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Highlights 
 

•  We propose a new inverse tangent shear deformation theory (ITSDT) for laminated 

composite-material plates. 

•  The method does not require any shear correction factors due to using high-order 

deformation plate theory (HSDT). 

•  Static, free vibration and buckling plate models based on ITSDT are numerically 

solved using an isogeometric analysis (IGA) 

•  The proposed formulation requires C1-continuity generalized displacements and 

hence basis functions used in IGA fulfill this requirement. 

•  Intensive numerical studies have been conducted to show excellent performance of 

the present method.  
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Abstract

This paper presents a new inverse tangent shear deformation theory (ITSDT) for the static, free

vibration and buckling analysis of laminated composite and sandwich plates. In the present theory,

shear stresses are vanished at the top and bottom surfaces of the plates and shear correction factors

are no longer required. A weak form of the static, free vibration and buckling models for laminated

composite and sandwich plates based on ITSDT is then derived and is numerically solved using

an isogeometric analysis (IGA). The proposed formulation requires C1-continuity generalized dis-

placements and hence basis functions used in IGA fulfill this requirement. Numerical examples are

provided to show high efficiency of the present method compared with other published solutions.

Keywords: Isogeometric analysis, laminated composite and sandwich plates, inverse

trigonometric shear deformation theory

1. Introduction

In the past few decades, developments in science and technology have created motivations for

researchers to find on new structural materials such as composite and sandwich. These materials

have been used in various engineering disciplines such as aerospace engineering, automotive en-

gineering, civil engineering, etc. Plates are an important part of many structures. Laminated com-

posite plates are often made of several orthotropic layers and bonded together to achieve superior

properties such as high stiffness and strength-to-weight ratios, long fatigue life, wear resistance,

lightweight, etc. Especially, for sandwich plates, inner layers are replaced by a core which has low

stiffness. Therefore, a good understanding of bending behavior, stress distribution, dynamic and

buckling responses of the plates is necessary for researchers and users.

∗Corresponding author. Email address: nxhung@hcmus.edu.vn (H. Nguyen-Xuan)
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Several laminated plate theories have been investigated for composite and sandwich plates. The

classical laminate plate theory (CLPT) [1] is only suitable for thin plates. The first-order shear de-

formation theory (FSDT) [2], which shear deformation effect is regarded, can be applied for both

moderately thick and thin plates. The FSDT does not satisfy free boundary conditions on the lower

and upper surface of the plates, and hence shear correction factors need to be involved. To avoid

using shear correction factors, many higher order shear deformation theories have been devised

by the researchers, e.g, Ambartsumian [3], Reissner [4], Levinson [5], Reddy [6], Soldatos [7],

Karama et al. [8] and Aydogdu [9], etc. Classically, first-order and higher-order theories are used

the equivalent single-layer models (ESL), which consider the same degrees of freedom for all lam-

inate layers. In addition, several other equivalent-single-layer models for laminated plates have

been proposed accounting for zig-zag effects and fulfillment of interlaminar continuity. Among

these the one by Mau [10], Chou and Carleone [11], Di Sciuva [12], Toledano and Murakami [13],

Ren [14] and Castro et al. [15] are herein mentioned. Mixed layer-wise and equivalent-single-

layer theories based on Reissener Mixed Variational Theorem have been discussed by Carrera

[16, 17, 18]. A historical review encompassing early and recent developments of advanced theo-

ries for laminated beams, plates and shells was revisited in [19]. Interested readers are addressed

to that last paper for a more complete review on relevant topics.

In the effort to development of advanced computational methodologies, Hughes et al. [20] have

recently proposed an isogeometric analysis (IGA) that bridges the gap between Computer Aided

Design (CAD) and Finite Element Analysis (FEA). It means that the IGA uses basis functions

generated from Non-Uniform Rational B-Splines (NURBS) in order to describe both the geom-

etry and the unknown variables of the problem. Therefore, the process of meshing in IGA can

be omitted and the two models for CAD and FEA integration into one. The main advantages of

IGA are ability to represent exactly domains being conic sections and higher order approximation

with arbitrarily high smoothness. In IGA, the exact geometry is maintained at the coarsest level of

discretization and re-meshing is performed on this level without any further communication with

CAD geometry. Furthermore, B-splines (or NURBS) provide a flexible way to perform refine-

ment (or h-refinement), and degree elevation [21]. Isogeometric analysis has been applied to a

wide range of practical mechanics problems such as structural vibrations [22], nearly incompress-

ible linear and nonlinear problems [23], structural shape optimization [24], Kirchhoff-Love shell

[25, 26, 27], isotropic Reissner-Mindlin shell [28], laminated composite/functionally graded plates

based on FSDT [29, 30, 31]/HSDT [32, 33], and rotation-free shells [34], etc.

In this paper, an effectively approximate formulation based on a NURBS-based isogeometric

analysis associated with a new inverse tangent shear deformation theory (ITSDT) is presented for

static, free vibration and buckling analysis of laminated composite and sandwich plates. An in-

verse tangent function can be expressed by means of Taylor expansion, that has more general form

than the classical polynomial. Generalized displacements are constructed using the NURBS basis

functions that can yield higher-order continuity and fulfill easily the requirement of C1-continuity

of the HSDT models. Several numerical examples are illustrated to show high effectiveness of

the present method. Obtained results are well compared with exact three-dimensional elasticity,

analytical or semi-analytical and other numerical solutions.

The paper is arranged as follows: a brief on the B-spline and NURBS surface is described in

2
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section 2. Section 3 presents a formulation of a NURBS-based isogeometric analysis for composite

sandwich plates. Several numerical examples are provided in section 4. Finally we close our paper

with some concluding remarks.

2. A brief of NURBS functions

2.1. Knot vectors and basis functions

Let Ξ =
[

ξ1,ξ2, ...,ξn+p+1

]

be a nondecreasing sequence of parameter values, ξi ≤ ξi+1, i =
1, ...,n+ p. The ξi are called knots, and Ξ is the set of coordinates in the parametric space. If all

knots are equally spaced the knot vector is called uniform. If the first and the last knots are repeated

p+1 times, the knots vector is described as open. A B-spline basis function is C∞ continuous inside

a knot span and Cp−1 continuous at a single knot. A knot value can appear more than once and is

then called a multiple knot. At a knot of multiplicity k the continuity is Cp−k. Given a knot vector,

the B-spline basis functions Ni,p(ξ ) of order p = 0 are defined as follows

Ni,0(ξ ) =

{

1 ξi ≤ ξ < ξi+1

0 otherwise
(1)

The basis functions of order p > 0 is defined by the following recursion formula [35]

Ni,p (ξ ) =
ξ −ξi

ξi+p −ξi
Ni,p−1 (ξ )+

ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1 (ξ ) with p = (1,2,3, ...) (2)

For p = 0 and 1, the basis functions of isogeometric analysis are identical to those of standard

piecewise constant and linear finite elements, respectively. In IGA, the basis functions with p ≥ 2

are considered [20]. Fig. 1 illustrates a set of one-dimensional and two-dimensional cubic B-spline

basis functions for open uniform knot vectors Ξ = {0,0,0,0, 1
2
,1,1,1,1}.

0 1/2 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 1D (b) 2D

Figure 1: 1D and 2D cubic B-spline basis functions.

3
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2.2. NURBS surface

The B-spline curve is defined as

C(ξ ) =
n

∑
i=1

Ni,p (ξ )Pi (3)

where Pi are the control points, n denotes the number of control points and Ni,p (ξ ) is the pth-degree

B-spline basis function defined on the open knot vector.

Given two knot vectors Ξ =
{

ξ1,ξ2, ...,ξn+p+1

}

and H =
{

η1,η2, ...,ηm+q+1

}

and a control

net Pi, j, a tensor-product B-spline surface is defined as

S (ξ ,η) =
n

∑
i=1

m

∑
j=1

Ni,p (ξ )M j,q (η)Pi, j (4)

where Ni,p (ξ ) and M j,q (η) are the B-spline basis functions defined on the knot vectors Ξ and H ,

respectively.

In a finite element context, we identify the logical coordinates (i, j) of the B-spline surface with

the traditional notation of a “node” I [28] and rewrite Eq. (4) as follows

S (ξ ,η) =
n×m

∑
I

Nb
I (ξ ,η)PI (5)

where Nb
I (ξ ,η) = Ni,p (ξ )M j,q (η) is the shape function associated with a node I. The superscript

b indicates that Nb
I (ξ ,η) is a B-spline shape function.

Non-uniform rational B-splines (NURBS) are obtained by augmenting every point in the con-

trol mesh PI with the weights w
g
I . The weighting function is constructed as follows

wg (ξ ,η) =
n×m

∑
I=1

Nb
I (ξ ,η)w

g
I (6)

The NURBS surfaces are then defined by

S (ξ ,η) =

n×m

∑
I=1

Nb
I (ξ ,η)w

g
I PI

wg (ξ ,η)
=

n×m

∑
I=1

NI (ξ ,η)PI (7)

where NI (ξ ,η) = Nb
I (ξ ,η)w

g
I /wg (ξ ,η) are NURBS basis functions.

