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Abstract—We consider the benchmark problem of magnetic energy
density enhancement in a small spatial region by varying the shape
of two symmetric conducting scatterers. We view this problem
as a prototype for a wide variety of geometric design problems in
electromagnetic applications. Our approach for solving this problem
is based on shape optimization and isogeometric analysis. One of
the major difficulties we face to make these methods work together
is the need to maintain a valid parametrization of the computational
domain during the optimization. Our approach to generating a domain
parametrization is based on minimizing a second order approximation
to the Winslow functional in the vicinity of a reference parametrization.
Furthermore, we enforce the validity of the parametrization by ensuring
the non-negativity of the coefficients of a B-spline expansion of the
Jacobian. The shape found by this approach outperforms earlier design
computed using topology optimization by a factor of one billion.

1. INTRODUCTION

Shape optimization has been a subject of a great interest in the past
decades, see for example [1–3], and the references therein. Such an
interest is fuelled by many important and direct applications of shape
optimization in various engineering disciplines, and the subject has
seen many advances during these years. In this paper, we concentrate
on utilizing shape optimization techniques to facilitate optimal design
for electromagnetic (EM) scattering applications.
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Many shape optimization approaches continue to rely on polygonal
grids inherited from the underlying numerical methods used for
approximating partial differential equations (PDEs) governing a given
physical system under consideration, Maxwell’s equations in our case.
This creates a disparity between a computer aided design (CAD)-like
geometric representation of the shape, which is most often utilized
for manufacturing purposes, and a polygonal representation utilized
for the numerical computations [1, 4, 5]. Additionally, the need for
automatic remeshing often imposes artificial limits on the admissible
variations of shapes, in turn limiting the possible improvements of
the performance, see for example [1, 6] and references therein for a
discussion.

The arrival of isogeometric analysis (IGA) [7] provided the subject
of shape optimization with a new direction of development. Potential
benefits of shape optimization based on IGA have been indicated in
the original paper [7], and have later been further explored in [6, 8–
12]. In particular, complex shapes can be represented with relatively
few variables using splines, thus allowing one to reduce the dimension
of the shape optimization problem. Furthermore, since the IGA
framework eliminates the disagreement between the CAD and the
analysis representations, optimized designs can easily be exported to
a CAD system for manufacturing [7, 13].

The issue of remeshing in traditional FEA is replaced by the
reparametrization problem in IGA-based shape optimization. A robust
and inexpensive method for reparametrizing the physical domain
during the shape optimization is required. The need for such a
reparametrization has been addressed in Nguyen et al. [6], and two
linear methods have been proposed for this purpose. Unfortunately,
linear methods can not in general treat large deviations from the
initial geometrical configuration. In this paper, we utilize the
observation that minima of Winslow functional [14] correspond to
high quality (nearly-conformal) parametrizations [15]. However,
solving an auxiliary non-convex mathematical programming problem
at every shape optimization iteration is computationally too expensive.
Therefore, we only do this occasionally in order to compute a reference
parametrization. During regular iterations we work with quadratic
optimization problems (whose optimality conditions are linear systems)
based on a second order Taylor series expansion of the non-linear
Winslow functional around the reference parametrization. To prevent
self-intersection of the boundary of the domain, we formulate a
set of easily computable sufficient conditions that guarantee non-
self-intersecting boundaries without greatly restricting the family of
available shapes.
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In the situation where we are interested in the behaviour of the EM
fields near the scatterers (near field models), shape optimization based
on IGA is a very natural choice. It is well known, both theoretically and
experimentally, that the fields are quite sensitive with respect to the
precise location and the shape of the air-scatterer interface. Utilizing
the same geometric representation for the analysis and manufacturing
is an essential advantage in this case.

Systematic optimal design for EM applications has been per-
formed previously utilizing techniques of topology optimization [16].
Within the framework of topology optimization (see, for exam-
ple [17, 18]), also known as control in the coefficients or shape optimiza-
tion through homogenization, one approaches the shape optimization
problem from an entirely different angle. In the present case the geom-
etry of the scatterer are encoded in the coefficients of Maxwell’s equa-
tions, which remain valid both in the dielectric or air phase and inside
the conducting scatterer. Interpolating between the two phases/values
of the coefficients, one casts the shape optimization problem into a
problem of finding the coefficients of Maxwell’s equations assuming
only two extreme values (dielectric/conductor phase), which maximize
a given performance functional. However, computational complica-
tions arise owing to the fast variation of the EM fields near the inter-
face (“the skindepth problem”). To resolve these complications, one
needs either a computationally infeasibly fine mesh, or rather special
numerical treatment, see [16]. The results obtained in [16] are shown in
Fig. 1. Note that this way of representing the geometry yields a rough
and imprecise boundary of the optimized shape, see Fig. 1(b). Nev-
ertheless we use this result of topology optimization as a benchmark
result for our IGA-based shape optimization algorithm.

At the frequencies, we are considering the skindepth is small
compared to the thickness of the scatter so by maintaining an explicit
representation of the interface during the optimization we can use
the appropriate (transmission) boundary conditions. Additionally, we
automatically maintain the regularity of the boundary by representing
it with B-splines. Compared with the topology optimization result, we
obtain a scatter configuration that performs by a factor of 109 better
in terms of focusing the magnetic energy in the prescribed area. The
same is true when compared with two standard scatter configurations,
two circles and a “bowtie”.

