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ISOLATED INVARIANT SETS AND ISOLATING BLOCKS
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C. CONLEYC) AND R. EASTON(2)

Introduction. The restricted three body problem has motivated a considerable
amount of research in ordinary differential equations; in this instance the moti-
vation comes from the nonplanar problem. However, the dimension, or even the
specific form of the equations, is not relevant to the things discussed and so an
easier problem is used here as an example.

Namely, consider given two bowls which are connected by a saddle-like trough
and the problem of describing how a point mass slides around in this double
bowl under the influence of gravity. Assuming the energy given the point mass is
enough that it can go from one bowl to the other, one easily guesses that there
are solutions which remain in the trough : if it were too close to either bowl the
point mass would fall into the nearer one; somewhere between extremes there
should be a way to place it so that it falls into neither.

In fact if the energy is such that there is no place the point mass can rest, one
might expect the existence of an unstable periodic orbit in the trough. In the planar
restricted three body problem this would correspond to one of the unstable
periodic orbits near the collinear Lagrangian point between the masses.

In the nonplanar problem it is not quite so easy to guess the analogue, but a
closer look leads one to expect that the role of the periodic orbit is played by a
three dimensional sphere of orbits in the five dimensional energy surface. R.
Sacker [13] has shown there is a smooth such invariant (composed of orbits)
three-sphere for each of an interval of values of the energy.

Again one expects the invariant set to be unstable : its existence is surmized on
the basis of the instability together with the fact that orbits can leave the vicinity
of the invariant set in two essentially different directions—they can fall towards
one or the other mass point.

This work concerns a general situation in which such heuristic reasoning can
be formalized, see also [6], [8] and [9]. In the intended applications the procedure
is to first find a region—like that between the bowls above—wherein one can guess
the existence of an invariant set. This region we have called an isolating block ;
it takes the form of a compact submanifold which has the same dimension as that
carrying the flow and which has the property that all orbits tangent to its boundary
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36 C. CONLEY AND R. EASTON [July

bounce off (in both time directions) to the outside. As demonstrated in a different
context by T. Wazewski [17] such a property implies that the mapping of the
isolating block to the set of outgoing points in the boundary (defined by carrying
points forward by the flow) is a strong deformation retraction. In the present
situation use is made of this retraction together with that from the block to the
set of incoming points defined by following the flow backward in time.

The phrase above that "there are two essentially different space directions
away from the set" is reflected in the way the sets of incoming and outgoing
points are situated in the boundary of the isolating block.

Using the latter information (rather homological relations between these subsets
of the boundary and the block itself) information concerning the cohomology of
the maximal invariant set inside the block is derived. In the example of the non-
planar restricted problem we would prove not that the invariant set is a sphere,
but that the third Cech cohomology of the invariant set is nontrivial.

The results are thus weak ; it is clear that this must be so since only properties of
the flow which can be seen at the boundary of the isolating block are used. However
gaining even such weak information can be a useful step towards an overall
qualitative picture of the flow. In [2] and [10] examples are considered wherein
the method gives some not immediately apparent information which aids in
picturing the total flow. The treatment is brief in these articles ; by combining the
present crude techniques with more analytical ones, more detailed results might be
proved. (Another example of a somewhat different use of an isolating block—
called submanifold convex to the flow there—is in [3].)

In addition to the invariant set in the isolating block, the set of those points of
the boundary which enter the block and never again leave is partially described in
terms of its cohomology. These points must tend to the invariant set since it is
maximal in the blocks, so contains all tu-limit sets in the block. Hence they are
termed asymptotic, as are those in the set of leaving points which have never
entered. As done in [4] and [5] for a very simple case one might discuss properties
of the flow which are consequences of the way the flow maps the set of outgoing
points to the incoming ones (both sets comprise surfaces of section). In particular
the homoclinic point theory of Poincaré and Birkhoff ([1], [14]) is likely to have
some analogue in certain cases.

One important aspect of the homoclinic point theory is that the conclusions
(in the nondegenerate situation) hold for nearby flows. This depends on the fact
that the invariant set as well as the asymptotic sets are stable under perturbation.
In the present situation this is replaced by the statement that the isolating block
is stable (Theorem 1.6). This does not imply the invariant set is; however those
properties of its which can be derived from boundary information alone must
also be properties of the invariant set inside the block for the perturbed flow.

We have called the maximal invariant set inside an isolating block "isolated"
(cf. [16]) because there is no other invariant set between it and a neighborhood
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1971] ISOLATED INVARIANT SETS AND ISOLATING BLOCKS 37

of it. Isolated from above might be better, but no use is made here of the com-
plementary notion. Given the isolating block, its interior is such a neighborhood
(orbits touching the boundary leave in one or the other or both directions so
cannot be in an invariant set inside the block).

The main theorem of this report is the converse statement (1.5); namely any
invariant set that is the maximal one in some neighborhood of itself is the maximal
one in some isolating block. This result together with the perturbation result
and the fact that the form of the block determines properties of the invariant
set indicate that a useful step in the qualitative analysis of flows might be to search
for isolated invariant sets.

We do not say much about the existence (in general) of isolated invariant sets;
later it will be shown that in the space of closed invariant sets with the Hausdorff
metric they correspond to sets which are both closed and open. Thus if they do
not exist, the space of closed invariant sets is a continuum. (A component in this
space corresponds to the notion of a quasi-isolated invariant set, namely one
which is the intersection of the isolated invariant sets containing it. This notion
will also be discussed later.)

Some statement concerning the setting should be given: We have discussed
smooth flows on manifolds, but it soon becomes clear that this setting is un-
natural to the topic. Much of the work (including the block theorem, 1:5, with
an appropriately modified definition) could be carried out for flows on compact
metric spaces. The perturbation theorem should then be proved with the compact-
open topology on flows. However the details are less transparent; convenient
use has been made of things like the duality theorem for manifolds and the stability
of the notion of a surface of section. Also proofs have been sketched which are
not quite so clear in the more general framework.

One result which does depend on the manifold setting is this: if the isolated
invariant set has finitely generated cohomology, then the asymptotic sets do also.
This follows because manifolds have finitely generated homology. (Most of the
significance of this theorem is revealed if one proves it directly for a rest point in
the plane isolated by a disk of which it is the center. If an orbit is tangent to the
boundary of the disk it must go away from the disk in both time directions—in
particular it cannot be a rest point. One sees that the set of points in the boundary
of the disk which enter and never come out again must have a finite number of
components.)

In §1 definitions are given and the two basic theorems are stated; the proofs are
deferred to §4 and §5. In §2 theorems are proved which show how properties of the
invariant set may be derived from those of the isolating block. In §3 some (rather
artificial) examples are discussed.

In §2 and §3 some elementary algebraic topology is used ; E. H. Spanier's book,
[15] has been our reference here. Since our main desire has been to see that results
of possible interest in differential equations might be obtained using the notion
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of isolating blocks, it was a great pleasure to find a book which makes available
in such lucid form all the theorems (and more) which we guessed might be used to
illustrate our point. In the future we hope to develop this aspect of the paper to the
point where it is something more than just elementary applications of well-known
theorems from algebraic topology; in any case Spanier's book has made the initial
stages of that job very pleasant.

1. Notation, definitions, and two basic theorems.
A. Standing notation. Let V denote a smooth (C) vector field on a smooth

manifold M and let R denote the real numbers. Then V defines a smooth flow on
M which we will denote <pv : M x P —> M. When V is understood, we let p ■ t
denote <pv(p, t) ; also for A c M and P<= R, A ■ T= {p ■ t \ p e A, t e T}.

An invariant set of <pv is a set 7<=M such that IR=I; generally we discuss only
closed invariant sets.

Other standing notation is as follows: R+ denotes the nonnegative reals, R~
the nonpositive ones ; for a, b e R, (a, b) denotes the open interval from a to b
and [a, b] the closed one; finally the closure and boundary of a set Sin a topological
space are denoted Cl (S) and dS respectively.