3. An isogeometric laminated plate formulation using a new inverse tangent shear deforma-

tion theory

3.1. The displacements, strains and stresses in plates

Let Ω be the domain in R
2 occupied by the mid-plane of the plate and u0, v0, w and β =

(βx,βy)
T denote the displacement components in the x,y,z directions and the rotations in the x− z

and y− z planes (or the-y and the-x axes), respectively, see Fig. 2. A generalized five-parameter

4
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Table 1: Several trigonometric shear deformation theories

Theory f (z)
Arya [38] (2002) sin

(

πz
h

)

Touratier [39] (1991) h
π sin

(

πz
h

)

Soldatos [7] (1992) hsinh z
h
−zcosh(1

2
)

Proposed model harctan
(

2z
h

)

− z

displacement field based on higher-order shear deformation theories [7, 9, 36, 37] are defined as

follows

u(x,y,z) = u0 (x,y)− z
∂w

∂x
+ f (z)βx (x,y)

v(x,y,z) = v0 (x,y)− z
∂w

∂y
+ f (z)βy (x,y)

w(x,y,z) = w(x,y)

(8)

Figure 2: Geometry of a plate.

where f (z) is shape function determining the distribution of the transverse shear strains and stresses

through the thickness of plates. This distribution function is chosen so that tangential stress-free

boundary conditions at the top and bottom surfaces of the plates are satisfied. In the present formu-

lation, an inverse tangent function is proposed. Several trigonometric shape functions derived by

other researchers are listed in Table 1. Shape functions and derivation of its through the thickness

of the plate are illustrated in Fig. 3. It be can seen that the zeros shear stress conditions at the top

and bottom surfaces of the plates are obtained.

The in-plane strain vector ε p =
[

εxx εyy γxy

]T
can be rewritten as

ε p = ε0 + zε1 + f (z)ε2 (9)

where

5
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Figure 3: Shape functions f (z)) and its derivation through the thickness of the plate.

ε0 =















∂u0

∂x
∂v0

∂y
∂u0

∂y
+

∂v0

∂x















; ε1 =

















−∂ 2w

∂x2

−∂ 2w

∂y2

−2
∂ 2w

∂x∂y

















; ε2 =















∂βx

∂x
∂βy

∂y
∂βx

∂y
+

∂βy

∂x















and the transverse shear strain vector γ = [γxz γyz]
T

has the following form

[γxz γyz]
T = g(z)εs (10)

where

εs =

[

βx

βy

]

; g(z) =
d f (z)

dz

Neglecting σz for each orthotropic layer, the constitutive equation of an orthotropic layer in the

local coordinate system is derived from Hookes law for a plane stress by































σ
(k)
1

σ
(k)
2

τ
(k)
12

τ
(k)
13

τ
(k)
23































=













Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q33 0 0

0 0 0 Q55 0

0 0 0 0 Q44













(k)






























ε
(k)
1

ε
(k)
2

γ
(k)
12

γ
(k)
13

γ
(k)
23































(11)

where subscripts 1 and 2 are the directions of the fiber and in-plane normal to fiber, respectively,

subscript 3 indicates the direction normal to the plate; and the reduced stiffness components, Q
(k)
i j ,

6
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are given by

Q
(k)
11 =

E
(k)
1

1−ν
(k)
12 ν

(k)
21

,Q
(k)
12 =

ν
(k)
12 E

(k)
2

1−ν
(k)
12 ν

(k)
21

, Q
(k)
22 =

E
(k)
2

1−ν
(k)
12 ν

(k)
21

Q
(k)
33 = G

(k)
12 , Q

(k)
55 = G

(k)
13 , Q

(k)
44 = G

(k)
23

(12)

in which E
(k)
1 , E

(k)
2 , G

(k)
12 , G

(k)
23 , ν

(k)
12 and ν

(k)
21 are independent material properties for each layer.

The laminate is usually made of several orthotropic layers. Each layer must be transformed into

the laminate coordinate system (x,y,z). The stress - strain relationship is given as























σxx

σyy

τxy

τxz

τyz























(k)

=













Q̄11 Q̄12 Q̄16 0 0

Q̄21 Q̄22 Q̄26 0 0

Q̄61 Q̄62 Q̄66 0 0

0 0 0 Q̄55 Q̄54

0 0 0 Q̄45 Q̄44













(k)




















εxx

εyy

γxy

γxz

γyz























(k)

(13)

where Q̄i j is the transformed material constant matrix (see [40] for more details).

3.2. Weak form

A weak form of the static model for composite sandwich plates using HSDT can be briefly

expressed as
∫

Ω
δεT

p D̄ε pdΩ+
∫

Ω
δεs

T DsεsdΩ =
∫

Ω
δwp̄dΩ (14)

where p̄, ε p =
[

ε0 ε1 ε2

]T
and εs are the transverse loading per unit area, in-plane strains and

transverse shear strains vector, respectively, and

D̄ =





A B E

B D F

E F H





(

Ai j,Bi j,Di j,Ei j,Fi j,Hi j

)

=
∫ h/2

−h/2

(

1,z,z2, f (z),z f (z), f 2(z)
)

Q̄i jdz (i, j = 1,2,6)

Ds
i j =

∫ h/2

−h/2

(

g2(z)
)

Q̄i jdz (i, j = 4,5)

For the free vibration analysis of composite sandwich plates using HSDT, a weak form may be

derived from the dynamic form of the principle of virtual work

∫

Ω
δεT

p D̄ε pdΩ+
∫

Ω
δεs

T DsεsdΩ =
∫

Ω
δ ũT m ¨̃udΩ (15)

where

m =





I1 I2 I4

I2 I3 I5

I4 I5 I6



 ; (I1, I2, I3, I4, I5, I6) =
∫ h/2

−h/2
ρ
(

1,z,z2, f (z),z f (z), f 2(z)
)

dz

in which ũ =
[

u0 u1 u2

]T
and

7
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u0 =





u0

v0

w



 ; u1 =











−∂w

∂x

−∂w

∂y
0











; u2 =





βx

βy

0





In the case of in-plane buckling analysis and assuming pre-buckling stresses σ̂0, nonlinear

strains are taken into account in the weak form as
∫

Ω
δεT

p D̄ε pdΩ+
∫

Ω
δεs

T DsεsdΩ+h

∫

Ω
∇T δwσ̂0∇wdΩ = 0 (16)

where ∇T = [∂/∂x ∂/∂y] and σ̂0 =

[

σ0
x τ0

xy

τ0
xy σ0

y

]

are the gradient operator and in-plane pre-

buckling stresses, respectively.

Using NURBS basis functions, the field variables are the in-plane extensions, transverse de-

flection and the rotations at all control points, which can be expressed as

u =























u0

v0

w

βx

βy























=
n×m

∑
I=1













NI 0 0 0 0

0 NI 0 0 0

0 0 NI 0 0

0 0 0 NI 0

0 0 0 0 NI



































uI

vI

wI

βxI

βyI























=
n×m

∑
I=1

NIqI (17)

where n×m is the number basis functions, NI and qI = [uI vI wI βxI βyI]
T are rational basis

functions and the degrees of freedom of u associated with a control point I, respectively.

The in-plane strains, shear strains and geometrical strains are written as:

[

ε p γ
]T

=
n×m

∑
I=1

[

Bb0
I Bb1

I Bb2
I Bs

I

]T
qI =

n×m

∑
I=1

BIqI ; εg =
n×m

∑
I=1

B
g
I qI (18)

where

Bb0
I =





NI,x 0 0 0 0

0 NI,y 0 0 0

NI,y NI,x 0 0 0



 ; Bb1
I =





0 0 −NI,xx 0 0

0 0 −NI,yy 0 0

0 0 −2NI,xy 0 0



 ; Bb2
I =





0 0 0 NI,x 0

0 0 0 0 NI,y

0 0 0 NI,y NI,x





and

Bs
I =

[

0 0 0 NI 0

0 0 0 0 NI

]

; BI =
[

Bb0
I Bb1

I Bb2
I Bs

I

]T

For static analysis, the stiffness formulation is written as

Kq = f, (19)

For free vibration analysis, one forms

(

K−ω2M
)

q = 0, (20)
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And for buckling analysis, we have

(K−λcrKg)q = 0 (21)

where K is the global stiffness matrix

K =
∫

Ω















Bb0

Bb1

Bb2





T 



A B E

B D F

E F H









Bb0

Bb1

Bb2



+(Bs)T
DsBs











dΩ (22)

f =
∫

Ω
p̄NdΩ (23)

in which f is the load vectors and M is the global mass matrix

M =
∫

Ω















N0

N1

N2





T 



I1 I2 I4

I2 I3 I5

I4 I5 I6









N0

N1

N2















dΩ (24)

where

N0 =





NI 0 0 0 0

0 NI 0 0 0

0 0 NI 0 0



 ; N1 =





0 0 −NI,x 0 0

0 0 −NI,y 0 0

0 0 0 0 0



 ; N2 =





0 0 0 NI 0

0 0 0 0 NI

0 0 0 0 0





and the global geometrical stiffness matrix Kg is

Kg =
∫

Ω
(Bg)T τBgdΩ ; τ = hσ̂0 (25)

in which ρ , h, ω and λcr are the mass density, the thickness, the natural frequency and the critical

buckling load, respectively.

3.3. Essential boundary conditions

In this part, we show how to impose essential boundary conditions of the isogeometric ap-

proach. For the sake of simplicity we consider several following Dirichlet boundary conditions

(BCs):

• Simply supported rectangular plates:

u0(xD) = v0(xD) = w(xD) = βn(xD) = 0 (26)

where βn(xD) is the normal rotation constraint and xD are control points that define the

essential boundary.

• Simply supported plates with curved boundaries:

u0(xD) = v0(xD) = w(xD) = 0 (27)

9
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• Clamped plate model:

u0(xD) = v0(xD) = w(xD) = βx(xD) = βy(xD) = w,n(xD) = 0 (28)

It is worth noting that the enforcement of Dirichlet BCs on u0,v0,w,βx and βy is treated as in

the standard FEM. This procedure involves only control points that define the essential boundary.