The paper is organized as follows. In Section 2, we state
the mathematical model of the scattering problem and describe its
numerical discretization using isogeometric analysis. In Section 3,
we present the shape optimization problem of scatterer’s geometry
and outline the sensitivity analysis and the computational strategy
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log10 W = 0.204 log10 = 0.076− −o Wo

Figure 1. Two topology optimization results taken from Aage
et al. [16]. Wo is proportional to the magnetic energy calculated in
the small circular domain between the two scatterers.

for solving this problem. Numerical experiments are presented in
Section 4. We conclude the discussion in Section 5. In Appendix A,
we describe our method of approximating a circular arc with a spline
curve, this is used several times in the paper.

2. THE PHYSICAL PROBLEM AND ITS
DISCRETIZATION

In this section, we briefly describe the models used in the present work
to simulate a 2D electromagnetic scattering problem.

2.1. The Electromagnetic Scattering Problem

We consider a two-dimensional EM TEz model, that is, the situation
when the z-component of the electric field’s intensity vanishes. In
particular, we look at a scattering problem in which a uniform plane
wave with a frequency f travels through a linear and isotropic dielectric
in the presence of conducting scatterers with high electric conductivity
σ. The incident magnetic field intensity is given as Hi = (0, 0,H i

z).
We denote the relative complex permittivity and permeability of the
dielectric by εcr and µr, and those of the scatterer by εs

cr and µs
r. Note

that εs
cr = εs

r−j
σ

ωε0
, where j2 = −1 and ω = 2πf . All EM fields in this

paper are assumed to be time-harmonic with an ejωt time dependence.



Progress In Electromagnetics Research B, Vol. 45, 2012 121

The infinite domain outside the scatterers is truncated by an
approximation to a circle with radius rt, as shown in Fig. 2. At
the truncation boundary we use the first order absorbing boundary
condition [19], and the present frequencies we can use the impedance
boundary condition at the scatters boundary [19]. The equations
modeling such a problem, c.f. [19], are

∇ ·
(

1

εcr
∇Hz

)
+ k2

0µrHz = 0 in Ω, (1a)

1

εcr

∂Hz

∂n
− jk0

√
µs

r

εs
cr

Hz = 0 on Γs, (1b)

∂(Hz − H i
z)

∂n
+

(
jk0 +

1

2rt

) (
Hz − H i

z

)
= 0 on Γt, (1c)

where k0 = 2πf
√

ε0µ0, ε0, and µ0 are the wavenumber, the
permittivity, and the permeability of free space, respectively, and n
is the outward unit normal vector on Γs ∪Γt. Note that the equations
entering (1) are invariant under simultaneous scaling of the frequency
and size of the domain except for the frequency dependence of the
complex permittivity of the scatterer.

A variational statement of (1) may be written as follows: find
Hz ∈ H1(Ω) (see [20]) such that for every φ ∈ H1(Ω) we have the
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Figure 2. Model scattering problem considered in this work. Due to
the symmetry, only the upper half of the truncated domain is modelled.
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equality: ∫

Ω

1

εcr
∇Hz · ∇φdV − k2

0

∫

Ω

µrHz φ dV

−jk0

∫

Γs

√
µs

r

εs
cr

Hz φdΓ +

(
jk0 +

1

2rt

)∫

Γt

1

εcr
Hz φdΓ

=

∫

Γt

1

εcr

(
∂H i

z

∂n
+

(
jk0 +

1

2rt

)
H i

z

)
φdΓ. (2)

We assume that the incident field is a plane wave propagating in the x-
direction, that is H i

z = e−jk0

√
εcrµcrx, and consider two scatterers which

are symmetric about the x-axis. As a result, Hz is also symmetric
about the x-axis. Thus we can solve the problem in half of the domain
augmented with the following boundary condition:

∂Hz

∂y
= 0 if y = 0. (3)

2.2. Fundamentals of Isogeometric Analysis

We discretize the physical problem (1) using isogeometric analysis, a
modern numerical method for approximating PDEs [13]. Similarly to
the standard FEA, the underlying principle of IGA is the use of the
Galerkin method [21]. Thus we approximate the weak solution to a
given boundary value problem associated with Maxwell’s equations in a
finite-dimensional space spanned by certain basis (shape) functions. In
the present case, the basis functions are defined indirectly via a spline
parametrization of the physical domain and bivariate tensor product
B-splines in the parameter domain ]0, 1[2.

2.2.1. B-splines

B-splines are piecewise polynomials of a certain degree p, typically
differentiable up to the degree p − 1, which are non-negative and
compactly supported, see Fig. 3(a). They are completely defined by
specifying certain parameter values, called knots, ξ1 ≤ . . . ≤ ξn+p+1,
where polynomial pieces come together. More precisely, B-splines may
be defined recursively as follows: for i = 1, . . . , n we put

N0
i (ξ) =

{
1 if ξ ∈ [ξi, ξi+1[,

0 otherwise,

Np
i (ξ) =

ξ − ξi

ξi+p − ξi
Np−1

i (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1

i+1 (ξ), p > 0.
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Figure 3. (a) A quadratic B-spline composed of polynomial “pieces”
(shown in different colors). The alignments of the dashed-straight lines
show that the B-spline is C1-continuous at the knots. (b) Quadratic
B-splines with the knot vector {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1}.

In the context of IGA, the knot vector Ξ = {ξ1, . . . , ξn+p+1} typically
has its first and last knots set to 0 and 1, respectively, and repeated
p + 1 times. That is, we have ξ1 = . . . = ξp+1 = 0 and ξn+1 = . . . =
ξn+p+1 = 1, see Fig. 3(b). Such B-splines form a partition of unity on
[0, 1[. Further properties of B-splines can be found in, e.g., [22, 23].