B. Isolated invariant sets.
1.1 Definition. An isolating neighborhood for the flow <pv on M is an open set

U^M such that pe dU impliespR$Cl (U).
Observe that since points of dU leave Cl (Í7), the maximal invariant set of <pv

in U must be closed and is also the maximal invariant set in Cl (U).
1.2. Definition. An invariant set I is called isolated if I is the maximal invariant

set in some isolating neighborhood U. In this case say U is an isolating neighborhood
ofl.

Observe that isolated invariant sets are closed, and that if U is an isolating
neighborhood of 7, then any open set between U and 7 is also. The word isolated
refers to the fact that there are no invariant sets between 7 and Cl (Í7).

As examples of isolated invariant sets we cite elementary orbits (critical points
and periodic solutions all of whose eigenvalues have modulus different from one)
and attracting and repelling sets. Note that an isolated critical point is not necessarily
isolated as an invariant set; in fact in two dimensions, those that are must have
index less than or equal to one. A somewhat less simple example arises in the
study of nondegenerate homoclinic points [1], [14], In the latter reference, S. Smale
shows that the mapping associated with such points admits an invariant Cantor
set, C, on which it is equivalent to the shift automorphism. In terms of the flow,
this invariant set corresponds to the product of C with an interval where the ends
are identified by the shift; this "Cantor cylinder" of orbits is an isolated invariant
set. Other examples are given later.

C. Isolating blocks. An isolating block for the flow <pv on M is a compact sub-
manifold (with boundary) of M with the same dimension as M and such that the
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vector field V behaves suitably on the boundary, in particular the interior is an
isolating neighborhood.

1.3. Definition (Notation). Let N<=-M be a smooth compact submanifold
(with boundary) of M with dim ,/V = dim M, and let dN=n. Define

n+ = {p en \ 3e > 0 with p-(-e, 0)nJV= 0},
«" = {p e « | 3e > 0 with p(0,e)r\N= 0},

T = {p e « | V is tangent to n at p}.

In general n + , n~ and t might be variously related but their union must always
be n : points of n+ leave TV going backwards, those in « ~ leave « going forwards
and the remainder must be in t. We are interested in the case where «+ n n~ =r;
in particular all points of n = dN leave N in one or the other direction—both for r
—so that the interior of N is an isolating neighborhood for <pv.

With one technical requirement we have the definition of an isolating block:
1.4 Definition. With the notation of 1.3, N is an isolating block for <pr if

n+ (~\n~ =t, and if t is a smooth submanifold of n with codimension one and (as a
consequence) n+ and n ' are submanifolds with common boundary t.

D. Statements of the two basic theorems. We have seen that the interior of an
isolating block is an isolating neighborhood and so determines an isolated in-
variant set—possibly empty. The first theorem states that any isolated invariant
set can be determined in this manner. The proof, consisting of a construction of the
block, is given in §5. The second theorem states that isolating blocks are "stable";
this proof is sketched in §4. For contrast we also state (and sketch the proof of)
a theorem concerning the stability of isolating neighborhoods. This latter theorem
contrasts with that for the blocks in that it allows no conclusion to be made
concerning the stability of the invariant set while that for the blocks does as we will
see in §2.

1.5 Theorem. 7 is an isolated invariant set if and only if it is the maximal invariant
set in some isolating block.

1.6 Theorem. Let <pv admit an isolating block N. Then there is a neighborhood
v of V in the C° topology on vector fields such that for any (smooth) We v, the flow
cpw admits an isolating block Ñ diffeomorphic to N in such a way as to map «+ to
n + , ñ~ to n~ and f to t. (In fact the diffeomorphism is the restriction of an auto-
diffeomorphism of M.)

The third theorem fits a more general setting:

1.7 Theorem. Let U be an isolating neighborhood for a (continuous) flow
?>: XxR-+ X on the compact metric space X(cf. 1.1).

Then there is a neighborhood 3> of <p in the compact open topology such that U
is an isolating neighborhood for all flows ¡ft in <1>.
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The proof of this theorem follows directly from the definition of an isolating
neighborhood, the definition of the compact open topology, and the compactness
of 8U. Thus each point p of 8U admits a compact neighborhood C„ which is
carried outside of Cl (U) in finite time tv. Furthermore a finite number, say
CPl, ...,CPn of these neighborhoods cover 8U. The neighborhood 4> is that
determined by the 2« compact sets CP!x{0} and Cp¡x{tp¡} (in XxR) and open
sets WPt and WPi (in X) such that rVp¡=>tp(CPt, 0) and Wpp<p(Cp., tp) and where
the WPl do not meet Cl (U).

The relative strength of the block theorem compared to the neighborhood
theorem is illustrated in the next section where we discuss properties of the isolated
invariant set in a block which are determined solely from the behavior of V on
the boundary of the block. It is clear that 1.6 implies these properties are "stable"
whereas 1.7 does not.

2. Cohomology of the isolated invariant set and the asymptotic sets determined by
the isolating block.

A. The asymptotic sets.
2.1 Definition. Let N be an isolating block for <pv. Define

A+ = {peN\p-R+ c N},       A~ = {peN\p-R~ <= N},
I=A+nA~, A = A+^>A-,

a+ = n n A+ = n+ n A +,        a~ = n n A' = n~ n A~.

A simple example (a hyperbolic critical point in the plane) of an isolating block
is drawn in Figure 1. The disk is N, and t consists of the four distinguished points
of the circle, n, through which pieces of tangent orbits have been drawn. The set

Figure 1
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«+ consists of the top and bottom arcs of n, n~ those on the sides. The sets A*
and A ~ are (respectively) the vertical and horizontal straight line segments in N
and their intersection, the critical point, is 7. Finally a+ consists of the endpoints
of A+ in «, a' those of A'.

An immediate consequence of the definitions (1.3, 1.4, 2.1) is

2.2 Corollary. A + , A~, I, a+ anda~ are compact sets and the latter three are
contained in the interior of N, «+ and n~ respectively.

B. Deformation retractions defined by the flow. Lemma 2.4 below is the essential
consequence of the fact that N is an isolating block and enables us to derive prop-
erties of 7, a+ and a~ from those of N, « + , «" and r. (Recall that R+ and 7?~
contain 0.)

2.3 Definitions. Define functions a + and <j~ from Nto the extendedrealnumbers
({ — oo} u R u { + 00} with the topology of the closed interval) by

a+(p) = sup {t e R+ I p- [0, t] n «- = 0},
<j-(p) = mï{teR~ \p-[t, 0] n«+ = 0}.

Also define r+: (N-A+)x[0, 1\->N-A + and r~: (N-A')x[0, l]^N-A~
by

r + (p, t) = p-(t-o+(p)),        r-(p, t) = p(ta-(p)).

Observe that if cr+(p) is finite—namely if peN—A+—then p-a + (p)-t is in
N—A+ so r+ is well defined. Similarly, r~ is well defined.

Because N is an isolating block we have:

2.4 Lemma. The functions a + , a', r + , and r~ are continuous and the latter two
are strong deformation retractions.

Proof. The statement concerning r+ follows from the continuity of a+ on ob-
serving that or+l«" is identically zero (points of «" leave N as time increases);
r" is treated similarly.

To prove a+ is continuous we first observe that, when finite, o+(p) is the first
nonnegative time that the orbit through p leaves N (with increasing time) : it is
certainly the first time the orbit meets «", and once meeting «"it must leave N;
furthermore, orbits must leave N through «" so it cannot have left earlier. In
particular there is a positive e such that p(o-+(p), a+(p) + e) n ./V= 0. Thus if
Çn->P, an-(v+(p) + e) is eventually outside N. It follows that limsupa + (^n)
= CT+(/0 + e ar>d since e is arbitrary, <r+ is upper semicontinuous. Also, except in
the case when p is in t, the orbit segment p[e, a+(p) — e] is interior to N for
e > 0. The same must then be eventually true for any sequence qn -> p. Consequently
liminfo + (qn)to+(p) — e and a+ is lower semicontinuous at p. Finally, since
a+ ^0, and 0 on t, it is lower semicontinuous on t, hence everywhere. Thus a+
is continuous. The similar argument proves a" is continuous and Lemma 2.4
follows.
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An immediate consequence is:

2.5 Corollary. (1) n+ and n' are strong deformation retracts of N—A~ and
N-A+ respectively;

(2) n+ — a+ andn' —a~ are both strong deformation retracts of N—A;
(3) /■"(•, 1): n+ — a+ ->n" — a~ and r + (-, 1): n~ —a~ ->n+ —a+ are homeo-

morphisms inverse to each other, they are the maps defined in the natural way by
the flow.

