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We compute the isolated photon production in association with a charged hadron at midrapidity in
pp and pA based on the Color Glass Condensate (CGC) framework of high energy Quantum
Chromodynamics (QCD) where, for the first time, we incorporate the Sudakov effect of soft gluon
emissions. Our results are based on the leading order qg → qγ channel in the CGC framework and
confronted with the recent data from Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider
(LHC) concerning the angular distributions and out-of-plane transverse momentum distributions. We find
that, while the CGC computation alone results in too narrow distributions, with the help of the Sudakov
effect, we can get a satisfactory description of the data. With this as a benchmark, we provide predictions
for the magnitude of the nuclear effect brought by the phenomena of gluon saturation in the CGC.
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I. INTRODUCTION

Photon-hadron production in high energy pp and pA
collisions has been put forward [1,2] as a promising probe
of the small-x hadron wave function [3–5]. The distin-
guished character of this process lies in the fact that a well-
isolated photon does not participate in strong interactions
and therefore the uncertainties related to hadronization of
the final state are reduced compared to the more abundant
di-hadron (hh) production. The isolated photon component
is defined to be separated by a suitable isolation algorithm
from the so-called decay photons, which are radiated
from the π0 → γγ decays. This, in turn, suppresses photons
fragmenting off jets in the course of hadronization.
Recently, the PHENIX Collaboration at Relativistic
Heavy-Ion Collider (RHIC) [6,7] and the ALICE collabo-
ration at the Large Hadron Collider (LHC) [8] reported on
the measurements of the cross section of an isolated photon
in association with an unidentified charged hadron in pp
and pA that is within the kinematic region potentially
sensitive to small-x physics. In this work we are motivated
to pursue the phenomenological implications of those
measurements for the first time.

A long-standing hypothesis in high energy Quantum
Chromodynamics (QCD) is that the rapid growth of gluon
radiation inside the hadron wave function at small x is
balanced out by a gluon recombination process, which
leads to the phenomena of gluon saturation. The theoretical
framework behind this basic picture is called the Color
Glass Condensate (CGC) [3–5] where the energy, or small-
x, enhanced logarithms ∼αS logðsÞ ∼ αS log ð1=xÞ, can be
consistently resummed at each order in the strong coupling
αS. The resulting gluon radiation in CGC becomes con-
centrated around a dynamically generated transverse
momentum—the saturation scale QS, that is built up from
multiple scattering of partons on the dense target. In the
context of the simultaneous production of two particles, the
back-to-back transverse momenta kinematics of the con-
ventional leading order 2 → 2 partonic process gets dis-
rupted in the CGC. This becomes more dramatic for a
heavy nuclei, where a scaling Q2

S ∼ A1=3 is expected.
It is with the above picture in mind that γh [9–13] and

γ�h [14–16] production in pA (and recently also the related
γ − jet production in eA [17]) have been explored as
possible pathways to a phenomenological validation of
the CGC. Saturation effects become prominent when the
imbalance momenta of the photon (kγ⊥) and the underlying
final state parton (q⊥) is of the order of the saturation scale
k⊥ ≡ jkγ⊥ þ q⊥j ∼QS. In terms of the distribution over the
azimuthal angle Δϕ≡ ϕγ − ϕh, the general expected fea-
ture is a broadening of the away-side peak, Δϕ ¼ π, as the
kinematics condition k⊥ → QS becomes satisfied.
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While both γh and hh production are understandable
with such a simple physics argument of the broadening of
the away-side peak, further investigation into the two
processes revealed that they are sensitive to two different
unintegrated gluon distributions (UGDs) [18]. At leading
order, γh production is probing the gluon dipole distribu-
tion, while hh production is instead probing a combination
of the dipole and the Weiszäcker-Williams distribution
[19,20]. These two UGDs have a completely different
behavior at small k⊥ [see, e.g., [20] and also Eq. (5) in the
following section]. Thus, according to CGC, the theoretical
prediction for γh production at the away-side peak may
look nothing like the prediction for hh production. Indeed
this is another reason to explore γh production in CGC.
Alternatively, the broadening of the away-side peak may

be completely unrelated to the initial state, but simply be
induced by the soft gluon radiation, the so-called Sudakov
effect [21–25]. Soft gluon radiation generates double logs
as αS log2ðk⊥=QÞ, where Q is a hard scale in the process,
and therefore becomes enhanced when the underlying
individual partonic transverse momenta is hard, k⊥ ≪ Q.
For the high energy kinematics case when in addition
k⊥ ∼QS holds, saturation effects and Sudakov effects
become two contributing mechanisms and so clearly both
should be taken into account. A recent development [26,27]
showed that it is possible to perform a simultaneous
resummation of both the Sudakov logs and the small-x
logs in a consistent way. On the other hand, since Q2

