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Abstract

We propose a local type of B-bar formulation, addressing locking in degenerated Reissner–Mindlin shell formulation in the

context of isogeometric analysis. Parasitic strain components are projected onto the physical space locally, i.e. at the element

level, using a least-squares approach. The formulation allows the flexible utilization of basis functions of different orders as

the projection bases. The introduced formulation is much cheaper computationally than the classical B̄ method. We show

the numerical consistency of the scheme through numerical examples, moreover they show that the proposed formulation

alleviates locking and yields good accuracy even for slenderness ratios of 105, and has the ability to capture deformations of

thin shells using relatively coarse meshes. In addition it can be opined that the proposed method is less sensitive to locking

with irregular meshes.

Keywords Isogeometric · Reissner–Mindlin shell · Locking · B-bar method · Mesh distortion

1 Introduction

The conventional finite element method (FEM) employs

polynomial basis functions to represent the geometry and

the unknown fields. The commonly employed approxima-

tion functions are Lagrangian polynomials. However, these

Lagrange polynomials are usually built upon a mesh structure

which needs to be generated, from a CAD (computer-aided

design) model provided for the domain of interest. This

mesh generation leads to the loss of certain geometrical fea-

tures: e.g. a circle becomes a polyhedral domain. Moreover,

Lagrange polynomials lead to low order continuity between

neighboring elements, which is inadequate in applications

described by high order partial differential equations.
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The introduction of isogeometric analysis (IGA) [1] pro-

vides a general theoretical framework for the concept of

“design-through-analysis” which has attracted considerable

attention. The key idea of IGA consists in a direct link

between CAD and the simulation, by utilizing the same func-

tions to approximate the unknown field variables as those

used to describe the geometry of the domain under consid-

eration, similar to the idea proposed in [2]. Moreover, it also

provides a systematic construction of high-order basis func-

tions [3]. Note that, more recently, a generalization of the

isogeometric concept was proposed, whereby the geome-

try continues to be described by NURBS functions as in

the CAD, but the unknown field variables are allowed to

live in different (spline) spaces. This leads to the concept of

sub- and super-geometric analysis, also known as Geometry

Independent Field approximaTion (GIFT), described within

a boundary element framework in [4] and proposed in [5,6]

and later refined in [7]. Related ideas, aiming at the con-

struction of tailored spline spaces for local refinement were

proposed recently in [8].

In the literature, the IGA has been applied to study the

response of plate and shell structures, involving two main

theories, viz., the Kirchhoff–Love theory and the Reissner–

Mindlin theory. Thanks to the C1-continuity of the adopted

NURBS basis functions, Kiendl et al. [9] developed an

isogeometric shell element based on Kirchhoff–Love shell
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theory. The isogeometric Kirchhoff–Love shell element for

large deformations was presented in [10]. The isogeometric

Reissner–Mindlin shell element was implemented in [11],

including linear elastic and nonlinear elasto-plastic constitu-

tive behavior. The blended shell formulation was proposed to

glue a Kirchhoff–Love shell with a Reissner–Mindlin shell

in [12]. In addition, the isogeometric Reissner–Mindlin shell

formulation derived from the continuum theory was pre-

sented in [13], in which the exact director vectors were used

to improve accuracy. The solid shell element was developed

in [14], in this formulation the NURBS basis functions were

used to construct the mid-surface and a linear Lagrange basis

function was used to interpolate the thickness field.

The Kirchhoff–Love type formulation is rotation-free, but

it is only valid for thin structures. Moreover due to the

absence of rotational degrees of freedom (DoFs), special

techniques are required to deal with the rotational boundary

conditions [9,15,16] and multi-patch connection [17]. Theo-

retically, the Reissner–Mindlin theory is valid for both thick

and thin shell structures. However it is observed from the lit-

erature [11,18] that, when the shell kinematics is represented

by Reissner–Mindlin theory, both FEM and IGA approaches

suffer from locking for thin structures, especially for low

order elements with coarse meshes. This has been attracting

engineers and mathematicians to develop robust elements

that could alleviate this pathology. Adam et.al. proposed a

family of concise and effective selective reduced integration

(SRI [19]) rules within the IGA framework for beams [20],

plates/shells [21], and non-linear shells using T-splines [22].

Elguedj et al. [23] presented B̄ method and F̄ method to han-

dle nearly incompressible linear and non-linear problems.

The B̄ method has been successfully applied to shear lock-

ing problems in curved beams [24], 2D solid shells [25], 3D

solid shells [26] and later in nonlinear solid shell formula-

tion [27]. Echter and Bischoff [18,28] proposed the discrete

shear gap (DSG) method [29] to alleviate the shear lock-

ing phenomena effectively. Other approaches include twist

Kirchhoff theory [30], virtual element method [31], collo-

cation method [32,33], simple first order shear deformation

theory [34], and single variable method [35,36]. The above

approaches have been employed with Lagrangian elements

or IGA framework with varying orders of success.

The approaches proposed by Bouclier, Elguedj and

Combescure [25–27] focus on solid-shells in IGA and

achieve good un-locking performance with the B̄ method,

thus it is promising to implement and test this method for

degenerated Reissner–Mindlin shell elements in the context

of IGA. This paper is the extension of our previous paper [37]

on Timoshenko beams. In this research, in order to alleviate

the locking phenomena, the locking strains are projected onto

bi-dimensional low-order physical space by the least square

method. The novel idea behind the formulation is to use mul-

tiple sets of basis functions to project the locking strains

locally i.e. element-wise, instead of projecting globally i.e. all

over the patch, thereby reducing the computational effort sig-

nificantly. More importantly, the local projection allows one

to use different orders of projecting basis functions, which

could further improve the un-locking performance.