However, for the derivatives w,x, w,y occurred in (8), the enforcement of Dirichlet BCs can be

solved in a special way based on stream function formulation proposed by Auricchio et al. [41].

To end this, the derivatives w,x, w,y can be included in a compact form of the normal slope at the

boundary as follows
∂w

∂n
= lim

∆n→0

w(n(xD)+∆n)−w(n(xD))

∆n
= 0 (29)

Due to w(n(xD)) = 0 at xD, Eq.(29) implies that in the framework of IGA we impose simply same

boundary values, i.e, zero values, on the deflection variable at control points xA adjacent to the

boundary control points xD [41]. It be can observed that essential boundary condition using this

way is very simple to implement in the isogeometric approach in comparison with other numerical

methods. We will show in the next section that this procedure results in a high accuracy for analysis

of multilayered plates.

4. Numerical results and discussion

Several examples of the laminated composite and sandwich plates for static, free vibration and

buckling analysis have been presented to demonstrate the performance of the proposed theory. For

the sake of simplicity and without loss of generality, we only consider the IGA with using NURBS

cubic basis functions (p = 3). Additionally, besides the proposed model, the IGA is also applied

for the first time to three different trigonometric shear deformation theory models [38, 39, 7]. The

results obtained from the present solutions have been compared with other published ones.

The material parameters used in this study are listed below:

• Material I:

E1 = 25E2, , G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25, ρ = 1.

• Material II [42]:

Face sheets:

E1 = 172.375 GPa, E2 = E3 = 6.895 GPa, G12 = G13 = 3.448 GPa, G23 = 1.379 GPa,

ν12 = ν23 = ν13 = 0.25.

Core:

E1 = 0.2758 GPa, E2 = 0.2758 GPa, E3 = 3.4475 GPa, G12 = G13 = G23 = 0.4137 GPa,

ν12 = 0.25, ν23 = ν13 = 0.02.

• Material III: [43]

E1 = 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25, ρ = 1.

10
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• Material IV [44]:

Face sheets:

E1 = 131 GPa, E2 = E3 = 10.34 GPa, G12 = G23 = 6.895 GPa, G13 = 6.205 GPa, ν12 =
ν13 = 0.25; ν23 = 0.49, ρ = 1627 kg/m3.

Core:

E1 = 6.89 MPa, E2 = 6.89 MPa, E3 = 6.89 MPa, G12 =G13 =G23 = 3.45 MPa, ν12 = ν23 =
ν13 = 0, ρ = 97 kg/m3.

• Material V : [45]

E1 = 2.45E2, G12 = G13 = 0.48E2, G23 = 0.2E2, ν12 = 0.23, ρ = 1.

• Material V I [46]:

Face sheets:

E1/E2 = 19, G12/E2 = G13/E2 = 0.52, G23/E2 = 0.338, ν12 = ν13 = 0.32, ν23 = 0.49.

Core:

E1/E
f
2 = 3.2×10−5, E2/E

f
2 = 2.9×10−5, E3/E

f
2 = 0.4, G12/E

f
2 = 2.4×10−3.

G13/E
f
2 = 7.9×10−2, G23/E

f
2 = 6.6×10−2, ν12 = 0.99, ν23 = ν13 = 3×10−5.

in which E
f
2 refers to that of face sheets.

4.1. Static analysis

4.1.1. Four layer [00/900/900/00] square laminated plate under sinusoidally distributed load

We now consider a simply supported square laminated plate subjected to a sinusoidal load q,

see Fig. 4. The length to width ratios is a/b=1 and the length to thickness ratios are a/h= 4, 10,

20, 100. Material I is used. The normalized displacement and stresses are defined as

ϖ = (100E2h3)w(a
2
, a

2
,0)/(qa4); σ̄xx =

h2

qb2 σxx(a/2,a/2,h/2)

σ̄yy =
h2

qb2 σyy(a/2,a/2,h/4); τ̄xy =
h2

qb2 σxy(0,0,h/2)

τ̄xz =
h

qb
σxz(0,b/2,0); τ̄yz =

h
qb

σyz(a/2,0,0)

We first investigate the convergence of the normalization displacement and stresses at a/h =4. The

plate is modeled with 9×9, 13×13 and 17×17 elements as shown in Fig. 5. The exact 3D elas-

ticity solution of this problem was given by Pagano [47]. Table 7 shows the convergence of the

normalization displacement and stresses of the IGA based on the present theory and the different

trigonometric shear deformation theories (dTrSDTs) [38, 39, 7]. The relative error percentages

compared with the exact 3D elasticity solution [47] are given in a parentheses. It be can observed

that the obtained results agree very well with the exact values. Compared to the different trigono-

metric shear deformation theories, the IGA using the present theory produces more accurate results

for both displacement and stresses.

For a comparison, the normalized displacement and stresses of a four layer simply supported square

plate are computed using 17×17 B-spline elements. The obtained results of the IGA based on the

present theory are compared with those of the several other methods based on other higher-order

shear deformation theories such as the closed form solution (CSF) based on the HSDT by Reddy

11
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[6], the finite strip method (FSM) based on HSDT by Akhras et al.[48], the multiquadric radial ba-

sis function method (RBFs) based on a finite point formulation and HSDT by Ferreira et al. [49],

the closed form solution based on a trigonometric shear deformation theory (TrSDT) by Mantari

et al. [50], the closed form solution based on an exponential shear deformation theory (ESDT)

by Karama et al. [51], the IGA based on the dTrSDTs [38, 39, 7] and an exact 3D elasticity ap-

proach studied by Pagano [47]. Table 3 is provided the comparison between the present method

and other methods. It is seen that the IGA based on the present theory shows a strong competitor

to other reference ones for all ratios a/h. The normalized displacement and stresses of the present

approach are in excellent agreement with the exact solution [47]. It is seen for thick plate cases

(a/h = 4,10) that the ITSDT yields better results than the HSDT [6, 48, 49], ESDT [51] and the

dTrSDTs [38, 39, 7] in comparison with the exact solution [47]. For thin plate case (a/h = 100),

the difference between the solutions are not significant for all displacement and stresses. Fig. 6

plots the distribution of stresses through the thickness of a four-layer the square plate with a/h

= 4 and 10, respectively. It is worth noting that the present ITSDT model reflects well the shear

stresses profiles through the plate thickness. From Table 3, it is worth noting that results derived

from two published models in [38] and [39] are coincided. Therefore in next examples, only the

model provided in [38] is illustrated.

Figure 4: Geometry of a square laminated plate under sinusoidally and uniformly distributed load.

(a) (b) (c)

Figure 5: Meshes and control net of a square plate using cubic elements: a) 9×9; b) 13×13 and c) 17×17.

12
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Table 2: The convergence of the normalized displacement and stresses of a four-layer [00/900/900/00] laminated

composite square plate (a/h = 4)

Method Nor. sol. Mesh

9×9 13×13 17×17

IGA (Arya [38]) w̄ 1.9086 (2.32%) 1.9087 (2.32%) 1.9088 (2.31%)

IGA (Toutatier [39]) 1.9086 (2.32%) 1.9087 (2.32%) 1.9088 (2.31%)

IGA (Soldatos [7]) 1.8919 (3.18%) 1.8920 (3.17%) 1.8920 (3.17%)

IGA (present) 1.9256 (1.45%) 1.9257 (1.45%) 1.9258 (1.44%)

Elasticity [47] - - 1.954

IGA (Arya [38]) σ̄xx 0.6863 (4.68%) 0.6845 (4.93%) 0.6839 (5.01%)

IGA (Toutatier [39]) 0.6863 (4.68%) 0.6845 (4.93%) 0.6839 (5.01%)

IGA (Soldatos [7]) 0.6669 (7.37%) 0.665 (7.64%) 0.6644 (7.72%)

IGA (present) 0.7186 (0.19%) 0.7169 (0.43%) 0.7164 (0.50%)

Elasticity [47] - - 0.720

IGA (Arya [38]) σ̄yy 0.6337 (4.85%) 0.6344 (4.74%) 0.6346 (4.71%)

IGA (Toutatier [39]) 0.6337 (4.85%) 0.6344 (4.74%) 0.6346 (4.71%)

IGA (Soldatos [7]) 0.6307 (5.30%) 0.6314 (5.20%) 0.6316 (5.17%)

IGA (present) 0.6372 (4.32%) 0.6378 (4.23%) 0.6381 (4.19%)

Elasticity [47] - - 0.666

IGA (Arya [38]) σ̄xy 0.0450 (3.64%) 0.0450 (3.64%) 0.0450 (3.64%)

IGA (Toutatier [39]) 0.0450 (3.64%) 0.0450 (3.64%) 0.0450 (3.64%)

IGA (Soldatos [7]) 0.0439 (6.00%) 0.0439 (6.00%) 0.0439 (6.00%)

IGA (present) 0.0467 (0.00%) 0.0467 (0.00%) 0.0467 (0.00%)

Elasticity [47] - - 0.0467

IGA (Arya [38]) σ̄xz 0.2163 (19.89%) 0.2162 (19.93%) 0.2162 (19.93%)

IGA (Toutatier [39]) 0.2163 (19.89%) 0.2162 (19.93%) 0.2162 (19.93%)

IGA (Soldatos [7]) 0.2056 (23.85%) 0.2055 (23.89%) 0.2055 (23.89%)

IGA (present) 0.2397 (11.22%) 0.2396 (11.26%) 0.2396 (11.26%)