S ∼
A1=3 for a heavy nuclei, it is expected the saturation effect
would become more important in the pA collision, while
both saturation and the Sudakov effect are needed for a
proper description in pp collisions. This is indeed con-
firmed by recent studies in hh production [28,29] but also
in dijet [30], Z-boson [31], and Z-jet [32] productions as
well as in related processes in eA collisions [33–35], which
prompts us to take into account both the small-x and
Sudakov effects in order to establish a realistic baseline for
a proper extraction of the appropriate nuclear modifications
based on a comparison of the obtained results in pp and pA
collisions.
The main purpose of this work is to perform a numerical

computation of the isolated photon-hadron cross section
within the CGC framework, while taking into account
Sudakov effects for the first time. In Sec. II we explain our
approach with the main formulas given in (13) and (14).
Our numerical results, shown in Sec. III, concern the
azimuthal angle (Δϕ) distributions measured at RHIC at
200 and 510 GeV in pp and the LHC at 5.02 TeV in pp
and pPb and also the out-of-plane transverse momentum
distributions measured at RHIC. Our main finding is that
while the CGC results alone produce too narrow distribu-
tions compared to the data, a reasonable agreement with the
data is possible when the Sudakov effect is taken into
account. Additionally we provide predictions for the
magnitude of the nuclear effect in pA vs pp also arguing

in favor of more symmetric transverse momentum kin-
ematics of the γh system where the effect of gluon
saturation would be better resolved. In the final Sec. IV
we summarize our findings while also providing an outlook
to further theoretical investigations.

II. THEORETICAL FRAMEWORK

In this section we give a quick recap of the main
formulas that will be used in obtaining our numerical
results for pðPpÞAðPAÞ → h�ðPhÞγðkγÞX production.
Throughout this work, we will use p for the projectile
proton, A for the target nucleus (or proton in pp collisions).
We will also use the shorthand notation h� ≡ hþ þ h− to
express observables that are obtained by adding the
contributions of positive and negative unidentified charged
hadrons. We will be using the leading order formulas for
γh production—at midrapidity the dominant channel is
qðpÞgðkÞ → qðqÞγðkγÞ, which we first address below in the
CGC framework, and subsequently incorporate soft gluon
resummation in the following subsection. The final formula
that we will be using in our numerical computations is
given in Eqs. (13) and (14).

A. Photon-hadron cross section
in the CGC framework

The following CGC formulas are computed using a
dilute-dense framework [3–5] where a dilute projectile
parton passes through a dense (nuclear) target described by
a classical gluon field. In the dilute-dense framework an
all-order scattering on the target is taken into account
building up a finite transverse momentum in the final state,
while the dilute projectile is treated order by order in
perturbation theory. The leading order pA → hγX inclusive
CGC cross section can be straightforwardly obtained
from the underlying partonic qg → qγ [36–38] channel.
In the massless quark limit it simplifies to the following
expression,

dσ
d2kγ⊥dηγd2Ph⊥dηh

¼ ðπR2
AÞ
X
q

Z
1

0

dzh
z2h

Dqðzh; μ2Þ

×
e2qNc

8π4
xpfqðxp; μ2Þk2⊥Ñ A;YA

ðk⊥Þσ̂;
ð1Þ

where fqðxp; μ2Þ is the collinear quark distribution func-
tion, Dqðzh; μ2Þ is the relevant collinear fragmentation
function of a quark with flavor q and momenta qμ ¼
Pμ
h=zh to a particular hadron species at a factorization

scale μ2. In this work we are using the CTEQ6M
quark distributions [39] and the DSS fragmentation
functions [40].
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We have k⊥ ≡ kγ⊥ þ q⊥ as the imbalance momentum.
Furthermore, ðπR2