The outline of this paper is as follows: Sect. 2 gives an

overview of the degenerated Reissner–Mindlin shell formu-

lation. In Sect. 3, we present the novel approach, the local B̄

method to alleviate the locking (both shear and membrane)

problems encountered in thin structures whilst employing

Reissner–Mindlin formulation. The accuracy, robustness and

the convergence properties are demonstrated by some bench-

mark examples in Sect. 4, followed by concluding remarks

in the last Sect. 5. Some implementation details are provided

in the “Appendix”.

2 Isogeometric formulation of
Reissner–Mindlin shells

2.1 Reissner–Mindlin shell model

Figure 1 represents the mid-surface of a shell structure in the

parametric and physical spaces. For simplicity, we consider

a shell of constant thickness h, and assume the linear elastic

material to be homogeneous and isotropic, which is governed

by Young’s modulus E and Poisson’s ratio ν.

The main differences between the Reissner–Mindlin shell

theory and the Kirchhoff–Love shell theory lie in the assump-

tions on the deformation behavior of the section and further

in the resulting independent kinematic quantities attached

to the mid-surface. According to the Reissner–Mindlin the-

ory, along the thickness direction a first order kinematic

description is adopted for the transverse shear deformation.

Assuming a Cartesian coordinate system, an arbitrary point

P belongs to the 3D shell structure can be found by

x P (ξ, η, ζ ) = x(ξ, η) + ζ
h

2
n(ξ, η), (1)

where x stands for the shell mid-surface, modeled by a func-

tion of (ξ, η), as shown in Fig. 1. Let parameter ζ ∈ [−1, 1]

denotes the shell thickness. On mid-surface x, the normal

vector is calculated by

n =
x,ξ × x,η

||x,ξ × x,η||2
, (2)

and we denote

t1 :=
x,ξ

||x,ξ ||2
, t2 := n × t1. (3)
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Fig. 1 Mid-surface (blue) in the

parameter space (left) and

physical space (right) for a shell

model. The 3D model is

recovered by Eq. (1). (Color

figure online)
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Note that (t1, t2, n) form a local frame on the mid-surface,

and the components of these vectors are indicated by sub-

script x, y, z respectively.

Assuming small deformations, the displacement of the

point P is recovered by

uP (ξ, η, ζ ) = u(ξ, η) + ζ
h

2
θ(ξ, η) × n(ξ, η), (4)

in which u and θ are the displacement vector and the rotation

vector at the mid-surface point projected from P . Then we

have the linearized strain tensor

εεε =
1

2
(uP,x + u

T
P,x). (5)

2.2 Isogeometric approach

Following the degenerated type formulation, we start our

simulation from the mid-surface geometry of a Reissner–

Mindlin shell. In order to describe the shell mid-surface,

bi-variate NURBS basis functions are employed. Let Ξ =

{ξ1, . . . , ξn+p+1} and H = {η1, . . . , ηm+q+1} be open knot

vectors, and wA be given weights, where p and q are the

orders along the directions ξ and η respectively. Denoting

A = {1, . . . , nm}, we construct the NURBS basis functions

RA(ξ, η). For more details about IGA, interested readers are

referred to [40] and references therein.

The geometry of the undeformed mid-surface is described

by

x(ξ, η) =

nm
∑

A=1

RA(ξ, η)x A, (6)

where x A define the locations of control points. The discrete

displacement field on the mid-surface is interpolated as

{

u(ξ, η)

θ(ξ, η)
=

nm
∑

A=1

RA(ξ, η)

{

uA

θ A

, (7)

specifically uA = (u, v, w)T and θ A = (θx , θy, θz)
T. Once

the mid-surface is modeled according to Eq. (6) and (7),

an arbitrary point P in the shell body can be traced by the

following discrete forms

x P (ξ, η, ζ ) =

nm
∑

A=1

RA(ξ, η)x A + ζ
h

2
n(ξ, η), (8)

and

uP (ξ, η, ζ ) =

nm
∑

A=1

RA(ξ, η)uA + ζ
h

2

nm
∑

A=1

RA(ξ, η)θ A × n(ξ, η).

(9)

Regarding the exact normal vector field n, we construct

an approximated field by collocated points, explained in

“Appendix A”.

Upon employing the Galerkin framework and using the

following discrete spaces for the displacement field

S =

{

u ∈

[

H1(Ω)
]d

, u|Γu = u
d

}

, (10)

V =

{

v ∈

[

H1(Ω)
]d

, v|Γu = 0

}

, (11)

the variational equation reads: find u ∈ S such that

b(u, u
∗) = l(u

∗) ∀u
∗ ∈ v, (12)

in which the bi-linear term is

b(u, u
∗) =

∫

Ω

εεε(u
∗)T

Dgεεε(u) dΩ, (13)

with Dg denoting the global constitutive matrix. More details

are provided in “Appendix B”.

When the displacements and the rotations are approx-

imated by polynomials of the same order, the discretized
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framework experiences locking (shear and membrane) when

the shell thickness becomes very small. The numerical proce-

dure fails to satisfy the Kirchhoff limit as the shear strain does

not vanish with the thickness approaching zero. One popular

explanation of shear locking is that variables involved are not

compatible [35], which is also known as field inconsistency.

In the next section, we introduce the B̄ method, trying to

address the locking syndrome from the above point of view.

3 B-bar method for Reissner–Mindlin shells

In this section, we firstly illustrate the main idea behind the

B̄ method. After introducing the classical B̄ method, in order

to reduce the computational cost of the formulation, a local

form of the B̄ formulation is proposed, followed by a novel

projecting scheme.

