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We initiate the study of collocation methods for NURBS-based isogeometric analysis. The idea is

to connect the superior accuracy and smoothness of NURBS basis functions with the low

computational cost of collocation. We develop a one-dimensional theoretical analysis, and
perform numerical tests in one, two and three dimensions. The numerical results obtained

con¯rm theoretical results and illustrate the potential of the methodology.
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1. Introduction

Isogeometric analysis is a computational mechanics technology based on functions

used to represent geometry.1,4�8,10�12,19,20,27,30 The idea is to build a geometry model

and, rather than develop a ¯nite element model approximating the geometry, to

directly use the functions describing the geometry in analysis.

In Computer-Aided Design (CAD) systems used in engineering, Non-Uniform

Rational B-Splines (NURBS) are the dominant technology. When a NURBS model is

constructed, the basis functions used to de¯ne the geometry can be systematically

enriched by h-, p-, or k-re¯nement (i.e. smooth order elevation; see Cottrell et al.12)
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without altering the geometry or its parametrization. This means that adaptive mesh

re¯nement techniques can be utilized without a link to the CAD database, in contrast

with ¯nite element methods. This appears to be a distinct advantage of isogeometric

analysis over ¯nite element analysis. In addition, on a per-degree-of-freedom basis,

isogeometric analysis exhibits superior accuracy and robustness compared with ¯nite

element analysis.1,8,9,20 This is particularly true when a k-re¯ned basis is adopted. In

this case, the upper part of the discrete spectrum is better behaved,20 resulting in

better conditioned discrete systems. Therefore, isogeometric analysis appears to o®er

several important advantages over classical ¯nite element analysis.

However, the use of high-degree basis function, as in k-re¯nement, raises the issue

of an e±cient implementation. Until now, isogeometric analysis has been imple-

mented by Galerkin formulations. In this case, the e±ciency issue is related to the

numerical quadrature rules which are adopted when assembling the system of

equations. While elementwise Gauss quadrature is optimal in the ¯nite element

context, it is sub-optimal when k-re¯ned isogeometric discretizations of Galerkin type

are considered. More e±cient special rules have been derived for isogeometric analysis

by Hughes et al.21 Taking inspiration from that work, we initiate here the study of

even more e±cient collocation-based methods.

The structure of the paper is the following. In Sec. 2, we present a brief review of

NURBS and isogeometric analysis, and we introduce the proposed collocation

scheme. In Sec. 3, we develop a one-dimensional theoretical analysis of the method,

which serves the dual purpose of providing theoretical background and guiding the

selection of collocation points. In Sec. 4, we present numerical tests on simple elliptic

problems, in one, two and three dimensions. We test the accuracy of the method,

study the behavior of the discrete eigenspectrum and discuss the performance of the

scheme with respect to the choice of collocation points. Finally, in Sec. 5, we present

an analytical cost comparison between the isogeometric Galerkin method and the

isogeometric collocation scheme. We draw conclusions in Sec. 6.

2. NURBS-Based Isogeometric Analysis

Non-Uniform Rational B-Splines (NURBS) are a standard tool for describing and

modeling curves and surfaces in computer-aided design and computer graphics (see

Piegl and Tiller25 and Rogers28 for an extensive description of these functions and

their properties). In this work, we use NURBS as an analysis tool, as proposed by

Hughes et al.19 The aim of this section is to present a short description of B-splines

and NURBS, followed by a simple discussion on the basics of isogeometric analysis

and by an introduction to the proposed collocation method.

2.1. B-splines and NURBS

B-splines in the plane are piecewise polynomial curves composed of linear combinations

of B-spline basis functions. The coe±cients (Bi) are points in the plane, referred to as

control points.
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A knot vector is a set of non-decreasing real numbers representing coordinates in

the parametric space of the curve

f�1 ¼ 0; . . . ; �nþpþ1 ¼ 1g; ð2:1Þ

where p is the order of the B-spline and n is the number of basis functions (and

control points) necessary to describe it. The interval ½�1; �nþpþ1� is called a patch. A

knot vector is said to be uniform if its knots are uniformly-spaced and non-uniform

otherwise; it is said to be open if its ¯rst and last knots have multiplicity pþ 1. In

what follows, we always employ open knot vectors. Basis functions formed from open

knot vectors are interpolatory at the ends of the parametric interval ½0; 1� but are not,
in general, interpolatory at interior knots.

Given a knot vector, univariate B-spline basis functions are de¯ned recursively

starting with p ¼ 0 (piecewise constants)

Ni;0ð�Þ ¼
1 if �i � � < �iþ1

0 otherwise:

(
ð2:2Þ

For p > 1:

Ni;pð�Þ ¼
� � �i
�iþp � �i

Ni;p�1ð�Þ þ
�iþpþ1 � �

�iþpþ1 � �iþ1

Niþ1;p�1ð�Þ if �i � � < �iþpþ1

0 otherwise;

8><
>: ð2:3Þ

where, in (2.3), we adopt the convention 0=0 ¼ 0.

In Fig. 1 we present an example consisting of n ¼ 9 cubic basis functions generated

from the open knot vector f0; 0; 0; 0; 1=6; 1=3; 1=2; 2=3; 5=6; 1; 1; 1; 1g.
If internal knots are not repeated, B-spline basis functions are Cp�1-continuous. If

a knot has multiplicity k, the basis is Cp�k-continuous at that knot. In particular,

when a knot has multiplicity p, the basis is C 0 and interpolates the control point at
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Fig. 1. Cubic basis functions formed from the open knot vector f0; 0; 0; 0; 1=6; 1=3; 1=2; 2=3; 5=6; 1;
1; 1; 1g:
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that location. We de¯ne

Ŝn ¼ spanfNi;pð�Þ; i ¼ 1; . . . ;ng: ð2:4Þ

By means of tensor products, a multi-dimensional B-spline region can be con-

structed. We discuss here the case of a two-dimensional region, the higher-dimensional

case being analogous. Consider the knot vectors f�1 ¼ 0; . . . ; �nþpþ1 ¼ 1g and f�1 ¼
0; . . . ; �mþqþ1 ¼ 1g, and an n�m net of control points Bi;j. One-dimensional basis

functions Ni;p and Mj;q (with i ¼ 1; . . . ;n and j ¼ 1; . . . ;m) of order p and q,

respectively, are de¯ned from the knot vectors, and the B-spline region is the image of

the map S : ½0; 1� � ½0; 1� ! �� given by

Sð�; �Þ ¼
Xn
i¼1

Xm
j¼1

Ni;pð�ÞMj;qð�ÞBi;j: ð2:5Þ

The two-dimensional parametric space is the domain ½0; 1� � ½0; 1�. Observe that the

two knot vectors f�1 ¼ 0; . . . ; �nþpþ1 ¼ 1g and f�1 ¼ 0; . . . ; �mþqþ1 ¼ 1g generate a

mesh of rectangular elements in the parametric space in a natural way. Analogous to

(2.4), we de¯ne

Ŝnm ¼ spanfNi;pð�ÞMj;qð�Þ; i ¼ 1; . . . ;n; j ¼ 1; . . . ;mg: ð2:6Þ

In general, a rational B-spline in Rd is the projection onto d-dimensional physical

space of a polynomial B-spline de¯ned in (dþ 1)-dimensional homogeneous coordi-

nate space. For a complete discussion see the book by Farin17 and references therein.

In this way, a great variety of geometrical entities can be constructed and, in par-

ticular, all conic sections in physical space can be obtained exactly. The projective

transformation of a B-spline curve yields a rational polynomial curve. Note that when

we refer to the \degree" or \order" of a NURBS curve, we mean the degree or order,

respectively, of the polynomial curve from which the rational curve was generated.

To obtain a NURBS curve in R2, we start from a set B!
i 2 R3 (i ¼ 1; . . . ;n) of

control points (\projective points") for a B-spline curve in R3 with knot vector �.