AÞ is the target area. The hard factor σ̂ is
given as

σ̂ ¼ αe
2Nc

PqγðzÞ
q · kγ

z2

k2γ⊥
with PqγðzÞ ¼

1þ ð1− zÞ2
z

: ð2Þ

Here, PqγðzÞ is the quark-to-photon splitting function with
z ¼ kþγ =ðkþγ þ qþÞ. The remaining kinematic variables are
given as

xp ¼
kþγ þ qþ

Pþ
p

; xA ¼ k−γ þ q−

P−
A

; YA ¼ log
1

xA
; ð3Þ

with the projectile and target light-cone momenta in the
center-of-mass frame given as P−

A ¼ Pþ
p ¼ ffiffi

s
2

p
, where s is

the center-of-mass collision energy. Here, and in the
following, the light-cone variables are defined as p� ¼
ðp0 � p3Þ= ffiffiffi

2
p

with the rapidity η ¼ logðpþ=p−Þ=2. ηγ and
ηh are the photon and the hadron rapidities, respectively.
The function Ñ A;YA

ðk⊥Þ is the CGC dipole in the
fundamental representation

Ñ A;YA
ðk⊥Þ ¼

Z
d2b⊥eik⊥·b⊥Ñ A;YA

ðb⊥Þ;

Ñ A;YA
ðb⊥Þ ¼

1

Nc
trchŨðb⊥ÞŨ†ð0ÞiYA

; ð4Þ

where Ũðb⊥Þ is the fundamental lightlike Wilson line
arising from all order scattering on the dense target. The
k⊥-dependent gluon distribution φDPðY; k⊥Þ ∼ k2⊥Ñ Yðk⊥Þ
in (1), signifies a broadening of the collinear 2 → 2 away-
side peak, that would be represented simply by a δð2Þðk⊥Þ
[see (A1)] and that is also shifted from k⊥ ¼ 0 to k⊥ ∼QS.
As mentioned in the introduction, a well-known theo-

retical distinction of γh with respect to hh correlations is
that they probe fundamentally different gluon distributions
[19,20]. The leading order γh cross section is proportional
to the gluon dipole distribution φDPðY; k⊥Þ, while the
leading order hh cross section is proportional to a combi-
nation of the Weiszäcker-Williams gluon distribution
φWWðY; k⊥Þ and the dipole distribution [19,20]. While
these two distributions both display a high-k⊥ perturbative
1=k2⊥ tail, their behavior is completely different for low k⊥,
where we have

φDPðY; k⊥Þ ∼ k2⊥=Q2
S; φWWðY; k⊥Þ ∼ logðQ2

S=k
2⊥Þ: ð5Þ

This prediction is particularly important at the away-side
peak, Δϕ ¼ π, where small values of k⊥ would be probed.
In the case of γh correlations, φDPðY; k⊥Þ causes a dip in
the cross section, see [10] and also [11,13–16], since the
underlying partonic cross section in (1) is strictly vanishing
as the kinematics condition k⊥ ¼ jkγ⊥ þ q⊥j becomes
satisfied. On the other hand, due to the low k⊥ behavior

of φWWðY; k⊥Þ the hh production would rather level off to a
constant at the away-side peak.
In this paper, the YA dependence of the gluon

dipole follows the running coupling Balitsky-Kovchegov
evolution equation [41–43] (rcBK) which is a good
approximation to the more general Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution
[44–47] of the dipoles. As a general feature of small-x
evolution the distribution broadens as x becomes smaller.
The initial condition for the rcBK evolution is set at
x ¼ x0 ¼ 0.01 where the dipole is given by the anomalous
dimension McLerran-Venugopalan (MV) model, which we
will call here the MVγ model. The initial condition for the
rcBK evolution of the fundamental dipole is explicitly
given by

Ñ Y0
ðx⊥Þ ¼ exp

�
−
ðx2⊥Q2

S0Þγ
4

log

�
1

x⊥ΛIR
þ e

��
; ð6Þ

where Y0 ¼ log 1=x0, QS0 is the initial saturation momen-
tum, γ is the anomalous dimension, and ΛIR is the IR cutoff
of the model. We use the parameter set [48] γ ¼ 1.119,
ðQp