Elasticity [47] - - 0.270

IGA (Arya [38]) σ̄yz 0.2462 (15.40%) 0.2461 (15.43%) 0.2461 (15.43%)

IGA (Toutatier [39]) 0.2462 (15.40%) 0.2461 (15.43%) 0.2461 (15.43%)

IGA (Soldatos [7]) 0.2383 (18.11%) 0.2382 (18.14%) 0.2382 (18.14%)

IGA (present) 0.2624 (9.83%) 0.2624 (9.83%) 0.2624 (9.83%)

Elasticity [47] - - 0.291
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Table 3: The normalized displacement and stresses of a supported simply [00/900/900/00] square laminated plate

under a sinusoidally distributed load.

a/h Method w̄ σ̄xx σ̄yy σ̄xy σ̄xz σ̄yz

4 CFS-HSDT [6] 1.8939 0.6806 0.6463 0.0450 0.2109 0.2390

FSM-HSDT [48] 1.8937 0.6651 0.6322 0.0440 0.2064 -

RBFs-HSDT [49] 1.8864 0.6659 0.6313 0.0433 0.1352 -

CFS-TrSDT [50] 1.921 0.74 0.635 0.048 0.254 0.269

CFS-ESDT [51] 1.919 0.699 0.636 0.0459 0.226 0.253

Elasticity [47] 1.954 0.720 0.666 0.0467 0.270 0.291

IGA (Arya ) 1.9088 0.6839 0.6346 0.0450 0.2162 0.2461

IGA (Touratier [39]) 1.9088 0.6839 0.6346 0.0450 0.2162 0.2461

IGA (Soldatos ) 1.8920 0.6644 0.6316 0.0439 0.2055 0.2382

IGA (present) 1.9258 0.7164 0.6381 0.0467 0.2396 0.2624

10 CFS-HSDT [6] 0.7149 0.5589 0.3974 0.0273 0.2697 0.1530

FSM-HSDT [48] 0.7147 0.5456 0.3888 0.0268 0.2640 -

RBFs-HSDT [49] 0.7153 0.5466 0.4383 0.0267 0.3347 -

CFS-TrSDT [50] 0.730 0.561 0.395 0.028 0.335 0.176

CFS-ESDT [51] 0.724 0.553 0.393 0.027 0.294 0.163

Elasticity [47] 0.743 0.559 0.403 0.0276 0.301 0.196

IGA (Arya ) 0.7198 0.5486 0.3905 0.0270 0.2787 0.1582

IGA (Touratier [39]) 0.7198 0.5486 0.3905 0.0270 0.2787 0.1582

IGA (Soldatos ) 0.7142 0.5449 0.3881 0.0267 0.2627 0.1526

IGA (present) 0.7272 0.5552 0.3937 0.0273 0.3133 0.1704

20 CFS-HSDT [6] 0.5061 0.5523 0.311 0.0233 0.2883 0.1230

FSM-HSDT [48] 0.5060 0.5393 0.3043 0.0228 0.2825 -

RBFs-HSDT [49] 0.5070 0.5405 0.3648 0.0228 0.3818 -

CFS-TrSDT [50] 0.510 0.542 0.306 0.023 0.323 0.132

CFS-ESDT [51] 0.509 0.541 0.306 0.023 0.316 0.131

Elasticity [47] 0.517 0.543 0.309 0.0230 0.328 0.156

IGA (Arya ) 0.5075 0.5395 0.3046 0.0228 0.2989 0.1272

IGA (Touratier [39]) 0.5075 0.5395 0.3046 0.0228 0.2989 0.1272

IGA (Soldatos ) 0.5059 0.5385 0.3038 0.0228 0.2810 0.1231

IGA (present) 0.5098 0.5412 0.3058 0.0229 0.3372 0.1366

100 CFS-HSDT [6] 0.4343 0.5507 0.2769 0.0217 0.2948 0.1120

FSM-HSDT [48] 0.4343 0.5387 0.2708 0.0213 0.2897 -

RBFs-HSDT [49] 0.4365 0.5413 0.3359 0.0215 0.4106 -

CFS-TrSDT [50] 0.435 0.539 0.271 0.021 0.332 0.119

CFS-ESDT [51] 0.435 0.538 0.27 0.021 0.324 0.118

Elasticity [47] 0.4347 0.539 0.271 0.0214 0.339 0.141

IGA (Arya ) 0.4344 0.5380 0.2705 0.0213 0.3069 0.1148

IGA (Touratier [39]) 0.4344 0.5380 0.2705 0.0213 0.3069 0.1148

IGA (Soldatos ) 0.4343 0.5379 0.2704 0.0213 0.2882 0.1114

IGA (present) 0.4345 0.5380 0.2705 0.0213 0.3467 0.1229
14
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Figure 6: The distribution of stresses through the thickness of a four-layer [00/900/900/00] square plate under a

sinusoidally distributed load.
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4.1.2. Three layer [00/900/00] square laminated plate under sinusoidally distributed load

A three-layer [00/900/00] simply supported square laminated plate subjected to a sinusoidal

load q as previous example is considered. The length to thickness ratios are a/h= 4, 10, 20, 100,

respectively. Material I is also used. The normalized displacement and stresses of a square plate

are defined as:

ϖ = (100E2h3)w(a
2
, a

2
,0)/(qa4); σ̄xx =

h2

qb2 σxx(a/2,a/2,h/2)

σ̄yy =
h2

qb2 σyy(a/2,a/2,h/6); τ̄xy =
h2

qb2 σxy(0,0,h/2)

τ̄xz =
h

qb
σxz(0,b/2,0); τ̄yz =

h
qb

σyz(a/2,0,0)

Table 4 lists the results of the IGA based on present theory using 17×17 cubic B-Spline elements.

Numerical solutions are compared to those reported in the literature such as the closed form solu-

tion based on HSDT by Reddy [6], the closed form solution based on ESDT by Karama et al. [51],

the closed form solution based on TrSDT by Mantari et al. [50], the closed form solution based

on inverse hyperbolic shear deformation theory (IHSDT) by Grover et al. [52], the IGA solution

based on the dTrSDTs [38, 7] and an exact elasticity solution by Pagano [47]. The obtained results

indicate a reasonably good agreement with other available ones for all a/h ratios. The normalized

displacement and stresses derived from the present theory are more accuracy than those of HSDT

[6] and ESDT [51]. Also, the stresses profiles through the thickness of the three-layer square lam-

inated plate with a/h = 4 and 10, respectively, are again displayed in Fig. 7.

4.1.3. Sandwich (00/core/00) square plate subjected under sinusoidally distributed load

Let us consider a sandwich (00/core/00) simply supported square plate subjected to a sinu-

soidally distributed load. The thickness of each face sheet is fixed at h/10. The length to thickness

ratios are used as a/h = 4,10,20,50,100. Material II is used in this example. The plate is modeled

by 17×17 B-spline elements. The normalized transverse displacement and stresses are defined as

follows

w̄ = 100h3E2w(
a

2
,
a

2
,
h

2
)/q0a4, σ̄x = h2σx(

a

2
,
a

2
,
h

2
)/q0a2,

σ̄y = h2σy(
a

2
,
a

2
,
h

2
)/q0a2, σ̄xy = h2σxy(0,0,

h

2
)/q0a2,

σ̄xz = hσxz(0,
b

2
,0)/a, σ̄yz = hσyz(

a

2
,0,0)/a.

Table 5 summarizes normalized transverse displacement and stresses derived from the IGA based

on present theory in comparison with the exact elasticity solution by Pagano [47], the closed form

solution by Kant and Swaminathan [42] based on FSDT & HSDT and our isogeometric approach

based on the dTrSDTs [38, 7]. Again, the present results are in good agreement with the ex-

act elasticity one [47] and also the analytical one [42]. It is evident that FSDT model leads to

inaccurate results compared to other models when the plate becomes thicker. Henceforth, this

shortcoming motivates the development of higher order shear deformation theories. It is worth

noting that our proposed method is completely relied on the numerical approximation and can

provide strongly competitive solutions to well-known analytical approaches. Fig. 8 exhibits the

distribution of stresses through the thickness of the plate using the present theory and the dTrSDTs
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Table 4: The normalized displacement and stresses of a supported simply [00/900/00] square laminated plate under a