Then the control points for the NURBS curve are

½Bi�k ¼
½B!

i �k
!i

; k ¼ 1; 2; ð2:7Þ

where ½Bi�k is the kth component of the vector Bi and !i ¼ ½B!
i �3 is referred to as the

ith weight. The NURBS basis functions of order p are then de¯ned as

Rp
i ð�Þ ¼

Ni;pð�Þ!iPn
î¼1

Nî;pð�Þ!î

: ð2:8Þ

The NURBS curve is de¯ned by

Cð�Þ ¼
Xn
i¼1

Rp
i ð�ÞBi: ð2:9Þ
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Analogously to B-splines, NURBS basis functions on the two-dimensional para-

metric space �̂ ¼ ½0; 1� � ½0; 1� are de¯ned as

Rp;q
i;j ð�; �Þ ¼

Ni;pð�ÞMj;qð�Þ!i;jPn
î¼1

Pm
ĵ¼1

Nî;pð�ÞMĵ;qð�Þ!î;ĵ

; ð2:10Þ

where !i;j ¼ ðB!
i;jÞ3. Observe that the continuity and support of NURBS basis

functions are the same as for B-splines.

NURBS regions, similarly to B-spline regions, are de¯ned in terms of the basis

functions (2.10). In particular, we assume from now on that the physical domain � is

a NURBS region associated with the n�m net of control points Bi;j, and we

introduce the geometrical map F : �̂ ! �� given by

Fð�; �Þ ¼
Xn
i¼1

Xm
j¼1

Rp;q
i;j ð�; �ÞBi;j: ð2:11Þ

For the sake of simplicity, the extension to three (or more) dimensions is not

discussed here (but it is completely analogous).

2.2. Basics of isogeometric analysis

In one-space dimension, let F be the parametrization of the physical interval ½a; b�,
which is assumed piecewise smooth with piecewise smooth inverse. Following the

isoparametric approach, the space of NURBS functions on ½a; b� is de¯ned as the span

of the push-forward of the basis functions (2.8)

Vn ¼ spanfRp
i � F �1; i ¼ 1; . . . ;ng: ð2:12Þ

Similarly, in two dimensions, let F be the parametrization of the physical domain

�, as given in (2.11). We assume that the Jacobian of F and its inverse are non-

singular. The image of the elements in the parametric space are elements in the

physical space. The physical mesh is therefore made of elements Fðð�i; �iþ1Þ�
ð�j; �jþ1ÞÞ, with i ¼ 1; . . . ;nþ p; j ¼ 1; . . . ;mþ q. We denote by h the mesh-size,

that is, the maximum diameter of the elements of the physical mesh.

Again, the space of NURBS functions on � is de¯ned as the span of the push-

forward of the basis functions (2.10)

Vnm ¼ spanfRp;q
i;j � F�1;with i ¼ 1; . . . ;n; j ¼ 1; . . . ;mg: ð2:13Þ

The numerical solution of a boundary-value problem is sought in the space Vn or

Vnm, endowed with suitable boundary conditions.

The interested reader may ¯nd more details on isogeometric analysis as well as

many interesting applications in a number of recently published papers.6,11,12,10,19,27
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2.3. Isogeometric collocation method

In the ¯rst part of this section we present the concept of isogeometric collocation

method in a general setting, while in the second part we give a more detailed

description for a particular case.

Consider the following boundary-value problem

Du ¼ f in �;

Gu ¼ g on @�;

(
ð2:14Þ

where the solution u : � ! R, D represents a scalar di®erential operator, Gu : @� !
Rr is a vector operator (r 2 Nþ) representing boundary conditions, and f;g are given

data. Note that both operators D and G may depend on the position x 2 � [ @�.
We introduce a ¯nite set of collocation points f�̂ #g#2I in �̂ ¼ ½0; 1� � ½0; 1�, divi-

ded into two distinct sets ID and IG, such that I ¼ ID [ IG, and

# 2 IG ) �̂ # 2 @�̂; #ID þ r �#IG ¼ dimðVnmÞ;

where # indicates the cardinality of a set. Note that the collocation points �̂ # are

typically built in a tensor product fashion. The choice of the collocation points is

crucial for the stability and good behavior of the discrete problem. Finally let

�# ¼ Fð�̂ #Þ, for all # 2 I .
Then, the isogeometric collocation approximation of (2.14) reads: ¯nd unm 2 Vnm

such that

Dunmð�#Þ ¼ fð�#Þ 8# 2 ID;

Gunmð�#Þ ¼ gð�#Þ 8# 2 IG:

(
ð2:15Þ

As a particular example, we consider the case where the collocation points are

chosen using the Greville abscissae14,15 of the knot vectors. To simplify the pre-

sentation, we restrict our description to the case of a second-order operator, still

indicated by D, with boundary conditions represented by the scalar operator

Gu : @� ! R.

Let ��i, i ¼ 1; . . . ;n, be the Greville abscissae related to the knot vector

f�1; . . . ; �nþpþ1g:

�� i ¼
�iþ1 þ �iþ2 þ � � � þ �iþp

p
: ð2:16Þ

Analogously, let ��j, j ¼ 1; . . . ;m, be the Greville abscissae related to the knot

vector f�1; . . . ; �mþqþ1g. It is easy to see that ��1 ¼ ��1 ¼ 0, ��n ¼ ��m ¼ 1, while all the

remaining points are in ð0; 1Þ. We de¯ne the collocation points � ij 2 � by the tensor

product structure

� ij ¼ Fð�̂ ijÞ; �̂ ij ¼ ð��i; ��jÞ 2 �̂;

for i ¼ 1; . . . ;n; j ¼ 1; . . . ;m.
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Then, the isogeometric collocation problem with Greville abscissae reads: ¯nd

unm 2 Vnm such that

Dunmð� ijÞ ¼ fð� ijÞ i ¼ 2; . . . ;n� 1; j ¼ 2; . . . ;m� 1;

Gunmð� ijÞ ¼ gð� ijÞ ði; jÞ 2 f1;ng � f1; . . . ;mg [ f1; . . . ;ng � f1;mg:

(
ð2:17Þ

We wish to remark that collocating at Greville abscissae as in the example above is

just one of the possible options. In the following, we will also consider a couple of

other interesting choices (see Sec. 3.3).

3. Theoretical Analysis

This section is devoted to the theoretical analysis of the NURBS-based collocation

approach. We ¯rst present an abstract framework, which is based on the results of De

Boor and Swartz.13 Within this framework, we then present a theoretical analysis of

the one-dimensional model problem. Finally, we discuss the di±culties that are

encountered in the theoretical analysis of the multi-dimensional case.

Given any A;B 2 R, we write A.B whenever A � CB with the positive constant

C depending only on the problem data. We de¯ne the symbol & analogously, and

writeA ’ Bwhenever bothA.B andA&B hold, in general with di®erent constants.

3.1. The abstract problem and its discretization

Taking the initial steps from De Boor and Swartz,13 the main idea of the proof is to

rewrite the di®erential operator (of order n) D as a perturbation of the nth derivative

operator. As it will be clearer in the following, this can be achieved using a Green

function.13

Given a Banach space W, endowed with the norm jj � jjW , a linear operator

T : W ! W, and datum  2 W, we consider the following abstract problem: Find

y 2 W such that

ðI þ T Þy ¼  : ð3:1Þ
The following assumption of well-posedness is made.

Assumption 3.1. There exists one and only one solution to problem (3.1) and

jjðI þ T ÞzjjW ’ jjzjjW 8 z 2 W: ð3:2Þ

Observe that (3.2) implies the continuity of T. In consideration of the eventual

discretization of (3.1), we also require the next assumption.

Assumption 3.2. T is compact, and in particular there exists a compact subspace

Wþ ofW such that T is continuous fromW toWþ, that is, jjTzjjWþ . jjzjjW 8 z 2 W.

Given an n-dimensional space Wn � W, and a linear projector Qn : W ! Wn, we

consider the following discretization of (3.1): Find yn 2 Wn such that

QnðI þ T Þyn ¼ Qn : ð3:3Þ
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Observe that QnðI þ T Þyn ¼ yn þQnTyn. In the following sections the operator Qn

will denote interpolation. We make the following two assumptions on Qn and Wn.

Assumption 3.3. There exists a constant Cs > 0, independent of n, such that

jjQnzjjW � CsjjzjjW , for all z 2 W.