Another result we rely on in the next paragraph is the following :

2.6 Lemma. The inclusion map (N—A,n — a)^-(N—I,n) induces isomorphism
on singular homology, while the inclusion I —>■ A induces isomorphism on Cech
cohomology.

Both statements follow if it can be shown that in any neighborhood of 7 a strong
deformation retract of A can be found, so we begin with that.

Let At = A+ -t u A~ •( —0- Since the set f)i>o^ is an invariant set in N it
must be contained in 7; hence, since it contains 7, it is equal to 7. Thus (by compact-
ness) if U is a neighborhood of 7, At is eventually in U. Furthermore, it is clear
that for any a>0, C\(A-Aa) is homeomorphic to (a+ Ud")x[0,a] by the map
(p, t) -^p-t. The strong deformation retraction A to A„ can be defined in an
obvious way using that from (a+ u a~) x [0, a] to (a+ u a') x{a}.

Now each inclusion Aa^-At (t<a) induces isomorphisms on the cohomology
map while the direct limit of the inclusion induced homomorphisms 7î*(7) -4-
H*(Aa) is an isomorphism [15, Theorem 6, p. 318 with Corollary 8, p. 334]; it
follows that each one is an isomorphism.

Finally an excision(3) shows that the inclusion (N—A,n — a)^-(N—Aa,n)
(ct>0) induces isomorphism on singular homology and since A„ can be pulled
into any neighborhood of 7 the inclusion to (N-I, n) follows.

C The cohomology ofa± and I determined by the isolating block. In this paragraph
and the sequel we will always assume manifolds have orientations over the coefficient
ring used.

This paragraph contains proofs of three theorems which illustrate that some
properties of the asymptotic and invariant sets are determined by the form of the
isolating block. These are rather weak theorems—namely the conclusions only
involve statements about cohomology groups—but it is clear that not much
more could be expected in view of the weak hypothesis. Even the cohomology groups
are far from determined and it can be seen from Figure 1, say, that this will always
be the case. With reference to that figure, we are only assuming that properties of
V on the bounding circle are given—clearly the inside can be filled in a countless
number of different ways. A sensible question, which we will not treat, asks what

(3) This argument, as well as most of the later ones involving excisions, makes use of a
collar on the boundary (of N in this case).
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properties of the invariant set are "generic" (in an appropriate topology). We do
give one theorem (2.12) concerning the amount of additional information needed
to determine the cohomology of 7; it may be mildly interesting to know that
knowledge of a+ and a~ (i.e. complete boundary information) is not enough.

We begin by observing that any flow admitting an isolating block such as that
in Figure 1 must have a nontrivial invariant set inside. This follows from 2.5;
namely, if 7 (hence A) were empty, n+ would be a strong deformation retraction
of N—which it is not. (Poincaré's formula for computing the index of a vector
field on a circle does more in that it shows the invariant set contains a critical
point; on the other hand, it says nothing about the asymptotic set.)

Of course nontriviality of HJ^N, «+) or H*(N, n') must always imply that of
the invariant set; Theorem 2.8 is the relevant result. Before doing the theorem we
state a lemma of which we make frequent use.

2.7 Lemma. Let 77* be singular homology and H* be Cech cohomology and let
i/=dim M=dim N:

Hp(n±, n* -a*) « ñi-"-1(a±)   and   HP(N, N-I) X Hd-"(I).

Proof. This follows from the general duality theorem [15, Theorem 17, p. 296].

2.8 Theorem. There exists a commutative diagram as displayed below wherein the
rows are exact and the vertical maps are induced by inclusions. (All homomorphisms
marked 8 lower degree by one.)

H*(N, «)
8

-#.(«", t)- H*(N,n+)

—► H*(N, N-I) —> H*(n-, «- -a~) —► H*(N, «+)

A similar result, obtained by interchanging + and — signs, is true.

Note that it is the bottom row which shows the affect of H*(N, n+) on H*(I)
and H*(a~).

Proof. The first two columns are portions of the exact sequences for the triples
(N, N—I,ri) and («",«" —a~, t). The bottom two rows are derived from the
exact sequences for the triples (N, n, t) and (TV, TV —7, n+) on replacing 77*(«, n+)
and HJ^N—I, n+) by 77*(n~, t) and H*(n~, «" —a~) which is justified as follows:

The diagram below consists of chain maps induced by inclusions:

(n,n + ) (n~, r)

(N-I,n+)->(N-I,N-A-)^(N-A\N-A)^(n-,n--a-).
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Observe that going from («", t) to (N—I, N—A~) by either possible route gives
the same result. Furthermore the top horizontal map induces an isomorphism on
homology by excision, the first bottom horizontal map induces isomorphism by
2.5, the second by excision and the last by 2.5 again. From these arguments we
now can verify the diagram.

From the bottom row in 2.8 and 2.7 one sees that each cycle in H%(N, n+)
corresponds either to a (class of) cocycles in H*(a+) or a cocycle in H*(I). Using
the two rows one sees that those in the image of H*(n~, r) must be of the first sort;
however, the others cannot be classified in general (cf. Example 3.3 in §3A).

It is also of interest to find cycles in H%(n~, t) which go nontrivially to
77^(«~, n~ —a~) under the inclusion—carriers of these must meet a~. With this
in mind we state the following corollary of 2.8.

2.9 Corollary. Let
a: H*(n~, t) -> H*(N, n+),       a: H^n', n~ -a~) -> H*(N, n+)

andß: H^(n~, t) —>- 77*(n~, n~ —a~) be the homomorphisms in 2.8. Then ß induces
the following injection:

0 -> H*(n~, r)/ker a —>- H*(n~, n~ — a~)/ker a.

A similar statement, obtained on interchanging + and — signs, holds.
The proof just uses the diagram of 2.8.
As an example we may take the isolating block of Figure 1. Here either of the

arcs making up n" carry a cycle in H^(n~, t) which goes nontrivially to H*(N, n+),
hence nontrivially to 77*(«", n' —a~). Thus these arcs must meet a" no matter
how one fills in the flow.

Theorem 2.8 (and 2.9) give some specific information about a+, but not much
about 7 itself. In the theorem below, we make use of the duality isomorphism
for manifolds given by taking the slant product with an orientation cocycle.
Theorems 17 (p. 289) and 1 (p. 287) of [15] can be applied directly to the double
of the manifold (with boundary) v appearing in the statement of 2.10; the latter
follows on using the appropriate excisions:

2.10 Theorem. Let v be a submanifold of n* with boundary 8v and with a+ n v
interior to v.

The diagram below, in which the two vertical isomorphisms follow from the
duality theorem and the other maps are induced by inclusion, is commutative:

Hp(v, dv)-> Hp(v, v — vna+)

Y

Tí"-1-"^)-     -^Pd-1-p(nna+)

Hd-i-Pftf)->Hd-1-"(A) <   ~     H"-1-^!).
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7« particular, a sufficient condition that a cocycle of H*(N) goes nontrivially to
H*(I) under the inclusion I—> N is that its image in Hp(v, 8v) goes nontrivially to
Hp(v, v-v n a+).

The statement obtained by interchanging + and — signs also holds.

