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Isolated 3-D Object Recognition through Next View
Planning

Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee

Abstract—n many cases, a single view of an object may not contain suf-
ficient features to recognize it unambiguously. This paper presents a new
on-line recognition scheme based on next view planning for the identifica-
tion of an isolated three-dimensional (3-D) object using simple features. The
scheme uses a probabilistic reasoning framework for recognition and plan-
ning. Our knowledge representation scheme encodes feature based infor-
mation about objects as well as the uncertainty in the recognition process.
This is used both in the probability calculations as well as in planning the
next view. Results clearly demonstrate the effectiveness of our strategy for
a reasonably complex experimental set.
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common to more than one object in the model base. The cost in-
curred in this process should also be minimal. The system should,
preferably be on-line and reactive—the past and present inputs
should guide the planning mechanism at each stage.

While the scheme of Maver and Bajcsy [6] is on-line, that of
Gremban and Ikeuchi [7] is not. Due to the combinatorial nature
of the problem, an off-line approach may not always be feasible.
Uncertainty Handling Capability of the Hypothesis Generation
Mechanism:The occlusion-based next view planning approach
of Maver and Bajcsy [6], as well as that of Gremban and Ikeuchi
[7] are essentially deterministic. A probabilistic strategy can
make the system more robust and resistant to errors compared to
a deterministic one. Dickinsoet al. [8] use Bayesian methods
to handle uncertainty, while Hutchinson and Kak [9] use the

Dempster—Shafer theory.

Efficient Representation of Domain Knowledgehe knowledge
representation scheme should support an efficient mechanism
to generate hypotheses on the basis of the evidence received. It
should also play a role in optimally planning the next view.

Dickinsonet al. [8] use a hierarchical representation scheme
based on volumetric primitives, which are associated with a high
feature extraction cost. Due to the non-hierarchical nature of
Hutchinson and Kak’s system [9], many redundant hypotheses
are proposed, which have to be later removed through consis-
tency checks.

Speed and Efficiency of Algorithms for Both Hypothesis Gen-
eration and Next View Planninglt is desirable to have algo-
rithms with low order polynomial-time complexity to generate
hypotheses accurately and fast. The next view planning strategy
acts on the basis of these hypotheses.

In Hutchinson and Kak’s system [9], although the poly-
nomial-time formulation overcomes the exponential time
complexity associated with assigning beliefs to all possible
hypotheses, their system still has the overhead of intersection
computation in creating common frames of discernment. Con-
sistency checks have to be used to remove the many redundant
hypotheses produced earlier. Though Dickingtral. [8] use
Bayes nets for hypothesis generation, their system incurs the
overhead of tracking the region of interest through successive
frames.

Index Terms—Active vision, reactive planning, 3-D object recognition.
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|. INTRODUCTION

In this paper, we present a new on-line scheme for the recognition
of an isolated three-dimensional (3-D) object using reactive next view
planning. A hierarchical knowledge representation scheme facilitates
recognition and the planning process. The planning process utilizes
the current observation and past history for identifying a sequence of
moves to disambiguate between similar objects.

Most model-based object recognition systems consider the problem4)
of recognizing objects from the image of a single view [1]-[4]. How-
ever, a single view may not contain sufficient features to recognize
the object unambiguously. In fact, two objects may have all views in
common with respect to a given feature set, and may be distinguished
only through a sequence of views. Further, in recognizing 3-D objects
from a single view, recognition systems often use complex feature sets
[2]. Inmany cases, it may be possible to achieve the same, incurring less
error and smaller processing cost using a simpler feature set and suit-
ably planning multiple observations. A simple feature set is applicable
for a larger class of objects than a model base specific complex feature
set. Model base-specific complex features such as 3-D invariants have
been proposed only for special cases so far (e.g., [3]). The purpose of
this paper is to investigate the use of suitably planned multiple views
and two-dimensional (2-D) invariants for 3-D object recognition.

A. Relation with Other Work The next view planning strategy that this paper presents is reactive

With an active sensor, object recognition involves identification of @hd on-line—the evidence obtained from each view is used in the hy-
view of an object and if necessary, planning further views. Tarabamgthesis generation and the planning process. Our probabilistic hypoth-
et al. [5] survey the field of sensor planning for vision tasks. We cafS'S 9eneration mechanism can handle cases of feature detection errors.
compare various active 3-D object recognition systems on the basis/¥ Use & hierarchical knowledge representation scheme which not only
the following four issues. ensures a low-order polynomial-time complexity of the hypothesis gen-
eration process, but also plays an important role in planning the next

1) Nature of the Next View Planning Strategyhe system should . . . . ;
) 9 gyhe sy view. The hierarchy itself enforces different constraints to prune the

plan moves with maximum ability to discriminate between wewget of possible hypotheses. The scheme is independent of the type of
features used, unlike that of [8]. We present results of over 100 exper-
iments with our recognition scheme on two sets of models. Extensive

Manuscript received October 23, 1997; revised May 5, 1998. experimentation shows the effectiveness of our proposed strategy of
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describes our algorithm for planning the next view. In Section V we ACSEESC'STIS
demonstrate the working of our system on two sets of objects. We sum-

marize the salient features of our scheme and discuss areas for further

work in Section VI. TURNTABLE . ASPECT |
Lo ...’y ASPECT 3
Il. THE KNOWLEDGE REPRESENTATIONSCHEME '};Sffscgf EI ....... SSINE of S D] CLASS 1
A view of a 3-D object is characterized by a set of features. With re- ASEECS:”SFZ I i * “‘~.9§EPECT )
spect to a particular feature set and over a particular range of viewing < 'CLASS 2
angles, a view of a 3-D object is independent of the viewpoint. Koen- ASPECT 8 —m.f
9 Ject | P 1eWpoIn®. | CLASs 2 LTt
derink and van Doorn [10] define aspects as topologically equivalent ASPECT 1
classes of object appearances. Ikewgttdl. generalize this definition: CLASS 1

object appearances may be grouped into equivalence classes with re-
spect to a feature set. These equivalence classes are aspects [11]. Ifrihi$. Aspects and classes of an object.
context, we define the following terms:

Class A: Class (or, aspect-class) is a set of aspects, equiva
lent with respect to a feature set.
Feature-Class: A feature-class is a set of equivalent aspects de
fined for oneparticular feature.

Fig. 1 shows a simple example of an object with its associated aspect
and classes. The locus of view-directions is one-dimensional (1-D) anc
we assume orthographic projection. The basis of the different classes i
the number of horizontal lingg:) and vertical linegv) in a particular
view of the object. Thus, a class may be representeghas There
are six aspects of the object shown, belonging to three classes. In thi
example, for simplicity we assume only one feature detector so thai
each feature-class is also a class.
We propose a new knowledge representation scheme encoding dc
main knowledge about the object, relations between different aspects
and the correspondence of these aspects with feature detectors. Fig.
illustrates an example of this scheme. We use this knowledge represer
tation scheme both in belief updating as well as in next view planning.
Sections Il andV discuss these topics, respectively. The represenféig. 2. Example of the knowledge representation scheme.
tion scheme consists of two parts.
1) The Feature-Dependence Subnegt: the feature-dependence
subnet
* F represents the complete set of featufé3} used for
characterizing views.
* A feature nodeF; is associated with feature-classgs.
Factors such as noise and nonadaptive thresholds can introduce
errors in the feature detection process. hei. represent the

probability that the feature-class present;is given thatthe de-  The recognition system takes any arbitrary view of an object as input.

FEATURE-
> DEPENDENCE
SUBNET

CLASS-
> ASPECT
SUBNET

J

Aspect nodez;; has exactly one link to any obje¢;)
and exactly one link to its parent claSs.

lll. HYPOTHESISGENERATION

tector for feature’; detects it to bef;,. We definep;ir as the Using a set of features (the feature-classes), it generates hypotheses
ratio of the number of times the detector for feattiienterprets about the likely identity of the class. This is, in turn used for gener-
feature-clasg;; asf;x, and the number of times the feature deating hypotheses about the object’s identity. The interaction of the hy-
tector reports the feature-classfas. TheF; node stores a table pothesis generation part with the rest of the system is shown in Fig. 3.
of these values for its corresponding feature detector. Hypothesis generation consists of two steps namely, class identifica-
* A class node; stores itsa priori probability, P(C;). A tion, and object identification.
link between clasg’; and feature-clasg;;. indicates that
fjx forms a subset of features observed(n This ac-
counts for aPART-OFrelation between the two. Thus, a
class represents anvector[fi;, fz2j, - fnj.]. Since a Our algorithm suitably schedules feature detectors to perform prob-
class cannot be independent of any feature, each class hhb#istic class identification. In what follows, we discuss its various as-

A. Class Identification, Accounting for Uncertainty

n input edges corresponding to thefeatures. pects. Fig. 4 presents the overall algorithm.
The Class-Aspect Subnethe class-aspect subnet encodes the 1) Ordering of Feature DetectorsA proper ordering of feature de-
relationships between classes, aspects, and objects. tectors speeds up the class recognition process. At any stage, we choose
« O represents the set of all objedt®; } the hitherto unused feature detector for which the feature-class corre-
 An object node); stores its probabilityP(O;). sponding to the most probable class has the least number of outgoing

* An aspect node:;; stores its angular extert; (in de- arcs, i.e., the least out-degree. This is done in order to obtain that fea-
grees), its probability?(a;;), its parent clas€’;, and its ture-class which has the largest discriminatory power in terms of the
neighboring aspects. number of classes it could correspond to. For example, in Fig. 2 if all

» Aspecta;; has aPART-OFrelationship with its parent ob- feature detectors are unused &rchas the highest priori probability,
jectO;. Thus,3-tuple(O;, C;, 6;;) represents an aspect. F; will be tried first, followed byF> and F1, if required.
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Fig. 3. Flow diagram depicting the flow of information and control in our system.