Assumption 3.4. With the notation of Assumption 3.2,

min
zn2Wn

jjz� znjjW � cnjjzjjWþ 8 z 2 Wþ; ð3:4Þ

and the positive constants cn ! 0 as n ! 1.

With these assumptions we have the following result.

Lemma 3.1. There exists �n 2 N, depending only on the operator T and the problem

datum  , such that the operator ðI þQnT Þ : W ! W is an isomorphism for all n � �n.

Moreover, for n � �n

jjðI þQnT ÞzjjW ’ jjzjjW 8 z 2 W: ð3:5Þ

Proof. Let z 2 W. Adding and subtracting any zn 2 Wn, using that Qnzn ¼ zn and

the continuity of Qn gives

jjðI �QnÞzjjW � jjz� znjjW þ jjzn �QnzjjW
¼ jjz� znjjW þ jjQnðz� znÞjjW
� ð1þ CsÞjjz� znjjW : ð3:6Þ

Selecting zn to be the minimizer in (3.4), the above bound gives

jjðI �QnÞzjjW � ð1þ CsÞcnjjzjjWþ : ð3:7Þ

Adding and subtracting Tz, using the triangle inequality, and applying (3.7) yields

jjðI þQnT ÞzjjW � jjðI þ T ÞzjjW þ jjðI �QnÞTzjjW
� jjðI þ T ÞzjjW þ ð1þ CsÞcnjjTzjjWþ : ð3:8Þ

Bound (3.8) combined with (3.2) and Assumption 3.2 gives

jjðI þQnT ÞzjjW . jjzjjW þ ð1þ CsÞcnjjzjjW ; ð3:9Þ

which, due to Assumption 3.4, gives

jjðI þQnT ÞzjjW . jjzjjW : ð3:10Þ

Very similar steps as the ones above give

jjðI þQnT ÞzjjW & jjzjjW � ð1þ CsÞcnjjzjjW ; ð3:11Þ

which for n su±ciently large yields

jjðI þQnT ÞzjjW & jjzjjW : ð3:12Þ

Bound (3.5) is proved by (3.10) and (3.12).
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Therefore, the operator ðI þQnT Þ is one-to-one and its restriction ðI þQnT Þ :
Wn ! Wn is an isomorphism. The following corollary is immediate.

Corollary 3.1. For n � �n, Problem (3.3) has a unique solution.

We can now derive the main result of this section.

Proposition 3.1. Let Assumptions 3.1�3.4 hold. Let y be the solution of (3.1) and

yn the solution of (3.3). Then

jjy� ynjjW . ð1þ CsÞ min
zn2Wn

jjy� znjjW

for all n su±ciently large.

Proof. Applying the operator Qn to both sides of (3.1) and subtracting (3.3), it

follows that

QnðI þ T Þðy� ynÞ ¼ 0: ð3:13Þ

First using Lemma 3.1, then applying (3.13) we infer

jjy� ynjjW . jjðI þQnT Þðy� ynÞjjW ¼ jjðI �QnÞðy� ynÞjjW : ð3:14Þ

From (3.14), noting that Qnyn ¼ yn and using (3.6), we get

jjy� ynjjW . jjðI �QnÞyjjW � ð1þ CsÞ min
zn2Wn

jjy� znjjW : ð3:15Þ

3.2. Theoretical analysis in one dimension

In this section we restrict our attention to the one-dimensional case of a second-order

di®erential equation and prove that, if the collocation points are chosen suitably, the

collocation method converges with optimal rate.

3.2.1. The continuous problem

Let f, a0, a1, be real functions in C 0½a; b�, with a < b given real numbers. Let g0; g1 2 R

be scalars and BC0;BC1 : C 1½a; b� ! R be linear operators. We are interested in the

following one-dimensional ordinary di®erential equation. Find a real function u 2
C 2½a; b� such that

u 00ðxÞ þ a1ðxÞu 0ðxÞ þ a0ðxÞuðxÞ ¼ fðxÞ 8x 2 ða; bÞ

BCiðuÞ ¼ gi i ¼ 1; 2;

(
ð3:16Þ

where u 0;u 00 represent the ¯rst and second derivatives of u, respectively. We will

indicate the derivative operator of order i also as Di, i 2 N. We assume that (3.16)

has one and only one solution u, and that the boundary condition operators BCi are
linearly independent on KerðD2Þ, that is, on the space of linear functions.

Under this assumption, the Green's function H0 : ½a; b� � ½a; b� ! R is well de¯ned

for the problem D2v ¼ � with datum � 2 C 0½a; b� and the homogeneous boundary

Isogeometric Collocation Methods 2083



conditions BCiðvÞ ¼ 0, i ¼ 1; 2. As a consequence, all elements of the space

C 2
BC ¼ fv 2 C 2½a; b� j BCiðvÞ ¼ gi for i ¼ 1; 2g

can be written uniquely as

vðxÞ ¼ u0ðxÞ þ
Z b

a

H0ðx; tÞD2vðtÞdt; ð3:17Þ

where u0 is the unique linear function on ½a; b� which satis¯es BCiðu0Þ ¼ gi, i ¼ 1; 2.

Introducing the partial derivatives of H0

Hkðx; tÞ ¼
@

@x

� �
k

H0ðx; tÞ 8 ðx; tÞ 2 ½a; b� � ½a; b�; k ¼ 1; 2;

and de¯ning y ¼ D2u, using (3.17) one gets

DkuðxÞ ¼ Dku0ðxÞ þ
Z b

a

Hkðx; tÞyðtÞdt 8x 2 ½a; b�; k ¼ 0; 1; 2: ð3:18Þ

Introducing the operator T : C 0½a; b� ! C 0½a; b� as

TzðxÞ ¼
X1
i¼0

aiðxÞ
Z b

a

Hiðx; tÞzðtÞdt 8 z 2 C 0½a; b�; x 2 ½a; b�; ð3:19Þ

and de¯ning  2 C 0½a; b� as

 ðxÞ ¼ fðxÞ �
X1
i¼0

aiðxÞDiu0ðxÞ 8x 2 ½a; b�; ð3:20Þ

the problem (3.16) can then be rewritten in the abstract framework of the previous

section: substituting (3.18) into (3.16), and using the de¯nitions (3.19)�(3.20), we

obtain the problem of ¯nding y 2 C 0½a; b� such that

ðI þ T Þy ¼  : ð3:21Þ

Indeed, the new problem (3.21) is by construction equivalent to Problem (3.16) up to

the transformations

u ¼ u0 þ
Z b

a

H0ð�; tÞyðtÞdt; y ¼ D2u:

For the analysis of (3.16) we select the C 0-topology. We will denote by jj � jjC 0 ¼
jj � jjL1 the usual L1-norm and by

j � jW i;1 ¼ jjDi � jjL1 ;

jj � jjW k;1 ¼
Xk
i¼0

jjDi � jjL1 ;
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the usual Sobolev seminorms and norms. Having the correspondence

W ¼ C 0½a; b� ¼ fD2v j v 2 C 2½a; b�; vðaÞ ¼ vðbÞ ¼ 0g; ð3:22Þ

Assumption 3.1 is equivalent to the well-posedness of (3.16): given f 2 C 0½a; b� there
exists a unique solution u 2 C 2½a; b� to (3.16), with continuous dependence. This is

assumed to hold true. Furthermore, Assumption 3.2 is veri¯ed, as shown in the next

lemma.

Lemma 3.2. The operator T : C 0½a; b� ! C 0½a; b� in (3.19) is compact. In particular

it holds

jjTzjjW 1;1½a;b� . jjzjjC 0½a;b� 8 z 2 C 0½a; b�:

Proof. Given any z 2 C 0½a; b�, let v 2 C 2½a; b� be given by

v ¼
Z b

a

H0ð�; tÞzðtÞdt;

so that D2v ¼ z. Note that, due to the homogeneous boundary conditions satis¯ed

by v,

jjDivjjL1½a;b� . jjD2vjjL1½a;b� 	 jjD2vjjC 0½a;b� i ¼ 0; 1; 2: ð3:23Þ

We then easily have, by de¯nition of T, v and using (3.23)

jjTzjjW 1;1½a;b� ¼
X1
i¼0

aiD
iv

�����
�����
W 1;1½a;b�

.
X1
i¼0

jjDivjjW 1;1½a;b�

. jjD2vjjC 0½a;b� ¼ jjzjjC 0½a;b�: ð3:24Þ

Finally, the compactness of the operator follows from the compact inclusion of

W 1;1½a; b� into L1½a; b�.