As an application we can again consider Figure 1. We have seen that the top
arc (say) in «+ carries a cocycle in H1(n + , t) which goes nontrivially to 77^«+ ,
«+ — a+) hence it must meet a + . With v equal to this component of n+ we see that
the dual cocycle of the generator of Hy(v, 8v) is the image of the generator of
H°(N) which must therefore go nontrivially to H°(I).

A third theorem which again gives information on 77*(7), this time via the
cohomology H*(N, N—I), makes use of 2.5 together with the cup product:

2.11 Theorem. Any cocycle y e H*(N,n) which is the (cup) product of cycles
a e H*(N, n+) and ß e H*(N, «") comes from a cocycle in H*(N, N—I) under the
inclusion (N, n) -*■ (N, N—I).

This is a direct consequence of 2.5 together with properties of cup products
(statement 8, p. 251 of [15]). Namely, the inclusions (N, «+)->(/V, N—A~) and
(N, n~) -> (N, N—A+) induce cohomology isomorphisms—thus a andß are images
of cocycles a1 and ß1 in H*(N, N—A~) and H*(N, N—A+) respectively and y
is then the image of a1 u ß1 in H*(N, N-A+ u N-A~) = H*(N, N-I).

In keeping with tradition, the isolating block of Figure 1 serves as an example:
we consider (N,n) to be the product (J + ,J+)x(J~,J~) where J* is the unit
interval, J* the boundary, and where J+ xj~ corresponds to t. Then the generators
oîH1(J±,J±) correspond (via the projections) to those of H1(N, n+) and H^N, «")
and their cross product to the cup product of the latter as well as to the generator
of H2(N, n) (p. 251, Theorem 7 of [15]).

As remarked already, 77*(7) is far from determined by the isolating block.
One might ask what additional information is needed. Example 3.3 of the next

2a 2b
Figure 2. The block N is a disk with a handle; A is shaded in both figures. Recall that A and /
have the same cohomology.
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section shows it is not enough to know a+ and a', and indicates (Figure 3) that the
way cycles in n+— a+ are carried to n~ —a' might be important since Figures
3a and 3b differ in this respect.

However, even if the homeomorphism from n+— a+ to n~—a' is known,
77*(7) is not determined as the pictures below show (Figure 2). In the first picture
7 has one component, in the second, two. In this case the map from H*(ri) —> H*(N)
is not surjective, thus not all of the homology of N is seen from the boundary.

The following theorem rules out such situations:

2.12 Theorem. Let H*(N) -*■ H^N, n) be trivial and assume a+ and a~ as well
as the isomorphism H*(n+ —a+)±> H*(n~ —a~), defined by the flow, are known.

Then the rank of 77*(7) is determined.

For the proof take coefficients in a field. In view of the first hypothesis, the exact
sequence for the pair (N, TV—7) breaks up into short exact sequences:

HP(N, n)

y N.
■-* Hr+1(N) -9- 77p+1(/V,/V-7) -2-   HP(N-I) -> HP(N) -5- .

Thus dim HP + 1(N, N— 7) = dim HP(N—I) — dim HP(N) and we have only to
compute dim HP(N—I) which is done using the Meyer Vietoris Sequence:

A* H^N-A) -U H*(N-A+) © H*(N-A-) —► 77*(/V-7) A>.

Since (2.5), H*(N-A)xH*(n+ -a+); H*(N-A+)xH*(n-) and H^(N-A~)
xH#(n + ), the first two groups in the portion of the sequence shown are known.
Now let i* denote the (two) inclusion induced homomorphisms from

H£n* -«*)■-* #*(»*).

It is then easy to see that i (in the sequence) is equivalent to

j: H*(n+-a+) -> 77*(«") © 77*(«+)

where j= i~ °<p©( — i+). Hence <p is given by hypothesis, as are i+ and i~.
Thus kernel i is known and dim H*(N—I) is determined.

We leave this aspect of the paper with the remark that the above collection of
theorems is not meant to be complete. We hope those given (with the examples
in §3) suffice to illustrate the point intended ; namely, that properties of 7 follow
from properties of the block.

3. Some examples. The examples here are artificial ; we aim to show later that
combinations of these methods with more analytical ones can lead to more inter-
esting results.
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A. Solid tori as isolating blocks. Consider the solid torus as the product of a
disk with polar coordinates {(/•, 6) : O^rS 1} and a circle with (angular)
coordinate <\>.

3.1 Example. Let t consists of the four circles {r=l, Q=k-n\2, k=0, 1, 2, 3}
—thus we might be describing an isolating block about a hyperbolic periodic orbit
(the "product" of Figure 1 and a circle). The sets n+ and n~ then each consist of
two annuli. Fixing on one component of « + , say v, we see that any arc in this
component which connects the two bounding circles carries a cycle in Hx(n + , t)
which is not in the range of H2(N, n) and so (by 2.9) is carried nontrivially to
/7j(«+, «+ — a+). This implies H\v n a+)# 0, and more geometrically that any
arc connecting the two boundary components ofv meets a+.

Under the duality map this cycle (now viewed in 771(t>, 8v)) goes to the generator
of H\v) and this latter is the image ofthat of H\N). By 2.10 H\N) maps non-
trivially to H\I). Thus I contains a "Cech circle" going about the hole in the solid
torus—as would be expected.

Theorem 2.11 could also be made to apply in this case; the argument is given
somewhat more generally in 3.5.

3.2 Example. We might give Example 2.13 a twist by letting the tangency set,
t, consists of the two circles defined by (/•= 1 and) 0 = ^/2 and 0 = -rr/2 + ^/2 (where <p
runs from 0 to 47r to complete the circle). Here «+ and «" each consist of one
annulus running twice around the solid torus. Again the generator, a, of 77^«+ , t)
is not in the image of H2(N, n) (even though 2a is—use integer coefficients) and so
H\a+) is nontrivial. This time the dual, a' e H1(n+), of a is not in the image of
H^N) however 2a is, and since a goes nontrivially to a + , 2a! must also (Hx(a+)
must be torsion free in this case). Thus the generator of H1(N) goes again non-
trivially to HX(I) and I runs around the solid torus.

3.3 Example. A somewhat different phenomenon is illustrated by letting the
tangency set consist of the two circles </i = 0 and </' = 7r. Again «+ and «" each
consists of an annulus, but the maps from H1(N)-> H1(n±) are trivial. Still the
generator of H1(n + , t) is not in the range of H2(N, n) so that 771(« + , «+ — a+)
x,H\a+) is not trivial and in particular: the map Hx(n+) -> H1(a+) is infective—
geometrically, a+ and a~ contain "Cech circles" which do not bound in n+ and n~
respectively (see Figure 3).

In this case H\I) may or may not be trivial; Figure 3a shows a situation where /
consists of the center line of the solid torus (r = 0), together with two degenerate
rest points, while in Figure 3b I consists solely of two hyperbolic critical points
which lie on the center line. The same critical points appear in 3a, but in that ex-
ample the one dimensional unstable manifold of one connects to the one dimen-
sional stable manifold of the other. Taking this unstable situation into account
as well as the degeneracy of the two other critical points in 3a, one sees that the
flow in 3b can be obtained by an arbitrarily small perturbation of that in 3a.
Our theorems cannot distinguish these situations of course; however, we can prove
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3a 3b
Figure 3. The block N is a solid torus. In 3a / consists of a circle and two degenerate critical
points. In 3b / contains just two nondegenerate critical points. The sets a+ and a~ are the
same in both pictures; each contains a circle and two points.

that if Hl(I)x H^N, N—I)xO, then a+ cannot be connected. (Otherwise it could
be—just eliminate the two degenerate critical points in 3a.) (The example is as
given to illustrate the necessity of the hypothesis in 2.12 that 93 be known.) To see
the statement, consider the two sequences :

-► 772(« + , t)-> H2(n + , n+-a+)

-^> 77j(«+ -a + , r) —> 77i(n + , t)_► 77j(n + , n+ -a+)

-A. H2(N-I, n)-> H2(N, n)-> H2(N, N-I)->.

lfa+ is connected, the first map in the top row is surjective; in any case, the last
is injective (as we have shown already). Hence, 771(n+— a + , T)xH2(N—I,n)xO.
Then since H2(N, n) is not trivial and injects to H2(N, N—I) we see that
773"2(7)#0.