S;0Þ2 ¼ 0.169 GeV2, ΛIR ¼ 0.241 GeV. The rcBK
equation provides the dipole distribution at x < x0 while
for x > x0 we use the matching to the collinear gluon PDF
as explained in [49]. The matching procedure fixes the
proton radius to Rp ¼ 0.5257 fm. For the nuclei we use
Q2

S0;A ¼ cA1=3Q2
S0;p where c ≃ 0.5 [50]. In our computa-

tions we set Q2
S0;A ¼ 3Q2

S0;p for heavy nuclei such as Pb
and Au.
We will be computing the cross section for an isolated γh

production, defined in a standard way through a fixed
isolation cut in η − ϕ space around the photon, defined by
ðηγ;ϕγÞ. An isolation cone, R, is introduced to cut out a

region where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
< R in order to isolate the

photon from any soft and collinear hadronic activity within
R. Here Δη ¼ ηγ − ηh and Δϕ ¼ ϕγ − ϕh. For the cross
section at hand (1) this effectively suppresses its fragmen-
tation component that would appear when γ is being
emitted collinearly to the underlying final state parton [9].

B. Implementing the Sudakov effect

The implementation of the Sudakov effect rests on the
Collins-Soper-Sterman (CSS) or transverse momentum
resummation formalism [24,25]. The inclusion of soft
gluon radiation to all orders introduces a transverse
momentum dependence into the distribution and fragmen-
tation functions that follows the CSS evolution equation
[24,25]. The result of CSS evolution is obtained in b⊥ space
resulting in a compact formula for the so-called Sudakov
factor. References [26,27] further demonstrated that
Sudakov resummation can be accomplished on top of
the small-x resummation at the one-loop order. In the
context of γh production considered here the relevant part
of the cross section (1) gets modified through
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k2⊥Ñ A;YA
ðk⊥ÞDqðzh; μ2Þfqðxp; μ2Þ →

Z
d2b⊥eik⊥·b⊥∂2b⊥Ñ A;YA

ðb⊥ÞDqðzh; μ2bÞfqðxp; μ2bÞe−SSudðb⊥;QÞ; ð7Þ

where we multiplied by a prefactor k2⊥ to get the unin-
tegrated gluon distribution.1 In Eq. (7) the exponential
e−SSudðb⊥;QÞ corresponds to the resummed contribution from
soft-gluon radiations, where the Sudakov factor
SSudðb⊥; QÞ, has been introduced as the radiation kernel
summed over μb up to the hard scaleQ. The Sudakov factor
is given by the following generic form [51,52]

SSudðb⊥; QÞ ¼
Z

Q2

μ2b

dμ̄2

μ̄2

�
A log

�
Q2

μ̄2

�
þ B

�
: ð8Þ

Here μb is a factorization scale according to the b�
prescription [24]

μb ¼
2e−γE

b�
; b2� ¼

b2⊥
1þ b2⊥

b2max

; ð9Þ

where bmax ¼ 1.5 GeV−1. With this prescription μb >
2e−γE=bmax, thus preventing the b⊥ integral from entering
the nonperturbative region. For the hard scale we take
Q2 ¼ xpxAs. The quantities A and B are channel dependent
coefficients that can be computed in perturbation theory.
For each initial and final state quark (or gluon) in the
channel we have Aq ¼ αSCF=ð2πÞ, Ag ¼ αSCA=ð2πÞ, and
Bq ¼ −αS 3

2
CF=ð2πÞ, Bg ¼ −αS2CAβ0=ð2πÞ, where β0 ¼

ð11 − 2Nf

3
Þ=12 at one-loop order [51,52]. According to

Refs. [26,27], the perturbative prefactor is absent in the
single-log B term for the case of any incoming small-x
gluon. Consequently, we do not count the small-x gluon in
obtaining this coefficient. For the qg → qγ channel we
should use

A ¼ 2Aq þ Ag ¼
αSðμ̄2Þ

π

�
CF þ CA

2

�
;

B ¼ 2Bq ¼ −
αSðμ̄2Þ

π

3

2
CF: ð10Þ

In order to compensate for the missing effect at large b⊥
it is common to add a nonperturbative Sudakov factor
Snon−pertðb⊥; QÞ as

SSudðb⊥; QÞ → SSudðb⊥; QÞ þ Snon−pertðb⊥; QÞ: ð11Þ

In this work we are using the parametrization [53]

Sqnon−pertðb⊥; QÞ ¼ g1
2
b2⊥ þ 1

4

g2
2
log

Q2

Q2
0

log
b2⊥
b2�

;

Sgnon−pertðb⊥; QÞ ¼ CA

CF
Sqnon−pertðb⊥; QÞ; ð12Þ

where g1 ¼ 0.212 GeV2, g2 ¼ 0.84, Q2
0 ¼ 2.4 GeV2.