Let the detector for featur®; report the feature-class obtained to be
fjx. Given this evidence, we obtain the probability of classrom the
Bayes rule

ALGORITHM identify_class l

1. compute_a_priori.class_probabilities();
(* Eq. 1; Section III-A.2 Part 1 *)
2. fd := identify feature. detector_to_use();
(* Section III-A.1 %) P(C;) - P(fx|Cy)
3. fcl := get_featureclass(image,fd); P(Ci|fjk) =
(» Use £d on the image, identify feature class *) Z [P(Cr) - P(fix]|C)]
4. compute_a_posteriori_class_probabilities(fcl); m
(* Egs. 2,3; Section III-A.2 Part 2 *)

)

. IF the probability of some class is above a
predetermined threshold THEN
pass this class as evidence to the
object recognition phase, EXIT

. IF all feature detectors have been used

AND the probability of no class is above
the threshold THEN EXIT

. GO TO Step 2

P(f,x|Cs) is 1 for those classes which have a link from feature-class
fx- Itis O for the rest. The computation (&) takesO( N¢) time—this
is done for each feature-class. Hence, the computatié ffi. | C' ) for
all feature-classeg;. for feature detectaf; takes time)(Ny, - No).

For an error-free situationP(C5|f;x) is P'(C:), the a posteriori
probability of clas<”’;. However, due to errors possible in the feature
detection process, a degree of uncertainty is associated with the evi-

dence. The value aP'(C;) is, then
Fig. 4. Class recognition algorithm.

PI(Ci) =" P(Cilf0) - pjk 3)
{

2) Class Probability Calculations Using the Knowledge Represen-
tation Scheme:We obtain thea priori probability of class”; as wheref;;’s are feature-classes associated with feafgreAccording
to our knowledge representation scheme, only one feature-class under
featureF;, sayf;, has alink to clas€’;. The summation reduces to one
P(C) =Y |P(Oy)- > Play0,)| - (1) term, P(Ci|f;») - pirx. Thus, our knowledge representation scheme
P 7 also enable recovery from feature detection errors.

Here, aspects,; belong to clas<’;. Let Nr,, N, and N, denote bi dentificati
the number of feature-classes associated with feature defégttre B. Object Identification

number of classes, and the number of aspects, respecfi(ely, |0, ) Based on the outcome of the class recognition scheme, we estimate
isf,,/360. We can comput&(C; ) from our knowledge representationthe object probabilities as follows. Initially, we calculate #n@riori
scheme by considering each aspect node belonging to an object prabability of each aspect as

testing if it has a link to nod€’;; this takesD(N¢ + N, ) time. (The

Neo termis for the initialization of class probabilities to 0.) P(aj,r,) = P(O;,) - Plaj,i,|0;,). 4)
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Fig.5. (a) The notation use@ection V) and (b) a case when our algorithm Fig. 6. Partially constructed search tree.
is not guaranteed to succeed (Section [V-A).
If there areV objects in the model base, we initialiZ¢ O, ) to1/N r ALGORITHM identify_object
before the first observation. For the first observatiBi;,x, |OJ, ) is _ (% ——-——- FIRST PHASE ----—- *)
9;.k,/360. A priori aspect probability calculations taki N, ) time. L. mlt1311?:-‘}"3_?;-1:’;‘;"13}’;1:;1es()5
. niiaiz
For_any subsequ_e_nt observa_tlon, we hvaccount fo_r the move- 2. image:=get.image_of_object();
ment in the probability calculations-or example, a particular move- | 3. class:=identify.class(image);
ment may preclude the occurrence of some aspects for a given cl (* Section III-A *)
observed. The value d?(a;,+,|0;,) is given by IF class=UNKNOWN THEN exit;
) 4. search_tree_root:=construct._search_treenode(class,0);
P(“jpkp |0J’p) = (Pjplcp/360 (5) 5. compute_object_probabilities(search tree root);
) . ) (x Egs. 6,7 =)
V\{here%?’."l’ (@ipky, € 10, 6,,,]) represents the angular range PoS | ¢ 1r the provability of some object is above a
sible within aspect:;,«, for the move(s) taken to reach this posi- predetermined thresh. THEN exit & declare success;
tion. Due to the movement made, we could have observed@nly | 7. expand.search tree.node(search_treeroot,0,class);
(0 < m < r) aspects out of a total of aspects belonging to class (* Section IV *)
C. best.leaf:=get best_leaf node(search tree_root);
G == SECOND PHASE -————-- D)
previous:=search.treeroot;
Experiments with Model Base | expected:=best leaf;
. 8. angle:=compute.angle_to_move by(expected,previous);
Let the class recognition phase report the observed classdg.be make_movement (angle) ;
Let us assume that; could have come from aspeci$, «,, ¢ ks, image:=get_image_of object();
‘., @k, Where allji, js, -+, j,. are not necessarily different. | 9. class:=identifyclass(image);
We obtain thea posterioriprobability of aspect,,, given this evi- IF class=UNKNOWN THEN exit;

10. new._node:=construct_search_treenode(class,angle);
11. compute_object probabilities(new.root);
12. IF the probability of some object is above a

dence using the Bayes rule

Playr|C) = P(ajx,) - P(Cilajk,) ©) predetermined thresh. THEN exit & declare success;
Ajeki|&i) = 5m 13. expand_search_treenode(newnode);
Z [P(aj,k,) - P(Cilaj,k,)] best_leaf:=get best_leaf node(newnode);

previous:=newnode;
expected:=best.leaf;
14. GO TO step 8

p=1

P(Cj|aj,, ) is1foraspects with alink to clags;, 0 otherwise. Finally,
we obtain thea posterioriprobability

Fig. 7. Object recognition algorithm.

P(0;,) = > Plaj,i,|Ci) )
! the best move to discern between these competing aspects subject to
where aspects;, x, belong to clasg’. memory and processing limitations, if any. The parameters described

If the probability of some object is above a predetermined threshdifOVe characterize the state of the system. The planning process aims
(experimentally determined, e.g., 0.87 for Model Base I), the algorith{f) d€términe a move from the current step, which would uniquely iden-
reports a success, and stops. If not, it means that the view of the obén€ given object. We pose the planning problem as that of a forward
is not sufficient to identify the object unambiguously. We have to tak.%earch in the s.tate space which takes us to a state in which the aspect
the next view. list corresponding to the class observed has exactly one node. We use a

In our hierarchical scheme, the link conditional probabilities (re@earch tree for this purpose. A search tree node represents the following

resenting relations between nodes) themselves enforce consistdRfgymation: [Fig. 5(a)] the unique class observed for the angular move-
checks at each level of evidence. The feature evidence is progressiVRf't made so far, the aspects possible for this angle-class pa, and for

refined as it passes through different levels in the hierarchy, leading&@Ch @spect, the range of positions possible withinit — +7;). 7

simpler evidence propagation and less computational cost. This is&lfli; denote the two positions within aspecj where the current
advantage of our scheme over that proposed in [9]. V|¢wp0|nt can be, as a result of the move_ment made thus far. Here,
vii < i andyg;, vi; € [0, 6i5], wheref;; is the angular extent of
aspect;;. A leaf node is one which has either one aspect associated
with it or corresponds to a total angular movement of 360 more
The class observed in the class recognition phase could have cdroen the root node.
from many aspects in the model base, each with its own range of poFig. 6 shows an example of a partially constructed search tree. From

sitions within the aspect. Due to this ambiguity, one has to search friew point, we categorize possible moves as follows.

IV. NEXT VIEW PLANNING
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Fig. 8. Model Base I|: The objects (from left) ath , O, Os, O4, Os, Og, O7, andOs, respectively.
(@)
(b)

©

(d)

Fig. 9. Some experiments with Model Base I: initial cla¢332). The objects areOs[(a) and (c)], and O4[(b) and (d)], respectively. (a)

(232) =¥ (231(221)) =° (232) =2* (221) 3 (232). (b) (232) = (221) =5 (221) =¥ (221). (c) (232) =2° (232) =% (221).(d)

(232) ¥ (221) & (221) = (221). The numbers above the arrows denote the number of turntable steps. A negative sign indicates a clockwise movement.
(The figure in parentheses shows an example of recovery from feature detection errors.)