3.1 The idea behind the B-bar method

Assuming an unit length Timoshenko beam, which is dis-

creted by one element with 2 nodes. The element length

parameter x ∈ [0, 1]. By the help of shape functions

N1 = 1 − x, N2 = x, (14)

the deflection field w and the rotation field θ are constructed

as

w = N1w1 + N2w2, θ = N1θ1 + N2θ2, (15)

in which wi and θi are nodal variables, i = 1, 2.

For thin beams, the Timoshenko beam theory tends to

degenerate into the Euler beam theory, and the shear strain

(in Timoshenko beam theory) tends to vanish:

γ =
dw

dx
− θ = 0, (16)

and in discrete form denoted by its superscript h:

γ h = (−w1 + w2) −
[

(1 − x)θ1 + xθ2

]

= 0. (17)

The field inconsistency phenomenon occurs in the above

equation, that is the order (wrt. x) of θi is higher than the

order of wi , which makes the shear strain difficult to vanish.

The B̄ method modifies the field to be order-consistency.

Firstly we build a pseudo shear strain as

γ̄ h =
∑

Ā

N̄ Āγ̄ Āh

, (18)

where γ̄ Āh
is the corresponding pseudo DoF. Since the order

of the initial shape functions Ni is one, we define our one

order lower shape function(s) as N̄ Ā = 1 with Ā = 1. Next

we perform a least square (L2) projection and obtain a system

of linear equation(s):

∫ 1

0

N̄1

(

γ̄ h − γ h
)

dx = 0, (19)

specifically

∫ 1

0

N̄1 N̄1 dx · γ̄ 1h

−

∫ 1

0

N̄1

[

(−w1 + w2) −
(

(1 − x)θ1 + xθ2

)]

dx = 0,

(20)

and then

γ̄ 1h

+ w1 − w2 +
1

2
θ1 +

1

2
θ2 = 0. (21)

Solve the above equation for γ̄ 1h

γ̄ 1h

= −w1 + w2 −
1

2
θ1 −

1

2
θ2, (22)

thus the pseudo shear strain we previously built becomes

γ̄ h = N̄1γ̄
1h

= (−w1 + w2) −

(
1

2
θ1 +

1

2
θ2

)

. (23)

Compare the pseudo shear strain in Eq. (23) with the original

one in Eq. (17), it is noticed that the shape functions for wi

remain unchanged, but the order of shape functions for θi

is reduced to be the same as wi . The pseudo shear strain is

order consistency, it is believed that this strain could achieve

good un-locking performance.

From the strain matrix perspective, the B̄ method modifies

the original strain matrix

B =
[

dN1
dx

dN2
dx

−N1 −N2

]

(24)

into

B̄ = N̄1

(
∫ 1

0
N̄1 N̄1 dx

)−1 ∫ 1

0
N̄1

[
dN1
dx

dN2
dx

−N1 −N2

]

dx,

(25)

which explains the name of this method.

3.2 Classical B-bar method in IGA

The novel idea behind the B̄ method [23,24] is to use a

projected strain instead of the original one to formulate the

bi-linear term
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b̄(u, u
∗) =

∫

Ω

ε̄εε∗T
Dgε̄εεdΩ. (26)

The projected strain ε̄εε and the original strain εεε are equivalent

in the sense of the L2 projection. Denoting the approxi-

mation space for displacement field by Q p,q , a common

way is using the projection space of one order lower, i.e.

Q p̄,q̄ = Q p−1,q−1 (see Fig. 2a). Lower order B-spline basis

functions N̄ Ā are built from lower order knot vectors, with

all the weights given as w Ā = 1, Ā = {1, . . . , n̄m̄}. The L2

projection process is performed on the physical domain as

∫

Ω

N̄ B̄

(

εεεh − ε̄εεh
)

dΩ = 0,

B̄ = 1, . . . , n̄m̄, (27)

in which the discretized form of the projected strain is

ε̄εεh =

n̄m̄
∑

Ā=1

N̄ Āε̄ Āh

, (28)

where ε̄ Āh
means the projection of εεεh onto N̄ Ā. Finally, we

have

ε̄εεh =

n̄m̄
∑

Ā,B̄=1

N̄ Ā M
−1

Ā B̄

∫

Ω

N̄ B̄εεεhdΩ, (29)

in which M Ā B̄ is the inner product matrix

M Ā B̄ =

∫

Ω

N̄ Ā N̄ B̄dΩ := (N̄ Ā, N̄ B̄)Ω . (30)

The Gram matrix M is inverseable since the involved

bases are obviously linear-independent. In addition, the Hu-

Washizu principle could be utilized to prove the variational

consistency of the B̄ method [23–25,41], and [24,26] proved

that the B̄ method is equivalent to a mixed formulation.

3.3 Local B-bar formulation for Reissner–Mindlin
shells

The motivation of the local B̄ concept comes from the obser-

vation that one needs to calculate the inverse of the matrix

M in Eq. (29), which could be computationally expensive if

the projection is applied patch-wise. Thus, from a practical

point of view, it is highly recommended to project the strains

locally [26,37], i.e. element-wise on Ωe:

ε̄εεh
e =

( p̄+1)(q̄+1)
∑

Ā,B̄=1

N̄ Ā M
−1

Ā B̄

∫

Ωe

N̄ B̄εεεh
e dΩ, (31)

with

M Ā B̄ = (N̄ Ā, N̄ B̄)Ωe . (32)

This kind of treatment can be also found from the work of

local least square method [38,39]. It is worthy pointing out

that Eq. 31 implies the element strain matrix is modified as

B̄ =

( p̄+1)(q̄+1)
∑

Ā,B̄=1

N̄ Ā M
−1

Ā B̄

∫

Ωe

N̄ B̄ B dΩ (33)

comparing with the original one B in Appendix Eq. B.8.