Equation (12) should in principle be used for each quark
and gluon in the initial or the final state. The small-x gluon
already contains some nonperturbative information through
the k⊥-dependent distribution. To avoid any possible
double counting, the small-x gluon is therefore dropped
[28,33] and we have Snon−pertðb⊥; QÞ ¼ 2Sqnon−pertðb⊥; QÞ.
Denoting

Wðzh; xp; b⊥; QÞ≡X
q

e2qNc

8π4
Dqðzh; μ2bÞfqðxp; μ2bÞ

× e−SSudðb⊥;QÞ−Snon−pertðb⊥;QÞ; ð13Þ

our final formula for the γh cross section reads

dσ
d2kγ⊥dηγd2Ph⊥dηh

¼ ðπR2
AÞ

Z
1

0

dzh
z2h

Z
d2k0⊥
ð2πÞ2Wðzh; xp; k0⊥ − k⊥; QÞk2⊥0Ñ A;YA

ðk0⊥Þσ̂; ð14Þ

where we recall that k⊥ ¼ kγ⊥ þ Ph⊥=zh. The explicit
computation of Eq. (14) is performed in momentum space
through a convolution of the momentum space gluon
distribution, k2⊥Ñ A;YA

ðk⊥Þ, with the Fourier transform
of Wðzh; xp; b⊥; QÞ. The latter is computed numerically
with the algorithm in [54]. We also remark that with
resumming infinite number of soft gluons exact kinematics
relations (3) are lost, and in practice [55,56] one resorts to

an approximate relation xp;A ¼ p⊥ðe�ηγ þ e�ηhÞ= ffiffiffi
s

p
, with

p⊥ ≡maxðkγ⊥; q⊥Þ.
According to (13) the Sudakov factor brings an additional

dependence of the imbalance k⊥ distributions on the hard
scale Q. As a typical result of CSS evolution, the k⊥
distribution gets broadened as a function of the hard scaleQ.
This can be intuitively understood from the leading
log2ðk2⊥=Q2Þ dependence as the increase in the hard scale
brings more opportunity for soft gluon radiation. In the CGC
framework radiative processes are enhanced as logð1=xÞ.1See the Appendix for the corresponding collinear formula.
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Therefore, since x ∼Q=
ffiffiffi
s

p
, an increase in the hard scale

would lead to a narrower distribution. It is thus theoretically
and phenomenologically interesting to check the inter-
play between the small-x resummation and the Sudakov
resummation.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we perform a numerical computation of
the cross section for the isolated γh cross section based on
(14). In what follows, we abbreviate this result as CGC w
(ith) Sud(akov). To isolate the effects of both small-x and
Sudakov gluons and to gain further insight we will also
show results from the CGC framework alone [Eq. (1)], and
from the cross section in the collinear pQCD framework
with only the Sudakov effect taken into account. For the
latter we refer to (A3) in Appendix. We abbreviate these
results as CGC w=o Sud and Sud, respectively.
To keep the discussion within phenomenological reach,

we will mostly study systems and kinematic windows

already probed by different experimental collaborations.
First, the PHENIX experiment measured isolated γh�

production in pp collisions at
ffiffiffi
s

p ¼ 200 GeV [7], covering
the kinematic range

jηγj<0.35; 5GeV<kγ⊥<15GeV; jηhj<0.35;

0.5GeV<Ph⊥<10GeV; ð15Þ

where an isolation cut R ¼ 0.3 has been applied to the
photon. For

ffiffiffi
s

p ¼ 510 GeV collisions [6] we have the
following kinematics

jηγj < 0.35; 7 GeV < kγ⊥ < 15 GeV; jηhj < 0.35;

0.7 GeV < Ph⊥ < 10 GeV; ð16Þ

and R ¼ 0.4. The kinematics (15) and (16) has been further
separated in kγ⊥ × Ph⊥ bins as indicated in Figs. 1 and 2,
respectively.