Primary Move: A primary move represents a move from an aspect  respectively. We construct search tree nodes corresponding to
by «, the minimum angle needed to move out of it. both moves.

Auxiliary Move: An auxiliary move represents a move from an as- 2) Type Il Move Exactly one out ofvj; anday; takes us to a single
pect by an angle corresponding to the primary move of another com-  aspects;,,. For the other direction, the aspect we would reach
peting aspect. depends upon the initial positige +;;, v:;]) in the current as-

Letay; anday; represent the minimum angles necessary to move out  pect. We construct a search tree node corresponding to the former
of the current assumed aspect in the clockwise and counterclockwise move.
directions, respectively. Three cases are possible. 3) Type lll Move: Whether we move in the clockwise or the coun-

l) Type | Move ij anda?j both take us out of the current aspect terclockwise direction, the aSpect reached depends on the initial

to a single aspect in each of the two directions—anda;, position in the current aspect. We choose the move which leads
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(d)

®

Fig. 10. Some experiments with Model Base I: initial clé231). Primary moves alone (a); : (221) —' (221) = (423). (b) O5 : (221) =
(221) =5 (221) = (221) =7 (221).(c) Os : (221) =3' (232) 3% (232). Primary and auxiliary moves (), : (221) — (221) = (423).(e)
Os: (221) =7 (221) =% (322). () O : (221) =7 (232) =% (232) ' (221) =° (232). The numbers above the arrows denote the number of

turntable steps. A negative sign indicates a clockwise movement.

usto the side with the largest angular range possible in any reaaelso generate additional child nodes by considering auxiliary moves.

able aspect. We assign a code to each move, a higher code to a less preferred move.
We expand a nonleaf node by generating child nodes correspondilig assign a code 0 to Types | and Il primary moves and 1 to Type Il
to primary moves for all competing aspects in its aspect list. We capixiliary moves. Type Ill primary moves get a code of 2, and Type ||
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Fig. 11. Variation of object probabilities: two examples (see text).

Fig. 12. Model Base II: The objects (in row major order) are fielheli2,
planel, plane2, plane3, plane4, and biplane.

TABLE |
THE AVERAGE NUMBER OF MOVES FOR A
GIVEN NUMBER OF COMPETING ASPECTS

Model Base I: Polyhedral Objects

Number of Average number of observations
Competing Aspects | Primary Moves | Pri. & Auz. Moves
5 2.00 2.50
17 3.09 3.07
18 4.00 3.38
Model Base II: Aircraft Models
Number of Average number of observations
Competing Aspects | Primary Moves | Pri. & Auz. Moves
4 2.00 2.00
5 2.00 2.09
7 2.00 2.00
9 2.00 2.00
10 2.67 2.67

(@)

(b)

(e)

Fig. 13. Experiments with the initial class é332). (a) biplane{332) =
(420). (b) plane_1{342(332)) =’ (410). (c) plane_1{332) =’ (410).
(d) heli_1:(332) =2° (540). (e) heli_2:(332) == (510) —=5* (510).
(The figure in parentheses shows an example of recovery from feature detection
errors.) In each of these cases, the results for planning with primary moves alone,

and those for both primary and auxiliary moves are identical.

auxiliary moves, 3. The weight associated with a nodé€ is Code,
wherei is the depth of the node in the search tree. We use three levels
of filtering to determine the best leaf node. First, we consider those
on a path from the most probable aspect(s) corresponding to the previ-
ously observed node. Among these, we consider those having paths of
least weight. From these, we finally select one with the minimum total
movement.

A. The Planning Process and Object Recognition

In our object identification algorithm, aspect and object probabilities
are initialized to theie priori values. We use our class identification al-
gorithm (Section IlI-A) to identify the class corresponding to this view
of the object. It then calculates tl@eposterioriobject probabilities.

If the probability of some object is above a predetermined threshold,
then the algorithm declares that object as being present and exits. Else,
the algorithm initiates the search process to get the best distinguishing
move to resolve the ambiguity associated with this view. It then decides
on the best move and takes the next view. All the above steps starting at
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planning scheme is global—its reactive nature incorporates all previous
movements and observations both in the probability calculations (Sec-
tion 11I-B) as well as in the planning process. Our robust class recog-
nition algorithm can recover from many feature detection errors at the
class recognition phase itself (Section IlI-A-2). If the view indeed cor-
responds to the most probable aspect at a particular stage, then our
search process using primary and auxiliary moves is guaranteed to per-
form aspect resolution and uniquely identify the object in the following
step, assuming no feature detection errors. Even if the view does not
correspond to the most probable aspect, the list of possible aspects a
view could correspond to is refined at each observation stage. The plan-
ning process is initiated with the new aspect list. This illustrates the re-
active nature of our planning strategy.

Assuming no feature detection errors, our algorithm is guaranteed
to succeed except in three cases. The first is for objects with the same
aspect structure (i.e., the layout of classes in the aspect graph) but dif-
ferent aspect angles. Further, our strategy does not handle the case when
the aspect angles are greater than or equal t6. F8§. 5(b) shows an
example of the third case. Let us suppose that we have to move coun-
terclockwise. Letyy denote the angular extent of the smallest aspect
observed so far. The current viewpoint lies in this angular range. Let
a;;4+1 be a unigque aspect for the assumed object. The counterclock-
wise movement will be by an angle+ w. If ¥ +w > 6;;41, we may
miss this unique aspect altogether.

(b)

B. Bounds on the Number of Observations

It is instructive to consider bounds @n.4(n), the number of ob-
servations required to disambiguate between a set afpects (cor-
responding to the initially observed class). For a simple case to serve
as a benchmark, let us assume the number of aspects reachable from
any aspect as 1, and no movement or image processing errors. We also
assume no errors in either movement or image processing. We choose
a move that partitions the initial aspect set into more than one equiva-
lence class. If the size of the aspect list in one such equivalence class
is 7, the expected additional number of observatior&.is, (), where
J €L n). We havel,,,(n) = 1 + (377 Tuvg(4))/(n — 1), and

j=1

T..4(1) = 1. By induction, we can show thdt..;(n) = O(log, n).

V. RESULTS AND DISCUSSION

Our experimental setup has a camera connected to a MATROX
image processing card and a stepper motor-controlled turntable.
The turntable moves by 200 steps to complete a’38Bvement.

We use simple and robust features with low feature extraction cost,

(e)
®
compared to systems using complex features (e.g., [8] uses volumetric

Fig. 14. Experiments with the initial class &11). Primary moves alone (a) Primitives).
plane_2:(411) =2 (114). (b) plane_2:(411) —=2* (114). (c) plane_1: We have experimented extensively with two object sets as model

(411) =% (332). Primary and auxiliary moves (d) plane_@11) =3'  bases. We have chosen such objects in our model base that most of them

(114). (e) plane_2{411) =3' (215(214)). (f) plane_1:(411) =3' (332). have more than one view in common. The list of possible aspects asso-

(The figure in parentheses shows an example of recovery from feature detecgiated with one initial view is quite large. Our experiments have been

errors.) with both strategies—to have primary moves alone, and both primary
and auxiliary moves for expanding the search tree node corresponding
to an observation.

1) Polyhedral Objects:We use as features, the number of hori-
the class identification phase are repeated. Fig. 7 presents our overalfital and vertical line§ hv) ), and the number of nonbackground seg-
object identification algorithm in detail. Fig. 3 shows the interaction ahented regions in an imadér)). We represent a class &svr). We
the next view planning part with the rest of the system. use a Hough transform-based line detector [12]. For getting the number

Search tree node expansion is always finite due to the following re#-regions in the image, we perform sequential labeling (connected
sons: the number of aspects is finite, and no aspect is repeated alommponents: pixel labeling) [12] on a thresholded gradient image. We
a search tree path. Further, even if competing objects have the sdraee chosen this model base so that most objects have more than one
aspects, search tree expansion stops when the total movement aloeqy in common—the degree of ambiguity associated with a view is
a path is 360 Primary moves eliminate redundant image processingry large. Fig. 8 shows the objects in this model base. Figs. 9 and 10
operations, while auxiliary moves enable better aspect resolution. Gtwow some experiments with the objects in the first model base. For
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Fig. 15. Experiments with the initial class &£10). Primary moves alone (a)
_28 —28

plane_1:(410) = (411). (b) plane_1:(410) = (411). (c) plane_4:
(410) =° (212). Primary and auxiliary moves (d) plane_(#10) —=°

(411). (e) plane_1{410) =° (411). (f) plane_4:410) =° (212).

Fig. 9, the initial class observed in each cas@®), while it is (221)
in Fig. 10. We make the following observations.

detector reports the feature-class present t§23¢. For the objects

in our model base, this could correspond to clag888) and(233).

Our probability calculations account for the movement taken around
the object. The probability of clagg32) for the movement made so

far exceeds the class probability threshold (0.87). Hence, the system
does not need to use the other feature detector.