Theorem 2.11 might also be applied here: dt represents a cocycle in H\N, «"),
say, and drhdd a cocycle in H2(N,n+); their cup product is represented by
dr Add A d>p and so is the generator of H3(N, n).

B. Hyperbolic situations.
3.4 Example. Not all isolated critical points are isolated as invariant sets, the

elementary ones are however (among others). The typical situation might be
described by the equations:

x = -x,      y = +y,

where x and y are respectively/?- and ^-dimensional (real) vectors.
For N it is convenient (solely for our description below) to take the set of points

in p+q space where ||x|| á 1 and || j|| ^ 1. We will neglect the easily circumvented
problem that n is only piecewise smooth. If we let 7?p={||x| á \}<^p-àim space and
5«={||j|[^l}c9-dim space, we easily check that n+=B*xBq, n-=BqxBp and
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t = BvxÈ". Furthermore orbits through t leave N=B"xBq in both directions so
(except for the technicality) N is an isolating block. Furthermore

(N,ri) = (Bp,Èp)x(Bq,Bq);

thus if y generates Hp+q(N,n), and a' and ß' (resp.) generate HP(BP, Bp) and
77"(73", B") then y = a xß'. Also under the homomorphisms induced by the pro-
jections, a and ß' go respectively to the generators a and ß of HP(N, «") and
Hq(N,n+) so that y = aUß. Thus Hp + q(N,n) injects to Hp + q(N,N-I) and
#°(7V) injects to 7f°(7) (2.11).

Theorem 2.9 also applies and we conclude that Hp(n + , t) and Hq(n~, t) inject
to H„(n + ,n+ —a+) and Hq(n~,n~ —a~); or using duality the groups 77,"1(«+)
and 77p_1(«~) inject to H"'1(a+) and Hp~1(a~) respectively. In other words, I
is not empty and the asymptotic sets include what one expects (maybe more of
course).

3.5 Example. The previous example is a little more interesting if one takes the
cross product with a compact manifold m (without boundary). Then we can
represent:

N=BpxBqxm, n = (BpxB")- xm,
n+=BpxBqxm,n-=BpxBqxm,
T = BpxB9xm.
With a, ß and y as in 2.16, we can represent:
H*(N, «) as y ® H*(m),
H*(N, n+) as a ® H*(m),
H*(N, n~) as ß ® H*(m).
Then each element in H*(N, n) is a cup product—schematically a ® H*(m)

u j8 (g) H*(m) = y ® H*(m). Theorem 2.11 then applies and shows with a little
additional argument that H*(N) injects to 77*(7)—thus: Tvo matter how the
flow is filled in, the cohomology of m is represented in I.

3.6 Example. The above situation occurs naturally in Hamiltonian systems of
differential equations. Let x and y be (real) /^-vectors, and z be a complex ^-vector
and let H(x, y, z, z) = 2 xtJi + 2 zÂù tne equations are to be given by:

x = x,       y = —y,       z = iz.

In the integral surface 77= 1, the 2q— 1 sphere \z\ = 1 is invariant and plays the
role of m. The isolating block N is homeomorphic to BpxBpx S2q 'l. The previous
example can be applied to show a similar invariant set lies in the energy surface
under small perturbations of the Hamiltonian function. A somewhat different
method for this situation is given in [7]. Better theorems are available for this
problem [11], [12], [13].

C. Critical points which are isolated as invariant sets.
3.7 Example. Assume that some critical point of a flow on a ¿/-dimensional

manifold is isolated as an invariant set and that the isolating block is a ball.
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From the sequence for the triple (N, n, n+) (with the appropriate excision, 2.8)
we see that the inclusion (n + , r)->(N,n~) induces homology isomorphisms in
all but dimension d— 1 ; furthermore the homeomorphism

77d_1(n + ,r)->77(i_1(/V,«-)

is surjective with kernel generated by the fundamental cycle of (n + , t). It follows
that the inclusion induced homomorphism 77*(n + , r)^-H^(n + , n+ — a+) is in-
jective except for the possibility that this fundamental cycle goes to zero.

If 7 is not empty (we have assumed a critical point, but want also to consider
nearby flows) then Hd(N-I, n)»7f(i_1(n+ -a + , t)s0 so that 77*(« + , t)->
77*(h + , n+ — a+) must be injective with no qualification.

Finally if 7 consists only of the critical point (the unperturbed situation again)
then Hit(N,N-I)ÍHif(n+-a+,r) = 0 and so H*(n + , r)xH*(n + , n+-a+) and
H*(a+)xH*(n+)—the cohomology of the asymptotic set and the way it sits in
n+ as described by the inclusion induced cohomology map is thus determined.
(However one may imagine n + to be a cube with a knotted hole—it becomes more
clear that the cohomology information is weak.)

Consider for example a case where the index of the critical point is zero. Then
nearby flows may have no critical points (in fact there must be nearby flows
which do not) but if H*(N, n+) is not trivial (hence 7/0) then 77*(w + , t) must
still inject to 7/*(« + , n+ —a+) under perturbation.

Such a situation can occur (index zero, and H*(N, n+)^0) as we can see from
the following formula for the index of the field on n. Fix an orientation of n and
(the coherent orientation of) n+. Let p en~ and replace n by the (Euclidean)
space n — {p). Let t be considered as the chain 8n + . Then the index is 1 — g% where
g% is the degree of the Gauss map of t—namely each point of t is mapped to its
unit outward (from n+) normal considered as a point of the unit sphere in Euclidean
space. In particular, if d (hence c/-2 = dim t) is even, g, = i^ where 3Tt is the Euler
characteristic of r. The above formula reduces to Poincaré's formula for the index
of a vector field on a circle in two dimensions. In particular, the above formula
(or Poincaré's) implies that any critical point in two dimensions which is isolated
as an invariant set must have index less than or equal to one. This is not true in
dimensions greater than two as is shown by easily constructed examples. (It is
true again in even dimensions if r is composed of spheres—but not in odd dimen-
sions.)

An example in three dimensional space of a critical point isolated as an invariant
set and with index zero is drawn in Figure 4. Next to it is a nearby flow which is
nonsingular—the critical point has mutated to a periodic orbit. The first figure is
to be rotated about the vertical line of asymptotic orbits; the second, in which this
vertical line changes to a cylinder, is to be rotated about the dotted line (the center
line of the cylinder). It is interesting that the second situation is the "stable" one,
our theorems give no indication of this.
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Figure 4

Other situations (which arise more naturally) wherein isolating blocks give some
preliminary information include degenerate critical points of Hamiltonian systems
[2], [10] and systems where the Hamiltonian is of the form (y, y)— V(x) with V
a polynomial. (The isolating blocks are generally found near infinity where the
highest order term dominates—the conclusions concern the set of bounded orbits.
Combined with more analytical methods one might hope to get reasonably
interesting results.)

4. An alternate description of isolating blocks; proof of 1.6. The results of this
section will be used to prove 1.5 and 1.6; the latter proof is sketched in this section
the former given in detail in the next.

A. Local surfaces of section.
4.1 Definition. A local surface of section, S, for <pv will mean a smooth open

submanifold of M with codimension one and such that V is never tangent to S.
Thus, if A^ is an isolating block, the interiors of «+ and «" are local surfaces of

section (1.3 and 1.4). We omit the proof of the following easy corollary:

4.2 Corollary. Let S be a local surface of section for <pv and let S'<=S be an
open submanifold of S with the same dimension and with compact closure in S.

Then there is an e>0 and a neighborhood vofV in the C° topology such that S'
is a local surface section for all Wev, and furthermore the mapping

fw: S'x(-e,e)^-M

defined byfw(p, t) = <Pw(p, 0 is a homeomorphism for all (smooth) Wev.

