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Abstract. Maximal surfaces and their implications for the ambient spacetime
are studied. Our methods exploit the interplay between contact of the volume
functional and energy conditions. Essentially, we find that in closed universes,
maximal surfaces are unique; they maximize volume; and they yield future
and past singularities.

I. Introduction

The global properties of manifolds, in particular the types of extremal surfaces
which they admit, have attracted much interest. In Riemannian manifolds,
minimal surfaces—soap films and their generalizations to higher dimensions—
have been the subject of numerous investigations [1]. The analogous surfaces
in spacetimes, manifolds with Lorentz metric, are maximal surfaces. In asymptot-
ically flat spaces, frequently a family of maximal surfaces folicates spacetime [2].
Such a foliation then gives a geometrically preferred time function. Maximal
surfaces are also physically important for such questions as the. analysis of the
dynamics of the gravitational field or the analysis of the rc-body problem in a
gravitational field [3]. Abundant as they are in asymptotically flat spacetimes,
maximal surfaces occur but rarely in spatially closed universes. Not surprisingly,
their physical interpretation is also quite different. Namely, they typically describe
the "turn around" epoch which separates the expansion from the recontraction
phase. Today there are no theorems about the maximum expansion phase com-
parable in generality to the singularity theorems [5], which describe the universe's
collapse. Here we initiate the study of the "turn around" epoch.

We consider three dimensional spacelike surfaces in spacetimes and the critical
points of their volume functional. In Section II, we give the variational formulas
for the first, second and higher variations of the volume away from a maximal
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surface. Section III applies the energy condition of general relativity to the question
of uniqueness of maximal surfaces. The main theorem of the section shows that
maximal Cauchy surfaces are essentially unique. Examples of closed spacetimes
without any maximal surfaces are also given in this section. In Section IV we
prove that in a vacuum spacetime maximal surfaces represent a strict maximum
for the volume or are flat. Finally, in case a source satisfying an energy condition is
present, maximal surfaces yield not only strict volume maxima but also entail both
future and past singularities. In physical terms, then, if a maximal surface occurs
in a universe, there is volume expansion and recontraction not only locally near
the maximal surface, but the expansion must have begun at a singularity and the
recontraction must proceed to a singularity.

The expressions in the body of the paper are written in coordinate-free notation
to stress the geometric meaning. In the appendix we explain how to transcribe the
expressions into coordinate notation more familiar in physics.

II. Variational Formulas

Let M be a Lorentz manifold with Lorentz structure < , > and metric connection D.
Let S be a spacelike hypersurface (codimension 1) and let St be a variation of S
through spacelike hypersurfaces, with S0 = S. Further let dVt be the volume
element of St in the induced Riemannian structure on Sv and Vt= J dVt. We call St

st

SL proper variation of S iff Vt is finite for any t and the boundaries (if any) are fixed.
Let X be a vector field normal to the St such that the local 1-parameter group φt

generated by X satisfies φt(S) = St.
The covariant derivative in tangent direction u of any vector field Y normal

to S can be decomposed into normal and tangential components:

DuY=VuY-Aγ(u)

VUY is the covariant derivative in the bundle of normal vectors to S, and Λγ(u)
is the second fundamental form on S. The operator B defined by

gives rise by contraction to the mean curvature vector if, defined by

H=ΣiB(ei,ei)

where (ef) is a local orthonormal frame field on S.
In terms of these quantities we can state the

Theorem 2.1 [4] If St is a proper variation of S,

- \\AX\\2- (H, DXX) + (X, X> (H, tf» dV (2.1)
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where \\AX\\2 is the norm squared of the (1,1) tensor field Ax, and all integrals,
here and in the following, are taken over the surface S.

Corollary 2.2. S satisfies — (Vt)t = 0 = 0 for all X iff H = 0. Such S are called maximal

surfaces.

Theorem 2.3. If St is a proper variation of a totally geodesic ("time symmetric")
hypersurface S, then Ax = 0 = H for any X, and

^ \ (2.2)

Further, ifVX = 0 on S, then

^ ί ^ x 2 (2.3)

where &x'x(u, v) = (R(X, v)u, X}, u, v tangent vectors, and || | |2 again indicates
the norm squared of the (0, 2) tensor &x>x.