sinusoidally distributed load

a/h Method w̄ σ̄xx σ̄yy σ̄xy σ̄yz σ̄xz

4 CFS-HSDT [6] 1.9218 0.734 - - 0.183 -

CFS-TrSDT [50] 1.9434 0.823 0.497 0.0536 0.201 0.245

CFS-ESDT [51] 1.944 0.775 0.502 0.0516 0.191 0.220

CFS-IHSDT [52] 1.955 0.8079 0.5015 0.0532 0.2019 0.2438

Elasticity [47] 2.006 0.755 0.556 0.0505 0.217 0.282

IGA (Arya) 1.9346 0.7562 0.5029 0.0507 0.1877 0.2113

IGA (Soldatos) 1.9204 0.7333 0.5023 0.0496 0.1828 0.2016

IGA (present) 1.9515 0.7955 0.5020 0.0526 0.1974 0.2331

10 CFS-HSDT [6] 0.7125 0.568 - - 0.103 -

CFS-TrSDT [50] 0.7342 0.588 0.276 0.0288 0.115 0.314

CFS-ESDT [51] 0.723 0.576 0.272 0.0281 0.108 0.272

CFS-IHSDT [52] 0.7329 0.5845 0.2757 0.0286 0.1148 0.3091

Elasticity [47] 0.7405 0.590 0.288 0.0289 0.123 0.357

IGA (Arya) 0.7180 0.5723 0.2705 0.0279 0.1059 0.2583

IGA (Soldatos) 0.7120 0.5675 0.2685 0.0276 0.1031 0.2435

IGA (present) 0.7289 0.5809 0.2740 0.0284 0.1119 0.2924

20 CFS-TrSDT [50] 0.5113 0.551 0.206 0.0233 0.090 0.331

CFS-ESDT [51] 0.508 0.548 0.205 0.0231 0.086 0.285

CFS-IHSDT [52] 0.5102 0.5503 0.2065 0.0233 0.0903 0.3252

Elasticity [47] - 0.552 0.210 0.0234 0.094 0.385

IGA (Arya) 0.5057 0.5464 0.2046 0.0231 0.0842 0.2697

IGA (Soldatos) 0.5040 0.5452 0.2039 0.0230 0.0824 0.2536

IGA (present) 0.5089 0.5487 0.2058 0.0232 0.0883 0.3069

100 CFS-HSDT [6] 0.4342 0.539 - - 0.075 -

CFS-TrSDT [50] 0.4353 0.539 0.181 0.0214 0.081 0.337

CFS-ESDT [51] 0.435 0.538 0.18 0.0213 0.078 0.289

CFS-IHSDT [52] 0.4344 0.5392 0.1807 0.0214 0.0813 0.3309

Elasticity [47] - 0.539 0.181 0.0213 0.083 0.395

IGA (Arya) 0.4343 0.5383 0.1804 0.0213 0.0763 0.2738

IGA (Soldatos) 0.4342 0.5382 0.1803 0.0213 0.0749 0.2572

IGA (present) 0.4344 0.5384 0.1804 0.0214 0.0796 0.3121
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Figure 7: The distribution of stresses through the thickness of three layer [00/900/00] square plate under a sinusoidally

distributed load.
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[38, 7]. It is event that the present HSDT model produce truly the mechanical characterization of

the sandwich plates.

4.1.4. Three-layer sandwich square plate subjected to a uniform load

Let us consider a simply supported sandwich square plate proposed by Srinivas [53] subjected

to a uniform transverse load q, as shown in Fig. 9. Length to thickness ratio, a/h, is taken as

10. The core thickness hc to face sheet thickness ratio h f is fixed at 8 (hc/h f = 8). The laminate

sandwich plate is made of one inner layer (core), which has the following properties

Q̄core =













0.999781 0.231192 0 0 0

0.231192 0.524886 0 0 0

0 0 0.262931 0 0

0 0 0 0.266810 0

0 0 0 0 0.159914













and two outside layers (skins) are calculated as

Q̄skin = RQ̄core

The normalized displacement and stresses of the plate are defined as

w̄ = 0.999781w(
a

2
,
a

2
,0)/hq, σ̄1

xx = σ1
xx(

a

2
,
a

2
,
h

2
)/q,

σ̄2
xx = σ1

xx(
a

2
,
a

2
,
2h

5
)/q, σ̄3

xx = σ2
xx(

a

2
,
a

2
,
2h

5
)/q,

σ̄1
yy = σ1

yy(
a

2
,
a

2
,
h

2
)/q, σ̄2

yy = σ1
yy(

a

2
,
a

2
,
2h

5
)/q, σ̄3

yy = σ2
yy(

a

2
,
a

2
,
2h

5
)/q.

The exact solution of this problem was given by Srinivas [53]. For a comparison, we compute

the normalized displacement and stresses of the sandwich square plate using 17× 17 B-spline

elements. Obtained results from the IGA based on ITSDT are compared with those of the FEM

based on HSDT reported by Pandya and Kant [54], the multiquadric radial basis function method

(RBFs) based on a finite point formulation and HSDT by Ferreira et al. [49], the multiquadric

radial basis function method (RBFs) relied on the layerwise deformation theory (LW) by Ferreira

[55], the closed form solution based on IHSDT by Grover et al. [37], the closed form solution based

on ESDT by Mantari et al.[36], exact solution by Srinivas [53] and the IGA based on dTrSDTs

[38, 7]. The results with respect to various values of R (R = 5,10,15) are given in Table 6. It is

observed that the obtained results from the IGA based on present theory and the dTrSDTs [38, 7]

are in close agreement with the exact solution and those solutions for all displacement and stresses.

4.2. Free vibration analysis

4.2.1. Square plates

4.2.1.1 Laminated composite square plate

Let us consider a four-layer [00/900/900/00] plate with simply supported boundary conditions.

Material III is used. The effects of the length to thickness a/h and elastic modulus ratios E1/E2

are studied. To show the convergence of the present approach, the length to thickness a/h = 5 and

elastic modulus ratios E1/E2 = 40 are chosen. As shown in Table 7, the normalized frequency are
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Table 5: The normalized displacement and stresses of a sandwich (00/core/00) simple supported square plate under a

sinusoidally distributed load

a/h Method w̄ σ̄x σ̄y σ̄xy σ̄xz σ̄yz

4 CFS-HSDT [42]a 7.0551 1.5137 0.2648 0.1379 - -

CFS-HSDT [42]b 7.0873 1.4182 0.2365 0.1383 - -

CFS-FSDT [42]c 4.7666 0.8918 0.1562 0.0907 - -

Elasticity [47] - 1.512 0.2533 0.1437 - -

IGA (Arya [38]) 7.0928 1.4420 0.2379 0.1394 0.2832 0.1211

IGA (Soldatos [7]) 7.0849 1.4226 0.2359 0.1381 0.2697 0.1164

IGA (present) 6.9609 1.4587 0.2378 0.1397 0.3082 0.1283

10 CFS-HSDT [42]a 2.0798 1.1523 0.1100 0.0685 - -

CFS-HSDT [42]b 2.0629 1.1300 0.1030 0.0679 - -

CFS-FSDT [42]c 1.5604 1.0457 0.0798 0.0552 - -

Elasticity [47] - 1.152 0.1099 0.0707 - -

IGA (Arya [38]) 2.0681 1.1336 0.1032 0.0682 0.3465 0.0598

IGA (Soldatos [7]) 2.0621 1.1296 0.1028 0.0679 0.3287 0.0576

IGA (present) 2.0465 1.1382 0.1027 0.0680 0.3780 0.0633

20 CFS-HSDT [42]a 1.1933 1.1110 0.0705 0.0504 - -

CFS-HSDT [42]b 1.1876 1.1039 0.0679 0.0502 - -

CFS-FSDT [42]c 1.0524 1.0830 0.0612 0.0466 - -

Elasticity [47] - 1.1100 0.0700 0.0511 - -

IGA (Arya [38]) 1.1891 1.1037 0.0679 0.0502 0.3640 0.0421

IGA (Soldatos [7]) 1.1873 1.1026 0.0677 0.0501 0.3451 0.0407

IGA (present) 1.1835 1.1050 0.0677 0.0501 0.3971 0.0447

50 CFS-HSDT [42]a 0.9296 1.1005 0.0578 0.0445 - -

CFS-HSDT [42]b 0.9284 1.0980 0.0565 0.0445 - -

CFS-FSDT [42]c 0.9063 1.0947 0.0554 0.0439 - -

Elasticity [47] - 1.0990 0.0569 0.0446 - -

IGA (Arya [38]) 0.9286 1.0967 0.0565 0.0445 0.3697 0.0364

IGA (Soldatos [7]) 0.9283 1.0965 0.0565 0.0444 0.3504 0.0351

IGA (present) 0.9277 1.0969 0.0565 0.0444 0.4032 0.0387

100 CFS-HSDT [42]a 0.8913 1.0990 0.0560 0.0436 - -

CFS-HSDT [42]b 0.8908 1.0973 0.0549 0.0436 - -

CFS-FSDT [42]c 0.8852 1.0964 0.0546 0.0435 - -

Elasticity [47] - 1.098 0.0550 0.0437 - -

IGA (Arya [38]) 0.8908 1.0957 0.0548 0.0436 0.3705 0.0355

IGA (Soldatos [7]) 0.8908 1.0957 0.0548 0.0436 0.3512 0.0343

IGA (present) 0.8906 1.0958 0.0548 0.0436 0.4041 0.0378

a 12 degrees of freedom per node (DOFs/node); b 5 DOFs/node; c 5 DOFs/node;
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Figure 8: The distribution of stresses through the thickness of a sandwich (00/core/00) plate under a sinusoidally

distributed load.
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Figure 9: Geometry of a sandwich plate.