4.3 Definition (cf. 2.3). Let S+ and £_ be disjoint local surfaces of section for
for <pv and define a from S+ to the extended reals by

a(p) = sup{ie7*+ \p-[0,t]r\S- = 0}.
Also, let D (or D(V) if more vector fields are being considered) be that subset

ofS+ such that pa(p) e 5_. (In particular, a(p) is finite; however this is not equiva-
lent.) Further, let DC(V) be the subset of D(V) where o- is continuous.
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Finally let ttv: D(V) -> 5_ be given by Trv(p)=po(p).

4.4 Corollary. D and Dc are open and o is upper semicontinuous on D; also
D — Dc consists of exactly those points p of D for which there is a t such that
0<:t<o{p)andp-teC\<SJ)-S-.

The proof that D is open and a is upper semicontinuous is similar to that sketched
in 2.6. (Here, one might use continuity in initial conditions with 4.2 to see that if
p is carried to £_ then a neighborhood, in S+ or in M, oip is also.)

If p is a point of discontinuity of a then there is a sequence pn-+p for which
lim v(pn) ^ a(p) hence lim a(pn) < a(p). If the limit is t, then (compactness) pt
must be in Cl (S. ) but not in S_. On the other hand, if p ■ t e Cl (S _ ) with t < a(p) < oo,
there must be points close to p ■ t in S_ ; hence (using S+ as a local surface of section
and in particular 4.2) points in S+ near p which meet S_ in times close to t. It
follows that p must be a point of discontinuity of a. That Dc is open now follows :
if an orbit segment from U to 5_ misses Cl (5_) — 5_ (closed since 5_ is an open
submanifold) then nearby orbit segments must also.

4.5 Lemma. Let S+ and S_ be disjoint local surfaces of section for <pr and let
F be a compact set in DC(V). Let S'+ and S'_ be local surfaces of sections whose
closures are contained in S+  and S-  respectively, and such that F^S'+  and
TTy(F)<=S'-.

Then there is a neighborhood v of V in the C° topology such that for (smooth)
Wev, S'+ and 5!_ are local surfaces of section and Fc DC(W).

By 4.2 S'+ and 5"_ are local surfaces of section of w if v is small enough. The
main point of the proof is that given r(>0), IF close to F implies <pw(p, t) close to
<Pv(p, t) for -TfktúT. Choosing T bigger than the upper bound of a on F, one
sees (4.2 again) that (for small enough v) p is carried by W to 51 in time close to
ov(p) and that the orbit segment cannot meet Cl (SL)-S'-.

4.6 Corollary. Let Seg (F, irv(F)) denote the union of the orbit segments
<p(P, [0, <?(p)]), where p e F.

If Seg (F, ttv(F)) meets F only in initial points of the orbit segments then ttv\F
is a homeomorphism and Seg (7% nv(F))xFxJ where J denotes the unit interval.

The corresponding statement holds in some C° neighborhood of V (for smooth
flows).

Proof. The hypotheses imply that nv is one-one, and (since o is continuous)
the inverse of ttv is continuous. Also the perturbed orbit segments must again
miss F (excepting initial points) if W is close enough to V.

The following lemma allows us to replace the notion of an isolating block with a
technically more complicated one which is a little easier to work with in the
proofs:
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4.7 Lemma. Let S+ and 5_ be disjoint local surfaces of section and let ñ+<=S+
be a compact submanifold with the same dimension as S+ and with boundary f.
Assume also that fc Dc, that T= Seg (f, tt(t ))sí fxJ and that tt(t) bounds a compact
submanifold « "" <= S_.

Finally, assume that « = /î+u7,u«" is a (piecewise smooth) manifold which
bounds (in M) a submanifold N. (That « is a piecewise smooth manifold implies
Seg (f, 7r(f )) meets « + only in f.) And that ñ* (resp. ñ~) constitutes the set of incoming
(resp. outgoing) points of Ñ.

Then there is an isolating block N containing N with the property that ñ+<=« +
and «~<^n~. Furthermore, r is a deformation of T, and « + , «" and N are strong
deformation retractions of N.

In particular, defining asymptotic and invariant sets of Ñ as in Definition 2.1,
these sets are the same as those for N.

To construct TV one uses a collar C of the boundary f of «+ which is outside of
«+ and contained in Dc; N is obtained by "rounding off the corners" as indicated
in Figure 5.

Figure 5

B. Proof of Theorem 1.6. To prove 1.6, select «+cw + so that 8ñ+ r\ a+= 0
and Cl(«+—ñ+) is a collar on «+ which does not meet ¿z + . Then 8ñ+ satisfies
the conditions of 4.5 and 4.6 with S+ and SL the interiors of «+ and «" respectively.
These are applied with S'+ and S'_ being neighborhoods of «+ and «" obtained
by adding that half of the relevant collar adjacent to «+ or «".

Now the conditions of 4.7 are satisfied by n+ and 8ñ+ =f for V and it is clear
how to show they are satisfied for nearby flows. The proof is completed by applying
4.7.

5. The construction of an isolating block for an isolated invariant set. Given an
isolated invariant set I and an isolating neighborhood U, our aim is to construct
an isolating block for 7 which lies in U (1.1, 1.2, 1.3, 1.4). We do this by first
constructing local surfaces of section for the asymptotic orbits in U (5.1) and then
applying Lemma 4.7.
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In A a neighborhood of the asymptotic orbits (not in 7) is constructed and a
quotient space (identifying orbit components to points) is defined. In B the quotient
space is shown to be a (Hausdorff) manifold. In C the neighborhood is shown to
be a fibre bundle over the quotient space with fibre homeomorphic to the real
line. This provides sections which are somewhat modified in D. In E Lemma 4.7
is shown to apply and the proof is completed.

A. A neighborhood, E, of the asymptotic orbits. With 7 and f/as above:
5.1 Definition. Let A + ={p\pR+<=U}, A'={p\p-R-<=U}, At = A+-tu

A'.(-t).
Note that A + and A ' are compact sets with intersection 7, and that the sets At

are compact and decrease with increasing t.

5.2 Lemma. Given an open set W=>I, there exists a real number p(W)>0 such
that for all t > P( W), At<= W.

Proof. fli>o At is an invariant set in U, hence in 7 (it must equal 7 in fact).
The lemma follows from the compactness of M and 7.

5.3 Lemma. Let W be an open set about I with Cl (W)<^U and let p = p(W)
(5.2). Then for each p e Cl (U) r\ A+ — Cl (W) there is a local surface of section
(4.1) Dp containing p and satisfying:

(1) Cl (Dp)n W=0.
(2) Cl (Dp) x [0, 3p] is homeomorphic to Cl (Dv) ■ [0, 3p] under the map (p,t)

—> p-t.
(3) Cl(Dp).[p,3P]^W.
Proof. Properties (1), (2) and (3) hold if Cl (Dp) is replaced by p; by "continuity

in initial conditions" such a Dp can be found.
5.4 Definition. (1) Let Ep = Dp(0, p). (Observe Ep is open in M.)
(2) Let E=\JEp over p e Cl (U) n A+ -Cl (W). Also let D = [J Dp over

peCl (U) n A+ -Cl (W). Note that 75<= Af-Cl (W).
(3) Define an equivalence relation, ~, on E as follows: p~q if and only if there is an

orbit segment Seg (pq) connecting p and q and Seg (pq)<^E. (~ is clearly an equiva-
lence relation.)

(4) Let B = E\~ and let -n: E -> B be the quotient map.
B. The base space B. The main portion of the proof consists of showing Tí is a

fibre bundle over B and admits a section—the latter being made essentially by
pasting all the 7)p's together.

5.5 Lemma. Let p and q be in E and let Seg (pq) be an orbit segment (not neces-
sarily in E) which connects p and q. Let \pq\ >0 be the positive real number such
that either p- \pq\ =q or q- \pq\ =p (the "length" of Seg (pq)).

Then Seg (pq)<^E if and only if \pq\ < 2p.