4) Recovering from Feature Detection Error§he second image
in Fig. 9(a) shows a situation where the system recovers from an error
in the feature detection process. Due to the thresholds we use, the cor-
rect class ig221). The line detector, however, reports the probabilities
of classeg221) and(231) as 0.004 and 0.856, respectively. The prob-
ability of no class is above the threshold. The other feature detector is
now scheduled, which reports the number of regions to be 1. The prob-
ability calculations of 3) result in the probabilities of the two as 0.997
and 0.002, respectively.

5) Variation of Object Probabilities: Fig. 11 shows the variation in
object probabilities with each observation. The two cases shown here
are for the moves in Fig. 9(a) and Fig. 10(b). The latter shows an in-
teresting case. Aspects belonging to clgsl) occupy a large extent
for objectO,. The sequence of moves until observation 3 could corre-
spond toO., Os, Os, andO~ with probabilities 0.877, 0.102, 0.014,
and 0.007, respectively. The reactive nature of our strategy ensures a
correct and progressively refined aspect list corresponding to each ob-
servation (sizes: 17, 8, 6, 4, and 1, respectively). The move leading to
observation 4 reduces the number of competing aspects from 6 to 4.
The aspects, the angular extents possible within the aspects and hence,
their probabilities depend upon the sequence of moves from the initial
viewpoint. The probabilities aP, andOs are 0.740 and 0.225, respec-
tively. The sequence of moves leading to observation 5 is unique only
for Os, identifying it uniquely.

6) Some Sample Search Tree Details/e now consider some cases
in detail. For each row in Fig. 9, the initial view could have come from
18 aspects belonging to objects in our model base and for Fig. 10, the
corresponding number is 17. For the strategy involving primary moves
alone, the total number of search tree nodes generated for Figs. 9(a) and
(b), 10(a) and (b) are 53, 48, 34, and 48, respectively. For the strategy in-
volving both primary and auxiliary moves [Fig. 9(c) and (d), Fig. 10(d)
and (e)], the corresponding numbers are 324, 279, 127, and 127, re-
spectively. Let us consider Fig. 10(e). The algorithm plans a move of
77 steps. The second observation reports the number of aspects pos-
sible as 6. The next move by 72 steps corresponds to a unique aspect.

7) Average Number of Observations for a Given Number of Com-
peting Aspects:The upper part of Table | gives an idea of the average
number of observations for a given number of competing aspects for
the experiments with the first model base. The average is computed
over 46 experiments.

A. Experiments with Model Base Il

Aircraft Models: We use the number of horizontal and vertical lines
({hv)), and the number of circle§c)) as features. We represent a
class aghvc). We use Hough transform-based line and circle detectors
[12]. We have chosen this relatively feature-rich model base to demon-

2) Primary and Auxiliary Moves:In most cases, the number ofstrate the effectiveness of our system using simple features and multiple
image processing steps required is less in the latter case comparedéaws. Fig. 12 shows the objects in this model base.
the former. When memory and search times are limited, the planning-or most of the 58 experiments (Figs. 13—15), the number of obser-
process may use primary moves alone. An interesting case is obsemagibns required with primary moves alone, is the same as that consid-
in Fig. 10(c) and (f)—an opportunistic case when the number of stepng auxiliary moves also.
with primary moves is less than the one with both primary and auxiliary This can be attributed to the lower degree of uncertainty associated
moves. At step 2, the move planned was not for the aspect eventualith a view for an object in this model base (a maximum of ten), com-
observed in step 3. Due to the move, however, the sequence of mgvared to that for the first (18). The second images in Fig. 14(a), (b),

turns out to be unique for obje€l;.
3) Ordering of Feature DetectorsThe third image in Fig. 9(a)

and (d) show cases where the system does not need to use the second
feature detector. In the first image in Fig. 13(b), due to the shadow of

shows advantage of our scheduling of feature detectors. The lihe wing on the fuselage of the aircraft, the feature detector detects
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four vertical lines instead of three, the correct number. Our recoveryl2] R. M. Haralick and L. G. ShapiroComputer and Robot Vi-

mechanism (Section 1lI-A-2) corrects this error. For the experiments _ sion Reading, MA: Addison-Wesley, 1992. B _

shown in Fig. 14, the number of search tree nodes constructed for pfit3] D- Dutta Majumder and K. S. Ray, "Recognition and position determina-
. . tion of partially occluded object for a computer vision systednJETE,

mary moves alone is 14, whereas the corresponding number for both 5, 37 1o 5/6 pp. 419-442, 1991.

primary and auxiliary moves is 125. The corresponding numbers for

the experiments in Fig. 15 are 14 and 41, respectively.

VI. CONCLUSIONS
. . - Fuzzy Critical Path Method Based on Signed Distance
Th|s paper pres_ents an mtegrat_ed appror_:lch for th_e recqgnltlon of Ranking of Fuzzy Numbers
an isolated 3-D object through on-line next view planning using prob-
abilistic reasoning. Our knowledge representation scheme facilitates Jin-Shing Yao and Feng-Tse Lin
planning by exploiting the relationships between features, aspects, and
object models. The recognition scheme has the ability to correctly iden-
tify objects even when they have a large number of similar views. If aAbstract—n this paper, we apply a signed distance ranking method for
feature set is not rich enough to identify an object from a single vief{{z2y numbers to a critical path method for activity-on-edge (AOE) net-

. . . . . works. We use signed distance ranking to define ordering simply, which
this strategy may be used to identify it from multiple views. We demo'ﬂﬁeans we can use both positive and negative values to define ordering. The

strate that the proposed recognition strategy works correctly even ungiéhary result obtained in this paper is the use of signed distance ranking
processing and memory constraints due to the incremental reacti&izzy numbers obtaining Properties 3 and 4. We conclude that the fuzzy
planr"ng strategy No related work has addressed this problem AOE netWO”‘( is an extension of the Cl’isp AOE net\NOI’k, and thUS the fUZZy
While we use simple features for the purpose of illustration, one m§yica! path in a fuzzy AOE network, under some conditions, is the same
. as the crisp critical path in a crisp AOE network.
use other features such as texture, color, specularities, and reflectance - N
ratios. Over 100 experiments demonstrate the effectiveness of usjn dex T%rms—,AC“g'g’_"z”'edge (QOE) network, critical path method,
simple features and multiple views even on a relatively complex clagg?y NUMDEr, signed distance ranking.
of objects with a high degree of ambiguity associated with a view of
the object. Our experiments show that one may use simple features to I. INTRODUCTION
recognize objects with complex 3-D shapes (as in Fig. 12). .
Major areas for further work include multiple object recognition Activity-on-edge (AOE) networks have proved very useful for per-
and searching for an object in a cluttered environment. This would f@rmance evaluation of some types of projects. This evaluation includes
quire suitably incorporating occlusion handling techniques (e.g., thddgtermining certain aspects about the project, e.g., what is the least

in [13]). An extension of this work would take movement errors intgMount of time in which the project may be completed, and which in-
account. dividual activities should be speeded to reduce overall project length,

etc. [2]. Since the activities in an AOE network can be carried out in
parallel, the minimum time to complete the project is the length of the
longest path from the start of project to its finish. The longest path is
the critical path. To identify the critical path, three parameters for each
[1] P.J.Besland R. C. Jain, “Three-dimensional object recognitiégM  Of its activities are determined:
2 go_rprgt].ir]s;;\gvgl. é7bp%r7‘§h;éggf &i@&?ﬁg’b nition in robot vision,” 1) earliest event time
2 ACM Comput. Surwol 18, pp. 67108, Mar. 1086, * 2) latest event time;
[3] A.Zisserman, D. Forsyth, J. Mundy, C. Rothwell, J. Liu, and N. Pillow, 3) slack time.
“3-D object recognition using invarianceArtif. Intell., vol. 78, pp. The critical path is the one from the start of project to the finish of
239-288, 1995. ) . project where the slack times are all zeros. The purpose of the critical
[4] g'roz_w]%krﬁgtégghigdsgﬁtigg{unn;(_jg’r’pg Zigﬁgggﬁgg?mmetry’path method (CPM) is to identify critical activities on the_ (_:ritigal path
[5] K.A.Tarabanis, P.K.Allen, and R. Y. Tsai, “A survey of sensor plannin§© that resources may be concentrated on these activities in order to
in computer vision,1EEE Trans. Robot. Automatol. 11, pp. 86-104, reduce project length time. Besides, CPM has proved very valuable
Feb. 1995. o ) ) ) in evaluating project performance and identifying bottlenecks. Thus,
L iow IEEE Trans, Pattem Anl. Machine Ineliol 15, pp. 76-145, M s @ vital tool for the planning and control of complex projects.
May 1993. The successful implementation of CPM requires the availability of
[7] K.D.Gremban and K. Ikeuchi, “Planning multiple observations for oba clear determined time duration for each activity. However, in prac-
ject recognition,"Int. J. Comput. Vis.vol. 12, pp. 137-172, Apr. 1994. tical situations this requirement is usually hard to fulfill since many of
[8] S. J. Dickinson, H. I. Christensen, J. Tsotsos, and G. Olofsson, "Aggtjyities will be executed for the first time. Hence, there is always un-

tive object recognition integrating attention and view point control, . . . Lo .
Comput. Vis. Image Understandol. 67, pp. 239260, Sept. 1997. certainty about the time duration of activities in the network planning,