2.2.2. Basis Functions for IGA

Let us consider a simply connected domain Ω ⊂ R
2. A spline

parametrization of Ω is a bijective map F :]0, 1[2→ Ω of the form

F(u, v) =
(
x(u, v), y(u, v)

)
=

m̂∑

i=1

n̂∑

j=1

d̂i,jM̂
p
i (u)N̂ q

j (v), (4)

where M̂p
i and N̂ q

i are B-splines of degree p and q with knot vectors Ξ̂u

and Ξ̂v, respectively. By composing the inverse F−1 with some basis
functions on the parameter (reference) domain ]0, 1[2 we obtain basis

functions defined on the physical domain Ω. We let M̃ p̃
i , i = 1, . . . , m̃

and Ñ q̃
j , j = 1, . . . , ñ be B-splines of degree p̃ and q̃ (not necessary

equal to p and q) with knot vector Ξ̃u and Ξ̃v, respectively. The basis
functions on the parameter domain are defined as the tensor product

splines R̃p̃,q̃
k (u, v) = M̃ p̃

i (u)Ñ q̃
j (v), k = (ñ − 1)i + j. Thus, the basis
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functions on the physical domain Ω are given as R̃p̃,q̃
k ◦F−1. An integral

over Ω can be now transformed to an integral over ]0, 1[2 as
∫∫

Ω

f(x, y) dxdy =

∫ 1

0

∫ 1

0
f(x(u, v), y(u, v)) det(J) du dv, (5)

where J is the Jacobian of the variable transformation F, and we have

assumed that det(J) > 0. Note that the knot vectors Ξ̂u and Ξ̂v used
for the parametrization of Ω may be “finer” than the four knot vectors
Ξℓ (ℓ = 1, . . . , 4) used in the parametrization of the domain boundary
∂Ω. The “refinement” is achieved by inserting new knots into the two
pairs of knot vectors (Ξ1,Ξ3) and (Ξ2,Ξ4) respectively. Furthermore,
to ensure that we can approximate functions in H1(Ω) [20] sufficiently

well, we may want to use an even finer (when compared to Ξ̂u and

Ξ̂v) pair of knot vectors Ξ̃u and Ξ̃v for the analysis, see Fig. 4. As
a consequence of the formula (5), one may evaluate integrals over Ω
entering the variational form of a given boundary value problem by
computing the integrals over the parameter domain instead. Thus an
“IGA assembly routine” may be implemented as a loop over elements

defined by the knot vectors Ξ̃u and Ξ̃v, see Fig. 4.
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 Ξv

Knot vectors for the boundary parametrization

Knot vectors for the domain parametrization

Knot vectors for analysis

^

^

~

~

Figure 4. Three types of knot vectors of an IGA model used in the
present work.
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2.2.3. Galerkin Discretization

An approximation to the solution Hz to (1) is expanded in terms of the

basis functions as Hz =
∑

k hk (R̃p̃,q̃
k ◦ F−1) = [R̃p̃,q̃

1 ◦ F−1, . . . , R̃p̃,q̃
m̃ñ

◦
F−1]h, where h contains all the coordinates of Hz with respect to the
selected basis. Substituting this expression into the weak form (2)
and utilizing the basis functions as the test functions, we arrive at the
following system of linear algebraic equations:

(K + M + S + T)h = f . (6)

Entries of the matrices entering (6) are with the help of (5) calculated
as follows:

Kkℓ =

∫∫

]0,1[2

1

εcr

[
J−T∇R̃p̃,q̃

k

]T [
J−T∇R̃p̃,q̃

ℓ

]
det(J) du dv, (7a)

Mkℓ = −k2
0

∫∫

]0,1[2

µr R̃p̃,q̃
k R̃p̃,q̃

ℓ det(J) du dv, (7b)

Skℓ = −jk0

∫

F−1(Γs)

µs
r

εs
cr

R̃p̃,q̃
k R̃p̃,q̃

ℓ ds, (7c)

Tkℓ =

(
jk0 +

1

2rt

) ∫

F−1(Γt)

1

εcr
R̃p̃,q̃

k R̃p̃,q̃
ℓ ds, (7d)

fℓ =

∫

F−1(Γt)

1

εcr

(
∂H i

z

∂n
+

(
jk0 +

1

2rt

)
H i

z

)
R̃p̃,q̃

ℓ ds, (7e)

k, ℓ = 1, . . . , m̃ñ.

2.3. B-spline Parametrization

In this section, we recall techniques for handling spline parametriza-
tions in IGA, which will be heavily utilized in Section 3. For more
details, see [6, 15].

2.3.1. Validating a B-spline Parametrization

In order to ensure that a given choice of inner control points d̂i,j ,
i = 1, . . . , n̂, j = 1, . . . , m̂ results in a valid B-spline parametrization of
Ω we employ the following approach. The determinant of the Jacobian
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of F given by (4) is computed as

det(J) =

m̂,n̂∑

i,j=1

m̂,n̂∑

k,ℓ=1

det
[
d̂i,j , d̂k,ℓ

] dM̂p
i (u)

du
N̂ q

j (v) M̂p
k (u)

dN̂ q
ℓ (v)

dv
, (8)

where det[d̂i,j , d̂k,ℓ] is the determinant of the 2×2 matrix with columns

d̂i,j , d̂k,ℓ. Equation (8) defines a piecewise polynomial of degree 2p−1
in u and degree 2q − 1 in v, which is Cp−2 in u and Cq−2 in v. Such
a map can be expanded in terms of B-splines M2p−1

k and N 2q−1
ℓ of

degree 2p − 1 and 2q − 1 with the knot vectors obtained from Ξ̂u and

Ξ̂v by raising the multiplicities of the inner u-knots and v-knots by p
and q, respectively [24]. That is,

det(J) =

M,N∑

k,ℓ=1

ck,ℓ M2p−1
k (u)N 2q−1

ℓ (v), (9)

where the coefficients ck,ℓ depend linearly on the quantities

det[d̂i,j , d̂k,ℓ]. As B-splines are non-negative, we conclude that
whenever all the coefficients ck,ℓ are positive (or negative), so is the
quantity det(J).

