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Abstract This study investigates a low degree-of-
freedom (DoF) mechanical model of shimmying
wheels. The model is studied using bifurcation the-
ory and numerical continuation. Self-excited vibra-
tions, that is, stable and unstable periodic motions of
the wheel, are detected with the help of Hopf bifurca-
tion calculations. These oscillations are then followed
over a large parameter range for different damping val-
ues by means of the software package AUTO97. For
certain parameter regions, the branches representing
large-amplitude stable and unstable periodic motions
become isolated following an isola birth. These re-
gions are extremely dangerous from an engineering
point of view if they are not identified and avoided at
the design stage.
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1 Introduction

Shimmy is a common name for the lateral vibration of
a towed wheel. This has been a well-known phenom-
enon in vehicle systems dynamics for several decades:
the name shimmy comes from a dance that was pop-
ular in the 1930s. One of the early scientific studies
of shimmy dates back to this time (see [1]). In many
cases, the appearance of shimmy is a serious prob-
lem, for example, in case of nose gears of airplanes
or front wheels of motorcycles. There are many me-
chanical models (see, for example, [2–7]) that describe
the shimmy of rolling wheels. The two most impor-
tant considerations of any model involve whether the
wheel is rigid or elastic and whether the suspension
system is rigid or elastic. The simplest combination of
a rigid wheel and a rigid suspension system does not,
by definition, support lateral vibrations. Lateral vibra-
tion can occur in models with an elastic wheel and a
rigid suspension (see [8]) and in models where both
the wheel and the suspension system are elastic. But
in this paper we wish to make analytic progress in or-
der to obtain a clear understanding of the dynamics
and so we consider a low degree of freedom (DoF) me-
chanical model of a rigid wheel, which has a viscously
damped elastic suspension. This model was studied
without damping in [9], where subcritical Hopf bifur-
cations and chaotic and transient chaotic oscillations
were found.

This paper is structured as follows. First, in Sect. 2,
the mechanical model is introduced, together with the
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Fig. 1 Model of rigid
wheel

equations of motion. In Sects. 3 and 4, the Hopf bifur-
cation calculation is presented in the presence of vis-
cous damping at the suspension. The effect of damp-
ing on the stability of stationary rolling is analysed. In
Sect. 5, the periodic solutions of the system are fol-
lowed using AUTO97 [10], the stability charts and the
bifurcation diagrams are plotted and also compared to
available analytical results.

The bifurcation diagrams show an isola birth where
isolated large amplitude stable and unstable periodic
motions coexist with the stable stationary rolling so-
lution. These motions are difficult to detect either by
numerical simulation or by conventional stability and
bifurcation analysis. The presence of unstable peri-
odic motions indicates a dangerous system configura-
tion.

2 Mechanical model

The mechanical model under consideration is shown
in Fig. 1. The plane of the rigid wheel is always ver-
tical to the ground, contacting at a single point P. The
radius of the wheel is R, the mass of the wheel is mw

and its mass moment of inertia with respect to the z

axis is Jwz. The mass moment of inertia with respect to

the y axis of its rotation is Jwy , where the subscript w

refers to the wheel. The caster length is l, and the dis-
tance between the center of gravity C of the caster and
the king pin at A is lc . The mass of the caster is mc and
the mass moment of inertia with respect to the z axis
at C is Jcz, with the subscript c referring to the caster.
The system is towed in the horizontal plane with con-
stant velocity v. The king pin is supported by lateral
springs of overall stiffness k and viscous damping co-
efficient b.

Without rolling constraints, the system has 3 de-
grees of freedom, so one can choose the caster angle
ψ , the king pin lateral position q , and the wheel rota-
tion angle ϕ as general coordinates. The constraint of
rolling (without sliding) means that the contact point
P has zero velocity. This rolling condition leads to two
scalar kinematical constraint equations in the form
of coupled first order nonlinear ordinary differential
equations (ODEs) with respect to the general coordi-
nates.