Moreover, with the assumption that projecting the orig-

inal strains onto a lower order space can help to reduce

locking phenomena, it is expected that using the possibly

lowest order for each element maximizes the un-locking

performance. Therefore, instead of projecting the strains

simply onto Q p−1,q−1, different sets of projection spaces

are adopted in this work. The projecting spaces need to be

chosen carefully to avoid ill-condition or rand deficiency,

readers interested in the corresponding mathematical the-

ory is recommended to see [42], which is about volume

locking (nearly-incompressible) problems. Here, the pro-

jection scheme in our previous work [37] is extended to

bi-dimensional cases. Specifically, for space Q2,2, we adopt

Q1,1 for corner elements, Q0,1 and Q1,0 for boundary ele-

ments, and Q0,0 for inner elements, as shown in Fig. 2b. This

generalized strategy is similar with the SRI strategy in Fig. 2c,

however the SRI strategy strongly depends on continuity con-

ditions across elements [21]. The shape of the projecting

functions are plotted in Fig. 3 for an intuitive understanding.

The degenerated shell model is represented by its 2D mid-

surface, while the strain formula is expressed in 3D involving

the thickness parameter ζ , in this case if the whole strain is

projected, rank deficiency appears and the formulation yields

inaccurate results. Following the similar approach as outlined

in solid-shell element [25,26], in this work only the average

strain through the thickness is projected:

MID(εεεh
e ) =

( p̄+1)(q̄+1)
∑

Ā,B̄=1

N̄ Ā M
−1

Ā B̄

∫

Ωe

MID(εεεh
e )N̄ B̄ dΩ,

(34)

where MID(εεεh
e ) is defined to be the average strain through

the thickness within a single element

MID(εεεh
e ) =

1

h

∫ h
2

− h
2

εεεh
e dz. (35)
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Fig. 2 Projection strategies in

bi-dimensional parameter space.

Projecting spaces for locking

strains are denoted as Q p,q . For

local B̄ method (a), one order

lower B-spline basis functions

are employed for all elements.

The proposed local B̄ method

(b) uses basis functions of

different orders, similar to the

SRI method (c), but the C
1

continuity of elements are not

restricted as in (c)
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Fig. 3 Bi-dimensional basis functions for projecting locking strains for each element, in the case of Q p,q = Q2,2

The modified bi-linear form is written as

b̄(U, U
∗) =

∫

Ω

εεε∗T
Dεεε

− MID(εεε∗)T
DMID(εεε)

︸ ︷︷ ︸

originalaveragevirtualwork

+ MID(εεε)
T

DMID(εεε)
︸ ︷︷ ︸

projectedaveragevirtualwork

dΩ.

(36)

The above calculation process is illustrated in Algorithm 1.

A primary comparison of the computational efforts is per-

formed in Table 1, in which the meaning of the Step No.

can be found in Algorithm 1. For classical IGA, the process

is rather simple but it suffers from locking. In the classical

B̄ method, the calculation of the inverse of matrix M =

(N̄ Ā, N̄ B̄)Ω requires large amounts of memory. Reviewing

the literature of the B̄ method since its appearance [43],

one valuable contribution is the introduction of the local B̄

concept [26,37], which saves lots of computational effort

with acceptable accuracy loss. Compared with the global B̄

method, the local B̄ method shows promising advantages

in terms of computational efficiency. Based on the local B̄

method, in the present research we choose different orders

of basis functions as projection bases in order to achieve an

improved un-locking performance.

4 Numerical examples

In this section, we demonstrate the performance of the pro-

posed local B̄ method for Reissner–Mindlin plates/shells by

solving several standard benchmark problems. The proposed

formulation is implemented within the open source C++ IGA

framework Gismo 1 [44]. The numerical examples include:

(a) Square plate; (b) Scordelis-Lo roof; (c) Pinched cylinder

1 https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart.
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Table 1 Computational effort

checklist for comparison
Step Classical IGA Classical B̄ Local B̄ Present

1 – Fig. 2a Fig. 2b Fig. 2b

2 – Q p−1,q−1 Q p−1,q−1 Q p̄,q̄

3 – (N̄ Ā, N̄ B̄)Ω (N̄ Ā, N̄ B̄)Ωe (N̄ Ā, N̄ B̄)Ωe

4 � � � �

5 – � � �

6 – On Ω On Ωe On Ωe

7
∫

Ωe
BT Dg BdΩ � � �

8 � � � �

Algorithm 1: Present local B̄ method for Reissner–

Mindlin shell
Input: geometry information, basis functions information

Output: stiffness matrix K

Step1. Construct projecting basis functions map as in Fig. 2(b)

foreach element e do

Step2. Determine projection bases N̄ according to current

element position (see Fig. 2(b))

Step3. Coefficient matrix M Ā B̄ = (N̄ Ā, N̄ B̄)Ωe and its inverse

Step4. Strain matrix B

Step5. Calculate average strain through the thickness

MID =
1

h

∫ h
2

− h
2

B dz

Step6. Least square projection

MID = N̄ Ā M
−1

Ā B̄

∫

Ωe

MIDN̄ B̄ dΩ

Step7. Element stiffness matrix

K e =

∫

Ωe

B
T

Dg B − MID
T

DgMID + MID
T

DgMID dΩ

Step8. Assemble K = K + K e

end

and (d) Pinched hemisphere with a hole. Unless otherwise

mentioned consistent units are employed in this study. In all

the numerical examples, the following knot vectors are cho-

sen as the initial ones:

Ξ = {0, 0, 0, 1, 1, 1},

H = {0, 0, 0, 1, 1, 1}. (37)

The following conventions are employed whilst discussing

the results:

– IGA 2: Classical IGA without any treatment of locking,

approximation orders p = q = 2.