2.3.2. Constructing a Reference B-spline Parametrization

None of the linear methods (such as for example those presented in [6])
for extending the parametrization of the boundary into the interior of
the domain can in general guarantee that the resulting map F will
satisfy det(J) > 0 everywhere on ]0, 1[2. Therefore, during some shape
optimization iterations we have to utilize a more expensive non-linear
method for improving the distribution of the interior control points

d̂i,j . In a view of (9), we can obtain a parametrization by solving the
following optimization problem:

maximize
inner d̂i,j ,z

z,

subject to ck,ℓ

(
d̂i,j

)
≥ z,

(10)

where d̂i,j are inner control points as stated in (4). ck,ℓ are given
by (9), and z is an auxiliary optimization variable. If z resulting from
approximately solving (10) to local optimality is positive then we are
guaranteed to have a valid parametrization. Unfortunately, the quality
of the parametrization obtained in this fashion needs not to be very
high. So we improve the parametrization by making it as conformal as
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initialize a control net

solve (10) to find
a parametrization

z0 <  ?

minimize Winslow
functional, see (11)

If c k <  refine
the support of

k (u)  (v)

 ck <  ?

stop

yes

no

yes

no

ε

ε

ε

Figure 5. The algorithm for extending a boundary parametrization
to the interior. ε is a small parameter of the algorithm. In this work,
we use ε = 10−5.

possible. This is done by solving the following constrained optimization
problem:

minimize
inner d̂i,j

∫ 1

0

∫ 1

0
W

(
d̂i,j

)
du dv,

subject to ckℓ

(
d̂i,j

)
≥ 0,

(11)

where W (d̂i,j) = (‖Fu‖2 + ‖Fv‖2)/det[Fu,Fv] is referred to as the
Winslow functional [14].

In our numerical experiments we utilize the interior point
algorithm constituting a part of Optimization Framework in
Matlab [25] for solving the optimization problems (10) and (11) to
approximate stationarity. The whole process is outlined in Fig. 5.

2.3.3. Quadratic Approximation of the Winslow Functional

For the purpose of reparametrizing the domain from one shape
optimization iteration to another the algorithm based on finding
minima of Winslow functional is unnecessarily computationally
burdensome. To remedy this we chose to minimize a second order
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Taylor series approximation of Winslow functional:

W
(
d̂
)

=

∫∫

Ω
W

(
d̂
)

dudv

≈ W
(
d̂0

)
+

(
d̂ − d̂0

)T
G

(
d̂0

)
+

1

2

(
d̂−d̂0

)T
H

(
d̂0

)(
d̂−d̂0

)
, (12)

where d̂ is a vector with all control points d̂i,j and d̂0 the control points
for a reference parametrization obtained by solving (11). G and H are
the gradient and Hessian of W.

The necessary optimality conditions for minimizing the right hand
side of (12) define an affine mapping between the boundary and the
interior control points thereby providing us with a fast method for
computing the domain parametrization and its derivatives with respect
to the boundary control points.

2.3.4. Multiple Patches

In many practical situations the computational domain is not
parametrized by a single patch only. Similarly to the single-patch
case, the parametrization of the domain boundary is given, and
the task of extending the parametrization into the interior remains
the same with the exception that the parametrization of inter-
patch boundaries is unknown. Control points corresponding to
these boundaries become additional variables in the optimization
problems (10), (11), and the quadratic approximation of the latter,
whereas C0-continuity requirement for the parametrization across the
inter-patch boundaries introduces auxiliary linear equality constraints.
The overall algorithmic structure remains unchanged.

3. OPTIMIZATION OF THE SHAPE OF THE
SCATTERER

3.1. Statement of the Shape Optimization Problem

We consider the problem of finding shapes of metallic scatterers
depicted in Fig. 2 in order to maximize the following quantity, which
is proportional to the time-averaged magnetic energy:

W¤ = 2

∫

Ω¤

|Hz|2 dV, (13)

where Hz is the solution to Equation (1). The domain Ω¤ in (13)
is a small rectangular region between the two scatterers, see Fig. 2.
In (13), the factor 2 accounts for the fact that we only integrate over a
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Figure 6. When no additional regularity conditions are imposed, the
scatterer’s boundary tends to approach the truncation boundary and
to self-intersect.

half of the symmetric domain. The only difference between the problem
studied in Aage et al. [16] and the one studied in this paper is that we
maximize magnetic energy in a small rectangular region and not in a
small circular region. However, in order to compare the efficiency of
our design with the one found in Aage et al. [16] we later evaluate the
magnetic energy in the circular region as well.

In order to avoid non-physical situations and to prevent numerical
complications, see Fig. 6, we introduce three constraints on the family
of considered shapes. Namely, we impose a minimum vertical distance
between the two scatterers, forbid self-intersections of the boundary,
and also enforce an upper limit on its volume.

3.2. Isogeometric Shape Optimization Algorithm

In this section, we formulate the optimization problem stated in
Section 3.1 in an isogeometric analysis context. We then derive
differentiable constraints to prevent the shape of the scatterer from
self-intersecting. Finally, we present the expressions for derivatives
(sensitivities) of the shape-dependent functions involved in the problem
with respect to boundary control points.