FIG. 1. Isolated γh� angular distribution for midrapidity pp collisions at 200 GeV given in kγ⊥ × Ph⊥ bins vs data from PHENIX [7].
The experimental data have been shifted for the underlying event. The solid magenta line corresponds to the combined CGC w Sud
calculation, while the CGC w=o Sud and Sud computations correspond to the thin orange and dashed teal lines, respectively.

ISOLATED PHOTON-HADRON PRODUCTION IN HIGH ENERGY … PHYS. REV. D 105, 114052 (2022)

114052-5



The ALICE experiment measured isolated γh� produc-
tion in pp and pPb collisions at

ffiffiffi
s

p ¼ 5.02 TeV [8] with
the following kinematics

jηγj < 0.67; 12 GeV < kγ⊥ < 40 GeV; jηhj < 0.8;

0.5 GeV < Ph⊥ < 10 GeV; ð17Þ

and R ¼ 0.4. The transverse hadron momenta Ph⊥ is
further distributed into bins as indicated in Fig. 3.
Before considering the results we make a general remark

about our computation based on (14). In the kinematics
region where the transverse momentum of the final state
kγ⊥ þ Ph⊥ is large, and where also ðkγ⊥ þ Ph⊥Þ2 ≪ Q2, the
perturbative Sudakov factor, (8), would dominate the
overall two-particle momentum imbalance in the cross
section. While the nonperturbative Sudakov factor is
necessary to carry out the b⊥ integral, it is irrelevant for
the k⊥ spectrum, as demonstrated in [55]. However, in our
computations this is not completely the case, since for
RHIC kinematics we have Q ∼ 7–21 GeV, where the
nonperturbative Sudakov factor should also play a role.
At the LHC Q ∼ 17–55 GeV, but also k⊥ is possibly larger
due to the more asymmetric γh momenta configuration.

We will first show our results for the angular distribu-
tions and compare them with the data from RHIC and the
LHC. In our computations we focus only on the shape of
the γh yield and thus normalize both our theoretical curves
and the experimental data to unity. A similar procedure has
been employed, e.g., in [28,56,57]. We compute as well the

FIG. 2. Isolated γh� angular distribution for midrapidity pp collisions at 510 GeV given in kγ⊥ × Ph⊥ bins vs data from PHENIX [6].
The experimental data have been shifted for the underlying event.

FIG. 3. Isolated γh� angular distribution for midrapidity pp
and pPb collisions at 5.02 TeV for 12 GeV < kγ⊥ < 40 GeV
for three bins in Ph⊥ vs data from ALICE [8]. The magenta
points (lines) correspond to pp collisions while the teal squares
(lines) correspond to a pPb collision.
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normalized out-of-plane transverse momentum distribu-
tions and extract their Gaussian widths and compare both
with the data from RHIC. We also provide the predicted
nuclear modifications by showing the CGC w Sud com-
putation at RHIC and the LHC.

A. Angular distributions

In Fig. 1, we compare our CGC w Sud result with the
200 GeV pp data at RHIC [7] and find a fair agreement in
most of the bins. Here the experimental data have been
shifted vertically for the underlying event, that is, by the
background of uncorrelated γh� pairs [7]. The CGC w Sud
results are also compared with a CGC w=o Sud compu-
tation. The away-side peak from the CGC w=o Sud results
is clearly too narrow to be able to describe the data. As
argued previously, the dip at Δϕ ¼ π, and the resulting
double peak structure around it, for the CGC w=o Sud
computation is due to the low k⊥ behavior of the dipole
gluon distribution φDPðY; k⊥Þ ∼ k2⊥=Q2