Table 6: The normalized displacement and stresses of a square sandwich plate under a uniform load

R Method w̄ σ̄1
x σ̄2

x σ̄3
x σ̄1

y σ̄2
y σ̄3

y

5 FEM-HSDT [54] 256.130 62.380 46.910 9.382 38.930 30.330 6.065

RBFs-HSDT [49] 257.110 60.366 47.003 9.401 38.456 30.242 6.048

RBFs-Layerwise [56] 258.179 60.063 46.393 9.279 38.364 30.029 6.006

CFS-IHSDT [37] 255.644 60.675 47.055 9.411 38.522 30.206 6.041

CFS-ESDT [36] 256.706 60.525 47.061 9.412 38.452 30.177 6.035

Exact [53] 258.970 60.353 46.623 9.340 38.491 30.097 6.161

IGA (Arya [38]) 256.998 60.375 46.953 9.390 38.449 30.213 6.042

IGA (Soldatos [7]) 256.957 60.314 46.966 9.393 38.422 30.217 6.043

IGA (present) 256.212 60.495 46.990 9.398 38.456 30.196 6.039

10 FEM-HSDT [54] 152.33 64.650 51.310 5.131 42.830 33.970 3.397

RBFs-HSDT[49] 154.658 65.381 49.973 4.997 43.240 33.637 3.364

RBFs-Layerwise [56] 158.912 64.993 48.601 4.860 43.491 33.409 3.341

CFS-IHSDT [37] 154.550 65.741 49.798 4.979 43.400 33.556 3.356

CFS-ESDT [36] 155.498 65.542 49.708 4.971 43.385 33.591 3.359

Exact [53] 159.38 65.332 48.857 4.903 43.566 33.413 3.500

IGA (Arya [38]) 155.025 65.366 49.822 4.982 43.267 33.601 3.360

IGA (Soldatos [7]) 154.439 65.306 49.926 4.993 43.183 33.597 3.360

IGA (present) 154.954 65.509 49.771 4.977 43.317 33.574 3.357

15 FEM-HSDT [54] 110.430 66.620 51.970 3.465 44.920 35.410 2.361

RBFs-HSDT [49] 114.644 66.919 50.323 3.355 45.623 35.167 2.345

RBFs-Layerwise [56] 121.347 66.436 48.011 3.201 46.385 34.965 2.331

CFS-IHSDT [37] 115.820 67.272 49.813 3.321 45.967 35.088 2.339

CFS-ESDT [36] 115.919 67.185 49.769 3.318 45.910 35.081 2.339

Exact [53] 121.720 66.787 48.299 3.238 46.424 34.955 2.494

IGA (Arya [38]) 115.438 66.876 50.048 3.337 45.715 35.143 2.343

IGA (Soldatos [7]) 114.400 66.837 50.280 3.352 45.548 35.120 2.341

IGA (present) 116.048 67.009 49.847 3.323 45.858 35.129 2.342
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Table 7: The convergence of non-dimensional frequency parameter ϖ =
(

ωa2/h
)

(ρ/E2)
1/2

of four-layer

[00/900/900/00] simply supported laminated square plate (a/h = 5)

Method Modes

9×9 13×13 17×17

IGA (Arya [38]) 10.7933 10.7931 10.7930

IGA (Touratier [39]) 10.7933 10.7931 10.7930

IGA (Soldatos [7]) 10.7876 10.7874 10.7873

IGA (present) 10.8430 10.8428 10.8428

computed using meshes of 9× 9, 13× 13 and 17× 17. It can be observed that the differences of

normalized frequencies between meshes of 13× 13 and 17× 17 are not significant. Hence, for a

comparison with other methods, a mesh of 13×13 cubic elements can be chosen.

The first normalized frequency derived from the IGA based on the present theory (ITSDT) is

listed in Table 8 corresponding to various modulus ratios E1/E2 and a/h = 5. The obtained results

are compared with the closed form solution based on HSDT [57, 58], the moving least squares dif-

ferential quadrature method (DQM) [43] based on FSDT, the meshfree method using multiquadric

radial basis functions (RBFs) [59] & wavelets function [60] based on FSDT and our isogeometric

approach based on dTrSDTs [38, 7]. It is found that the obtained results from the IGA based on

ITSDT and dTrSDTs are in good agreement with the published ones. And the first normalized

frequency of the IGA based on ITSDT is slightly larger the IGA based on dTrSDTs [38, 7].

The influence of the length to thickness ratios is also considered, as shown in Table 9. The ob-

tained results are compared with those of Zhen and Wanji [61] based on a global-local higher-order

theory (GLHOT), Whu and Chen [62] based on a local higher-order theory (LHOT), Matsunaga

[63] based on a glocal-local higher-order theory, Cho et al. [64] based on HSDT. As expected, a

good agreement with other published solutions is obtained.

4.2.1.2 Composite sandwich square plate

Let us a five-layer (00/900/core/00/900) anti-symmetry sandwich square plate with a simply

supported boundary condition. Material IV is used and the plate is modeled by 13×13 B-spline el-

ements. First, the changes of the length to thickness ratio and thickness of core to thickness of face

sheet ratio are considered. The normalized frequencies are defined as ϖ =
(

ωb2/h
)

√

(ρ/E2) f ace.

For various length to thickness ratios varying from 2 to 100, the first normalized frequency is listed

in Table 10. The results obtained are compared with analytical solutions provided in [44] based

on HSDT & FSDT and our isogeometric approach based on dTrSDTs [7, 38]. We observed that

present results are in good agreement with analytical ones from HSDT model (12 DOFs/node) re-

ported in [44] and are more accuracy than those of HSDT (5 DOFs/node) & FSDT (5 DOFs/node)

[44]. It is clear that the difference between results of using FSDT model and HSDT model is very
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Table 8: A non-dimensional frequency parameter ϖ =
(

ωa2/h
)

(ρ/E2)
1/2

of a [00/900/900/00] simply supported

laminated square plate (a/h=5)

Method E1/E2

10 20 30 40

RBFs-FSDT[59] 8.2526 9.4974 10.2308 10.7329

Wavelets-FSDT[60] 8.2794 9.5375 10.2889 10.8117

DQM-FSDT [43] 8.2924 9.5613 10.3200 10.8490

CFS-HSDT[58, 57] 8.2982 9.5671 10.3260 10.8540

IGA (Arya [38]) 8.2737 9.5302 10.2769 10.7931

IGA (Soldatos [7]) 8.2719 9.5263 10.2719 10.7874

IGA (present) 8.2944 9.5650 10.3206 10.8428

Table 9: A non-dimensional frequency parameter ϖ =
(

ωa2/h
)

(ρ/E2)
1/2

of a [00/900/900/00] simply supported

laminated square plate (E1/E2 = 40)

Method/Authors a/h

4 5 10 20 25 50 100

Zhen and Wanji [61] 9.2406 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566

Whu and Chen [62] 9.193 10.682 15.069 17.636 18.055 18.670 18.835

Matsunaga [63] 9.1988 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352

Cho et al. [64] - 10.673 15.066 17.535 18.054 18.670 18.835

IGA (Arya [38]) 9.3295 10.7931 15.1130 17.6492 18.0638 18.6724 18.8358

IGA (Soldatos [7]) 9.3236 10.7874 16.8498 17.6465 18.0619 18.6718 18.8357

IGA (present) 9.3781 10.8428 15.1552 17.6677 18.0766 18.6760 18.8367
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Table 10: The first normalized frequency ϖ =
(

ωb2/h
)

√

(ρ/E2) f of an antisymmetry (00/900/core/00/900) sand-

wich square plate with hc/h f = 10

a/h HSDT [44]a HSDT [44]b FSDT [44]c IGA [38] IGA [7] IGA (present)

2 1.1941 1.6252 5.2017 1.4858 1.6806 1.2133

4 2.1036 3.1013 9.0312 2.8122 3.2115 2.2298

10 4.8594 7.0473 13.8694 6.4640 7.2607 5.2038

20 8.5955 11.2664 15.5295 10.6397 11.4827 9.0830

30 11.0981 13.6640 15.9155 12.8874 13.5273 11.5583

40 12.6821 14.430 16.0577 14.0938 14.5536 13.0645

50 13.6899 15.0323 16.1264 14.7811 15.1159 13.9958

60 14.3497 15.3868 16.1612 15.1997 15.4503 14.5939

70 14.7977 15.6134 16.1845 15.4701 15.6631 14.9940

80 15.1119 15.7660 16.1991 15.6536 15.8061 15.2721

90 15.3380 15.8724 16.2077 15.7832 15.9064 15.4720

100 15.5093 15.9522 16.2175 15.8780 15.9794 15.6200

a 12 DOFs/node; b 5 DOFs/node; c 5 DOFs/node;

significant for thick sandwich plates. It is therefore necessary to use HSDT model. Table 11 lists

several higher frequencies for moderately thick and thin plates. It can be found that present results

agree well with those obtained by HSDT models for both thick (a/h = 10) and thin (a/h = 100)

sandwich plate whereas FSDT model leads to over-stiffness of the natural frequencies. The first

six mode shapes are illustrated in Fig. 10.

Next, the influence of the thickness of core to the thickness of face sheet ratio hc/h f on the

natural normalized frequency is resulted in Table 12. For the range of hc/h f from 4 to 100, The

natural frequency values based on FSDT model [65] are very high compared to the results based

on HSDT model [65]. As expected, the present method is in good agreement with the analytical

solution based on HSDT [65] (12 DOFs/node) and is also more accuracy than that of HSDT [65]

(5 DOFs/node). The natural frequencies of the plate decrease as the ratio hc/h f increases, i.e, the

stiffness of the plate decreases.