[9] S.A.Hutchinson and A. C. Kak, “Planning sensing strategies in a robltading to the development of fuzzy critical path methods. In devel-
work cell with multi-sensor capabilities|EEE Trans. Robot. Automat. oping the fuzzy critical path approach, several approaches have been
vol. 5, pp. 765-783, Dec. 1989.
[10] J.J. Koenderink and A. J. van Doorn, “The internal representation of
solid shape with respect to visiorBiol. Cybern, vol. 32, pp. 211-216, Manuscript received February 6, 1999; revised July 24, 1999.
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proposed over the past years. Gazdik [1] assumes that in a fuzzy metterea < b < c¢. In addition, we let the family of all fuzzy numbers be
work the duration of activities and some other input variables are idenoted byFx = {(a,b,c)| Va<b<c,a,b,c € R}. In particular,
precise and biased, and the imprecision is summarized to four clas$ies fuzzy numbefta, b, ¢) will be regarded as the degenerated case of
This work proposed a technique called FNET based on a combinatihe fuzzy point(b,b,b) = by,ifa=c=0.

of fuzzy sets and the theory of graphs. The membership function ex-Before defining the ranking of fuzzy numbers 6k as in Yao and
pressing the activity duration time for FNET depends on such divergéu [5], we should first consider the definition of the signed distance
factors as expert opinions; the availability of means of production, man R.

terials, or staff; and personal experience. The task is then to simulat®efinition 4—The Signed DistancéiVe defined*(b,0) = b when
quasideterministic outcomes of a process based on those imprecisk, r e R.

subjectively biased input data. An extension of FNET was proposed byRemark 1: Geometrically() < b means thak lies to the right of the
Nasution [4]. In this paper, it is shown that fuzzy numbers can be esrigin 0 and the distance betwekrand 0 is denoted by = d*(b,0).
ploited further in the network. This is to be done by first introducingimilarly, b < 0 means that lies to the left of O and the distance be-
an interactive fuzzy subtraction in the backward calculations; then direenb and 0 is denoted by-b = —d*(b,0). Therefored" (b, 0) de-
serving that if time were represented by fuzzy numbers only the namstes the signed distancelgfwhich is measured from 0.

negative times should be taken into account, since the negative timeket A = (a,b,¢) € Fy.From (3) we know thex-cut of Ais
have no physical meaning. Based on these two assumptions, it is pééx) = [Ar(«), Ar(a)], 0 < a < 1,whereAr (o) = a+ (b—a)a
sible to obtain the latest allowable event time and the slack of each evisrihe left endpoint of the--cut andAz(a) = ¢ — (¢ — b)a is the right

in the network. Therefore, with this approach CPM can be generalizeddpoint of thex-cut.

by accepting imprecise, fuzzy data for the duration of the activities. Fig. 1 shows that”" and Q' are the signed distances measured
Since FNET never uses any method for ranking fuzzy numbers, sofr@am the origin 0,0 < « < 1. From Definition 4, we find the signed
assumptions are required for the fuzzy numbers to facilitate this fuzdistance of P’ is d*(4.(a),0) = A.(«) and also that of)’ is

CPM. d*(Ar(®),0) = Agr(a). Hence, the signed distance of interval
In this paper, we propose a method for ranking fuzzy numbefd; (o), Ar(a)], which is measured from the origin O, is defined as
without the need for any assumptions. We use signed distance ranking d*([AL(a), Ar(a)], 0)

to define ordering simply, which means we can use both positive and . .
negative values to define ordering. The signed distance we use here 314" (AL(a),0) + d"(Ar(a). 0)]
has some properties very similar to those signed distances introduced 15[(1 +c+(2b—a—c)a]

in real numbers. We use signed distance for ranking fuzzy numbefhere) < o < 1. In addition, for eachn € [0, 1], because the

and then applying it to CPM. Therefc_>re, our work is quite differer]htervab[AL(&)’ Ar(a)] and[AL (@), Ar(a)a] have a one-to-one

from the previous methods proposed in the literature [1], [4]. mapping (Fig. 1), therefore, we can define the signed distance of
The paper is organized as follows. Section Il outlines the prelimiz (o), 4, (a).], which is measured from, (y-axis), as

naries, in which we consider the definition of a signed distance ranking , N L .

system for fuzzy numbers. In Section IlI, we list some definitions of d([Ar(@)a, Ar(a)a],00) = 3la+c + (20— a —¢)a].

the AOE network and give an example to explain crisp CPM. Then, vidptice that the functiomv is continuous over the interval whepe<

make the AOE fuzzy network by using fuzzy numbers and then elimi- < 1. Consequently, we can use the method of integration as an ex-

nate its fuzziness by using signed distance ranking for fuzzy numbetanatory tool for obtaining the mean value of the signed distance.

to construct the AOE network in the fuzzy sense. The results are listedefinition 5—Signed Distance of: Let A = (a,b,¢c) € Fy.

in Properties 3 and 4. Finally, the concluding remarks of the paper ataen,d(4, 0,) is the signed distance of, which is measured from

stated in Section IV. 0. (y-axis) as defined by

-1
d(A,01) = / A([Ar()a. Ar(a)a],01) da = L(2b+ a + c).
9]

Il. PRELIMINARIES
= da.

Note that if A = (a,a,a) = d, thend(d,, 0;)
€ Fn, we define the fol-

For a fuzzy critical path method, all pertinent definitions of fuzzy pefinition 6—The Ranking:For A, B
sets are given below. y lowing rankings onF'y
Definition 1—Fuzzy Point:Letd; be afuzzy seto® = (—oc, co). [ < =
Itis called a fuzzy point if its membership function is % = l? i d(r}” 91) < d(Bf Of)
A= Biff d(A4,0,)=d(B,0).

1, z=0b
n, () = {0, x #Db. @ From [3] and [6] we have the following properties of binary operations.

Definition 2—Level Fuzzy Interval: Let[ay, b,] be afuzzy seton ~ Property 1 Ford = (a.b,c)andB = (p.q,r) € Fx, we have
R = (—cc,00). Itis called a level fuzzy interval,0 < A < 1, if its VA B=(a+pbt+ygc+r)

membership function is 2)AoB=(a—-rb—q,c—p).

(X a<2<b . Property 2: ForA = (a,b,c) andB = (p,q,7) € Fy, we have

Hiax, 02 (2) = 0, otherwise. (2) 1) d(A® B.01) = d(A.01) + d(B,0,)
Definition 3—Fuzzy Numberstet A be a fuzzy set on 2) d(A S B,0r) = d(4,01) _d(B_’ 91_)' _

R = (—oc0.0). It is called a fuzzy number, if its membership Proof: From Property 1 and Definition 5, we obtain Property 2.
function is

v—u lll. Fuzzy CRITICAL PATH METHOD

——, a<ax<b . ) L —

b—a ST In this section, we begin with some definitions of AOE networks

pile)=4¢ c—x (3) and also with an example to explain the crisp CPM. Next, we present a

/ , b ¢ . - . -
c—b’ procedure based on signed distance ranking of fuzzy numbers, to obtain
0, otherwise, the fUZZy CPM.

INA
INA
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A. CPM in Crisp Case Fig. 4. A triangular fuzzy numbef, . ..

An AOE network is a directed acyclic graph in which the vertices
represent events and the edges represent project activities or tasks to be
performed on a project [2]. Formally, an AOE network is represent@@t D, = {v;|v; € V and(v;,v,;) € A} be a set of events obtained
by N = (V.AT). LetV = {v1,v2,---,vn} be a set of vertices from events; € V such tha(v;, v;) € A andv; < v;. In Example 1,
representing a set of events, whereis the start of the projecti, is  for instance, ifv; = v4(= 3) thenDy = {v;|v; € V and(v;,v4) €
its completion, andi C V' x V is the set of directed edges connecting4} = {v1,vs} = {0, 2}. Clearly, from Fig. 3, we can obtair. , for
the vertices. The tasks to be performed on the project are represerét\%htv]. by using the following equations:
by directed edges. For each activitye A, a magnitude;, € T is _ _ _
defined, where, is the time required for the completion of activity bue; = Jfle%j[th'“f Hhowg]and e, =ty =0 (7)
(11, [4]- o . N . Similarly, let E; = {v;|v; € V and(v;,v;) € A} be a set of events

rExampIe 1: Finding a crisp critical path in an AOE networK, = ptained from event; € V', such thatv,,v;) € A anduv; < ;. For
(‘”*‘_4’ D). . instance in Example 1, if; = vs(= 2) thenEs = {v;|v; € V and
. Fig. 2 is an example of an AOE network for a .h.y.pothet(,UB‘/ v;) € A} = {v4.v6} = {3,5}. Then, we obtair,,, for eventu;
ical project with seven events and ten tasks or activities. ng, using the following equations:

V={v; =j -1y = 1,2,---,7} be the set of seven eventd; .