S. For this kinemat-
ics the double peak is strongly focused in a narrow region
around Δϕ ¼ π. Let us stress again here that the presence
of a double peak in general is a robust prediction
[10,11,13–16] of the leading order γh production in
CGC. From the PHENIX data alone it is difficult to find
support for this feature, though it might be simply missed
by the experimental resolution. In any case, our prediction
is that, for the kinematics considered here, the double peak
is completely washed away by including the Sudakov
effect. It is instructive to also compare to a Sud only result
based on the leading order qg → qγ collinear formula.
While the Sud result gets closer to the data than CGC w=o
Sud in general, best results are obtained when both the
CGC and the Sudakov effects are taken into account.
In Fig. 2, we compare the CGC w Sud computation with

the 510 GeV pp data from RHIC [6] where again we find
overall good agreement with the data. In Fig. 3, we
compare with the 5.02 TeV pp and pPb data from LHC

[8] and find good agreement with both the pp and the pPb
data. Because of the asymmetric kinematics in Fig. 3 our
results show only a small nuclear effect. See Fig. 5, where
we look at more symmetric configurations.
In Fig. 4, we make predictions for pA collisions at

200 GeV by considering a subset of bins from Fig. 1. We
pick up the smallest and the largest kγ⊥ bin from Fig. 1 and
distribute the results along Ph⊥ bins. For comparison, we
also repeat the pp results from Fig. 1. It is useful at this
point to discuss the systematics across bins. Lets compare
two pp (or pA) curves corresponding to the smallest and
the largest kγ⊥, for a fixed Ph⊥. We see that as kγ⊥ (the
transverse momentum of the trigger particle) is increased,
the away-side peak gets narrower. We can understand this
in an intuitive way as follows. At large trigger kγ⊥ also the
momentum imbalance k⊥ eventually increases (Ph⊥ is held
fixed) and so the Sudakov logs become less prominent.
Note that for high kγ⊥ kinematics the details of the
nonperturbative Sudakov factor should be negligible. At
the same time, nonlinear effects from the CGC also play
less of a role as with high trigger kγ⊥ we are probing the
perturbative tail of the gluon transverse momentum dis-
tribution. Therefore, we expect the probability for a high-
kγ⊥ trigger photon to scatter at an angle Δϕ ≠ π to be
strongly suppressed, explaining the narrower shape.
Likewise, for smaller kγ⊥ the away-side peak will get
broadened. Our second point concerns the nuclear effect
that is visible by a comparison of the full (pp) and the
dashed (pA) curves in Fig. 4. Because of a larger saturation
scale in the nuclei than in the proton target we observe a
suppression of the away-side peak in pA in comparison to
pp for all kinematic bins considered.
In Fig. 5, we present projections for midrapidity pp and

pA collisions at the LHC energy of 5.02 TeV. We keep the
associated hadron bins from Fig. 3 and lower the trigger
photon kγ⊥ in order to reach a more symmetric configu-
ration. The imbalance momentum of the γh� system thus

FIG. 4. Isolated γh� angular distribution for midrapidity pp and pA collisions at 200 GeV. The higher curve (and narrower peak)
correspond to the 5 < kγ⊥ < 7 GeV bin, while the lower (wider) peak corresponds to a harder photon momentum bin,
12 < kγ⊥ < 15 GeV.
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approaches the saturation scale at the away-side peak
leading to a more substantial nuclear effect as can be seen
from Fig. 5.

B. Out-of-plane transverse momentum distributions

In addition to the angular distributions, PHENIX also
measured [6,7] the so-called out-of-plane pout distributions,
where pout ≡ Ph⊥ sinðΔϕÞ, binned as a function of xE ≡
−kγ⊥ · Ph⊥=k2γ⊥ ¼ −Ph⊥ cosðΔϕÞ=kγ⊥. A quick computa-
tion shows that p2

out ¼ z2hk
2⊥ − k2γ⊥ð1 − xE=zhÞ2 at the

leading order. Close to the away-side peak Δϕ ¼ π we
have xE ≃ zh and so pout ≃ zhk⊥. By binning the result in
xE, we can appreciate that the pout distributions serve as a
proxy for the intrinsic k⊥ distributions [7,58].
In Fig. 6, we compare our results with the PHENIX