3.3. The discretized di®erential problem

Given n 2 N, let Vnþ2 � C 2½a; b� be a NURBS space of dimension nþ 2 on the

interval ½a; b�, associated with a spline space Ŝnþ2 � C 2½0; 1� on the parametric

interval ½0; 1�. Recalling the standard assumptions on the one-dimensional geo-

metrical map F of Sec. 2.2, we now consider DF > 0 on the parametric domain ½0; 1�.
Given for all n 2 N, �1 < �2 < � � � < �n assigned collocation points in ½a; b�, we con-

sider the following discrete problem: Find un 2 Vnþ2 such that

u 00
nð� jÞ þ a1ð� jÞu 0

nð� jÞ þ a0ð� jÞunð� jÞ ¼ fð� jÞ j ¼ 1; . . . ;n

BCiun ¼ gi i ¼ 1; 2:

(
ð3:25Þ
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Notice that in one dimension the boundary conditions are imposed exactly by the

collocation scheme. Following the notation of the abstract setting presented in Sec. 3.1,

we now denote as Wn the space

Wn ¼ fD2vn j vn 2 Vnþ2; vðaÞ ¼ vðbÞ ¼ 0g; ð3:26Þ
which is n-dimensional.

Remark 3.1. Since the isoparametric paradigm (2.13) is applied for the con-

struction of Vnþ2, it follows that the space of global linear polynomials is contained in

Vnþ2. As this subspace is the kernel of the operatorD
2, the spaceWn can equivalently

be written as

Wn ¼ fD2vn j vn 2 Vnþ2g:

For the continuous di®erential problem it is easy to see that the above discrete

problem is equivalent to ¯nding yn 2 Wn such that

½ðI þ T Þyn�ð� jÞ ¼  ð� jÞ j ¼ 1; . . . ;n ð3:27Þ

up to the transformations

un ¼ u0 þ
Z b

a

H0ð�; tÞynðtÞdt; yn ¼ D2un;

where u0 is, as in (3.17), the linear lifting of the boundary conditions.

Problem (3.25) is what is solved in practice, while problem (3.27) is what we use

for the theoretical analysis of the method. Denoting by Qn : C 0½a; b� ! Wn the

interpolation operator

ðQnðzÞÞð� jÞ ¼ zð� jÞ 8 z 2 C 0½a; b�; j ¼ 1; . . . ;n;

problem (3.27) ¯ts within the framework of Sec. 3.1. Then, the optimality of the

collocation scheme (3.25) follows from Proposition 3.1, if Assumptions 3.3 and 3.4

hold true. The approximation properties of NURBS spaces with respect to the mesh-

size h have been studied, in the L2 setting, by Bazilevs et al.6 Assumption 3.4 follows

from the analogous result in the L1 setting, which is stated in the next proposition.

Theorem 3.1. There exists a constant Ca > 0, dependent on the geometry map F,

weight !, and on the degree p of the NURBS space Vn, such that

min
wn2Wn

jjw� wnjjL1½a;b� � Cah
ljjwjjW l;1½a;b�; 8w 2 W l;1½a; b�; ð3:28Þ

with 0 � l � p� 1.

Proof. A simple extension to the L1 setting of the results in Bazilevs et al.6 for the

L2 framework gives

min
vn2Vn;0

jjv 00 � v 00
njjL1½a;b� � ChljjvjjW lþ2;1½a;b� 8 v 2 W lþ2;1½a; b�; vðaÞ ¼ vðbÞ ¼ 0;

ð3:29Þ
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where Vn;0 is the subspace of all functions in Vnþ2 which are zero at a and b. Because

of (3.22) and (3.26), any w 2 W l;1½a; b� can be written as v 00 with v 2 W lþ2;1½a; b�
and vðaÞ ¼ vðbÞ ¼ 0. By de¯nition, any wn 2 Wn can be written as v 00

n with vn 2 Vn;0.

Therefore, ¯rst using the above observations and (3.29), and then, since v is null at

the boundaries, a Poincar�e inequality, we obtain

min
wn2Wn

jjw� wnjjL1½a;b� ¼ min
vn2Vn;0

jjv 00 � v 00
njjL1½a;b�

�ChljjvjjW lþ2;1½a;b�

�ChljjwjjW l;1½a;b�: ð3:30Þ

Theorem 3.1 implies Assumption 3.4. The following theorem gives su±cient

conditions to guarantee the stability of Qn, for n large enough, i.e. Assumption 3.3.

Theorem 3.2. Given Ĉ s > 0, there exists �n 2 N such that, for any n > �n the

following holds. Let

T̂n ¼ fD2sn j sn 2 Ŝnþ2g � C 0½0; 1�;

which is n-dimensional, and let Q̂n : C 0½0; 1� ! T̂n be the interpolation operator on n

points �̂ 1 < �̂ 2 < � � � < �̂ n in ½0; 1�. Let the stability condition jjQ̂nwjjL1 �
Ĉ sjjwjjL1 ; 8w 2 C 0½0; 1�, hold. Then the interpolation operator Qn : C 0½a; b� ! Wn

associated with the points � j ¼ F ð�̂ jÞ is stable, that is jjQnwjjL1 � CsjjwjjL1 ; 8w 2
C 0½a; b�. The constants �n and Cs depend only on Ĉ s and the geometry para-

metrization F : ½0; 1� ! ½a; b�.

Proof. Let v ¼
R b
a
H0ð�; tÞwðtÞdt. Note that by de¯nition vðaÞ ¼ vðbÞ ¼ 0 and

w ¼ D2v. Then, the interpolation problem on ½a; b�, that is, the problem of ¯nding

wn ¼ Qnw 2 Wn such that

wnð� jÞ ¼ wð� jÞ; 1 � j � n;

is equivalent to ¯nding vn 2 Vn such that

ðD2vnÞð� jÞ ¼ ðD2vÞð� jÞ; 1 � j � n; vnðaÞ ¼ vnðbÞ ¼ 0; ð3:31Þ

with wn ¼ D2vn.

Consider the function of x̂ 2 ½0; 1�

snðx̂Þ ¼ vnðF ðx̂ÞÞ!ðx̂Þ; ð3:32Þ

where !ðx̂Þ is the denominator in the de¯nition (2.8) of the NURBS, i.e.

!ðx̂Þ ¼
Xn
î¼1

Nî;pðx̂Þ!î: ð3:33Þ

Observe that by de¯nition sn 2 Ŝnþ2, and that snð0Þ ¼ snð1Þ ¼ 0.
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Now we want to write the interpolation problem (3.31) in terms of sn. Denoting by

G ¼ F �1 the inverse of the geometric parametrization F, we have for all x 2 ½a; b�

vnðxÞ ¼
snðGðxÞÞ
!ðGðxÞÞ : ð3:34Þ

In the following we denote by D̂ i the i-derivative with respect to x̂. Computing the

derivatives in (3.32) and using a Poincar�e inequality yields

jjD̂ 2snjjL1½0;1� . jjvnjjW 2;1ða;bÞ . jjD2vnjjL1ða;bÞ; ð3:35Þ

where the hidden constant in (3.35) depends on F and !.