The equations of motion of this rheonomic and
nonholonomic system can be derived with the help of
the Routh–Voss equations or the Appell–Gibbs equa-
tions [11]. In the case of zero damping (b = 0), they
are given in [12]. Here, we present the equations for
nonzero viscous damping:
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ψ̇ = ϑ,

ϑ̇ = −N(ψ,ϑ,q)

D(ψ)
,

q̇ = v tanψ + l

cosψ
ϑ,

ϕ̇ = v + lψ̇ sinψ

R cosψ
,

(1)

where

N(ψ,ϑ,q)

=
(

−(mwl + mclc)v + lv

R2
Jwy tan2 ψ

+ (mw + mc)lv

cos2 ψ
+ bl2

cosψ

)
ϑ

+
(

(mw + mc)l
2 + l2

R2
Jwy

)
sinψ

cos2 ψ
ϑ2

+ klq + blv tanψ (2)

and

D(ψ) = (
mclc(lc − 2l) − mwl2 + Jwz + Jcz

)
cosψ

+
(

(mw + mc)l
2

cos2 ψ
+ l2

R2
Jwy tan2 ψ

)
cosψ

(3)

are odd and even functions respectively of the gen-
eral coordinates. The first two equations in (1) are the
equations of angular momentum and the last two ex-
press the constraint of rolling (without sliding) of P.

Since the general coordinate ϕ appears only in the
fourth equation of motion, it is a so-called cyclic coor-
dinate and the system can be described uniquely in the
three dimensional phase space of the caster angle ψ ,
caster angular velocity ϑ and the king pin lateral dis-
placement q .

3 Stability analysis

The trivial solution of the system is stationary rolling
along a straight line defined by the vector of the towing
velocity:

ψ ≡ 0, ψ̇ ≡ 0, q ≡ 0, ϕ̇ ≡ v

R
.

When the towing speed is zero, the system forms a
1 DoF oscillator about the z axis at P. The correspond-

ing angular natural frequency ωn of the undamped lin-
ear system and the damping ratio ζ are given by

ωn =
√

kl2

Jwz + Jcz + mc(l − lc)2
, ζ = 1

2

b

k
ωn. (4)

Let us introduce the new dimensionless parameters:

L = l

lc
, V = v

ωnlc
, (5)

κ = mclc(l − lc)

Jwz + Jcz + mc(l − lc)2
,

χ = (mc + mw)l2 + Jwyl
2/R2

Jwz + Jcz + mc(l − lc)2
,

(6)

where L and V are the dimensionless caster length and
towing speed respectively, and κ and χ are dimension-
less mass moment of inertia parameters related to the
caster and wheel geometry and inertia.

With these new parameters, the third-order Tay-
lor series expansion of the first three governing equa-
tions (1) about the trivial solution assumes the form:⎡
⎣ ψ̇

ϑ̇

q̇/ lc

⎤
⎦

=
⎡
⎣ 0 1 0

−2ζV ωn
2/L −ωn(2ζ + κV ) −ωn

2/L

ωnV L 0

⎤
⎦

[
ψ

ϑ

q/lc

]

+
⎡
⎣ 0

−ωn

(
(2ζ + κV )(1 − χ) + V

( χ
L

− κ
2 )

)
ψ2ϑ

ωnV
3 ψ3 + L

2 ψ2ϑ

⎤
⎦

+
⎡
⎣ 0

−χψϑ2 − ωn
2

L
( 1

2 − χ)ψ2 q
lc

− 2ζV ωn
2

L
( 5

6 − χ)ψ3

0

⎤
⎦ .

(7)

The characteristic equation is obtained from the linear
coefficient matrix of (7):

λ3 + (2ζ + κV )ωnλ
2 +

(
1 + 2ζV

L

)
ωn

2λ

+ V

L
ωn

3 = 0. (8)

According to the Routh–Hurwitz criterion, the sta-
bility of the stationary rolling is equivalent to:

L ≥ Lcr(V ) = V (1 − 4ζ 2 − 2ζκV )

2ζ + κV
, (9)
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Fig. 2 The stability chart
and the bifurcation branches
of the dimensionless system

considering positive parameter values only. At fixed
damping ratios ζ , the stability boundary curves are
characterized by

Vext = 1 − 2ζ

κ
, Vmax = 1 − 4ζ 2

2ζκ
, (10)

where dLcr(V )/dV = 0 at V = Vext and Lcr(V ) = 0
at V = Vmax. Stationary rolling is always stable for
V > Vmax or L > Lcr(Vext). Figure 2(a) shows the
corresponding stability chart in the plane of the di-
mensionless towing speed V and caster length L for
κ = 0.203 and χ = 5.67. The stability region is shaded
for ζ = 0.1. The dot-dash line is the locus of Vext as
a function of ζ . Our parameters come from a realis-
tic towed wheel of a shopping trolley. The parame-
ters of the wheel are mw = 0.3519 [kg], Jwy = 4.63 ×
10−5 [kg m2], Jwz = 2.38 × 10−5 [kg m2] and R =
0.04 [m]. The data of the caster are mc = 0.0668 [kg],
lc = 0.012 [m] and Jcz = 3.48 × 10−6 [kg m2]. We
shall discuss Fig. 2(b) in Sect. 4.