4.2.2. Circular plates

A circular four-layer [θ/− θ/− θ/θ ] laminated plate with fully clamped boundary and var-

ious fibre orientation angles α = 00;150;300;450 are illustrated in Fig. 11a. Material param-

eter III is used. The circular plate has a radius to thickness ratio of 5 (R/h = 5). For this

problem, a NURBS quadratic basis function is enough to model exactly the circular geome-

try. Knot vectors Ξ ×H of the coarsest mesh with one element are defined as follows Ξ =
{0,0,0,1,1,1}; H = {0,0,0,1,1,1}. Data of the circular plate are given in Table 13. Coarse

mesh and control net of the plate with respect to quadratic and cubic elements are displayed in

Fig. 12. Fig. 11b describes 13× 13 NURBS cubic elements. The normalized frequencies are de-

fined as ϖ =
(

4ωR2/h
)

(ρ/E2)
1/2
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Table 11: Normalized frequencies ϖ =
(

ωb2/h
)

√

(ρ/E2) f of an antisymmetry (00/900/core/00/900) sandwich

simply supported square plate with hc/h f = 10

a/h Method Modes

1 2 3 4 5 6

10 HSDT [65]a 4.8594 8.0187 10.2966 11.7381 13.4706 16.1320

HSDT [65]b 7.0473 11.9087 15.2897 17.3211 19.8121 23.5067

FSDT [65]c 13.8694 30.6432 41.5577 50.9389 58.3636 71.3722

IGA (Arya [38]) 6.4640 10.8249 13.8794 15.8230 18.0725 21.4991

IGA (Soldatos [7]) 7.2607 12.3233 15.8342 18.0383 20.6086 22.5448

IGA (present) 5.2038 8.5847 10.9922 12.5963 14.3865 17.1818

100 HSDT [65]a 15.5093 39.0293 54.7618 72.7572 83.4412 105.3781

HSDT [65]b 15.9521 42.2271 60.1272 83.9982 96.3132 124.2047

FSDT [65]c 16.2175 44.7072 64.5044 94.9097 108.9049 143.7969

IGA (Arya [38]) 15.8780 41.6412 59.1265 81.7715 93.7548 120.3777

IGA (Soldatos [7]) 15.9794 42.4265 60.4657 84.7776 97.2019 125.5390

IGA (present) 15.6200 39.7699 55.9857 75.1842 86.2115 109.3430

a 12 DOFs/node; b 5 DOFs/node; c 5 DOFs/node;

Table 12: The first normalized frequency ϖ =
(

ωb2/h
)

√

(ρ/E2) f of an antisymmetry (00/900/core/00/900) sand-

wich square plate with a/h = 10

tc/t f HSDT [65]a HSDT [65]b FSDT [65]c IGA [38] IGA [7] IGA (present)

4 8.9948 10.7409 13.9190 10.3446 10.9424 9.0883

10 4.8594 7.0473 13.8694 6.4640 7.2607 5.2038

20 3.1435 4.3734 12.8946 4.0052 4.5010 3.3853

30 2.8481 3.4815 11.9760 3.2876 3.5534 3.0179

40 2.8266 3.1664 11.2036 3.0706 3.2072 2.9676

50 2.8625 3.0561 10.5557 3.0137 3.0803 2.9925

100 3.0290 3.0500 8.4349 3.0781 3.0537 3.1536

a 12 DOFs/node; b 5 DOFs/node; c 5 DOFs/node;

Table 13: Control points and weights for a circular plate with radius R = 0.5

i 1 2 3 4 5 6 7 8 9

xi −
√

2/4 −
√

2/2 −
√

2/4 0 0 0
√

2/4
√

2/2
√

2/4

yi

√
2/4 0 −

√
2/4

√
2/2 0 −

√
2/2

√
2/4 0 −

√
2/4

wi 1
√

2/2 1
√

2/2 1
√

2/2 1
√

2/2 1
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Figure 10: First six mode shapes of antisymmetry the sandwich (00/900/core/00/900) simply supported square plate.

Figure 11: Geometry and element mesh of a circular plate
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(a) (b)

Figure 12: Coarse mesh and control points of a circular plate with various degrees: a) p=2; and b) p=3.

Table 14 exhibits the first six normalized frequencies derived from the present approach in

comparison with the moving least squares differential quadrature method (MLSDQ) based on

FSDT [43] and the isogeometric approach based on dTrSDTs [38, 7]. A good agreement is ob-

tained for the present model. Fig. 13 provides the first six mode shapes of a circular four-layer

[45/− 45/− 45/45] clamped laminated plate. It is observed that mode shapes are very smooth

due to using NURBS basis functions.

4.2.3. Elliptical plates

Let us consider a three layer [00/900/00] elliptical plate with a fully clamped boundary using

Material V . The elliptical plate radiuses are a =5 and b = 2.5 as plotted in Fig. 14, respectively.

The normalized frequency is defined by ϖ =
(

ωa2
)

(ρh/D0)
1/2

with D0 = E2h3/12(1−ν12ν21).
Numerical study for this problem was addressed by Chen et al. [45] using the Element Free

Galerkin method (EFG) and classical laminated plate theory (CLPT). The normalized first six

frequencies with various the length to thickness ratios using the present theory and the dTrSDTs

[38, 7] are provided in Table 15. The present solution is in good agreement with other ones. For

the thin case a/h = 100, the present solutions outperform the EFG ones. The first six mode shapes

of three-layer [00/900/00] fully clamped laminated elliptical plate are depicted in Fig. 15.

4.3. Buckling analysis of laminated composite and sandwich plates

For a comparison, the buckling load factor is normalized as λ̄ = λcra
2/

(

E2h3
)

where E2 and

λcr are the elastic modulus and the critical buckling load, respectively. The plate is modeled by

13×13 cubic elements for all examples.

4.3.1. Square plate under uniaxial compression

4.3.1.1 Laminate composite plates

A simply supported four-layer cross-ply [00/900/900/00] square laminated plate is subjected to
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Table 14: A non-dimensional frequencies parameter ϖ =
(

ωa2/h
)

(ρ/E2)
1/2

of a circular 4-layer [θ 0/−θ 0/−θ 0/θ 0]
clamped laminated plate

θ 0 Method Mode

1 2 3 4 5 6

00 MLSDQ-FSDT[43] 22.211 29.651 41.101 42.635 50.309 54.553

IGA (Arya [38]) 23.2512 30.4528 41.6978 46.4646 54.0781 56.0772

IGA (Soldatos [7]) 23.1297 30.3199 41.5644 46.0359 53.5988 55.9329

IGA (present) 23.5781 30.7459 42.0042 47.6230 55.2998 56.4994

150 MLSDQ-FSDT[43] 22.774 31.455 43.350 43.469 52.872 57.386

IGA (Arya [38]) 23.3918 31.6349 43.8039 46.2672 55.0467 58.6859

IGA (Soldatos [7]) 23.3081 31.5783 43.7640 45.9649 54.7980 58.6459

IGA (present) 23.6090 31.7743 43.9569 47.1157 55.7728 58.9242

300 MLSDQ-FSDT[43] 24.071 36.153 43.968 51.074 56.315 66.220

IGA (Arya [38]) 24.1128 35.6423 45.9183 50.5740 57.4795 67.4411

IGA (Soldatos [7]) 24.0628 35.6831 45.6918 50.6956 57.3925 67.6447

IGA (present) 24.2081 35.6047 46.5406 50.4242 57.8970 67.2431

450 MLSDQ-FSDT[43] 24.752 39.181 43.607 56.759 56.967 65.571

IGA (Arya [38]) 24.5976 38.0569 45.6121 54.6742 58.5467 69.9105

IGA (Soldatos [7]) 24.5566 38.1730 45.3601 54.9789 58.4513 69.3199

IGA (present) 24.6607 37.8980 46.2506 54.2043 59.0173 71.3684
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Figure 13: Six mode shapes of a four-layer [450/−450/−450/450] clamped laminated circular plate with R/h= 5.

Figure 14: Geometry and element mesh of a clamped elliptical plate.
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Table 15: A non-dimensional frequencies parameter ϖ =
(

ωa2
)

(ρh/D0)
1/2

of a [00/900/00] clamped laminated

elliptical plate

a/h Method Modes

1 2 3 4 5 6

5 IGA (Arya [38]) 14.5198 20.6664 28.1508 29.9875 36.4140 36.4546

IGA (Soldatos [7]) 14.4734 20.6419 28.1647 29.8046 36.2748 36.4721

IGA (present) 14.6407 20.7592 28.1961 30.4532 36.4321 36.8598

10 IGA (Arya [38]) 17.3531 26.1481 37.7547 39.7467 50.1004 51.4236

IGA (Soldatos [7]) 17.3350 26.1460 37.7937 39.6529 50.0147 51.5283

IGA (present) 17.4003 26.1718 37.7157 39.9878 50.3411 51.2958

20 IGA (Arya [38]) 18.4166 28.5280 42.6786 44.5207 57.5495 60.4237

IGA (Soldatos [7]) 18.4113 28.5286 42.6975 44.4885 57.5209 60.4782

IGA (present) 18.4305 28.5333 42.6563 44.6033 57.6329 60.3551

100 EFG (CLPT) [45] 18.81 29.58 44.99 46.72 61.34 65.14

IGA (Arya [38]) 18.8106 29.4710 44.8189 46.5396 60.9225 64.7702

IGA (Soldatos [7]) 18.8103 29.4711 44.8199 46.5381 60.9212 64.7732

IGA (present) 18.8113 29.4718 44.8216 46.5445 60.9286 64.7845

Figure 15: Six mode shapes of a four-layer [00/900/00] clamped laminated ellipse plate with a/h= 10.
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Table 16: Normalized critical buckling load of simply supported cross-ply [00/900/900/00] square plate with various

E1/E2 ratios and a/h=10

Method E1/E2

3 10 20 30 40

RPIM-HSDT [67] 5.412 10.013 15.309 19.778 23.412

FEM-HSDT [68] 5.114 9.774 15.298 19.957 23.340

FEM-HSDT [69] 5.442 10.026 15.418 19.813 23.489

Elasticity [66] 5.294 9.762 15.019 19.304 22.881

IGA (Arya [38]) 5.3846 9.9120 15.2324 19.5654 23.1858

IGA (Soldatos [7]) 5.3846 9.9106 15.2264 19.5537 23.1682

IGA (present) 5.3884 9.9303 15.2841 19.6558 23.3152

uniaxial compression as shown in Fig. 16a. Material III is used. The efficiency and accuracy of

the present model for various elastic modulus are investigated. For a/h=10 and various elastic

modulus E1/E2 ratios, the obtained results are compared to the 3D elasticity solution[66], the ra-

dial point interpolation method (RPIM) based on HSDT [67] and FEM solution based on HSDT

[68, 69] and the IGA based on the dTrSDTs [38, 7], as reported in Table 16. It is observed that the

IGA based on present theoy is a good competitor with other methods. Also, the normalized critical

buckling loads are increased as the E1/E2 modulus ratios increase.