Substituting (3.32) in (3.31), using change of variable and the chain rule for

derivatives, in (3.34), we get

X2
i¼0

bið�̂ jÞðD̂ isnÞð�̂ jÞ ¼ ðD2vÞð� jÞ; 1 � j � n ð3:36Þ

with suitable factors biðx̂Þ. In particular, the leading coe±cient is

b2ðx̂Þ ¼
ðDGðF ðx̂ÞÞÞ2

!ðx̂Þ :

Due to the assumption that D̂F ðx̂Þ > 0 for all x 2 ½0; 1�, the inverse mapping satis¯es

DGðxÞ > 0 for all x 2 ½a; b�. Therefore b2ðx̂Þ � c > 0 8 x̂ 2 ½0; 1�, and we can divide

(3.36) by it and obtain

ðD̂ 2snÞð�̂ jÞ þ
X1
i¼0

cið�̂ jÞðD̂ isnÞð�̂ jÞ ¼
1

b2ð�̂ jÞ
ðD2v � F Þð�̂ jÞ; j ¼ 1; 2: ð3:37Þ

The above problem can be written in the form

Q̂nðI þ T̂ Þyn ¼ Q̂n

ðD2vÞ � F
b2

; ð3:38Þ

with T̂ : C 0½0; 1� ! C 0½0; 1� a compact operator and D̂ 2sn ¼ yn, snð0Þ ¼ snð1Þ ¼ 0,

by following the steps of Sec. 3.2.1.

By de¯nition and by the same derivative transformation used above, we have

jjwnjjL1ða;bÞ ¼ jjD2vnjjL1ða;bÞ

’ D̂ 2sn þ
X1
i¼0

cið; D̂ isnÞ
�����

�����
L1ð0;1Þ

¼ jjðI þ T̂ ÞynjjL1ð0;1Þ: ð3:39Þ

A triangle inequality and the fact that Q̂nyn ¼ yn, give

jjðI þ T̂ ÞynjjL1ð0;1Þ � jjðI þ Q̂nT̂ ÞynjjL1ð0;1Þ þ jjðI � Q̂nÞT̂ ynjjL1ð0;1Þ: ð3:40Þ
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Equation (3.38) and the stability of the spline interpolant Q̂n yield immediately

jjðI þ Q̂nT̂ ÞynjjL1ð0;1Þ ¼ Q̂n

D2v � F
b2

����
����
L1ð0;1Þ

. D2v � F
b2

����
����
L1ð0;1Þ

. jjD2vjjL1ða;bÞ ¼ jjwjjL1ða;bÞ: ð3:41Þ

Using the L1 stability of the interpolation operator Q̂n and standard approximation

properties for splines14 it follows easily

jjðI � Q̂nÞ jjL1ð0;1Þ . cnjj jjW 1;1ð0;1Þ 8 2 W 1;1ð0; 1Þ;

with limn!1 cn ¼ 0. As a consequence, the second term in (3.40) can be bounded

using the compactness of T̂ and recalling (3.35). One gets

jjðI � Q̂nÞT̂ ynjjL1ð0;1Þ . cnjjT̂ ynjjW 1;1ð0;1Þ . cnjjynjjL1ð0;1Þ

¼ cnjjD̂ 2snjjL1ð0;1Þ . cnjjD2vnjjL1ða;bÞ

¼ cnjjwnjjL1ða;bÞ: ð3:42Þ

Combining (3.39) with (3.40)�(3.42) it follows that, for n su±ciently large,

jjwnjjL1ða;bÞ . jjwjjL1ða;bÞ: ð3:43Þ

Combining the results of this section with Proposition 3.1 yields

Theorem 3.3. Given a NURBS space Vnþ2 on ½a; b� and a set of collocation points

f�1; . . . ; �ng 2 ½a; b�, let the hypotheses of Theorem 3.2 on the collocation points and

the spline space Ŝnþ2 be satis¯ed. Then

jjD2ðu� unÞjjL1½a;b� .hljjujjW lþ2;1½a;b�; ð3:44Þ

where u is the solution of the continuous problem (3.16) and un is the solution of the

collocation problem (3.25).

The NURBS collocation method is therefore optimal in the W 2;1 seminorm. The

convergence in the full W 2;1 norm can be recovered using a Poincar�e inequality

jju� unjjW 2;1½a;b� .hljjujjW lþ2;1½a;b�: ð3:45Þ

Therefore, in order to guarantee the optimal behavior of the collocation scheme

(3.25), the collocation points can be selected according to Theorem 3.2. Notice that

the space T̂n, which is made of second derivatives of the splines in Ŝnþ2, is still a space

of splines. In particular, T̂n is the space of splines of degree p� 2 on the knot vector

obtained by removing the ¯rst two and last two knots from the knot vector of Ŝnþ2.

The optimal selection of points for interpolation of one-dimensional splines is

addressed in various papers. The only choice which is proved to be stable for any

mesh and degree is the one proposed by Demko.15 These points are referred to as
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Demko abscissae. They are the extrema of the Chebyshev splines, i.e. the splines that

have the maximum number of oscillations, for which the extrema take the values 
1.

The Demko abscissae are obtained by an iterative algorithm (see, e.g. chbpnt in

MATLAB and also the book by de Boor14). A di®erent approach which is proposed in

the engineering literature23 is to collocate at the Greville abscissae. These are

obtained as knots averages14,15 (see (2.16)) and Greville abscissae interpolation is

proved to be stable up to degree 3, while there are examples24 of instability for

degrees higher than 19 on particular non-uniform meshes.a In Sec. 4.1, we numerically

test both possibilities, i.e. we consider:

. collocation at the images (though the geometry map F ) of the Demko abscissae of

the space T̂n (we refer to these as \second-derivative Demko abscissae");

. collocation at the images of the Greville abscissae of the space Ŝnþ2, after removing

the ¯rst and last knots (we refer to these as simply \Greville abscissae").

In both cases, boundary conditions will be imposed strongly on the discrete solution,

according to formulation (3.25). It will be shown that the ¯rst choice (Demko

abscissae) is superior, even though it represents a very small advantage over the

second choice in many cases of practical interest.

In Fig. 2 we compare a sample of Demko abscissae for the space T̂n, Greville

abscissae for T̂n, and Greville abscissae for Ŝnþ2 after removing the ¯rst and last

knots. We consider a uniform open knot vector with polynomial degree p ¼ 3 in the

¯rst frame, with p ¼ 7 in the second frame, and a non-uniform open knot vector with

knot spans forming a geometric sequence with p ¼ 7 in the last frame. Coordinates of

collocation points are reported in Tables 1�3.

3.4. Remarks on the theoretical analysis in higher dimensions

The extension to the multi-dimensional case of the analysis of Sec. 3.2, based on the

abstract framework of Sec. 3.1, poses various di±culties. One of the main issues is

that the space consisting of the Laplacian of multivariate splines, or more generally of

second-order derivatives of multivariate splines, is not a complete space of splines of a

given degree. Therefore, stable interpolation in this space is di±cult to determine.

Thus, we only consider numerical experiments in Sec. 4.

Other approaches for the theoretical analysis of the collocation method with spline

spaces in higher dimensions are given, for particular cases, in Arnold et al.3 and

Prenter.26

4. Numerical Tests

In this section we present some numerical results for the collocation approach pro-

posed. We ¯rst study a one-dimensional second-order di®erential equation with

aTo be precise, we refer to cases where the lengths of consecutive knot spans are increased by a constant

scaling factor, forming a geometric sequence.
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Fig. 2. Comparison of Demko abscissae for T̂n (¯rst line of each frame), Greville abscissae for T̂n (second

line), and Greville abscissae for Ŝnþ2 after removing the ¯rst and last knots (third line). Uniform open knot

vector with p ¼ 3 (top frame), with p ¼ 7 (middle frame), and non-uniform open knot vector with knot

spans forming a geometric sequence with p ¼ 7 (bottom frame).

Table 1. Coordinates of collocation points in Fig. 2 (upper frame): uniform

mesh, p ¼ 3.

Demko abscissae for T̂ n
0 0.2500 0.5000 0.7500 1.0000

Greville abscissae for T̂n
0 0.2500 0.5000 0.7500 1.0000

Greville abscissae for Ŝnþ2
0.0833 0.2500 0.5000 0.7500 0.9167

Isogeometric Collocation Methods 2091



Dirichlet and Neumann boundary conditions, for linear and nonlinear parametriza-

tions, either using Greville or second-derivative Demko abscissae (see Sec. 3.3). We

also explore the 1D spectral approximation properties of the method. We then move

to higher dimensions, focusing on an elliptic model problem de¯ned on a quarter of an

annulus in 2D and on a cube in 3D.