The stability chart in dimensional terms is of course
of great practical use to engineers. However the natural
choice of scaling in (5) makes it difficult to immedi-
ately deduce its form from Fig. 2(a). Hence we redraw
this figure in dimensional terms in Fig. 3, using the
shopping trolley parameters.

4 Hopf bifurcation

Despite giving a more useful stability chart, the di-
mensional form is less amenable to analysis. In dimen-
sionless form the stability calculations are simpler and
clearer.

Fig. 3 Stability boundaries of the linear system in dimensional
form using the shopping trolley parameters

The eigenvalues of the linear coefficient matrix of
the dimensionless system can be determined on the
stability boundary when L = Lcr as given in (9). There
are two complex conjugate eigenvalues with zero real
part and one negative real eigenvalue:

λ1,2 = ±iω, λ3 = −ωn(2ζ + κV ), (11)

where

ω = ωn√
1 − 4ζ 2 − 2ζκV

, (12)

hence, there is Hopf bifurcation on the stability bound-
ary. The eigenvectors {s1, s2, s3} can also be deter-
mined:
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s1 = s̄2 =
⎡
⎢⎣

ω2(2ζ + κV )(1 + i ω
ωn

(2ζ + κV ))

−ω3(2ζ + κV )( ω
ωn

(2ζ + κV ) − i)

V (ωn
2 + ω2(2ζ + κV )2)

⎤
⎥⎦ ,

s3 =
⎡
⎣ −1

ωn(2ζ + κV )

2ζV

⎤
⎦ .

(13)

The transformation matrix T can be constructed from
the eigenvectors in the following way:

T = [Re s1 Im s1 s3]. (14)

Let us introduce new variables [x1, x2, x3] such
that:⎡
⎣ ψ

ϑ

q/lc

⎤
⎦ = T

⎡
⎣x1

x2

x3

⎤
⎦ . (15)

If we substitute this into (7) and we multiply the
equation on the left with the inverse of the transforma-
tion matrix, the Poincaré normal form is calculated,
which has the form⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ 0 ω 0

−ω 0 0
0 0 −(2ζ + κV )ω

⎤
⎦

⎡
⎣x1

x2

x3

⎤
⎦

+

⎡
⎢⎢⎢⎣

∑
j+k=3
j,k>0

ajkx
j

1 xk
2 + · · ·

∑
j+k=3
j,k>0

bjkx
j

1 xk
2 + · · ·

. . .

⎤
⎥⎥⎥⎦ . (16)

Since the nonlinearities are symmetric (i.e., there
are no second degree terms in the nonlinear part of the
Poincaré normal form), the centre manifold is approx-
imated by a second degree surface. Thus, the transfor-
mation of the nonlinear part needs only the terms in x1

and x2. The terms in which x3 appear can be neglected.
The sense of the Hopf bifurcation comes from the re-
duced form of Poincaré–Lyapunov parameter δ for the
symmetric case (see [13]):

δ = 1

8
(3a30 + a12 + b21 + 3b03), (17)

so

δ = ωn(2ζ + κV )2

8V 2

×
ζ + κV − (2ζ + κV )ω2

ω2
n
(2 − ζκV + χ(ω2

ω2
n

− 2))

(1 + (2ζ + κV )2 ω2
n

ω2 )((2ζ + κV )2 + ω2
n

ω2 )
.

(18)

Fig. 4 The δ parameter in (18) as a function of the damping ζ

If δ is positive/negative then the periodic orbit
of the Hopf bifurcation is subcritical/supercritical,
namely unstable/stable. If we set V = 8 and take
κ = 0.203 and χ = 5.67 as before, δ can be plotted
as a function of the damping ζ , see Fig. 4. In our case
the sign of δ changes at a critical value of the damping.