Proof. We first show that if p' and q' are in D then either (a) \p'q'\ >3p or
(b)  \p'q'\<p.
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If this were not true there would beai' between p and 3p with (say) p' ■t'=q'.
But p'-t' would then be in IF (5.3, 3) whereas q' e D is not.

Now suppose Seg(pq)<^E and \pq\^2p and let p-\pq\=q. Since Seg(pq)<^E,
r=p-2pe E. This implies the existence of r'e D and t'<p such that r = r'-t'
(5.4, (1) and (2)). Also, p=p'-t" with p' e D and positive t"<p. Thus r'=p'
■(t" + 2p-t'). But p<t" + 2p-t'<3p and this contradicts the fact that p' and r'
are in D. Thus |/»^| >2p implies Seg (pq)<£E.

Suppose then that \pq\ <2p. Since p and q are in Tí by hypothesis, there exist
p',q' e D and positive r', t"<p such that p=p'-t' anàq=q' -t". Then

Since/?' and q' are in 7), and t' +\pq\—t"<3p, it must be that t' + \pq\—t"<p.
It follows that Seg (p'q') and Seg (^'^) hence Seg (p'q) lie in £ and finally, since the
last contains p, that Seg (pq)^E.

5.6 Corollary. For each xe B, tt~1(x) is an open arc whose initial point lies in
M—W. Also each maximal half orbit in A+ —I meets E in exactly one open interval.

Proof. 7r_1(x) is either an arc or a circle. If it were a circle there would be
arbitrarily long orbit segments in E contradicting 5.5. The initial point must be
in M— W since it is a limit of points in D^M— W (by 5.4). Also, every orbit in
A + —7 meets E in a nonvoid collection of intervals ; but there can be at most one of
these since each must have length at least p. By choice of p (5.3) there is at most one
such interval (the remainder of the orbit lies in W).

5.7 Lemma. The projection n is open as well as continuous.

That -n is continuous follows from the definition of the quotient topology—
namely v<=-B is open if tr'\v) is open. To see that n is open, let vcfbe open and
consider 7r-1(7r(i>)). Now p is in this set if and only if there is a q e v and an orbit
segment Seg (pq) such that Seg (pq)<^E. But if this is the case for p, then by open-
ness of E and v and by 5.5 it is true for points in a neighborhood of p, thus ir ' 1(w(v))
is open and so tt(v) is open.

5.8 Lemma. B admits the structure of a smooth Hausdorff manifold in such a
way that it is differ entiable (E has the smooth structure inherited from M).

Proof. Let Dp be any of the local sections of 5.3 and define fp: Dp^-B by
fÁq)="(q<o,p)).

To see/„ is continuous, let V<=B be open. Then 7r_1(F) is open in E so meets
Dp • (0, p) in an open set. Projecting this into Dp by the flow one obtains the inverse
image of V under fp which is then open.

Similarly fp is open, for if V<=DP is open, then F-(0, p) is open in E and so
7r(F-(0, p))=fP(V) is open in B.
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Also fp is one-one: lïfP(q)=fP(q'), then there is an (open) orbit segment Seg (qq')
in E. But this orbit segment is no longer than 2p (5.5), and since no point of Dp
returns in time less than 3/> (5.3, 2) q and q' must be the same point.

The functions fp thus define coordinate patches on B so that B is a manifold.
Furthermore the overlap maps, fp1 ofp, are just the maps between the sections
defined by the flow and so are smooth. Similarly it is smooth.

It remains to prove that B is Hausdorff: Suppose x and y are distinct points of
B and that every neighborhood of x meets every neighborhood of y. Now n~\x)
and TT~1(y) are disjoint in E; but even their closures (in M) must be: otherwise
they would lie in the same orbit, and share an endpoint. Using 5.5, this endpoint
could be in 7; and this is not possible with Tr'1(x)=^Tr'1(y) (5.4, (3)). Now suppose
vx and Vy are neighborhoods (in E) of ir~\x) and ■rr~1(y) respectively. Since tt(vx)
meets tt(vv) there is an orbit segment in E (length < 2p) connecting vx to vy. On
letting vx and vy collapse to n~x(x) and -rr'^y) we see that these latter must lie on
the same orbit segment. Now an orbit segment passing near points in both of these
segments must have points near the initial point of one of them; then either it
has points near the initial point of the other, or its initial point is near the other.
In either case, since initial points are in U— W (5.6), there is an orbit segment in E
with length ^p passing close to ■n~1(x) and 7r_1(j/). By 5.5, tt~1(x) and -rr'^y)
lie in the same orbit segment in E contradicting the assumption Tr~1(x)^Tr~1(y).

C. The bundle space E.

5.9 Lemma. Define functions o-+ and o~ on E by

a + (p) = sup{i \p-teE),       v~(p) = inf{/ \p-teE).

Then a+ is lower semicontinuous and a~ is upper semicontinuous.

Given e>0 there is a point re D on the orbit segment p-(a~(p), a~(p) + e).
(This segment is contained in E if e is small.) Let Dq be the local section of 5.3
which contains r. Then if// is close top, the orbit segment through/;' must meet
Dq. Also the orbit segment from Dq to p' must be shorter than 2p so (5.5) in E.
Thus o~(p')-¿o~(p) + e and a" is upper semicontinuous.

Given £>0 and p e E there is a point r of D such that q = r-(p — e\2) lies on the
orbit segment p- (a+ (p) — e, o + (p)) (also in 7: for small e>0).

Now let p' be close to p. Then there is a point q' on the same orbit as p' and close
to q. Since pq has length less than 2/> so will Seg (p'q'). Also, since Seg (pq) meets the
section of D containing r, so will Seg (p'q') implying in particular that q' e E
(5.4, 1). It follows that Seg (p'q')^E (5.5) and finally lim inf a+(//) ^a+(p') as
P'->p.

5.10 Lemma. E admits the structure of a smooth fiber bundle over B with fiber
homeomorphic to the real line. In particular E admits a (smooth) section S.

Furthermore S can be taken so that:
(1) S is never tangent to the fiber and so is a local surface of section for the flow.
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(2) Se w.
(3) Each half orbit in A + — 7 meets S in exactly one point.
(4) 7nCl(5)=0.

Proof. We can assume that the local sections, Dp, are smooth images of a
standard d — 1 dimensional ball A in Euclidean d— 1 dimensional space. Call the
map ap. Then w-1 °fp(Dp) is diffeomorphic to the open set v in ¿/-dimensional
space defined below. In the definition e>0 and less than p is introduced so that the
argument, ap(q)-e, of a+ and o~ is in E:

v = {(i, 0 I ?e A and 3e > Oa a-[ap(^)-e] < t < a+[ap(q)-e]}.

Since o-+ and a' are respectively lower and upper semicontinuous (5.9) and
cr+>o~, v is diffeomorphic to the product Ax7? with a fiber preserving diffeo-
morphism. The composite provides the local product structure of E. The overlap
maps are easily verified to be smooth bundle morphisms since they are essentially
defined by the flow.

That E admits a section follows from the theorem that a bundle over a para-
compact (Hausdorff) manifold with contractible fiber admits a section. Such a
section can then be approximated by a smooth one which is never tangent to the
fiber. That each half orbit in A + — 7 meets S follows from 5.6. That 7 n Cl (S) = 0
follows from the construction of E—each orbit segment in E meets D, which lies
outside of W, and so is disjoint from 7; also each segment is no longer than 2p
so Cl (E) n 7= 0. The section can be pulled into W using the flow in the obvious
way (and using the definition of p in 5.3 with 5.3, 3).

D. Sections for A * and A ~. The section obtained for E will play the role of 5+
in 4.7. S- is obtained in a similar way by replacing A+ by A~. Before choosing
ñ+ and ñ~ of 4.7 we need to modify these sections somewhat.