4.1. One-dimensional source problem with Dirichlet

boundary conditions

The ¯rst test case we study is the following source problem de¯ned on the

domain ½0; 1�:

�u 00 þ u 0 þ u ¼ ð1þ 4�2Þ sinð2�xÞ � 2� cosð2�xÞ; 8 x 2 ð0; 1Þ;
uð0Þ ¼ uð1Þ ¼ 0;

�
ð4:1Þ

which admits the exact solution:

u ¼ sinð2�xÞ: ð4:2Þ

This problem is numerically solved using the collocation method outlined in the

previous sections, considering a linear parametrization (F ¼ Id) and employing both

Greville and second-derivative Demko abscissae. In Figs. 3�5, we report log-scale

plots of the relative errors for di®erent degrees of approximations in L1-, W 1;1- and

W 2;1-norms, respectively, for both choices of abscissae, recalling that

j � jW i;1 ¼ jjDi � jjL1

and

jj � jjW k;1 ¼
Xk
i¼0

jjDi � jjL1 :

Denoting by p the degree of the approximation, the ¯gures show that in the ¯rst two

norms an order of convergence p is attained for even degrees, while an order p� 1 is

attained for odd degrees. Instead in theW 2;1-norm, we observe the expected optimal

Table 2. Coordinates of collocation points in Fig. 2 (middle frame): uniform mesh, p ¼ 7.

Demko abscissae for T̂n
0 0.0429 0.1569 0.3144 0.5000 0.6856 0.8431 0.9571 1.0000

Greville abscissae for T̂n
0 0.0500 0.1500 0.3000 0.5000 0.7000 0.8500 0.9500 1.0000

Greville abscissae for Ŝnþ2
0.0357 0.1071 0.2143 0.3571 0.5000 0.6429 0.7857 0.8929 0.9643

Table 3. Coordinates of collocation points in Fig. 2 (bottom frame): knot spans forming a geometric

sequence with p ¼ 7.

Demko abscissae for T̂n
0 0.0072 0.0336 0.1022 0.2438 0.4568 0.7134 0.9208 1.0000

Greville abscissae for T̂n
0 0.0050 0.0250 0.0900 0.2900 0.4900 0.6850 0.8650 1.0000

Greville abscissae for Ŝnþ2
0.0036 0.0179 0.0643 0.2071 0.3500 0.4929 0.6357 0.7750 0.9036
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Fig. 3. 1D source problem with Dirichlet boundary conditions (linear parametrization), using Greville

(left) and second-derivative Demko (right) abscissae. Relative error in L1-norm for di®erent degrees of
approximation.
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Fig. 4. 1D source problem with Dirichlet boundary conditions (linear parametrization), using Greville

(left) and second-derivative Demko (right) abscissae. Relative error in W 1;1-norm for di®erent degrees of

approximation.
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Fig. 5. 1D source problem with Dirichlet boundary conditions (linear parametrization), using Greville

(left) and second-derivative Demko (right) abscissae. Relative error in W 2;1-norm for di®erent degrees of

approximation.
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order of convergence, i.e. p� 1, for all approximation degrees, in agreement with the

predictions of the theory (see Sec. 3.3). Here, and in the following examples, the use of

second-derivative Demko abscissae gives the same convergence rates as Greville, but

a very slight di®erence in the magnitude of errors is observed for certain degrees.

We have not included results for p ¼ 2, since this case is not covered by the

theory. However, the results obtained are in complete agreement with the ones

observed for higher degrees (i.e. order p for the L1- and W 1;1-norms and p� 1 for

the W 2;1-norm).

As proven earlier, the optimal theoretical convergence rates are also expected

when nonlinear parametrizations are employed, provided that the geometry map is

kept ¯xed during the re¯nement process. In order to test this, we refer to a particular

nonlinear mesh (an illustration of which is given in Fig. 6) and we solve the source

problem with Dirichlet boundary conditions, using standard h-re¯nement procedures

such that the geometry map is unchanged. The results are reported in Figs. 7�9

where it is possible to see the same orders of convergence observed in the case of linear

parametrization. In particular, Fig. 9 shows how theW 2;1-norm errors converge with

the expected optimal orders (i.e. p� 1).

Finally, we consider a problem which shows a signi¯cant advantage in using

second-derivative Demko abscissae, i.e. collocation points that guarantee optimal

interpolation on the second derivatives of the discrete space. The di®erential equation

is now

u 00ðxÞ ¼ fðxÞ 8x 2 ð0; 1Þ;

uð0Þ ¼ uð1Þ ¼ 0;

(
ð4:3Þ

and, therefore, the collocation scheme is in fact reduced to a simple interpolation of

second derivatives. We compare with the other two choices, i.e. collocation at Greville
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Fig. 6. Nonlinear geometry map.
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Fig. 7. 1D source problem with Dirichlet boundary conditions (nonlinear parametrization of Fig. 6), using

Greville (left) and second-derivative Demko (right) abscissae. Relative error in L1-norm for di®erent
degrees of approximation.
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Fig. 8. 1D source problem with Dirichlet boundary conditions (nonlinear parametrization of Fig. 6), using

Greville (left) and second-derivative Demko (right) abscissae. Relative error in W 1;1-norm for di®erent

degrees of approximation.

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
−9

−8

−7

−6

−5

−4

−3

−2

log
10

( n )

lo
g 10

( 
|u

ex
u h| W

2,
∞
 / 

|u
ex

| W
2,

∞
)

p = 3
p = 4
p = 5
p = 6
p = 7
ref: c

1
n−2

ref: c
2
n−3

ref: c
3
n−4

ref: c
4
n−5

ref: c
5
n−6

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4
−9

−8

−7

−6

−5

−4

−3

−2

log
10

( n )

lo
g 10

( 
|u

ex
u h| W

2,
∞
 / 

|u
ex

| W
2,

∞
)

p = 3
p = 4
p = 5
p = 6
p = 7
ref: c

1
n−2

ref: c
2
n−3

ref: c
3
n−4

ref: c
4
n−5

ref: c
5
n−6

Fig. 9. 1D source problem with Dirichlet boundary conditions (nonlinear parametrization of Fig. 6), using

Greville (left) and second-derivative Demko (right) abscissae. Relative error in W 2;1-norm for di®erent
degrees of approximation.
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abscissae for the space of unknown functions or for the space of second derivatives,

respectively. The unknown is sought in the space of splines of degree p ¼ 7 (with C 6

continuity) and a linear geometrical parametrization F : ½0; 1� ! ½0; 1� is adopted. The
right-hand side is selected to give the exact solution uðxÞ ¼ x2:01ð1� xÞ, whose second
derivative presents a thin layer at x ¼ 0. On ½0; 1� we consider a geometrically graded

mesh, where the ratio between adjacent element (i.e. knot span) lengths is 3. In Fig. 10,

the error in theW 2;1-norm versus the number of elements of themesh is plotted. It can

be seen how in some pathological cases collocation at the second-derivative Demko

abscissae may lead to higher accuracy whereas Greville abscissae fail to converge. We

also observe that collocation at Greville abscissae is more accurate if one computes

them on the space of second derivatives.

4.2. One-dimensional source problem with Dirichlet�Neumann

boundary conditions

We now study a source problem similar to problem (4.1), but here a Neumann

boundary condition is imposed at the second end of the domain. Namely, the

di®erential problem to be solved is

�u 00 þ u 0 þ u ¼ ð1þ 4�2Þ cosð2�xÞ � 2� sinð2�xÞ � 1; 8 x 2 ð0; 1Þ;
uð0Þ ¼ u 0ð1Þ ¼ 0;

�
ð4:4Þ

which admits the exact solution:

u ¼ cosð2�xÞ � 1: ð4:5Þ
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Fig. 10. Comparison of di®erent choices of collocation points for p ¼ 7 and a geometrically graded mesh:

Greville abscissae for the space of unknowns; Greville abscissae for the space of second derivatives; and

Demko abscissae for the space of second derivatives.
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Again, the problem is numerically solved considering a linear parametrization and

employing collocation methods based on both Greville and second-derivative Demko

abscissae. The results are then reported in Figs. 11�13 where it is possible to see the

same orders of convergence observed in the case of Dirichlet boundary conditions. In

particular, Fig. 13 shows how the W 2;1-norm errors converge with the expected

optimal orders (i.e. p� 1).