We parametrize the physical domain by the 2-patch model shown
in Fig. 10. The overall optimization strategy that we utilize is outlined
in Fig. 7.
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3.3. Objective Function

Let F be the parametrization of the physical domain given by (4). The
energy W¤ given by (13) now becomes

W¤ = 2

∫

Ω¤

|Hz|2 dV = 2

∫∫

F−1(Ω¤)
|Hz ◦ F|2 det(J) du dv

= 2

∫∫

F−1(Ω¤)

∣∣
[
R̃p̃,q̃

1 , . . . , R̃p̃,q̃
m̃ñ

]
h
∣∣2 det(J) du dv . (14)

To simplify the computation of the quantity W¤, we chose the region
Ω¤ as one knot span, see Fig. 10. We keep the parametrization of this
region fixed throughout all optimization iterations, that is, the region
is independent from the design variables, and we choose the region’s
control points so that Ω¤ is a rectangle, see Figs. 2, 9 and 10. As W¤

changes by several orders of magnitude throughout the course of the
computations we minimize log10(W¤) instead.

3.4. Constraints

To enforce a lower bound on the vertical placement of the scatterer
we impose a lower bound on the ordinates of the design control

Initialization

Find a reference parametrization (cf. Fig. 5)

minimize log10 W { h[ d(d)]}

subject to parametrization validity

self-intersection constraint

volume constraint

lower bound on scatterer’s position

Validity
constraints

active?

stop

no

yes

^

Figure 7. The isogeometric shape optimization algorithm used in the
current work.
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points, see Fig. 9. The lower bound used in the present paper is
0.1 [m]. Additionally, we include the non-negativity requirement for

the Jacobian expansion coefficients ck,ℓ(d̂), see (9) as constraints. We
now investigate the remaining constraints mentioned in Section 3.1.

3.4.1. Self-intersection Constraint

Let Ni(ξ) (i = 1, . . . , n) be B-splines of degree p with a knot vector
Ξ. Consider a B-spline curve r(ξ) =

∑
i diNi(ξ), where di are design

control points. To ensure that r does not intersect itself, we look at the
square distance between every pair of points on the curve, (r(u), r(v)),
(u, v) ∈ Ξ × Ξ. That is

d2
r(u, v) = ‖r(u) − r(v)‖2

=
∑

i,j

di · dj

(
Ni(u) − Ni(v)

)(
Nj(u) − Nj(v)

)
. (15)

Clearly, the curve is simple if and only if d2
r(u, v) > 0 for every

u 6= v, u, v ∈ [0, 1]2. To ensure that this condition is fulfilled, we
look at rectangles in [0, 1]2 formed by the products of knot spans, see
Fig. 8. First, consider a rectangle Ωa = [ξk, ξk+1] × [ξℓ, ξℓ+1] that
does not intersect the diagonal {(u, v) : u = v}. In Ωa, d2

r(u, v) can
be expressed in terms of the Bernstein polynomials [23] of degree 2p,

 a

Ωb

v

u
Ξ

Ξ 

u
=

v

Ωa  {(u, v) | u = v} =

Ωb (u, v) | u = v}  =

U

U

Ω

Figure 8. A knot vector Ξ partitions the unit square [0, 1]2 into
products of knot spans. We classify the rectangles according to whether
they intersect the diagonal or not.
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: design control point

, : movable boundary control point of

  patch 1, and patch 2 respectively

, : fixed control point of patch 1, and

  patch 2 respectively

, : inner control point of patch 1, and

  patch 2 respectively

, , , : corner control points

Control net Parametrization

Resulting
parametrization
using the
scheme in Fig. 5

Initial
parametrization
using a spring
model [6]

 zoom

(a) (b)

(c) d)

  
 

 

impr oved

lower bound
on the design
cont rol point
ordinates

Figure 9. Initial shape used for the optimization, and a comparison
between two parametrizations of this domain. Interestingly enough,
the excessively acute angle in one corner of patch 1 shown in (b) is
improved in (d). The agreements of parameter lines in (b) and (d)
illustrate the C0-continuity of the parametrization, despite possible
disagreements of knot vectors. Below (c), a zoom near the energy
harvesting region shows a set of fixed control points (in red). The
parametrization is frozen in this area thereby simplifying the task of
evaluating the objective function and its sensitivity.

B2p
α (t) =

(
2p
α

)
(1 − t)2p−αtα, α = 0, . . . , 2p. To be precise

d2
r(u, v) =

2p∑

α,β=0

aα,βB2p
α

(
u − ξk

ξk−1 − ξk

)
B2p

β

(
v − ξℓ

ξℓ−1 − ξℓ

)
. (16)

Note that the basis functions B2p
α are non-negative and that the value

of d2
r at the corners (ξi, ξj), i = k, k + 1, and j = ℓ, ℓ + 1, are equal

to the corner control points a0,0, a0,2p, a2p,0, and a2p,2p. Therefore, the
squared distance will be positive provided that the following conditions
are satisfied

aα,β ≥ 0 , α, β = 0, . . . , 2p , (17)

aα,β ≥ δ , α, β = 0, 2p , (18)
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where δ is a small positive number. Four of the conditions in (17) are
of course implied by (18) and can be omitted.

For a rectangle Ωb = [ξk, ξk+1]×[ξℓ, ξℓ+1] intersecting the diagonal,
the only difference from the previously described situation is that
(u − v)2 is a factor of d2

r. Therefore, the expansion (16) can now
be replaced by

d2
r(u, v)

(u − v)2
=

2p−2∑

α,β=0

bα,βB2p−2
α

(
u − ξk

ξk−1 − ξk

)
B2p−2

β

(
v − ξℓ

ξℓ−1 − ξℓ

)
. (19)

If we replace aα,β with bα,β and p with p−1 in (17) and (18) we obtain
sufficient conditions in this case too.