5.11 Lemma. Let S be the section for E obtained in 5.10. Then A+ n S+ is
compact.

Proof. If A + <= s+ is not compact then the intersection must have a limit point
pinCl(S+)-S+. Since/> is in .4 +-7 (.4+ is compact and Cl (S+) n 7= 0 (5.10))
there is a time ?#0 such thatp-teS+ (5.10). But since S+ is a local surface of
section for the flow, all points close to p must meet S+ in times close to t; in par-
ticular those in A + n S+ which are close to p. This contradicts the statement that
each half orbit in A+ meets S+ exactly once (5.10).

The main lemma is:

5.12 Lemma. Let I be an isolated invariant set and let U be an isolating neighbor-
hood for I. Let A+ and A" be as in 5.1 and suppose A+ ^ 0, A~ # 0.Z,erCl (W)<= U
where W is open and contains I. Finally let p = p(W) of 5.2.

Then there exist local surfaces of section S+ and S_ in W with the following
properties:
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1. Cl (S+)n Cl (S_)=0.
2. A+ nS+ and A~ n S_ are compact.
3. A+ n(Cl(S+)-S+)=A~ n(Cl(S.)-S.)=0.
4. ForpeA+ n8U3t(p)<2p3p-t(p)eS+.Ift'>t(p)thenp-t'e W.
5. ForpeA- n8U3t>-2P3p-teS-. Ift'<t(p) thenp-t' e W.
6. Cl (S+) n 7= Cl (S_) n 7= 0.

Proof. Let S'+ and S"_ be the sections provided by 5.10.
Numbers 2, 4, 5, and 6 are satisfied by 5+ and Si. in view of 5.10, 5.11 and 5.5.

Also the sets A+ n S+ and A~ n 5_ are disjoint compact sets—their intersection
is contained in 7 and 6 prevents its being nonempty. Subsections S+ and S_ which
have disjoint compact closures in S'+ and S'_ (resp.) and which contain A+ n S+
and ^"nS. respectively can thus be chosen. Number 3 follows (since A+ n S+
CS'+).

To choose «+ and n~ we need the following lemmas:
5.13 Definition. For pelf, let 0(p) denote the connected component of

p-R n Cl (U) which contains /?. 0+(/>) and 0~(p) denote respectively the positive
and negative (from p) halves of O(p).

5.14 Lemma. Ifpn->I then lim sup 0+(pn)<=A~ and lim sup O~(pn)<=A + .

Proof. If relimsup 0 + (pn) then 3in>Oa/7n — tn-*-r. If rn is bounded then
reI<=A~. If ?n->oo, then for every fixed t', pn-(tn — t') must eventually be in
Cl(U) which implies r-( — t')eCl(U). Since i' is arbitrary, this implies re A".
There is a similar proof for the other statement.

5.15 Lemma. Let qn-^-1 and suppose for all n, qn$ A~. Then for sufficiently
large «, 0(qn) meets S+ exactly once.

Proof. Since qn^A~, 3tn<0 3qn-tn e 8U and qn-tneO(qn). Let r be a limit
point of q„-tn. Then r e A+ n 8U. Thus the orbit 0(r) meets 5+ exactly once—
in fact it meets Cl (S+) exactly once (5.12). It follows that 0(qn) meets S+ at least
once provided qn-tn is close enough to r. I.e. if « is large enough. Now suppose
0(qn) meets S+ (at least) twice for arbitrarily large «. Then if the length of the
orbit segment (in Cl (U)) between the intersections is bounded, 0(r) (<=A+)
would meet 5+ twice contradicting 5.12. If it were unbounded, then the midpoint
of the segment would converge to 7 and from 5.14, the later intersections would
converge to a point in A~ contradicting the fact that Cl (S+) n Cl (S_)=0
(5.12).

5.16 Lemma. Let 5+ and SL denote sections as provided in 5.12. Then there
exist subsections S+ and 5_ satisfying the conditions of 5.12 and such that if
p e S+ u S_ then O(p) meets each of S+ and S- in at most one point. In particular,
p$A+nS+\JA~nS- implies O(p) meets both sections exactly once and
otherwise O(p) meets only one section.
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Proof. Use 5.15 to find an open neighborhood W of 7 such that^E IF implies
0(q) meets each of S'+ and S"_ at most once. S+ is then 0(W) n S'+ and 5_
= 0(W) n 51 where 0(W) = {JpsW O(p).

5.17 Corollary. As W collapses to I, S+ and 5_ collapse to S+ n A+ and
S- r\ A~ respectively.

Proof. 5.15.
E. Completion of the proof of 1.5. We are now in a position to complete the

proof of Theorem 1.5 via Lemma 4.7. Before doing so we treat the special case
when one of A+ or A~ is empty:

5.18 Lemma. If A' is empty then A+ —(A+ (~\ 8U) is open and is in particular
an isolating neighborhood of I. As a consequence, S+ is a compact manifold without
boundary ¡furthermore S+ separates M and so bounds an isolating block N for I.

Proof. Suppose A+ —A+ r> 8U is not open. Then there is a sequence of points
pne U such that pn -*■ A + where for all n,pn$A + . Now since pn -> A +, the length
of 0(pn) must tend to oo. Thus the midpoint of 0(pn) tends to 7. By compactness
of Cl (U), lim sup 0 + (pn) is nonempty, but this set is contained in A~ (5.14)
contradicting the assumption that A ~ is empty.

It follows that 5+ is a closed manifold since no boundary points of 5+ are in A + .
To see that S+ separates M, consider first an arc y from 8U to 7 meeting 7 in exactly
one point—an endpoint. Since each point, p, of y (other than the distinguished
endpoint) is in A + —I, there is a time t(p) such that /?•/(/?) e S+. Since S+ has no
boundary, the function t(p) is continuous (cf. proof of 4.4—a similar one works).
Also t(p) must be positive for/? e 8U and must be negative for/? close to 7(5.12).
Thus there exists/? s y for which t(p) = 0 so that/? e S+. It follows that S+ separates
8U from 7 in U but since 8U separates M, S+ must separate M. The interior of N
is of course the union of the components of M— S+ which meet 7, in this case all
of them.

We can now consider the case when neither of A+ or A~ are empty. From 5.16
we see that the set Dc associated with S+ and 5_ as in 4.3 is just S+—S+ n A +,
and the map -n: Dc —> 5_ is a homeomorphism from S+—S+ n A+ to 5_ — 5_
nA~.

Select ñ+(=S+ as described in 4.7 with 8ñ+ =f in Dc ( = S+) and with S+ n A +
<=m + . By 5.16 we see that r=Seg(f, Tr(f))xf xJ.

We want now to show that tt(t) separates 35_ from 5_ n A ~ and so bounds a
compact manifold ñ_=35_ (~\ A~ : Suppose, then, that y is an arc from S5_ to
S. n A~ which meets 5_ n ^4" in exactly one point—an endpoint. Then the
preimage of y under it runs from 8S+ to S+ n A+ and so must meet f. Thus y
meets 77(f) and ñ~ is found.

Again from 5.16 n = ñ+ uíuñ" is a piecewise smooth manifold; we must
show it separates M. Let y be an arc from 8U to 7. Then that end of y near 7
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(i.e. in W) contains points on orbit segments from «+ to ñ_ (5.17). Let/? be the
first such point (y directed from 8Uto 7). If/? is contained in «+ or w_ we are done.
If/? is on an orbit segment from the interior of n + then it cannot be the first such
point. The only remaining possibility is that p eT and so we are done.

Again the interior of N is defined to be the union of the components of N~n
which contain 7 which is the same as the union of the components of U—n which
contain 7. The boundary of N is then contained in n = ñ+ u T u ñ" ; it is in fact a
union of components of«. Finally since orbits in a+ run from «+ to 7 with increas-
ing time, «+ actually does contain the incoming, and likewise ñ~ the outgoing,
points of N.

This completes the proof of Theorem 1.5. An easy corollary is that if 7, hence
a+ and a~ (2.8, bottom row), has finitely generated cohomology, then N can be
chosen so that the inclusion induced homeomorphism 77*(7) -> H*(N), H*(n+)
->■ H*(a+) and H*(n~) -> H*(a~) are surjections.
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