Proof An outline of the Proof of 2.1-2.3 can be found in the Appendix.

Remark. With suitable interpretation the formulas of Section 2 apply not only to
spacelike hypersurfaces but also to non-degenerate submanifolds.

III. Uniqueness of Maximal Surfaces

The well known static asymptotically flat spacetimes of general relativity provide
examples of manifolds with a family of maximal surfaces t = constant. Maximal
surfaces in well known closed spacetimes, such as the Friedmann models [6],
are much less frequent, unless the universe is static. Roughly, the spacetime either
represents an ever expanding universe without any maximal spacelike surface,
like the "open" Friedmann models; or the spacetime possesses just one maximal
surface, the moment of maximum expansion, as in the typical "closed" Friedmann
models.

In general if M is a product RxS, S a Riemannian 3-manifold, with a metric

ds2=-dt2 + a(t)2dσ2 (3.1)

it is easy to see that the spacelike sections inconstant are totally umbillic, that is,
the second fundamental form is a multiple of the surface's metric tensor

(B(u,v%Xy=-X(lna)(u,v}.

Thus, for a spacelike section to be maximal, X(a) = dta must vanish. The maximal
surface in this case is a totally geodesic submanifold. In homogeneous universes
it is generally true that each extremal of a(ή corresponds to an extremal surface
in this sense: suppose that a group of isometries acts on M so that the orbits are
compact spacelike hypersurfaces. Then any orbit whigh extremizes its volume
compared to other nearby orbits is a homogeneous maximal surface. This fact
follows from a theorem of Hsiang [7]. On the other hand if in (3.1) dta is positive
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for all t, then the space contains no maximal spacelike surface whatever. To
show this, we embedd any spacelike surface S in the family St obtained from S by
time translation. It is clear that for this variation Vt differs from zero. An example
of a spacetime without maximal surfaces which satisfies the Einstein equations
is the flat 3-torus of Kasner [8], where

ds2=-dt2 +12 dx2 + dy2 + dz2 .

In general spacetimes the extremal spacelike surfaces are not locally maximiz-
ing the volume, as they do for the expanding and contracting Friedmann universe.
The equator of the deSitter space [9] is an example of a surface satisfying H = 0,
but which is a saddle point for the volume function. It is also an example of an
extremal surface in a closed universe that forms part of a whole family of extremal
surfaces—the "great spheres" of the deSitter universe (generalizations of the great
circles on a sphere). These circumstances, however, cannot happen if the Ricci
curvature is positive:

Theorem 3.1. If Rίccί(u,u)>0 for future timelike u and S is an extremal hyper-
surface, then F x(0)<0 for any normal vector field X vanishing on dS.

Proof Vx(0) is given by Equation (2.1). By hypothesis Ricci is positive in timelike
directions so that the integrand is positive.

This theorem shows that if the strong energy condition holds, a maximal
surface in a closed spacetime cannot be part of a family of maximal surfaces.
At this point we use the terminology maximal for extremal in the same way that
minimal is used in Riemannian manifolds. Our next theorem shows that in fact
there can be no other maximal surfaces anywhere in the domain of dependence
of a given maximal spacelike surface. First we recall some definitions and proposi-
tions.

The notation / + {A, B) represents the set of all points in B that can be joined
to points in A by a future timelike curve. The edge of an achronal set S is the set of
all q in the closure of S such that in every neighborhood U of q there is a p in
I~(q, U) and r in I+(q, U) joinable by a timelike curve in U missing S. Further an
achronal set S is called a partial Cauchy surface if its edge is empty.

Proposition 3.2. // S is a partial Cauchy surface, the future domain of development
of S is globally hyperbolic.

Proof. A proof of this proposition can be found in the book of Hawking and Ellis
[5].

Theorem 3.3. Let T be a maximal compact spacelike hypersurface contained in the
future domain of development of S where S is a maximal partial Cauchy surface.
If Ricci (u, u)>0 for all future timelike u, then T is contained in S.

Proof. If there is a point in T which is not in S then the function / : p-+d(p, S) has a
positive maximum as p runs through T. Suppose the maximum occurs at r in T.
Then there is a q in <S such that f(r)==d(r,q). By global hyperbolicity of D+(S)
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there is a geodesic segment c from r to q of length d(r, q) = d(r, S), and c must be
orthogonal both to T and S. Recall the second variation formula for arc length
[10]:

, u(0)), F(0)> - (B(u(b), u(b% V(b)} .