In addition, the effect of the length-to-thickness ratios (a/h) subjected to the uniaxial compres-

sion load is considered for four layer [00/900/900/00] simply supported square plates. Table 17

summarizes the normalized critical buckling load of the present method and other methods such as

the FEM based on FSDT [70], the FEM based on FSDT [71] & HSDT [71] and the IGA based on

the dTrSDTs [38, 7]. The present results match well those methods.

Figure 16: Geometry of laminated composite plates under axial and biaxial compression.

4.3.1.2 Composite sandwich plates

Consider an eleven-layer (00/900/00/900/00/core/00/900/00/900/00) simply supported sand-

wich square plate under uniaxial compression, as shown in Fig. 16a. Material V I is used. The
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Table 17: Normalized critical buckling load of simply supported cross-ply [00/900/900/00] square plate with various

ratios a/h and E1/E2=40

Method a/h

10 20 50 100

FEM-FSDT [70] 23.409 31.625 35.254 35.851

FEM-FSDT [71] 23.471 31.707 35.356 35.955

FEM-HSDT [71] 23.349 31.637 35.419 35.971

IGA (Arya [38]) 23.1858 31.6313 35.3458 35.9529

IGA (Soldatos [7]) 23.1682 31.6218 35.3438 35.9524

IGA (present) 23.3152 31.6975 35.3595 35.9565

length-to-thickness ratio of the plate a/h is taken to be 10 and 20. Various thickness of face sheet

to thickness of plate ratios are studied. Table 18 consists of the results derived from the present

approach with the IGA based on dTrSDTs [38, 7], the 3D elasticity solution [72], finite element

solutions based on HSDT & FSDT [46] and finite element solution/closed form solution (CFS)

based on layerwise (LW) theory [73]. It is again seen that results of the present ITSDT model

match well with those of dTrSDTs [38, 7] models and are slightly more accurate that those of sev-

eral above mentioned methods. Note that the FE solution based on FSDT [46] is only reasonable

for the sandwich plate with thin face sheet t f /h < 0.075. For a larger size of face sheet, the FSDT

results are significantly deviated.

Next, a symmetric twenty-one layer ([00/900]5/core/[900/00]5) sandwich square plate with

a simply supported boundary condition is considered. The sandwich plate includes 10 layers of

cross-ply laminated face sheets of equal thickness and a soft orthotropic core. The buckling load

factor with respect to various parameters like the length to thickness (a/h) and thickness of face

sheet to thickness of plate (h f /h) ratios are presented. The results obtained are compared with

those of several available solutions such as 3D elasticity solution by Noor et al. [72], closed form

solution based on HSDT by Dafedar et al.[74], finite element solution based on high-order global-

local plate theory (GLPT) by Shariyat [75], closed form solution based on mixed layerwise (MLW)

theory by Dafedar et al. [74], closed form solution based on HSDT by Kheirikhaha et al.[76] and

the IGA based on dTrSDTs [38, 7], as listed in Table 18. As expected, our approaches based on

IGA work very well for this problem.

4.3.2. Square plate under biaxial compression

Finally, we consider a three-layer symmetric cross-ply [00/900/00] simply supported plate sub-

jected to the biaxial buckling load as shown in Fig. 16b. Various length-to-thickness a/h and elastic

modulus E1/E2 ratios are studied in this example. Table 19 and Table 20 show the normalized crit-

ical buckling loads with respect to various modulus and length-to-thickness ratios. The obtained

results are compared with those of the finite element formulation based on FSDT [77], the finite

element method based on HSDT [69], the meshfree method based on both FSDT and HSDT [67]

and also the IGA based on dTrSDTs [38, 7]. The present method shows a very good performance

compared to other methods for various modulus ratios and length to thickness ratios. The nor-

malized critical bi-axial buckling loads are increased with respect to increasing the modulus ratio
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Table 18: Normalized critical buckling load of eleven and twenty-one layers sandwich simply supported square plates

Layers a/h Method h f /h

0.025 0.050 0.075 0.1

11 10 FEM-HSDT [46] 2.2122 3.7499 4.8643 5.7100

FEM-FSDT [46] 2.2043 3.8662 5.2650 6.4930

FEM-LW [73] 2.2592 3.7402 4.7850 5.5618

CFS-LW [73] 2.2639 3.7649 4.8302 5.6255

Elasticity [72] 2.2081 3.7385 4.8307 5.6721

IGA (Arya [38]) 2.3000 3.8560 4.9554 5.7859

IGA (Soldatos [7]) 2.2909 3.8335 4.9307 5.7786

IGA (present) 2.3196 3.9091 5.0291 5.8506

20 FEM-HSDT [46] 2.5536 4.6756 6.4528 7.9512

FEM-FSDT [46] 2.5437 4.7128 6.6156 8.2984

FEM-LW [73] 2.5885 4.7028 6.4604 7.9316

CFS-LW [73] 2.566 4.6817 6.4428 7.9184

Elasticity [72] 2.5534 4.6460 6.4401 7.9352

IGA (Arya [38]) 2.5619 4.6891 6.4624 7.9554

IGA (Soldatos [7]) 2.5591 4.6807 6.4518 7.9520

IGA (present) 2.5679 4.7085 6.4935 7.9857

21 10 CSF-HSDT [76] 2.2621 3.7611 4.8256 5.6215

FEM-GLPT [75] 2.1914 3.6770 4.7432 5.5471

CSF-MLW [74] 2.1904 3.6759 4.7433 5.5463

CSF-HSDT [74] 2.2942 3.8475 4.9580 5.7946

Elasticity [72] 2.2376 3.7375 4.7637 5.6081

IGA (Arya [38]) 2.2993 3.8546 4.9544 5.7869

IGA (Soldatos [7]) 2.2901 3.8321 4.9300 5.7803

IGA (present) 2.3189 3.9076 5.0277 5.8506

20 CSF-HSDT [76] 2.5658 4.6804 6.4414 7.9171

FEM-GLPT [75] 2.5391 4.6387 6.3915 7.8632

CSF-MLW [74] 2.539 4.6386 6.3914 7.8631

CSF-HSDT [74] 2.6386 4.7857 6.5644 8.0544

Elasticity [72] 2.5543 4.6590 6.4224 7.8969

IGA (Arya [38]) 2.5616 4.6884 6.4617 7.9556

IGA (Soldatos [7]) 2.5588 4.6800 6.4513 7.9527

IGA (present) 2.5677 4.7078 6.4926 7.9853
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Table 19: Biaxial critical buckling load of simply supported cross-ply [00/900/00] square plate with various modulus

ratios

Method E1/E2

10 20 30 40

FEM-FSDT [77] 4.963 7.588 8.575 10.202

FEM-HSDT [69] 4.963 7.516 9.056 10.259

IGA (Arya [38]) 4.9081 7.4264 8.7790 9.9188

IGA (Soldatos [7]) 4.9092 7.4285 8.7998 9.9495

IGA (present) 4.9130 7.4408 8.7550 9.8795

Table 20: Biaxial critical buckling load of simply supported cross-ply [00/900/00] square plate with various ratios a/h

Method a/h

2 5 10 15 20

RPIM-HSDT [67] 1.457 5.519 10.251 12.239 13.164

RPIM-FSDT [67] 1.419 5.484 10.189 12.213 13.132

FEM-HSDT [69] 1.465 5.526 10.259 12.226 13.185

IGA (Arya [38]) 1.3862 5.3668 9.9188 12.0205 13.0379

IGA (Soldatos [7]) 1.3641 5.3834 9.9495 12.0398 13.0504

IGA (present) 1.4316 5.3236 9.8795 11.9978 13.0239

E1/E2.

5. Conclusions

An isogeometric finite element formulation in combination with a new inverse tangent shear

deformation theory has been proposed for static, free vibration and buckling analysis of laminated

composite and sandwich plates. In the present theory, shear stresses free boundary conditions at the

top and bottom surfaces of the plates are satisfied and hence shear correction factors are ignored.

Weak forms of the static, free vibration and buckling models for laminated composite and sand-

wich plates using the present theory were derived. Numerical results are presented to investigate

the influences of the length to thickness ratio, the core thickness to face sheet thickness ratio, the

elastic modulus ratio and various boundary conditions. Obtained results showed high reliability for

all test cases from the thin to thick plates. Besides the proposed theory, other trigonometric shear

deformation theories [38, 39, 7] were also considered in this paper. Through all problems tested,

obtained results from the IGA based on present theory are more accuracy than the IGA based on

dTrSDTs [38, 39, 7] when compared to the exact elasticity 3D solution.

This paper only restricts to a generalized higher-order shear deformation theory with a five-

parameter displacement field. The present method can be easily extended to other theories pro-

posed in Ambartsumian [3], Reissner [4], Levinson [5], Reddy [6], Karama [8] and Aydogdu [9],

etc. This expansion is just simple how to choose the corresponding distribution function f (z) along

the plate thickness. Furthermore, the IGA can be applied to the unified framework of the multi-

layered plates [16, 17] and a higher order shear & normal deformable beam/plate theory (TSNDT)
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[78, 79]. The authors believe that the present method will be very promising to provide an ef-

fectively alternative method of traditional finite elements for analysis of laminated composite and

sandwich plate structures in practical applications.
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