= {(v1,v2), (v1,v3), (v1,v4), (V2,v3), (Vs,v4), (v2,vs), (vs,v6), trw; = Uljnemi [tro; =te;e;] @nd tro, =tuo,. (®)
(v4,v6), (vs,ve), (ve,v7)} be the set of ten activities; anfl =
{tUIUZI tUIUSI tUl vg tvz vz t1’3v4! tvzva! tvsvev tvu’ev tvsvel tv6v7} .
be the number associated with each activity representing the time Tojo; = touy 18 TL0; = teu; + o, )
needed to perform that activity, whetg ., = to1 = 3, t,,03 = to2  we conclude that activityv,, v;) is definitely on the critical path of the
=4, ty,0, = toz = 6, etc. Thus, the activityv,, v2) requires three crisp network.

days, whereasw;,v3) requires four days. Usually, these times are

only estimates. The critical path of this network(is , v2), (vs,vs),
(vs,v4), (va,v6), (ve,v7).

In an AOE network N = (V, A, T'), whereV = {wvq,va, -+, v, }. As noted earlier in this section, for each activity;, v;), we as-
Lett,..; be the processing time for each activity;, v;). We define sume that the values @f,.,, tr.,, andt..; are already known and
the earliest event time for eventand the latest event time for event  tg., tr.;, andT,,., can be obtained from (7), (8), and (6), respec-
astr.,; andtr.,, respectively. Assume that the valuestof, ., 1., tively. However, this assumption may cause severe difficulties in prac-
andt;,., are already known. From Fig. 3 we see that, andt;.,, tice. Therefore, here we consider., is only an estimate and is im-
representing the earliest event time for evepand the latest event precise. Thus, we make, ., fuzzy by using the following triangular

Finally, when

B. Fuzzy CPM Based on Signed Distance Ranking of Fuzzy Numbers

time for eventy;, satisfy the following equations: fuzzy number (Fig. 4)
tEvj = tEvi + tvivj (4) tvivj = (t'uivj - Avizﬂjlatvi'zljy tvivj + A’U{'ijzk)y
0< A1 <too;s 0<Agw;2. (10)
By Definition 5, we havel(f,,0;,01) = tu;0; + 5 (Avioj2 = Avioj1).

tLo; =tLv; = tog;. () 1itis the signed distance of,., measured from, . Sinced(f,,.,,01)

= $(3tui; + Aviojz) + Ftere; — Au;) >0, we conclude that
d(tv,v;,01) is apositive distance betweey),,; and0, . In other words,
Tojo; = tro; —tpo,. (6) the processing time is measured from the origin 0. Thus, we define

Also, letT:, .., be the total available time for activity:, v, ). We obtain
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ts,., to be an estimate of the processing time for activity, v;) in ~ taind(¢z.,,01) = d(frv;, 01) — d(fs,0;,01). From (11) and (17) we

the fuzzy sense, i.e. obtain the following equation:
tziuj = d(ivivj-/()l) = tuivj + %(Avivji - A1;7-11_7-1)~ (11) tzui - tzu_j - tziu_j- (18)
Remark 2:If Ay,v;1 = Ayee, ie., the triangle in Fig. 4 is Then, we have
an isosceles triangle, then we ha\Z;;Uj = t.“”'j' In partllcular, if tro + }I(ALW — Apu)
Aot = Ay,u2 = 0, then the fuzzy case will become crisp. B A A
As we mentioned above, in the crisp AOE netwa¥k= (V, 4, T'), = tro; =t + 3[(Aree = Aryr)
the earliest event timeg,, for eventw;, the latest event timer,, = (Avo2 = Ayyoj1)]-

for eventu;, and the total available timé.,.; for activity (vi,v;)  According to (5), we obtain the following condition for parameters
are directly derived from (7), (8), and (6), respectively. However,
in practice, the decision-maker should realize that these time varifLviz = Arv1 = (A2 = Arv;1) = (Avioze = Avoyn). (19)
ables are imprecise and consider them in a fuzzy sense. Thus,Tae fuzzy number of the total available timg. ; is defined as
estimate of the earliest event time for eventis in the interval - _ . _ \
tgo;, — AEpuv1,tee;, + Apv2], 0<Apy1 <tpe,, 0<Apy,2, Tvivj N (Tvivj B invjl’TvingTvivj + i) (20)
wheret .., is a known number. In considering the accuracy, we fin¥here0 <@, ;1 <Ty;»; and0 <w,,.;2, and the parameters must
that when the earliest event time is exactly,., the error rate is Safisfy (23) and (24) below. L&t} be an estimate of the total avail-
definitely 0. Clearly, greater imprecision of time will produce largeRble time for activity(v;. v;) in the fuzzy sense, i.e.
error rates. When an estimate eventually approaches one of the two TS, = d(T,, 0;:201) = Toyo; + @02 — Tojos1)- (21)
ends of the interval, i.ety,, — Apw,1 Orte., + Apey,2, the error rate . . . N
becomes largest. However, it is preferable to use the teonfidence FUZZi7ying both sides of ()., = tr.; — tr,;, yieldsT,,.; ~
level rather than error rate” Thus, when the earliest event time igltv; © Lo FrommDeﬁ[utlons 5~and 6, and from Property 2, we have
exactlyt,,,, we obtain the confidence level is 1. On the other hand(Tviv;» 01) = d(tre;,01) = d(tre;, 01). From (13), (17), and (21)
when an estimate approaches one of the two ends of the interval, fffeoPtain the following equation
confidence level becomes the smallest. In this section, we will use T,’;,,j = t?‘,,j — thu, - (22)
the fuzzy number from (12) below and use the membership grade-rtﬂerefore we have
represent the confidence level. |

Similar to the above,, ., in (10), which corresponds to the interval Toio; 4 5 (o052 = @ogos1)
[tro;, — Apv,1,tee, + Ape,2], we then define the fuzzy number of =try; —tme, + i[ALUjZ —Ary;1 + (Ape2 — Apu)]-

trv; 83 From (6), we obtain the following condition for parameters:

Togos2 = ooyt = (ALo2 = Arest) = (A2 — Ape;n). (23)
{EU; = (tb"v; - Ab'mlatbm + AEU{Q) (12) Eina”y’ fUZZIfylng both Sld?FS of (g)gjvivj = tvi vi yieldS’Tvi v ~
to,0,; . Similarly, we obtalﬁfvivj = th, and also have
where0 < Ag,;1 <tg.,;, 0 <Ag,,2, and the parameters satisfy (15) T., v; i(wvwﬂ — Wo,0i1) = tojo; + }I(Aviujz - Auiujl).

and (23) below. We then defing,,, to be an estimate of the earliestg; o _; o

event time for event; in the fuzzy sense, i.e., Vit 9

¥ ~ ~ 1 wvivjz - wvivjl = Aviij - Avivjl- (24)
the, = d(tEe;.01) = tee, + 7(ABu2 — A1) (>0).  (13) _ _
) . . Furthermore, from (15), (19), (23), and (24) we obtain the following
From (4), i.e.te.; = tro, + tu,.;, we fuzzify both sides of the

. . . > conditions for parameters,
equation to obtaif..; ~ tuw., & t,.,. Note thatx is the ranking for

we obtain the condition for parameters

Fy,as definedin Definition~6. From Definitions 5~and 6, and algo from Apvyz = Apejy = Apeja — Apwjn
Property 21 we haVé({FJz:j 5 01) = d({Eni S5 afivj 5 01) = d({Eni 5 01) ALU;Z - ALv;l = AEU;Q - A}:,"U;l
+ d(fvz.vj, 01). From (11) and (13), we obtain the following equationyng
t;‘z:j = t;‘vi + t:ivj' (14) (ALUJ-Q - Aijl) - (AE'UZ-Z - AEUZ'l)
Thus, we have =Apos0 — Aoyt (25)
tpo; + 1 (Ape;2 — Apu1) Remark 3: Here we compare the crisp AOE network for the efforts
=tpu; +toe; + [ABe2 — Ape1 + (Auuyn — Auuj1)]. made by a decision-maker with the fuzzy AOE network. Consider each

activity (v;, v;) in the crisp AOE network. The values 6f ., txv,,
andtr,; are already known, however, the valuestgf , tr.,, and
Apo2 = Apojt = (Ape2 = Apo1) + (Avie,2 = Do) T,,.; are determined according to {§B). On the other hand, for each
(15) activity (vi,vj) in the fuzzy AOE network, the fuzzy number, .,
in (10) must satisfy) < Ay, ;1 <ty0; and0< Ay, 2. The other
R fuzzy numbers?p,,,i, fr,nj, and'f,,.iuj, as defined in (12), (16), and
trw; = (tLw, — ALv;1,tie, toe, + ALy,2) (16)  (20), respectively, are determined as follows. Since the valugs,of
whered < Ar, 1 <tr., and0 < Ay, », and the parameters must sat{Ev, s {Zv;s tLv;, andTo,.;, as well as the values af,.;, Avv;1,
isfy (19) and (23) below. Then, we defing, . to be an estimate of the andA,, v;2 N (10) are already known; the decision-maker can choose
latest event time for event; in the fuzzy sense, i.e. ar;propnatel \;a![ues Io%b(lé) ?123_7‘41(’2?)[4”{(1(’1 (Azzgjq, and ?Uiqu’(S
. . whereg = 1,2 to satis , , ,an , respectively. (See
tho; = d(fLo;s 01) = tro; + 3(ALvse = Arvj1). an Exampjle 2 and Remark 4.) P g
lfuzzify[ng both sides of (5)Lo, = tre; — tu,0;, Yields tre, = While T7;, v; = t,*,i,,j, i.e.,tz,uj = t,, + t,*,i,,j, we conclude that
tLv; © tv,0,;. From Definitions 5 and 6, and from Property 2, we obthe activity(v;, v;) is on the fuzzy critical path. Next, the processing