Here u is a normal variational field along c and V is the tangent of c. Since c
maximizes the distance, J^(O):gO for all normal vector fields u. Consider vector
fields along c, say uί9 u2, w3, obtained by parallel translation of an orthonormal
basis in the tangent space at q. The resulting vectors u^b), u2(b\ u3(b) will form
an orthonormal basis of the tangent space at r. Therefore we have

1 ^ i ^ 3 0

since the trace of B vanishes both at q and at r, S and T being maximal. The fact
that Ricci is positive yields J5f^(0)>0 for some j . This contradicts the maximiz-
ing property of c. Therefore we must have T as a subset of S.

We remark that the spirit of this proof goes back to Synge but the idea here
comes from the work of Frankel [11]. Our theorems are also related to results,
obtained by different methods, by Choquet-Bruhat [12]. We also remark that an
entirely analogous theorem and analogous proof hold if T and S are hyper-
surfaces of a given constant mean curvature H Φ 0, rather than being maximal.

IV. Energy Conditions and Maximal Surfaces

The assumption that space at one instant of time satisfies a Plateau problem or
that the initial data on a spacelike hypersurface S requires S to be maximal is
reasonable on physical and mathematical grounds. In this last section we shall
discuss various implications arising from this assumption. The general question
of existence will be the topic for later work [13].

A useful fact from the calculus of variations [14], employed in this section,
is that if F x(0)<0 for all normal fields X then S locally maximizes the volume
function in the sense that for any proper variation St of S, Vt < V for sufficiently
small t.

Theorem 4.1. Let M satisfy the Einstein vacuum equations and suppose that S is a
closed maximal hypersurface. Then either S locally maximizes volume or S is a
totally geodesic submanίfold of M.

Proof From Equation (2.1)

(4.1)

So either F x(0)<0 for all normal vector fields X, in which case S locally maximizes
volume, or Fx(0) = 0 for some X not identically zero. Equation (4.1) then yields
VX = 0 and Λx = 0 on S. Hence X is a normal field of constant length and S is a
totally geodesic submanίfold.
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Remark. Since the hypersurface S is orientable the existence of X in the latter
part of the theorem gives rise to an orientation of M in which M is time oriented.

Our next theorem uses one of the conclusions of Theorem 4.1 as a starting point.
Later we shall synthesize both theorems.

Theorem 4.2. Suppose that M is time oriented and satisfies the Einstein vacuum
equations. Further let S be a closed time symmetric hypersurface. Then either S
locally maximizes volume or S is flat and hence the Cauchy development of S is flat
spacetime.

Proof. The proof examines the second, third, and fourth variations for a normal
vector field X. Since

either S locally maximizes volume in direction X or VX = 0. In the latter case X
has constant length. From Equation (2.2)

ί^(0) = 2 J (<FX VDXX> - Ricci (X, DxX))dV

which vanishes because Ricci vanishes and VX = 0. Now we use Equation (2.3)
to obtain

Fx(0) = 2 j ({VDX, X, VDXX} -Ricci(DXX9 DXX)- \\^x\\2)dV .

Thus either ϊ^(0)<0 and again S locally maximizes volume in direction X or
MXίX is zero on S. The hypotheses together with the vanishing of &XίX imply that S
is Ricci flat and thus flat. As a result the Cauchy development D(S) (of a flat,
timesymmetric hypersurface) is flat spacetime. Combining Theorems 4.1 and 4.2
we obtain

Theorem 4.3. If M is a time oriented spacetime that satisfies the Einstein vacuum
equations and S is a closed maximal hypersurface then S locally maximizes volume
or S is flat and the Cauchy development of S is flat spacetime.

To conclude this section we investigate the relationship between maximal
hypersurfaces and geodesic completeness. First let us define the operator L

L(X)=V2X + A2(X)

by

$<L(X%X}dV=- j((VX,VX)-\\Ax\\2)dV

where X is a normal vector field to S. It is clear that L is a strongly elliptic operator
on the space of all normal vector fields to S and as such possesses a minimum
positive eigenvalue λl9 such that ~{LX, xy^λ^X, X} since X is timelike.