– B-bar 2: B̄ method, global projection, p = q = 2.

– LB 2: Local B̄ method [26], the projection is applied

element by element as shown in Eq. (31) and Fig. 2a,

p = q = 2.

– SRI 2: Selective reduced integration scheme introduced

in [21], p = q = 2 and we restrict C1 continuity between

elements.

– GLB 2: Local B̄ method with present projection strategy

as shown in Fig. 2b, p = q = 2.

4.1 Simply supported square plate

Consider a simply supported square plate with thickness h

and edge length L = 1 m. Owing to symmetry, only one

quarter of the plate, i.e, a = L/2 is modeled as shown in

Fig. 4. The plate is assumed to be made up of homogeneous

isotropic material with Young’s modulus E = 200 GPa and

Poisson’s ratio ν = 0.3, and subjected to uniform pressure p.

The control points and the corresponding weights are given

in Table 2.

The analytical out-of-plane displacement field for a thin

plate with simply supported edges is given by

w(x, y) =
16p

π6 D

∞
∑

m=1,3,5,...

∞
∑

n=1,3,5,...

sin
(

mπx
L

)

sin
( nπ y

L

)

mn
[
(

m
L

)2
+

(
n
L

)2
]2

,

(38)

where D = Eh3/(12(1 − ν2)). The transverse displacement

is constant when the applied load is proportional to h3, thus

the numerical solution is independent of the plate thickness.

Due to the fact that wA indicates the maximum displacement

of the plate, only the errors of wA are studied instead of the

field error. The reference value is wA = −2.21804×10−6 m.

Figure 5 shows the normalized displacement as a function

of mesh refinement. For thickness h = 10−3 m, although the

conventional IGA yields inaccurate results for coarse meshes,

the results tend to improve upon refinement. However, IGA

suffers from severe shear locking syndrome for h = 10−5 m.

In this case the results remain almost identical when increas-

ing the number of elements, indicating that the elements are

extremely locked. For B̄ method slight rank deficiency occurs

for coarse meshes. GLB gets more accurate results than LB

when h = 10−5 m. It is inferred that the proposed formula-
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Fig. 4 Mid-surface of the

rectangular plate in Sect. 4.1:

geometry and boundary

conditions. Only one quarter of

the plate is modeled. The red

filled squares are the

corresponding control points.

(Color figure online)

A
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2

L
2

simply supported

simply
supportedsym

m
etry

symmetry

x

z

y

E = 200 × 109 Pa

ν = 0.3

L = 1m

h = 10−3 m, p = 10−2 N/m2

or

h = 10−5 m, p = 10−8 N/m2

Table 2 Control points and weights of the rectangular plate (Fig. 4)

1 2 3 4 5 6 7 8 9

x 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

y 0 0 0 0.25 0.25 0.25 0.5 0.5 0.5

z 0 0 0 0 0 0 0 0 0

w 1 1 1 1 1 1 1 1 1

tion alleviates shear locking phenomena and yields accurate

results even for extremely thin plates of slenderness ratio 105.

Figure 6 compares the convergence behavior by a severe

locking case, the plate thickness is fixed as h = 10−5 m.

In this study, IGA of order 2 is locked for even more than

1000 elements, the convergence rate is nearly zero. Elements

by IGA of order 3 start with smaller error, but suffer from

locking until they are sufficiently refined. LB behaves the

same as GLB for mesh 2 × 2. GLB achieves a good conver-

gence rate in general, but at the well-refined steps the errors

become unreasonably increased, which is also observed for

IGA of order 3. The reason is that the converging results

mismatch the reference value slightly, as pointed out in the

partial enlarged Fig. 6b.

In Fig. 7 we analysis the computational time of the

global/local B̄ methods and IGA. Here we use a ×64 com-

puter with Inter CPU i5-4590 (3.30 GHz), 8 GB RAM, then

run the code only by a single thread. Overall the B̄ methods

add slightly computational effort to IGA, for instance about

2.64% in case of 64×64 elements, thus for a given accuracy

the B̄ methods are more cost-effective than IGA. For present

method, the time is spend mostly on calculating the aver-

age strain (Step No. 5) and the least square projection (Step

No. 6). For each element the dimension of the coefficient

matrix M is one or two, therefore the computational time is

not increased significantly. However in classical B̄ method,

inverting M is more time consuming as the dimension of M

is proportional to the number of elements (Fig. 7).

4.2 Scordelis–Lo roof

Here we consider the Scordelis–Lo roof problem to further

demonstrate the capability of the proposed formulation in
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(b) h = 10−5

Fig. 5 Normalized central displacement wA with mesh refinement for

the rectangular plate (Fig. 4). h stands for thickness

the case of membrane locking. It features a cylindrical panel

with ends supported by rigid diaphragm. The roof is sub-

jected to uniform pressure, pz = 6250 N/m2 and the vertical

displacement of the mid-point of the side edge is monitored
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Fig. 6 Convergence of deflection wA for the rectangular plate prob-

lem (Fig. 4), thickness h = 10−5. IGA elements are locked until the

elements are refined to a large number

to study the convergence behavior. The material properties

are Young’s modulus E = 30 GPa and Poisson’s ratio ν = 0.