4.3. One-dimensional eigenvalue problem

We now study the following eigenvalue problem

u 00 þ !2u ¼ 0; 8x 2 ð0; 1Þ;

uð0Þ ¼ uð1Þ ¼ 0;

(
ð4:6Þ
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Fig. 11. 1D source problem with Dirichlet�Neumann boundary conditions (linear parametrization),
using Greville (left) and second-derivative Demko (right) abscissae. Relative error in L1-norm for di®erent

degrees of approximation.
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Fig. 12. 1D source problem with Dirichlet�Neumann boundary conditions (linear parametrization),

using Greville (left) and second-derivative Demko (right) abscissae. Relative error in W 1;1-norm for

di®erent degrees of approximation.
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for which the exact frequencies !n are given by:

!n ¼ 2�n; with n ¼ 1; 2; 3; . . . : ð4:7Þ

This problem can also be solved using the collocation method with both Greville

and second-derivative Demko abscissae. In Fig. 14, we plot the results in terms of

normalized discrete spectra, obtained considering a linear parametrization and using

di®erent degrees of approximation (1000 d.o.f.'s have been used to produce each

spectrum). It is possible to observe the good behavior of all spectra, which converge

for an increasing degree p. In Figs. 15 and 16, we also report the convergence plot of

the ¯rst three eigenvalues for p ¼ 3 and p ¼ 4, respectively. It is possible to observe

that the order of convergence is in all cases 2ðp� 2Þ.
We note that in this case \outlier frequencies" appear at the very end of the spec-

trum (the maximum outlier being almost double the corresponding exact frequency).

This behavior is analogous to the one of Galerkin-based isogeometric discretization11,20
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Fig. 13. 1D source problem with Dirichlet�Neumann boundary conditions (linear parametrization),

using Greville (left) and second-derivative Demko (right) abscissae. Relative error in W 2;1-norm for

di®erent degrees of approximation.
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Fig. 14. 1D eigenvalue problem with linear parametrization using Greville (left) and second-derivative

Demko (right) abscissae. Normalized spectra for di®erent degrees of approximation.
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and can be circumvented resorting to a suitable nonlinear parametrization of the

domain obtained by a uniform control mesh20 for more details). In Fig. 17 we report the

normalized discrete spectra obtained using the nonlinear parametrization, which

appear to be identical to those for a linear parametrization except that outliers are

eliminated.

4.4. Two-dimensional source problem

We now consider higher-dimensional problems and we start with the solution of an

elliptic model problem on a 2D domain � consisting of a quarter of an annulus, as

sketched in Fig. 18. Here we select internal and external radii equal to R1 ¼ 1 and

R2 ¼ 4, respectively. Moreover, we insert a C 1-continuous central circumferential

line, in order to test the method behavior also in case of reduced continuity. Such a

domain can be exactly represented by a single NURBS patch, as shown in Fig. 19,

where we illustrate the control mesh, knot lines, and Greville abscissae using quartic

1 1.5 2 2.5
−6

−5

−4

−3

−2

−1

0

log
10

( n
dofs

)

lo
g 10

( 
ω

h n/ω
n

− 
1 

)

n = 1
n = 2
n = 3
ref: c n

dofs
2

1 1.5 2 2.5
−6

−5

−4

−3

−2

−1

0

log
10

( n
dofs

)

lo
g 10

( 
ω

h n/ω
n

− 
1 

)

n = 1
n = 2
n = 3
ref: c n

dofs
2

Fig. 15. 1D eigenvalue problem with linear parametrization using Greville (left) and second-derivative

Demko (right) abscissae. Convergence of the ¯rst three eigenvalues for p ¼ 3.
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Demko (right) abscissae. Convergence of the ¯rst three eigenvalues for p ¼ 4.
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NURBS and 8� 10 control points (note that in the plot we do not report Greville

abscissae collocated on the domain boundary). The knot vectors, control points,

weights, and Greville abscissae employed for the example of Fig. 19 are reported in

Table 4.

The problem to be solved reads

�4uþ u ¼ f; 8x 2 �;

uj@� ¼ 0;

(
ð4:8Þ

with

f ¼ð3x4 � 67x2 � 67y2 þ 3y4 þ 6x2y2 þ 116Þ sinðxÞ sinðyÞ

þ ð68x� 8x3 � 8xy2Þ cosðxÞ sinðyÞ

þ ð68y� 8y3 � 8yx2Þ cosðyÞ sinðxÞ; ð4:9Þ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

1

1.05

1.1

1.15

1.2

1.25

n/N

ω
h n/ω

n

p = 3
p = 4
p = 5
p = 6
p = 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

1

1.05

1.1

1.15

1.2

1.25

n/N

ω
h n/ω

n

p = 3
p = 4
p = 5
p = 6
p = 7

Fig. 17. 1D eigenvalue problem for a uniform control mesh (i.e. nonlinear parametrization) using Greville

(left) and second-derivative Demko (right) abscissae. Normalized spectra for di®erent degrees of

approximation.

Fig. 18. Geometry for the quarter of an annulus.

2100 F. Auricchio et al.



such that the exact solution is

u ¼ ðx2 þ y2 � 1Þðx2 þ y2 � 16Þ sinðxÞ sinðyÞ: ð4:10Þ

In Fig. 20, we present the results obtained employing Greville abscissae (in the

W 2;1-norm, which is the one for which we have theoretical results in 1D). It is

possible to observe that, even though for higher-dimensional cases we have no

mathematical theory, the same orders of convergence in the W 2;1-norm expected in

1D (i.e. p� 1) are attained also in 2D. Notice that the plot abscissa is the square root

of the total number of control points used.

4.5. Three-dimensional source problem

We then study an elliptic model problem on the 3D cubic domain ½0; 1� � ½0; 1� � ½0; 1�,
i.e.

�4uþ u ¼ f; 8x 2 ½0; 1� � ½0; 1� � ½0; 1�;
uj@� ¼ 0;

(
ð4:11Þ

with

f ¼ ð1þ 12�2Þ sinð2�xÞ sinð2�yÞ sinð2�zÞ;

such that the exact solution is

u ¼ sinð2�xÞ sinð2�yÞ sinð2�zÞ: ð4:12Þ

In Fig. 21, we present the results obtained (in theW 2;1-norm) employing Greville

abscissae. The same orders of convergence in the W 2;1-norm expected in the 1D case

(i.e. p� 1) are attained (notice that the plot abscissa is the cube root of the total
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Fig. 19. Quarter of an annulus: control mesh (left) and knot lines and locations of interior Greville

abscissae (right) in the case of quartic NURBS with 8� 10 control points. There are 32 additional Greville

abscissae on the boundary of the domain (not shown).
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Table 4. Knot vectors, control points, weights, and Greville abscissae employed for the example of
Fig. 19.

Knot vectors

�-direction (radial) f0, 0, 0, 0, 0, 1/4, 1/2, 1/2, 1/2, 3/4, 1, 1, 1, 1, 1g
�-direction (circumf.) f0, 0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1, 1g

Control points, weights, and Greville abscissae

Control points and weights Greville abscissae Control points and weights Greville abscissae

x-coord. y-coord. weight x-coord. y-coord. x-coord. y-coord. weight x-coord. y-coord.