Theorem 4.4. Suppose that M satisfies the Einstein equations with cosmological
constant λ<λ± coupled to a source which obeys the strong energy condition. Then S
locally maximizes volume and M is timelike geodesically incomplete in the past as
well as the future of S.
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Proof. The fact that the source obeys the strong energy condition implies that

for all timelike vector fields X. But

Vx(0)=-

So Fx(0)<0 for all timelike normal X. Furthermore from Equation (A.6) we
obtain

(X, DXH) ^(λ1-λ)(X,X}<0.

Hence deforming S for small positive t results in hypersurfaces with negative mean
curvature and deforming S for small negative t result in St with positive mean
curvature. In any case Hawking's theorem 4 of Chapter 8 [5] applies and M is
timelike incomplete to the future as well as the past of S.

Remark. From the Jordan-Brouwer separation theorem [15] S separates M into
two components so that the hypersurfaces St for positive t lie in one component
of M—S and the St for negative t lie in the other component of M — S.

Appendix

In this appendix we rewrite the important equations of Section II in the notation
used more frequently in physics [6].

Let xι be a coordinate system on S and choose the coordinate basis e~d v

The induced metric on S then has the components g.j = (ei9 e,>. Since X is normal
to S, the transformations φt can be used to generate a time orthogonal coordinate
system in the neighborhood of S. The hypersurfaces St are then described by
inconstant, and the deformation vector X is given by X=dt. The (positive)
norm of X is called the lapse function N,

X = NU

with U a unit normal to St.
The covariant derivative in the normal bundle of any normal vector X in

direction v is given by

and the second fundamental form Ax has the components

AXj = (ei,A
x(ej)}=-(ei,DjX)=-NKij

in terms of the usual extrinsic curvature tensor Kίj = (ei, DjU}. Similarly, B and H
can be expressed in terms of Ktj,

B^e^-KtjU

H=-giiKijU. (A.1)

The square of the norm of Ax is

\\Ax\\2=N2KijK
ii
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and the operator used in Theorem 4.4 becomes

A2(X) = NKijK
ij\U9 [/> U.

(The negative sign in some of these formulas is dictated by the desire to agree
with the notation of Simons [16] in the invariant formulation, and with the
notation of MTW [6] in the coordinate formulation.)

We also have

x x(ei9 ej)9

and

with Raβyδ, Rμv, and 3Rtj denoting the components of the Riemann tensor of M,
the Ricci tensor of M, and the Ricci tensor of S, respectively. The norm squared,

takes a simple form for a totally geodesic S(KfJ = 0) in the vacuum case (Rμv = 0\

The formulas of the Theorems can now be easily transcribed into this notation.
For example, Theorem 2.1 says (with N = dtN)

dV/dt= SgVKijNdV (A.2)

d2V/dt2= J [giJN9iN9j<U9 Uy-Roo-K^N2

(A.3)

Note also that the operator L introduced in Section IV has the coordinate ex-
pression, in terms of the Laplacian A of S,

L(X) = (AN + KuK
ijN(U, U})U.

The proof of Theorems 2.1-2.3 in the coordinate version (A.2), (A.3) etc. is
obtained by repeated application of the expressions for the normal derivatives
of the metric and extrinsic curvature components,

dtgi~2Kl}N (A.4)

dtKiJ=KilK
ljN-ίXx x(ei,e}N-1-N.ij<V, U) . (A.5)

Equation (A.4) follows from the definition of Kip

dtgij=X((ei,eJ»=2<Dxei,ejy=2N<DiU,ejy.

Similarly (A.5) results upon working out the expression

XiKtj) = (Dxet, DjU} + (eh DjDx l/> + <e;, R(X, ej) £7> ,

noting that DXU= - < [ / , υyguNΛeι and that, in this Appendix, [X,eJ =
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Finally, the equation necessary for Theorem 4.4 follows from (A.1)-{A.3),

<X, DXH> = - iV< ί/, l/> dfaVKij)

ijK
ijN\U, U> + R00(U, U}

), X} + Ricci(X, X)] < 17, l/> (A.6)

and is equivalent to the familiar "Raychaudhuri equation"

-dt{K\) = -AN + K ^ N + RQQN.
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