Owing to symmetry only one quarter of the roof is modeled

as shown in Fig. 8. The roof is modeled with control points

(x, y, z) and weights w, given in Table 3. The analytical

solution based on the deep shell theory is wref
B = −0.0361 m

[45], however the results obtained by IGA of p = q = 4

with mesh 100×100, wref
B = −0.0361776 m, is taken as the

reference solution.

For the geometry considered here, R/h = 100 and

L/h = 200, the structure experiences membrane locking

as the transverse shear strain is negligible. The roof is domi-

nated by membrane and bending deformations. The results of

the normalized vertical displacement with mesh refinement is

shown in Fig. 9. The results from the proposed formulation is
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Fig. 7 Computational time comparison for the plate problem (Fig. 4)
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Fig. 8 Scordelis–Lo roof problem in Sect. 4.2: geometry and boundary

conditions. The red filled squares are the corresponding control points.

The mid-surface of the cylindrical panel is modeled and the roof is

subjected to a uniform pressure. (Color figure online)

compared with selective reduced integration technique [21].

It can be seen that accurate results are achieved by the present

method. For coarse meshes the B̄ methods, including classi-

cal B̄ method and local B̄ method as well as present method,

lead to rank insufficient matrices, however for other prob-

lems slightly rank deficiency is also possible as recorded in

the strain smoothing method by a single subcell [46]. In addi-

tion, the contour plot of the deflection wB by IGA and GLB

are given in Fig. 10. It is can be noted that GLB captures the

deformation quite well even for coarse meshes.

4.3 Pinched cylinder

The examples in Sects. 4.1 and 4.2 show that the proposed

formulation yields accurate results when the structure expe-

rience either shear locking or membrane locking. We present

here the pinched cylinder problem with the aim of demon-

strating the robustness of the proposed formulation when

the structure experiences both shear and membrane locking.

Again, due to symmetry only one quarter of the cylinder

is modeled as shown in Fig. 11. The corresponding con-

trol points and weights are given in Table 4. The cylinder

consists of of homogeneous isotropic material with Young’s

modulus, E = 30 GPa and Poisson’s ratio, ν = 0.3. The

concentrated load acting on the cylinder is P = 0.25 N.

The reference value of the vertical displacement is take as

wref
C = −1.85942−7 m, which is obtained by bi-quartic

IGA with mesh 100 × 100. This example serves as a test
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Fig. 9 Results of wB for the Scordelis–Lo roof problem (Fig. 8)

case to evaluate the performance of the method when the

structure is dominated by bending behaviour. The conver-

gence of the vertical displacement with mesh refinement is

shown in Fig. 12 and it is evident that the proposed for-

mulation yields more accurate results than the conventional

bi-quadratic IGA. The contour plot of wC in Fig. 13 indicates

Table 3 Control points and weights of the Scordelis–Lo roof problem (Fig. 8)

1 2 3 4 5 6 7 8 9

x 0 1.091910703 1.928362829 0 1.091910703 1.928362829 0 1.091910703 1.928362829

y 0 0 0 1.5 1.5 1.5 3 3 3

z 3 3 2.298133329 3 3 2.298133329 3 3 2.298133329

w 1 0.9396926208 1 1 0.9396926208 1 1 0.9396926208 1
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Fig. 10 Deflection field

w × 102 for the Scordelis–Lo

roof (Fig. 8) by IGA of order 2

(a, b), and by the proposed local

B̄ method (c, d)

× 4 IGA × 8 IGA

× 4 GLB

(a) 4 (b) 8

(c) 4 (d) 8 × 8 GLB
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Fig. 11 The mid-surface of a fourth of the pinched cylinder in Sect. 4.3.

The red filled squares are the corresponding control points. (Color figure

online)

that the elements modified by GLB exhibit higher values of

displacements compared to IGA.

4.4 Pinched hemisphere with hole

Consider a pinched hemisphere with 18◦ hole subjected to

equal and opposite concentrated forces applied at the four

cardinal points. The hemisphere is modeled with Young’s

modulus E = 68.25 MPa, Poisson’s ratio ν = 0.3 and

concentrated force, P = 1 N. As before, owing to sym-

metry, only one quadrant of the hemisphere is modeled as

shown in Fig. 14. The control points and weights employed

to model the hemisphere are given in Table 5. This struc-

ture experiences severe membrane and shear locking, and

the discretization experiences severe mesh distortion. The

mesh distortion further enhances the locking phenomenon.

To evaluate the convergence properties, the horizontal dis-

placement uref
D = 0.0940 m [21] is taken as the reference

solution. The results form the proposed formulation are plot-

Table 4 Control points and

weights of the pinched cylinder

problem (Fig. 11)

1 2 3 4 5 6 7 8 9

x 0 3 3 0 3 3 0 3 3

y 0 0 0 1.5 1.5 1.5 3 3 3

z 3 3 0 3 3 0 3 3 0

w 1 0.7071067812 1 1 0.7071067812 1 1 0.7071067812 1
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Fig. 12 Results of wC of the pinched cylinder (Fig. 11)

ted in Fig. 15. As the elements are refined, GLB behaves

similarly to SRI, but the results obtained by GLB is slightly

accurate. Moreover, the field of displacement ux is plotted in

Fig. 16, it seems that the proposed method allows to capture

the correct structural response.

4.5 Square plate with irregular meshes

Throughout Sect. 4.1, it is pointed out that in the cases of

plates with high slenderness ratio, e.g. 103 or 105, the classi-

cal IGA elements suffer from locking, and present B̄ method

has still achieved satisfactory results. However, the stud-

ies are performed in somewhat ideal conditions by using

structured meshes. In order to explore the generality and

applicability of the present method, we focus on the influ-

ence of two kinds of unstructured meshes, i.e. control mesh

distortion and nonuniform knots.