Note that utilizing the invariance of (15) with respect to changing
the roles of u and v, only one half of the conditions is needed. Also,
similarly to (A2), the coefficients aα,β in (16) and bα,β in (19) may be
explicitly represented as quadratic forms of the design control points di.
We emphasize that these conditions are sufficient but not necessary for
the boundary to be a simple curve. At the same time, knot insertions
can be used to obtain tighter conditions.

For the current optimization problem, the scatterer’s boundary is
composed of two B-spline curves, but the conditions above are extended
to such a case in a straightforward manner.

3.4.2. Volume Constraint

Utilizing the divergence theorem, the restriction on the volume of the
scatterer may be written as a boundary integral

1

2

∮

∂D

det[r, ṙ] dΓ ≤ V0 . (20)

In (20), D is the domain inside the scatterer, r a parametrization of the
boundary ∂D of D, V0 a volume limit, and det[r, ṙ] the determinant of
the matrix with columns r and ṙ. The positive orientation of the line
integral in (20) is counterclockwise. In this paper, we choose the same
volume limit as that in [16]: V0 = π0.652 [m2]. If r(ξ) =

∑
i diNi(ξ),

the integral in (20) is computed as
∮

r([0,1])
det[r, ṙ] dΓ =

∑

i,j

det[di,dj ]

∫ 1

0
Ni(ξ) Ṅj(ξ) dξ . (21)

3.5. Sensitivity Analysis

In order to utilize standard mathematical programming techniques
for solving the optimization subproblem (cf. Fig. 7) we need to
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compute the derivatives (sensitivities) of the objective function and the
constraints with respect to our design variables, that is, components of
the vector of the boundary control points d. This amounts to applying
the chain rule and the inverse function theorem to the problem (6).

Both the self-intersection constraints (cf. Subsection 3.4.1) and
the volume constraint (cf. Subsection 3.4.2) are quadratic functions of
design variables d, rendering the calculation of their partial derivatives
to be a straightforward task.

The domain parametrization validity constraints (cf. Subsec-
tion 2.3.1), on the other hand, are quadratic functions of the inner

control points d̂. Therefore we also need to compute the partial deriva-

tives ∂d̂/∂d. However, owing to the affine dependence of the interior

control points d̂ on the boundary control points d through the station-
arity conditions for minimizing the quadratic form (12) this computa-
tion amounts to Gaussian elimination.

It only remains to differentiate the objective function (14).
Recalling that F−1(Ω¤) and consequently J

∣∣
F−1(Ω¤)

is independent

from d̂, we can write

∂W¤

∂d̂i

= 4

∫∫

F−1(Ω¤)
Re

{
∂(Hz ◦ F)

∂d̂i

Hz ◦ F

}
det(J) du dv . (22)

In turn, we compute the partial derivative ∂(Hz ◦ F)/∂d̂i as

∂(Hz ◦ F)

∂d̂i

=
[
R̃p̃,q̃

1 , . . . , R̃p̃,q̃
m̃ñ

] ∂h

∂d̂i

. (23)

The quantity ∂h

∂d̂i

is obtained by differentiating the discretized

Helmholtz Equation (6):

(K + M + S + T)
∂h

∂d̂i

= −∂(K + M + S)

∂d̂i

h , (24)

where we utilized the fact that ∂T

∂d̂i

= ∂f

∂d̂i

= 0. Finally, the partial

derivatives of K, M, and S are calculated by differentiating (7).

4. NUMERICAL EXAMPLES

We begin this section by specifying physical and optimization
parameters used in the present numerical experiments. We then
present the results of shape optimization of conducting scatterers
with the IGA-based shape optimization algorithm described earlier.
Different fineness levels of analysis (meshing) for computing a model
response numerically in each optimization iteration are carefully chosen
for different stages of the optimization problem.
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Table 1. Electromagnetic constants used in this work.

electromagnetic

constants of air

electromagnetic

constants of copper

εr = 1 εs
r = 1

µr = 1 µs
r = 1

— σ = 106 [S/m]

4.1. Technical Remarks and Optimization Parameters

We list here a few technical remarks. For the sake of computational
efficiency, the matrices of the quadratic forms in (9), (21), (16),
and (19) as well as the fixed matrices T, f in (6) are pre-computed
and stored before the optimization process starts. We use standard
Gaussian quadratures [26] of order 7 for numerical integration. All the
solutions presented in this section have been obtained with gradient
based non-linear programming solver fmincon from Optimization
Framework of Matlab, version 7.9 (R2009b) [25].

In Table 1, we list the physical parameters needed by the present
numerical experiments. In the former table, we take all parameters,
including the conductivity of copper, from Aage et al. [16] in order to
be able to compare the optimal designs.

4.2. Initial Shape and Its Parametrization

We start the optimization using the following sets of knot vectors in
the notation of Fig. 4:

Ξ1 =
{
0, 0, 0, 1

5 , 3
10 , 2

5 , 7
15 , 8

15 , 3
5 , 7

10 , 4
5 , 1, 1, 1

}
,

Ξ3 =
{
0, 0, 0, 1

5 , 2
5 , 3

5 , 4
5 , 1, 1, 1

}
,

Ξ2 = Ξ4 =
{
0, 0, 0, 1

2 , 1, 1, 1
}

,

Ξ̂u = Ξ1, Ξ̂v = Ξ2,

for parametrizing the two patches. Unless explicitly stated otherwise,
all B-splines used in the present experiment are quadratic. For the
initial shape, we use a piecewise spline approximation, see Appendix A,
of the circle with center at (0, 0.75) and radius r = 0.65 [m], as
in [16] by Aage et al. For the truncation boundary, we utilize the
spline approximation of the upper half of the circle with center at
(0, 0) and radius rt = 4 [m] depicted in Fig. A1. Note that the
electrical condition [27] at the truncation boundary is fulfilled because
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krt = 9.6438 ≫ 1, where k is the wavenumber of the incoming wave in
air.

