γ.
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Figure 28: Test 4.2. Optimal topology corresponding to the minimum value of JE for
λ = 0.75 and γ = 2.0.

For this test, which we indicate as Test 4.2, we consider λ = 0.75 and γ = 2.0; the
dimensionless parameters are D2 = 5.333 · 102 and D3 = 2.176 · 107. Due to the larger
value of γ and the smaller value of λ, we expect a more significant reduction of the
strain energy JE with slightly thinner interfaces. In Fig. 28 we present the optimal
configuration corresponding to the minimum value of JE , which is 14.16% less than the
one obtained for Test 4.1.
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Figure 29: Test 5. Design domain Ω, surface force h and displacement constraints.

7.3.2 Test 5

This problem is defined in a design domain Ω represented by an hemispherical thin shell
as shown in Fig. 29. The surface force h = −h0ŷ and the displacement constraints
are also shown. We assume R = 0.250m, H = 1.00m, d = 0.0314m (arc length),
s = 0.200m (arc length) and thickness a = 0.0200m; the inner radius of the shell is
constant and equal to H for all the planes through the axis ŷ. The thin shell is described
by a single NURBS patch with basis of degree p = 2 [80]; by virtue of the symmetry
properties, only a quarter of the shell is considered as the domain for the computations.
The volume fraction to be occupied by the material is V/|Ω| = 0.35.

The shell is modelled as a three–dimensional linear elasticity problem. For the
computations we consider a mesh composed of 1282×1 elements. In this manner, since
we consider a basis of degree p = 2, the bending modes are properly taken into account
by the three–dimensional linear elastic model [13]; indeed, three control points exist
through the thickness. An additional consequence of this choice is that the distribution
of the phase variable ρ is constant throughout the thickness due to the conditions∇ρ·n̂ =
0 on the opposite faces. In order to enforce the symmetry of the solution in the quarter
of the shell, we impose the same values of the phase variable at the x = 0 and z = 0
planes.
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Level 1, t = 2.445 · 10−4 Level 1, steady state

Level 2, t = 1.596 · 10−6 Level 2, steady state

Figure 30: Test 5. Evolution of the phase (material density) variable ρ in time t for
mesh size 1282×1 with the continuation method for K = {5.0, 1.0}, λ = 1.0 and γ = 2.5;
continuation levels 1 (top) and 2 (bottom) with steady states (right).

We solve the topology optimization problem by means of the continuation method
with two levels; see Sec. 6.3. In particular, we assume κ ∈ K = {5.0, 1.0}, λ = 1.0
and γ = 2.5; the dimensionless element size is chosen as h = 0.01535. The resulting
dimensionless parameters are: Dκ,2 = 1.698 · 102, Dκ,3 = 9.770 · 105, γE,κ = 4.604 · 102
for continuation level 1, and Dκ,2 = 4.244 · 103, Dκ,3 = 1.404 · 107, γE,κ = 1.323 · 103 for
level 2. In Fig. 30 we present the evolution of the material density in time throughout
the two continuation levels. The final and optimal topology is the steady state of the
second continuation level. In Fig. 31 we show the optimal configuration on the whole
design domain obtained by placing the material where ρ ≥ 0.5. In Fig. 32 we show
the evolution of the objective functional J and the energies JE , JB and JI vs. the
dimensionless time for both continuation levels. Specifically, we obtain drops of 71.83%
and 79.50% for J and JE for level 1, and 27.17% and 28.83% for level 2, respectively.
The overall decreases of J and JE throughout the whole continuation level procedure
are 79.48% and 85.41%, respectively; the minimum compliance is obtained at the steady
state of continuation level 2.
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Figure 31: Test 5. Optimal topology obtained at the steady state of continuation level 2.
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Figure 32: Test 5. Normalized energies J (black), JE (red), JB (blue) and JI (green)
vs. time t for the continuation method at levels 1 (left) and 2 (right).