The influence of the control mesh distortion on the per-

formance of the proposed formulation is investigated by

considering two different kinds of distortions: control mesh

expansion and rotation, as shown in Fig. 17. Thickness

h = 10−5 m is considered here as the case when both locking

and mesh distortion appear, and h = 10−1 m is chosen as

the reference case when only mesh distortion appears. The

influence of mesh distortion on the normalized center dis-

placement is pictured in Fig. 18. When locking and mesh

distortion occur at the same time, accuracy of IGA decreases

substantially, while GLB keeps a good degree of accuracy

even for severe distortions. It is inferred that when locking

happens, the results with classical IGA deteriorates with con-

trol mesh distortion, while the proposed formulation is less

sensitive to control mesh distortion.

The influence of the non-uniformly distributed knots on

the performance of the proposed formulation is investigated

by considering a chosen knot ξi moving from its left neighbor

ξi−1 to its right neighbor ξi+1. In the following example we

build the plate geometry by

Ξ = {. . . , ξ4 = 0.25, ξ5 = 0.375, ξ6 = 0.5, . . .},

H = {. . . , η4 = 0.25, η5 = 0.375, η6 = 0.5, . . .}, (39)

and let ξ5 move from ξ4 to ξ6, η5 move from η4 to η6 simul-

taneously, as illustrated in Fig. 19, while keeping the control

mesh normally distributed. Figure 20 shows the results in

terms of knots distribution, once again the classical IGA

leads to poor results for unstructured knots distribution, but

the proposed B̄ formulation keeps good accuracy. It should

be noted that, when ξ5 = ξ4 and η5 = η4, or when ξ5 = ξ6

and η5 = η6, the special cases of repeated knots (C0 continu-

ity) are also included. For present B̄ formulation, there is no

need to consider inter knot multiplicity explicitly since the

projection procedure is applied element-wise. Thus, lower

order knot vectors can be used without inner repeated knots

for projection, in spite of element continuity. A similar and

detailed conclusion is drawn in [37].
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Fig. 13 Field of w × 107 of the

pinched cylinder (Fig. 11) by

IGA of order 2 (a, b), and by

present local B̄ method (c, d)

× 4 IGA × 8 IGA

× 4 GLB

(a) 4 (b) 8

(c) 4 (d) 8 × 8 GLB
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Fig. 14 The mid-surface of a fourth of the pinched hemisphere in

Sect. 4.4. The red filled squares are the corresponding control points

5 Conclusion remarks

The local B̄ method is adopted to unlock the degener-

ated Reissner–Mindlin shell elements within the framework

of isogeometric analysis. The shell mid-surface and the

unknown field are described with non-uniform rational B-

splines. The proposed method uses multiple sets of lower

order B-spline basis functions as projection bases, by which

the locking strains are modified in the sense of L2 projection,

in this way field-consistent strains are obtained.

The salient features of the proposed local B̄ method are:

(a) has less computational effort than the classical, global

B̄ method; (b) yields better accuracy than IGA of order 2

especially in cases of coarse meshes or mesh distortions;

(c) suppresses both shear and membrane locking commonly

encountered when lower order elements are employed and

suitable for both thick and thin models.

Future work includes extending the approach to large

deformations, large deflections and large rotations as well

as investigating the behaviour of the stabilization technique

for enriched approximations such as those encountered in

partition of unity methods [46–48].
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Fig. 15 Results of u D of the pinched hemisphere (Fig. 14)

Table 5 Control points and the corresponding weights of the pinched hemisphere problem (Fig. 14)

1 2 3 4 5 6 7 8 9

x 10 10 0 10 10 0 3.090169944 3.090169944 0

y 0 10 10 0 10 10 0 3.090169944 3.090169944

z 0 0 0 7.265425281 7.265425281 7.265425281 9.510565163 9.510565163 9.510565163

w 1 0.7071067810 1 0.8090169942 0.5720614025 0.8090169942 1 0.7071067810 1
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Fig. 16 Field of u × 102 of the

pinched hemisphere (Fig. 14) by

IGA of order 2 (a, b), and by

present local B̄ method (c, d)

× 4 IGA × 8 IGA

× 4 GLB

(a) 4 (b) 8

(c) 4 (d) 8 × 8 GLB
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Fig. 17 Illustration of control mesh distortions. In (a), four selected

control points are moved along the diagonal directions. In (b), four

selected control points are rotated around the center of the patch. Indexes

e and r are employed to indicate the stages of distortions
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Fig. 18 Normalized results of wA of the rectangular plate (Fig. 4) with

control mesh distortions (Fig. 17). h stands for thickness. When locking

and mesh distortion occur at the same time, errors of IGA of order 2

drop down quickly, while GLB keeps good accuracy even for severe

distortions
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Fig. 19 Nonuniform knots distribution for the rectangular plate (Fig. 4).
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Fig. 20 Normalized results of wA of the rectangular plate (Fig. 4) with

nonuniformly knots distribution (Fig. 19). h stands for thickness
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Appendix A: Using an approximated normal
vector field

In Eqs. 8 and 9, the normal vector field n(ξ, η) should be

commonly built as
∑

RAnA, where nA needs to be specified

for each control point: it denotes the normal vector of a mid-
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surface point associated with the control point x A. Although

no approximation error occurs, it is time-consuming to solve

for the mid-surface projecting points of x A. In this paper the

normal vectors at the Greville abscissae (ξ̃ , η̃) are adopted

to construct a normal vector field approximately [21], the

field is re-written as
∑

RA(ξ, η)ñA. Following Eq. 2, these

normal vectors ñA at the Greville abscissae points can be

easily calculated. Thus we have

x P (ξ, η, ζ ) =

nm
∑

A=1

RA

(

x A + ζ
h

2
ñA

)