According to (4), we obtain the following condition for parameters:

Similarly, the fuzzy number of.,, is defined as
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timet,(€ T') is considered for each actwltye A) in the crisp AOE tLL —ty,0;, Vu; € Ey, where at least one equal sign holds. Thus we
network, N = (V, A, T). We fuzzify t, ast;, and then obtaining an derive the followrng equation:

espmete of the processing time for activityn the~fuN22y sensd; = £, = max (thy. —t5.,.). 27)
d(tp,01). LetT* = {t;|Vt, € T,b € A, t; = d(t,,01}. Hence, we T ek T Y

construct a fuzzy AOE networky™ = (V, A, T™). From the previous Similar to (26), the above equation can be derived from (19) and
discussions we summarize the following property. tro; < tro; — tue;, Vv; € E;i. Therefore, no additional conditions

Property 3: Consider the fuzzy AOE networky™ = (V. A,T™).  for parameters are needed in (27). Finally, we consider the equation
The fuzzy numbers of,,.., tEv,, tru;, @NdTy,.;, @€te,v,, tre;,  tr,, = tre, . After fuzzifying the equation, we obtaif,, =~ tr.,

t1.;, andT,, ., respectively. When those fuzzy numbers satisfy (15and d(i ., ,01) = d(x.,,0:). Then, by (13) and (17), we obtain

(29), (23), and (24), we obtain the following significant results. t1., = tiy, andan additional condition for parameters:
1) An estimate of the processing time of activity;, v;) in the Apv,2 = Arv,1 = Apu,2 — Bpe, 1. (28)
fuzzy sense is If t},,j = t“;,,j, then an estimate of the earliest event time for event
ty, v; = togu; + T(Auvs2 = Aujus1). v; in the fuzzy sense is equal to an estimate of the latest event time
2) An estimate of the earliest event time of evenin the fuzzy for eventv; in the fuzzy sense. Obviously, this indicates there is no

slack time. In conclusion, we summarize the above statements in the

sense is .
following property.
tho; = tre, + 3 (Aku2 — Ape1). Property 4: Consider the fuzzy AOE networky* = (V, A, 7).
3) An estimate of the latest event time of evepin the fuzzy sense If Arv2 = Aput = Arvo = Ay = 0, and Az, 0 — Az,
is = Apyv,2 — A, 1, as Well as the conditions in Property 3 hold, we
summarize the following results.
. ) 1) An estimate of the earliest event time for evemt in
tro; =tie; + T(ALuz = Apy). the fuzzy sense isf*p,j, which can be derived from
_ _ _ _ _ tEvj = maxy;en; (tp., + 17, .y ) andt},,, =17, =0.
4) An estimate of the total available time of activity;, v;) in the 2) Anestimate of the latest event time for evenin the fuzzy sense
fuzzy sense is is t7,,,,, Which can be derived fronty,,, = min, ep, (t?,{,j -
sz:L] = :Z-z,'z-vj + i(wz,'iuj'Z - w?!il)j1)' t” vj ) andtL" tE'Un'
3) The activit i, v;) will on the critical path ift;,. = t1,, and
5) thy. = thy, 4+ 100 the =15, — 5, andTl, =15, — )T ~ ity(vi, v;) P Bui = s
t* j i ivj 2 7 ] L) J tE‘rrj - tfnrj'
Fuv;- i . .
6) WhenT?, =t ,ie.,ti, = ti, + 5., the activity Proof: Equations (1) and (2) can be proved directly from (26) and

(27). Sincet g, = t7.0, andtzu = t}L , from (5) of the Property 3,
we obtaint;, .., =ty — thw, = thy, — tiw, = L., By (6) of
Now, from (7) we Knowt v, + tv,v; < tew;, Vvi € Dy, and also  property 3, we have proved (3)

know there is at least one equal sign which holds When both SldefExamp|e 2: Construct a fuzzy AOE networkY* = (V. A,T"),

of the above equation are fuzzified, we obtain, < f.,.; < txv;,  from the crisp AOE networkl = (V, A, T), of Example 1. Let,, .,

Vuv; € Dy, and also know there is at least cmavhich holds. The sym- = (2.1, 3, 3.8)fu,05 = (3.5, 4, 5),fu 0, = (5,6, 7.2) fop; = (3.2,
bols < are~ the ranking onf'x (see Definition 6). From Definitions 4, 4.8)7,.., = (4, 5, 6.3),fv,0; = (4.1, 5, 6.1)f050, = (2.8, 4, 5),

5 and 6 and also from Property 2, we obtain the following equatioRs, ,, = (4.9, 6, 7.2)f..0s = (1.5, 2, 2.7)fve0, = (3.8, 5, 6). After
d(twv;01) + d(te,0;,01) < d(fw,,00), Vi € Dj, and also know  calculating by (1) of Property 3, we obtain the following estimates of

(vi,v;) is on the fuzzy critical path.

there is at least one equal sign which holds. Furthermore, from (11) g§idcessing time in the fuzzy sense, tg., = 29751t} ,, = 4.125,
(13) we knowtz,,, + 7, oy < tEU ,Yv; € D;, and also know atleast +* = 6.05 ooy = 4, th0, = 5.075t5,,. = 5.05,t5, .. = 3.95,
one equal sign holds there Hence we obtain the following equatlor;;“6 = 6.025,;,, = 2.05, and;,,. = 4.95. We letl™ = {t},..,
t%,,j = max (tho, +t,,7.,,j). (26)  torvsstoyvss togus s toguss toguss tfvgbﬁ,tuvﬁ,tf,avﬁ, thq0, - Hence, we
vi€D; construct a fuzzy AOE networky* = (V, A, T™), as shown in Fig. 5.
Sincety,,, + 3, v; < the .,Vl € D;, we obtain Next, we should choose appropriate values for the parameters,

] .8, Aru;i, ABv.2, ARty ABe;2, Aoty ALvs2, Apw,1, ALu;2,

bvs o+ oy + ﬂ{(AEW Apvi1) + (Aviv2 = Avivsi} ;0,15 ajrndwwjjg, to satisfy Propertiefs 3 and 4. Then we calculate
Stwo; + 7 (Apv2 = Apejn),  Voi € Dy t1; andty,; by using (1) and (2) of Property 4 in the following table

In fact, the above equation can be derived directly from (15yand+  (see Remark 4).

tu,o; < tre,, Yui € Dj. Therefore, no additional conditions for pa- In Table I, for example, we calculaté; by using (1) of Property 4

rameters are needed in (26). as follows. Sincg = 3, we haveD; = {i|(i,j) € A} ={i=10,i =
Next, consider the equatidi,, = tr., = 0. After fuzzifying both 2} (see Fig. 5). From TabIeI we find thét, = 0, t5, = 6.975,
sides of the equatlon we obtaip,, ~ ., ~ 04 andd(ty, , 01)= ti3 = 6.05, andiss = 5.075. Thus, we obtain

d(fre,,01) = d(01,01). Hence, we obtairy,, = t,, = 0, but thy = max{t*po + 155, the +tos}
it requires an additional conditiom g2 = Age 1 = Arney2 = ’ -5 . 12,
Ao = 0. = max{0+ 6.05,6.975 + 5.075} = 12.05.

Similarly, from (8) we haver., < tr., —t...;,Vv; € E;,andalso In Table II, for example, we calculaté, by using (2) of Property 4
have at least one equal sign which holds We use the same proceduréollows. Sincé = 2, we haveE; = {j|(i,j) € A} ={j=3,5 =

to fuzzify both sides of the equation, obtainifig,, < 7., © tv,.;, 5} (seeFig.5). From Table Il, we find thgt; = 12.05,¢75 = 18.075,

Yv; € E; and also determine that at least omweholds. From Def- ¢33 = 5.075, andt;; = 3.95. Thus, we obtair7, = min{t7 5 — 35,
initions 5 and 6, and also from Property 2, we derive the equatiotf,; — ¢35} = min{18.075 — 3.95, 12.05 — 5.075} = 6.975.

d(trv;,01) < d(trv;.01)—d(fv,0,,01),Yv; € E;,where atleastone  From Tables | and II, we obtain Table I1I. Table Il shows the process
equal sign holds. Furthermore from (11) and (17) we obtajn <  of finding a fuzzy critical path inV*. According to the rule of (3) in
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Fig. 5. Fuzzy AOE networkv* = (V, A, T").