8 Conclusions

In this work we solved minimum compliance topology optimization problems with a
phase field model based on the generalized Cahn–Hilliard equation. With this ap-
proach, the interfaces between the phases, material and void, are represented by sharp,
but smooth, layers and the optimal solution is obtained as the steady state of the phase
transition problem, eliminating the need of an optimizer. The ability to deal with topo-
logical changes and hole nucleation is naturally embedded in the model as well as the
constraint on the total amount of material to be distributed in the design domain. With
this formulation, the topology optimization problem is completely defined at the con-
tinuous level and the optimal solution depends on dimensionless parameters specified
by the user. Additionally, the mesh dependency effect, which typically affects the opti-
mal topologies, can be eliminated by a suitable choice of the parameters controlling the
thickness of the interfaces and the number of holes in the topology. The continuation
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method, a multilevel optimization strategy often used for the solution of the topology
optimization problems, is extended to the phase field approach.

For the numerical approximation we used Isogeometric Analysis, which is particularly
suitable for phase field problems and allows exact CAD geometry to be used to describe
the design domain and to also be used in the optimization procedure. For the time
approximation we used the generalized–α method in combination with a time–adaptive
scheme which allowed to efficiently capture the fast and intermitted variations in time
typically occuring in the phase field model.

We solved both two and three–dimensional problems to illustrate the validity of the
approach, which we believe is a promising one for topology optimization problems.
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L. Dedè and T.J.R. Hughes were partially supported by the Office of Naval Research
under contract number N00014-08-0992. M.J. Borden and T.J.R. Hughes were partially
supported by the Army Research Office under contract number W911NF-10-1-0216.
M.J. Borden was partially supported by Sandia National Laboratories; Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

The authors also acknowledge the Texas Advanced Computing Center (TACC) at
The University of Texas at Austin for providing HPC resources that have contributed
to the research results reported within this paper (URL: http://www.tacc.utexas.edu).

References

[1] N. Aage, T.H. Poulsen, A. Gersborg–Hansen and O. Sigmund, Topology opti-
mization of large scale Stokes flow problems, Struct. Multidisc. Optim. 35 (2008),
175–180.

[2] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[3] G. Allaire, F. de Gournay, F. Jouve and A.M. Toader, Structural optimization
using topological and shape sensitivity via a level set method, Control Cybern. 34
(2005), 59–81.

[4] G. Allaire, F. Jouve and H. Maillot. Topology optimization for minimum stress
design with the homogenization method, Struct. Multidisc. Optim. 28 (2004),
87–98.

[5] G. Allaire, F. Jouve and A. Toader, Structural optimization using sensitivity anal-
ysis and level set–method, J. Comput. Phys. 194 (2004), 363–393.

[6] S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening, Acta. Metall. 27 (1979), 1085–
1095.

[7] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penal-
ization, Calc. Var. Partial Differential Equations 1 (1993), 55–69.

55



[8] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali and G. Scovazzi,
Variational multiscale residual–based turbulence modeling for large eddy simula-
tion of incompressible flows, Comput. Methods Appl. Mech. Engrg. 197 (2007),
173–201.

[9] M.P. Bendsøe, On obtaining a solution to optimization problems for solid, elastic
plates by restriction of the design space, J. Struct. Mech. 11 (1983), 501–521.

[10] M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design
using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71 (1988),
197–224.

[11] M.P. Bendsøe and O. Sigmund, Material interpolations schemes in topology opti-
mization, Arch. Appl. Mech. 69 (1999), 635–654.

[12] M.P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and
Applications, Springer–Verlag, Berlin, 2003.

[13] M. Bischoff, W.A. Wall, K.U. Bletzinger, E. Ramm, Models and finite elements for
thin–walled structures, in: Encyclopedia of Computational Mechanics, E. Stein,
R. de Borst, T.J.R. Hughes (Eds.), 2, 59–137, Solids Struct. Coupled Prob. 3,
Wiley, 2004.

[14] K.U. Bletzinger and K. Maute, Towards generalized shape and topology optimiza-
tion, Eng. Optim. 29 (1997), 201–216.

[15] K.U. Bletzinger and E. Ramm, Form finding of shells by structural optimization,
Engng. with Comp. 9 (1993), 27–35.

[16] K.U. Bletzinger, R. Reitnger, S. Kimmich and E. Ramm, Shape optimization with
program CARAT, in: Software Systems for Structural Optimization, H. Hörnlein
and K. Schittkowski (Eds.), 97–124, Internat. Ser. Numer. Math. 110, Birkhäuser,
Basel, 1993.

[17] M.J. Borden, M.A. Scott, J.A. Evans and T.J.R. Hughes, Isogeometric finite ele-
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