, (A.1)

and

uP (ξ, η, ζ ) =

nm
∑

A=1

RA

(

uA + ζ
h

2
θ A × ñA

)

. (A.2)

Appendix B: Detailed formulation of degen-
erated Reissner–Mindlin shell element

In the following we introduce some necessary aspects to

obtain the element stiffness matrix:

(a) Using Voigt notation, the relation between the strain vec-

tor and the stress vector is expressed as

σ = Dgεεε, (B.1)

where Dg is the global constitutive matrix, and

Dg = T
T

Dl T , (B.2)

here Dl is a given local constitutive matrix. To fulfill the

plane stress state σ33 = 0, the local constitutive matrix is

given by

Dl =
E

1 − ν2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ν 0 0 0 0

ν 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1−ν
2

0 0

0 0 0 0 κ 1−ν
2

0

0 0 0 0 0 κ 1−ν
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.3)

in which κ is the shear correction factor and it is set to be 5/6

in this research. To fit the physical shape of the mid-surface,

a transformation is employed for Dl , specifically

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1x t1x t1y t1y t1z t1z t1x t1y t1y t1z t1z t1x

t2x t2x t2y t2y t2z t2z t2x t2y t2y t2z t2z t2x

nx nx nyny nznz nx ny nynz nznx

2t1x t2x 2t1y t2y 2t1z t2z t1x t2y + t2x t1y t1y t2z + t2y t1z t1z t2x + t2z t1x

2t2x nx 2t2yny 2t2znz t2x ny + nx t2y t2ynz + ny t2z t2znx + nz t2x

2t1x nx 2t1yny 2t1znz t1x ny + nx t1y t1ynz + ny t1z t1znx + nz t1x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.4)

At each Gauss quadrature point, vectors in Eqs. 2 and 3 are

calculated, then the transformation in Eq. B.2 is performed.

(b) Based on Eq. A.1, the Jacobi matrix is calculated by

J =

⎡

⎢
⎢
⎣

∂xx
P

∂ξ

∂x
y
P

∂ξ

∂x
z
P

∂ξ
∂xx

P

∂η

∂x
y
P

∂η

∂x
z
P

∂η
∂xx

P

∂ζ

∂x
y
P

∂ζ

∂x
z
P

∂ζ

⎤

⎥
⎥
⎦

=

⎡

⎢
⎣

∑ ∂ RA

∂ξ
(xx

A + ζ h
2

ñ
x
A)

∑ ∂ RA

∂ξ
(x

y

A + ζ h
2

ñ
y

A)
∑ ∂ RA

∂ξ
(x

z
A + ζ h

2
ñ

z
A)

∑ ∂ RA

∂η
(xx

A + ζ h
2

ñ
x
A)

∑ ∂ RA

∂η
(x

y
A + ζ h

2
ñ

y
A)

∑ ∂ RA

∂η
(x

z
A + ζ h

2
ñ

z
A)

∑

RA(xx
A + h

2
ñ

x
A)

∑

RA(x
y

A + h
2

ñ
y

A)
∑

RA(x
z
A + h

2
ñ

z
A)

⎤

⎥
⎦ , (B.5)

then the physical gradient of the shape functions are

⎡

⎢
⎢
⎣

∂ RA

∂x
∂ RA

∂ y

∂ RA

∂z

⎤

⎥
⎥
⎦

= J
−1

⎡

⎢
⎢
⎣

∂ RA

∂ξ

∂ RA

∂η

∂ RA

∂ζ

⎤

⎥
⎥
⎦

= J
−1

⎡

⎢
⎢
⎣

∂ RA

∂ξ

∂ RA

∂η

0

⎤

⎥
⎥
⎦

. (B.6)

Moreover for ζ h
2

RA := R̃A, their physical gradients are

given by

⎡

⎢
⎢
⎢
⎣

∂ R̃A

∂x

∂ R̃A

∂ y

∂ R̃A

∂z

⎤

⎥
⎥
⎥
⎦

= J
−1

⎡

⎢
⎢
⎢
⎣

∂ R̃A

∂ξ

∂ R̃A

∂η

∂ R̃A

∂ζ

⎤

⎥
⎥
⎥
⎦

= J
−1

⎡

⎢
⎢
⎣

ζ h
2

∂ RA

∂ξ

ζ h
2

∂ RA

∂η

h
2

RA

⎤

⎥
⎥
⎦

. (B.7)
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(c) Taking a look at the strain formula Eq. 5, we form the

strain matrix as

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RA,x 0 0 0 R̃A,x ñ
z
A −R̃A,x ñ

y
A

0 RA,y 0 −R̃A,y ñ
z
A 0 R̃A,y ñ

x
A

0 0 RA,z R̃A,z ñ
y
A −R̃A,z ñ

x
A 0

RA,y RA,x 0 −R̃A,x ñ
z
A R̃A,y ñ

z
A R̃A,x ñ

x
A − R̃A,y ñ

y
A

0 RA,z RA,y R̃A,y ñ
y
A − R̃A,z ñ

z
A −R̃A,y ñ

x
A R̃A,z ñ

x
A

RA,z 0 RA,x R̃A,x ñ
y
A R̃A,z ñ

z
A − R̃A,x ñ

x
A −R̃A,z ñ

y
A

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.8)

Finally the element stiffness matrix is calculated by

K e =

∫

Ωe

B
T

Dg BdΩ =

∫ 1

−1

∫

ηe

∫

ξe

B
T

Dg B|J |dξdηdζ.

(B.9)
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