To compare our results with numerical continua-
tion, the theoretical bifurcation branch has to be calcu-
lated. Accordingly the real part of the implicit deriv-
ative of the characteristic equation with respect to the
bifurcation parameter L has to be determined at the
critical parameter value Lcr:

Re
dλ

dL

∣∣∣∣
L=Lcr

= − ωn(2ζ + κV )2

2V (1 + (2ζ + κV )2 ω2
n

ω2 )
. (19)

The amplitude of the periodic orbit is given by

r =
√

−Reλ′|L=Lcr

δ
(L − Lcr), (20)

namely

r =

√√√√√ 4V ((2ζ + κV )2 + ω2
n

ω2 )

ζ + κV − (2ζ + κV ) ω2

ω2
n
(2 − ζκ V + χ( ω2

ω2
n

− 2))
(L − Lcr).

(21)

With the help of the transformation matrix T, the am-
plitude of the vibration can be plotted with respect to
the general coordinates ψ , ϑ and q . The theoretical
branches of the amplitude of ψ (Aψ ) are compared
with the numerically continued results of the dimen-
sionless system (7) in Fig. 2(b). In this figure, as in
the remainder of the paper, dashed lines mean unstable
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Fig. 5 The theoretical and numerical bifurcation branches of
the undamped system

branches and continuous lines mean stable solutions,
and thick and thin lines show numerical and theoreti-
cal results, respectively. When the bifurcations are su-
percritical, the numerical continuation shows the exis-
tence of folds in certain parameter regions, leading to
large amplitude unstable periodic motions.

As mentioned at the start of this section, the analy-
sis of the damped dimensional system is difficult. But
in the case of zero damping the sense of the Hopf bi-
furcation, the Poincaré–Lyapunov parameter δ, can be
determined:

δ = vω4l

8mc(l − lc)(v2 + ω2l2)2

×
(

mwl + mclc + l

R2
Jwy

)
> 0, (22)

which is always positive for all real parameter values,
namely the Hopf bifurcation is always subcritical (i.e.,
the periodic orbit is always unstable). The compari-
son of the theoretical and numerical results is shown
in Fig. 5.

5 Numerical continuation

Returning now to the damped case (with b =
0.2 [Ns/m]), the branch of unstable periodic solutions
was followed using AUTO97 [10] from the Hopf point
and a saddle-node bifurcation (fold) was detected, as
in Fig. 6. This means that the damped system also has
stable periodic solutions. So if the system is perturbed

Fig. 6 Bifurcation diagrams of the damped system with the
isola birth

Fig. 7 The trajectories in the phase space for b = 0.269 [Ns/m]

enough then it will be attracted to these large ampli-
tude stable periodic solutions.

If the damping factor is increased, the peaks of
the stable and unstable branches move closer together.
At a critical damping factor (b = 0.269 [Ns/m]) the
branches intersect each other and an isola is born,
shown in Fig. 6. Simulated motions are shown in
phase space in Fig. 7. So a separated periodic solu-
tion branch occurs in the bifurcation diagram for b >

0.269 [Ns/m]. There are now three folds in the figure
and, by changing the damping factor b or the towing
velocity v, the location of these folds also changes.

In practice such large amplitude stable periodic mo-
tions might be expected to slide, once a certain crit-
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Fig. 8 Stability chart of the
nonlinear system

ical friction force is reached. Although we consider
rolling, slipping is not part of our model and this would
have to be included if we wished to be certain that such
motions could be observed in practice.

For fixed damping ratio a nonlinear stability chart
can be plotted in the (v, l) plane, where the location
of the folds can also be marked. With different pro-
jections, the nonlinear behavior of the system is repre-
sented in Fig. 8.

The bistable area is of great importance. It has been
found only with numerical continuation. That means
that the very dangerous large amplitude periodic mo-
tion cannot be discovered analytically in this case.
This bistable area can be reduced and bounded for
large enough damping ratio. This is shown in Fig. 9.

6 Conclusions

The importance in the investigation of the assumption
of a rigid wheel model can be questioned, because a
real system is more complex. However, the point of
our study is to show that the well-known properties of
shimmy, for example the existence of unstable large
amplitude periodic motions, are present even in this
simple model.

In this paper the damped model was considered us-
ing analytical and numerical methods. It was shown
that the subcritical Hopf bifurcation can change to su-
percritical if the damping ratio is increased. In the
damped system a separated branch of periodic large
amplitude solutions was detected using numerical con-
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Fig. 9 Stability boundaries at different damping factors

tinuation. For some parameter values, the stationary
rolling solution is stable for any value of the towing
speed, but there is also a separated periodic solution
branch, a so-called isola of large amplitude, which is
very dangerous. This region cannot be determined by
linear analysis. Therefore, without the nonlinear nu-
merical investigation a system may be designed with
parameter values that allow for the presence of these
dangerous solutions.
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