TABLE |
COMPUTATION OF t%,,, THE EARLIEST
EVENT TIME FOR EVENT 4 IN THE FUzzZY SENSE

1 5
j 0 1 2 3 4 5 6 i
2975 | 4125 | 6.05 0 0
(tgm) (F'r0)
4 5.05 1 |2975
5075 3.95 2 16975
(t723) [P
6.025 3 [12.050
[
2.05 4 | 8025
4.95 5 [18.075
6 [23.025
Note: Event i in Table [ corresponds to node v,,, in Fig. 5, i.e. 7, =t;.v_”.
TABLE 1
COMPUTATION OF 7} , THE EARLIEST EVENT TIME FOR EVENT
7 IN THE Fuzzy SENSE
. 0 2975 | 6.975 | 12,05 | 16.025] 18,075 | 23.025 .
Yy () | ¢ G e
j 0 1 2 3 4 5 6 i
2.975 | 4125 | 6.05 0 0
4 5.05 1 |2975
5075 395 2 [ 6975
() )
6.025 3 [12.050
2.05 4 [ 8025
495 5 [18.075
6 [23.025
Note: Event j in Table Il corresponds tonode v, in Fig. 5, i.e. tz]. =t;_vhl.
TABLE Il
PROCESSES OFFINDING A FUzzy CRITICAL PATH IN N* = (V, A, T*)
j 0 1 2 3 4 5 6
“ 0 2.975 6.975 12.05 8.025 | 18.075 | 23.025
2
7, 0 2.975 6.975 12.05 | 16.025 | 18.075 | 23.025
critical path 0 1 2 3 5 6

Property 4, we find a critical path8: 1 — 2 — 3— 5 — 6 (i.e.,vq

— vy — v3 — v4 — vg — v7). The total time of the path is*
23.025. However, in the crisp case of Example 1, the critical path of tro= tou;e

N = (V,A,T)isalso0— 1— 2— 3— 5— 6, and the total time
of the pathis =3+ 4+ 5+ 6+ 5= 23 (see Table IV).

TABLE IV
COMPUTATION OF THETOTAL TIME OF A CRITICAL PATHIN N = (V, A, T')

should satisfy (15), (19), (23), and (24). Henceg.;2 — Apus1 =
(ARvs2 —ARug1 )+ 0.2, A7, —Arut = (Arvga — Arug1) — 0.2,
Wosvg2 — Wosvgl = (ALugz — ALvgt) — (ABusz — ARes1),
Wosve2 — Wosvgl = 0.2. Sincev; = j — 1, from Table IV we
I’]aV(:.‘i’)rﬁ,,,<5 = tpa = 8, try, = tra = 16 (etc.),tEUG = 18,
tros = 18, T’USUG = trvg — tEoy = 10, tpy, = tre = 0, and
trv, = trLvw, = 23. Subsequently, we take the following equations
ARug2 — ARugt = Arwg2 — Aruwgt = 0.3, Apyyo — Apugyt =
ALUSQ - ALUSI = 0.1, andwU3U62 — Wesvgl = 0.2, WhereAEqu,
AFRuvgq, ALvsgy ALuvggr @usvsqr ¢ = 1,2, to satisfy the following
criteria, 0 < Apo1 <tro, = 8, 0<Apy2, 0< AR, <18,
0<Appg2, 0<ALy1<16, 0<ApLy2, 0<ALy1 <18,
0<Arug2, 0< @Wogu51 <Tosvs = 10, and0 < w,.42. Finally, we
could choose appropriate values for the above parameters to satisfy
Property 3. For example, we choofg...» = 0.2, Aw.,1 = 0.1,
AEU62 == 05, AEU@I == 02, ALU52 = 03), ALU51 == 02,
AL,,GQ = 0.4, AL%] = 0.1, Wosvg2 = 0.3, andw,,a,,61 = 0.1.
Then, we obtaif.,, = (8—0.1,8,840.2),fu,, = (17.8,18,18.5),
tro0, = (15.8,16,16.3), fr,, = (17.9,18,18.4), and
Ty = (9.9,10,10.3). From (13), (17), and (21) we obtain
thes = tha = 8.025,1],, = t;, = 16.025 (etc.),t},,, = 18.075,
11vs = 18.075, andT’,,, = 10.05 (= t7,, — t5,, ). Notice that we

U5v6

have the same results here as in Table IIl.

IV. CONCLUDING REMARKS

This paper has presented a ranking method for fuzzy numbers in
a CPM of AOE networks. The focus of the paper was to introduce
the signed distance ranking of fuzzy numbers, and use them to obtain
fuzzy critical paths. In Section Ill, we discussed fuzzy CPM based on
a signed distance ranking of fuzzy numbers. When the processing time
for activity (v;,v;) in the crisp case i$.;.; and the fuzzy number
Of tu,0; 1S ty,u; = (fujv; — D1 tesugsto;u; + Auey2), Where
0<Apv;1 <tyo;,andd <Ay, 2,thenan estimate of the processing
time in the fuzzy sense is given by, = to,.; + (A2 —
Ay, v;1). Interpretation of the result is as follows, viz. Fig. 4. When
Ayo;1 <Ay,us2, the triangle goes to the right side (larger. ), and
we obtaint.,,; <t . Conversely, whem,,, > <Ay, 1, the tri-
angle goes to the left side (smalter., ), and we obtaimzil,j <tojo;-
However, ifA....2 = Ay,.,1, then itis an isosceles triangle, so we
havet..., = t;.,. We conclude that if the following criteria a)—d)
hold, the fuzzy AOE networkN" = (V, 4, T™), which is defined in
Properties 3 and 4, becomes the crisp AOE netwdiks (V, A, T),
which is defined in Section IlI-A.

1) For each activityv;, v;),if A, ;2 = Ay0;1, Which is defined

in (11), then

CP

2) For each event;, if Ag, ;2 = Agy,1, as defined in (13), then

Remark 4: An example to explain our approach for determining t*Evj = tpu;.
the appropriate values for those parameters to satisfy the conditions3) For each event;, if Ar,.2 = Ar,,1, as defined in (17), then

of Properties 3 and 4. Here we only consider the actiity, vs ).
Sincet,s v, = (1.5, 2, 2.7), we obtaim\y, g1 = 0.5 andA ;ve2 =

tre. = tho,.
7 J P . . .
4) For each activity(v;, v;), if @y,0;2 = we,0;1, as defined in

0.7 by simple subtraction. Property 3 states that the fuzzy numbers  (21), thenT7,.., = T.,.;.
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Consequently, we conclude that the fuzzy AOE networlSinceijp_lvj =to; _ v;, WE obtain the following condition for

»

N* = (V,A,T"), is an extension of the crisp AOE network,parameters
N = (VA T). _
e R Wy vi; 2 T Wuog vy 1
In addition, we let(v,, vj, ), (vy,vj5)s (v _,,v5. ), Where Tp=1e Jp—17p
0<m<n, jo = vy, andv,, = wv,, be the critical path in the =By, o2 = Doy w1, p=E1200me (30)
network N = (V,A,T). The processing times for each activityln summary, we conclude that if we hold (29) and (30), then by (6) of
on .the critical path are., ., , tvjlvjz‘/...,tujm_l% and they Property 3 and (3) of Property 4, the fuzzy critical path in a fuzzy AOE
satisfy ijp,lvjp = t‘,;jpil,,jp, p = 1,2,---,m, in (9). We network is the same as the critical path in a crisp AOE network.
make both sides of; ., oy vy, fuzzy, thus obtaining
ijpjl vy R T’jjp,lvjp- By Definition 6 we haved(TUjpilvjp ,01) REFERENCES
=d(t., Uiy 01). Then, from (11) and (21) we obtain [1] 1. Gazdik, “Fuzzy-network planning-FNET,IEEE Trans. Re). vol.
’ R-32, no. 3, pp. 304—-313, 1983.
[2] E. Horowitz, S. Sahni, and D. Meht&undamental of Data Structures
e, =t p=1,2,---,m. (29) in C++, New York: Freeman, 1995.
Yip—1"p Yip—1"ip’ T [3] A. Kaufmann and M. M. Guptalntroduction to Fuzzy Arithmetic,
Theory and ApplicationdNew York: Van Nostrand Reinhold, 1991.
Theref [4] S. H. Nasution, “Fuzzy critical path methodEEE Trans. Syst., Man.,
ereiore, Cybern, vol. 24, pp. 48-57, Jan. 1994.
[5] J.S. Yao and K. M. Wu, “Ranking Fuzzy numbers based on decompo-
To, v, + }I(wu. i 2= Wos  ws 1) sition principle and signed distancéstizzy Sets Systo be published.
Je—t P j”*l‘ r Je—tp [6] H.-J. Zimmermann,Fuzzy Set Theory and Its Applicatipn&nd
to, o T i(Bey oo = Aoy o)1) ed. Boston, MA: Kluwer, 1991.
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