Having the parametrization of the initial scatterer shape and
the truncation boundary, we extend it to a parametrization of the
entire domain using a spring model [6]. Feeding the resulting
parametrization, see Figs. 9(a), (b), to the parametrization routine
in Fig. 5, we obtain the parametrization shown in Figs. 9(c),
(d). Importantly, new knots have been inserted to the domain
parametrization knot vectors of patch 2. The new knots could be
seen as the differences between the two sets of knot vectors in Fig. 10.
Note that for a multiple patch model, the refinement constraints
along common boundary components are required in order to have
a continuous parametrization of the entire domain.

If we during the optimization need to refine the knot vectors for
the parametrization we may also need to refine the knot vectors for
the analysis, see Fig. 5. The insertion rule we apply is illustrated in
Fig. 10. Moreover, in order to accurately approximate the numerical
solution in the energy harvesting region Ω¤ we would like to refine the
parametrization locally around this region. Fortunately the special
“horizontally dominant” geometry of the patch 1 allows us to easily
fulfill this requirement. Indeed, the local refinement is carried out by
inserting many knots in the area whose image is near Ω¤, and using
a finer analysis knot vector for the patch 1 than for the patch 2, see
Fig. 10.

4.3. Shape Optimization Results

We now feed the initial setting discussed in Section 4.2 to the
optimization routine outlined in Fig. 7. The optimization algorithm
terminates successfully after 141 iterations. Throughout this process,
there are nine times when fmincon is terminated and we need to update
the reference parametrization and analysis. In the notation of Fig. 10
the analysis mesh for the last step of the diagram in Fig. 7 is given
by (k1, k2, k3, k4, k5) = (99, 59, 13, 13, 13), (ℓ1, ℓ2, ℓ3) = (3, 15, 9) for
patch 1, and k = 19, (ℓ1, ℓ2, ℓ3) = (3, 15, 9) for patch 2. The number
of DOFs in the corresponding analysis is 16948. In Fig. 11, we show
the scatterers where the parametrization needs to be updated, as well
as the final optimized one.

In order to compare the performance in terms of energy
concentration between the resulting scatterer and the initial scatterer,
we use COMSOL Multiphysics [28] to solve the governing Equation (1)
with FEM. The comparison is depicted in Fig. 12. According to this,
the resulting scatterer clearly outperforms the initial one. Indeed, the
magnetic energy with the presence of the resulting scatterer is highly
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^
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Figure 10. The initial analysis model of the optimization. Two
different sets of knot vectors are employed to parametrize the
two patches comprising of the physical domain. The knot vector
notations are given by Fig. 4. The numbers k1, . . . , k4, k and
ℓ1, ℓ2 indicate the numbers of additional knots uniformly inserted
into the corresponding knot spans to generate analysis knot vectors.
For the initial (or a general) model, we use (k1, . . . , k4[, k5, . . .]) =
(24, 14, 6, 6[, 6, . . .]), (ℓ1, ℓ2[, ℓ3, . . .]) = (0, 7[, 4, . . .]) for patch 1, and
k = 4, (ℓ1, ℓ2, ℓ3[, ℓ4 . . .]) = (0, 5, 3[, 3, . . .]) for the other. The analysis
configuration results in a model with 2612 degrees of freedom.

concentrated in the energy harvesting region with a maximum intensity
at a factor of 104 times stronger than that of the circular scatterer.

To provide some physical insight into the performance of the
resulting scatterer, we solve the eigenvalue problem corresponding
to (1a) with homogeneous Dirichlet boundary condition on the
truncation boundary Γt and the homogeneous Neumann boundary
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Parametrization Control net

iter . 10

iter . 21

iter . 52

iter. 141 (final)

Figure 11. Snapshots of the control nets and parametrizations at
some iterations where the outer optimization algorithm is stopped in
order to update the reference parametrization (see Fig. 5).

condition on the scatterer’s interface Γs, see Fig. 2. The later boundary
condition corresponds to assuming that the scatterer is a perfect
electric conductor. Interestingly enough, one of the modes, u13, looks
strikingly similar to the solution u = Hz shown in Fig. 13(a), and the
corresponding eigenfrequency f13 = 1.14987 × 108 [Hz] differs only by
0.01% from the frequency of the incident wave f = 1.15×108 [Hz]. By
calculating the L2-projection of the solution u on the eigenfunctions ui

ci = 〈u, ui〉 =

∫

Ω
u ui dV, (25)
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Circular (initial) scatterer at the frequency f = 115 [MHz]

Bowtie scatterer at the frequency f = 115 [MHz]

Resulting scatterer at the frequency f = 115 [MHz]

Resulting scatterer at the peak frequency of the frequency sweep in Fig. 14

(a) (b) (c)

Figure 12. (a) Base-10 logarithm of the normalized time-averaged
energy of the magnetic field intensity around the optimized scatterer,
i.e., log10(|Hz|2). (b) The real and imaginary parts of the field, and
(c) time averaged Poynting vectors (color: logarithm of the magnitude,
arrows: normalized direction).
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f =1.15×10   [Hz]
8

f    =1.4987×10   [Hz]
8

13

(a) (b)

Figure 13. (a) The normalized real and imaginary parts of Hz

resulting from the optimized scatterer shape; f is the frequency
of the incoming wave. (b) The thirteenth (real) eigenmode of
the eigenproblem described in Section 4; f13 is the corresponding
eigenfrequency.

we find that 98% of the L2-energy of the solution is contained in
the mode u13, that is |c13|2/‖u‖2

L2 ≈ 0.98. Thus, the high energy
concentration is probably due to a resonance-type phenomenon.