1.0000 0.0000 1.0000 1.0000 0.0000 2.8750 0.0000 1.0000 2.8750 0.0000

1.0000 0.0917 0.9634 0.9960 0.0899 2.8750 0.2638 0.9634 2.8634 0.2583

0.9769 0.2843 0.9024 0.9614 0.2752 2.8086 0.8173 0.9024 2.7640 0.7911

0.9037 0.4706 0.8658 0.8883 0.4593 2.5983 1.3530 0.8658 2.5538 1.3205
0.7803 0.6339 0.8536 0.7764 0.6303 2.2434 1.8224 0.8536 2.2320 1.8121

0.6339 0.7803 0.8536 0.6303 0.7764 1.8224 2.2434 0.8536 1.8121 2.2320

0.4706 0.9037 0.8658 0.4593 0.8883 1.3530 2.5983 0.8658 1.3205 2.5538

0.2843 0.9769 0.9024 0.2752 0.9614 0.8173 2.8086 0.9024 0.7911 2.7640
0.0917 1.0000 0.9634 0.0899 0.9960 0.2638 2.8750 0.9634 0.2583 2.8634

0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 2.8750 1.0000 0.0000 2.8750

1.1875 0.0000 1.0000 1.1875 0.0000 3.4375 0.0000 1.0000 3.4375 0.0000
1.1875 0.1090 0.9634 1.1827 0.1067 3.4375 0.3154 0.9634 3.4236 0.3089

1.1601 0.3376 0.9024 1.1417 0.3268 3.3581 0.9773 0.9024 3.3048 0.9459

1.0732 0.5588 0.8658 1.0548 0.5454 3.1066 1.6177 0.8658 3.0535 1.5788

0.9266 0.7527 0.8536 0.9219 0.7485 2.6824 2.1790 0.8536 2.6687 2.1666
0.7527 0.9266 0.8536 0.7485 0.9219 2.1790 2.6824 0.8536 2.1666 2.6687

0.5588 1.0732 0.8658 0.5454 1.0548 1.6177 3.1066 0.8658 1.5788 3.0535

0.3376 1.1601 0.9024 0.3268 1.1417 0.9773 3.3581 0.9024 0.9459 3.3048

0.1090 1.1875 0.9634 0.1067 1.1827 0.3154 3.4375 0.9634 0.3089 3.4236
0.0000 1.1875 1.0000 0.0000 1.1875 0.0000 3.4375 1.0000 0.0000 3.4375

1.5625 0.0000 1.0000 1.5625 0.0000 3.8125 0.0000 1.0000 3.8125 0.0000

1.5625 0.1434 0.9634 1.5562 0.1404 3.8125 0.3498 0.9634 3.7971 0.3426
1.5264 0.4442 0.9024 1.5022 0.4299 3.7245 1.0839 0.9024 3.6653 1.0490

1.4121 0.7353 0.8658 1.3879 0.7176 3.4455 1.7942 0.8658 3.3866 1.7511

1.2193 0.9904 0.8536 1.2131 0.9848 2.9750 2.4167 0.8536 2.9598 2.4030

0.9904 1.2193 0.8536 0.9848 1.2131 2.4167 2.9750 0.8536 2.4030 2.9598
0.7353 1.4121 0.8658 0.7176 1.3879 1.7942 3.4455 0.8658 1.7511 3.3866

0.4442 1.5264 0.9024 0.4299 1.5022 1.0839 3.7245 0.9024 1.0490 3.6653

0.1434 1.5625 0.9634 0.1404 1.5562 0.3498 3.8125 0.9634 0.3426 3.7971

0.0000 1.5625 1.0000 0.0000 1.5625 0.0000 3.8125 1.0000 0.0000 3.8125
2.1250 0.0000 1.0000 2.1250 0.0000 4.0000 0.0000 1.0000 4.0000 0.0000

2.1250 0.1950 0.9634 2.1164 0.1909 4.0000 0.3670 0.9634 3.9838 0.3594

2.0759 0.6041 0.9024 2.0430 0.5847 3.9077 1.1372 0.9024 3.8456 1.1006

1.9205 1.0000 0.8658 1.8876 0.9760 3.6150 1.8824 0.8658 3.5531 1.8372
1.6582 1.3470 0.8536 1.6498 1.3394 3.1213 2.5355 0.8536 3.1054 2.5212

1.3470 1.6582 0.8536 1.3394 1.6498 2.5355 3.1213 0.8536 2.5212 3.1054

1.0000 1.9205 0.8658 0.9760 1.8876 1.8824 3.6150 0.8658 1.8372 3.5531
0.6041 2.0759 0.9024 0.5847 2.0430 1.1372 3.9077 0.9024 1.1006 3.8456

0.1950 2.1250 0.9634 0.1909 2.1164 0.3670 4.0000 0.9634 0.3594 3.9838

0.0000 2.1250 1.0000 0.0000 2.1250 0.0000 4.0000 1.0000 0.0000 4.0000
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Fig. 20. 2D elliptic model problem on a quarter of an annulus, using Greville abscissae. Relative error in

W 2;1-norm for di®erent degrees of approximation.
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Fig. 21. 3D elliptic model problem on a cube, using Greville abscissae. Relative error in W 2;1-norm for
di®erent degrees of approximation.
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number of control points used, i.e., in this case, the number of control points per

direction).

5. Discussion of the Computational Cost

This section is devoted to an analysis of the computational cost of the isogeometric

collocation approach, comparing with the Galerkin version of isogeometric analysis.

In the previous sections, we have analyzed the accuracy of the method as a

function of the mesh-size h and the order p. Given h and p, isogeometric collocation is

less than or equal in accuracy to the Galerkin isogeometric method. However, it is

clear that this comparison does not properly account for computational cost. A

meaningful comparison between the two methods is not simple. Nevertheless, we will

attempt to provide some initial insights by comparing two aspects: initial formation

of the equation system and its solution.

Forming the system of equations is where collocation has a great advantage over

the Galerkin method: the number of evaluations required is equal to the number of

control points for collocation, while the integrals of a Galerkin formulation need rules

that use a number of quadrature points in each element proportional to p, that is

pþ 1 for Gaussian or approximately p=2 for the rules proposed by Hughes et al.21

The computational cost for solving the system of equations is a more complex issue.

Following Kwok et al.,22 we take the view that the bandwidth of the matrices is the

indicator of the computational cost, so methods with the same bandwidth are com-

pared. We consider the one-dimensional case, and a uniform mesh in the parametric

interval ð0; 1Þ. In this case, the bandwidth of the collocation method is b ¼ p or b ¼
pþ 1 for p odd or even, respectively. For the Galerkin method, the bandwidth is

2pþ 1, for all p. The order of convergence with respect to the bandwidth is sum-

marized in Table 5. For the collocation method, the orders are obtained from the

numerical tests of Sec. 4.1, supported by the theoretical analysis of Sec. 3.2. For source

problems, collocation is always advantageous, while for eigenvalue problems collo-

cation is advantageous for p odd and the advantage also holds for p even when b � 5.

6. Conclusions

In the ¯nite element method, the Galerkin, and related formulations have dominated.

Collocation has been investigated but has seemed to o®er little theoretical advantage

Table 5. Order with respect to the bandwidth b, for collocation and

Galerkin-based isogeometric analysis.

Collocation; p odd Collocation; p even Galerkin

jju� unjjL1 Oðhb�1Þ Oðhðbþ1Þ=2Þ
jju� unjjW 1;1 Oðhb�1Þ Oðhðb�1Þ=2Þ
jju� unjjW 2;1 Oðhb�1Þ Oðhb�2Þ Oðhðb�3Þ=2Þ
Eigenvalues Oðh2b�4Þ Oðh2b�6Þ Oðhb�1Þ

2104 F. Auricchio et al.



and no practical usefulness. Our view is that the reason for this is that most ¯nite

element procedures utilize functions which are no more than C 0-continuous. This

lack of smoothness eliminates the possibility of developing methods based on the

strong form of di®erential equations. Some C 1-continuous ¯nite elements in two

dimensions have been developed but their use has also been very limited because of

their complexity and other practical requirements.

Isogeometric analysis, on the other hand, presents an opportunity because it is

possible to generate smoother basis functions for geometrically and topologically

complex domains. Thus, collocation becomes feasible, while retaining the attributes

of isogeometric analysis and in particular the possible direct link with CAD generated

geometry. The major advantage of collocation is the reduced number of evaluation

points compared with the Galerkin method. Analysis methodology dominated by the

cost of quadrature would seem to bene¯t most from collocation. A speci¯c example

that may be mentioned in this regard is explicit transient analysis.18

E®ective isogeometric collocation methods depend on the stability of the discrete

equation system and the ability to generate smooth basis functions (at least C 1) for

complex objects. Much progress has been made on this latter topic in recent years,

but it is mostly focused on surfaces rather than 3D solids. The 3D problem may still

be considered an open problem. There is much additional research necessary to make

collocation methods a practical reality for engineering analysis. However, we believe

the door is now open and the potential bene¯ts may be signi¯cant.
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