4.4. Comparison with Earlier Designs

To perform a careful comparison of the performance of the
scatterer with earlier designs, we perform a frequency sweep in the
neighbourhood of the driving frequency f = 115 [MHz] while noting
the integral of the normalized time-averaged magnetic energy over
Ω◦: x2 + y2 ≤ 0.082 [m]. The same performance measure has been
considered in [16]. The results of such a comparison are illustrated in
Fig. 14. Since we carried out the optimization only at one frequency
with the goal of emphasizing the field in a small spatial region, we may
expect a very high Q-factor [29, chapter 9]. This is indeed the case:
the scatterer has a Q-factor Q ≈ 8.617 × 106.

When comparing our results with those found in [16] using
topology optimization, we note that in [16] the two scatterers were
constrained to be within two circular domains, while in the present
situation we allow the scatterers to vary more freely. Furthermore,
it should be noted that the frequency sweep reveals that the peak
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operational frequency for the scatterer that we computed is slightly
shifted from the prescribed driving frequency. This is a well-known
issue, e.g., see [16]. Owing to the approximately invariant properties
of the problem (1) under simultaneous scaling of the frequency and
size, we can easily scale the geometry to obtain the peak at the driving
frequency, as has also been done in [16].

Our scaled scatterer concentrates 109 times more energy in the
harvesting region compared to the one computed in [16]. We note that
recently Aage [30] has computed an updated version of the topology
optimized scatterer using the bounding box of Fig. 12 as a design
domain. This resulted in an improved design with the performance of
log10(W¤) = 1.4.

Finally, we compare our design with some well-known magnetic
energy resonators including circle-typed scatterers and Bowtie
scatterers, see Fig. 12, and Table 2. It is clear that our design also
outperforms the well-know configurations by a factor of a billion in
terms of magnetic energy concentration in the domain Ω◦.
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Figure 14. (a) The frequency sweep of the final optimization result
and (b) a zoom near the driving frequency. The energy is calculated
in the circular domain Ω◦ to compare results with those from Aage
et al. [16]. For the validation purpuses, the graphs are obtained
COMSOL Multiphysics [28], on two unstructured meshes (one is
approximately double so fine as the other) using Lagrange triangles
of the 7th order.
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Table 2. Quantitative performance of various scatter configurations.

Design Circle Bowtie Aage et al. [16] Our design

log10(W◦) −0.9898 −1.0502 −0.07 9.2871

5. CONCLUSIONS

We have computed a novel scatterer shape resulting in a remarkable
local magnetic field enhancement using shape optimization and
isogeometric analysis. The resulting scatterer shape has increased
the energy concentration by a factor of one billion compared to the
topology optimization result of Aage et al. [16]. It also has a very
high quality factor and thus is very promising for realistic industrial
applications despite the two-dimensional idealization.

In addition, we have devised an inexpensive method for
extending a B-spline parametrization of the boundary onto the
whole computational domain based on minimizing a second order
approximation to a Winslow functional. Such a method is an important
part of a shape optimization algorithm based on isogeometric analysis.
As shown in the paper, the resulting algorithm works well for the
benchmark shape optimization problem.

Finally, we have implemented a routine that executes our
optimization strategy in an automated way. This is promising and
important for the future development of our research code into
engineering software.
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APPENDIX A. B-SPLINE APPROXIMATION OF A
CIRCULAR ARC

In this section, we describe the method used in the present work for
approximating circular arcs using B-splines. We employ this method
for approximating the truncation boundary and the initial shape of the
scatterer.
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Let Ni(ξ), i = 1, . . . , n, be B-splines of degree p with a knot vector
Ξ. Consider a B-spline curve r(ξ) =

∑
i diNi(ξ) with unknown control

points di, with which we would like to approximate a given circular
arc. Assuming that arc’s center is at the origin, we want to maintain
the equality r · ṙ = 0, where ṙ denotes the derivative of r with respect
to ξ. Similarly to (9) we write

r · ṙ =
∑

i,j

di · djNiṄj =
∑

α

cαÑα, (A1)

where Ñα, α = 1, . . . , ñ, are B-splines of degree 2p − 1 with
multiplicities of inner knots raised by p. If all cα = 0 in (A1), then so
is the quantity r · ṙ.

We now derive explicit expressions for cα in terms of the vector

of the boundary control points d. To this end, let {Ñ∗
α} be the dual

functions of {Ñα} in span{Ñα} ⊂ L2(]0, 1[). That is, {Ñ∗
α} satisfy the

equations 〈Ñ∗
α, Ñβ〉 = δα,β, where 〈·, ·〉 is the standard L2(]0, 1[)-inner

product. Taking the inner product of (A1) with Ñ∗
α we obtain the

equality

cα =
〈
Ñ∗

α, r · ṙ
〉

=
∑

i,j

di · dj

〈
Ñ∗

α, NiṄj

〉
. (A2)

Equation (A2) implies that cα are quadratic forms of the vector of
control variables d. Naturally we arrive at the following optimization
problem

min
d

max
α

|cα|, (A3)

Initial control net

Initial B-spline curve

Resulting control net

Resulting B-spline curve

Exact circular arc

Figure A1. Approximation of the circular arc x2 + y2 = 42,
y ≥ 0 by a quadratic B-spline curve with the knot vector Ξ =
{0, 0, 0, 1/5, 2/5, 7/15, 8/15, 3/5, 4/5, 1, 1, 1}, using the optimization
problem (A3). The B-spline curve is used as the truncation boundary
in the model in Fig. 2.
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which can be numerically solved to approximate stationarity using the
same approach as the optimization problem (10). Utilizing (A3), we
obtain a good approximation for the circular truncation boundary, see
Fig. A1.
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