200 GeV data [7] in xE bins. The CGC w Sud results
show a good agreement with the data in the small to
moderate pout region (up to ∼1–2 GeV), and also in the
large pout region for the xE bin 0.1 < xE < 0.15. For the

remaining two bins, the small to moderate pout region
(pout ∼ 1–2 GeV) is also nicely described by our result,
while as pout increases our results tend to overshoot the
data. For comparison, the CGC w=o Sud computation is
also shown where similar conclusions hold as for the
angular distributions: the CGC w=o Sud computation
produces a too narrow distribution which cannot be
accommodated within the experimental data. In addition,
the CGC w=o Sud computation predicts a double peak in
the distribution concentrated in a narrow region around
pout ¼ 0. Again, the present PHENIX datasets alone do not
allow us to judge clearly whether this feature is supported
or not. We can only underline the importance of a more
complete computation, which includes the Sudakov resum-
mation, where a double peak structure is not present for
these kinematics. For completeness we also show the
results of a Sud computation which seems to do a good
job in the moderate pout region, but tends to undershoot the
data for large pout.
To have a closer look at the small pout region, PHENIX

extracted the Gaussian widths of the pout distributions
across 0.1 < xE < 0.5 from Fig. 6 by assuming a Gaussian-
like shape in the range −1.1 GeV < pout < 1.1 GeV. The
systematic error is estimated by varying this range by
�0.2 GeV [7]. Using the same procedure we compute the
Gaussian widths of the pout distributions from Fig. 6. Our
results are shown in Fig. 7 as a function of the hard scale
kγ⊥ in comparison to the PHENIX 200 and 510 GeV pp
data. The theoretical bands correspond to varying the pout
Gaussian fit by �0.2 GeV as in [7]. We see that the best
description of both the 200 and the 510 GeV data is
obtained with the CGC w Sud computation. In Fig. 7, we
also plot Sud results for the Gaussian widths and find that
they are below the PHENIX data. The CGC w=o Sud
widths are not shown—due to the double peak structure the
behavior is clearly not Gaussian-like for small pout. But
even if we choose to ignore this issue, based on the fact that

FIG. 6. pout distributions for midrapidity pp collisions at
ffiffiffi
s

p ¼ 200 GeV compared to the data from PHENIX [7] in three xE bins,
0.1 < xE < 0.15 (left), 0.15 < xE < 0.25 (center), and 0.25 < xE < 0.5 (right). The solid magenta line corresponds to the combined
CGC w Sud calculation, while the CGC w=o Sud and Sud computations correspond to the thin orange and dashed teal lines,
respectively.

FIG. 5. Isolated γh� angular distribution for midrapidity pp
(solid) and pA (dashed) collisions at 5.02 TeV. Each pp and pA
curve pair corresponds to a different binning of photon momen-
tum. In descending order, the pair correspond to bins of
5 < kγ⊥ < 7, 9 < kγ⊥ < 12, and 12 < kγ⊥ < 15 GeV.
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the double peak is rather narrow for this particular
kinematics, it is visible already by the naked eye from
Fig. 6 that the distributions are too narrow in comparison to
the data.
In Fig. 8, as a measure of the nuclear effect, we show our

predictions for the difference in the Gaussian widths
squared computed in midrapidity pA and in pp at RHIC
(left) and at the LHC (right) kinematics. For convenience
we denote this quantity as hp2

outipA − hp2
outipp, though the

meaning of the “averaging” procedure hi is in the sense of
fitting the small pout region with a Gaussian—same as we
used for Fig. 7. Our choice of kinematics matches the one
used in the preliminary RHIC pPb vs pp results in [58–60]
with the hard scale 5 GeV < kγ⊥ < 9 GeV and we plot our
results as a function of xE. We are tempted to compare the
200 GeV results from Fig. 8 with the preliminary result in
Refs. [58–60] that shows up to about 0.1 GeV2 broader
widths in pA that in pp, for xE < 0.4, albeit for π0h�

production. In our γh� computation we find ≲0.15 GeV2

for xE < 0.4. Increasing the energy to 5.02 TeV we find that

the difference in the pA vs pp Gaussian widths grows,
becoming more pronounced at large xE.

IV. CONCLUSIONS

In this paper we have numerically computed the isolated
photon-hadron production cross section based on the
leading order CGC formula with the Sudakov resummation
explicitly taken into account for the first time. We have
demonstrated that both the CGC and the Sudakov effects
are important to obtain a reasonable description of the data
at RHIC and the LHC. We have provided predictions for
the nuclear suppression around the away-side peakΔϕ ¼ π
and the nuclear broadening of the intrinsic transverse
momentum distributions at RHIC and at the LHC. While
the PHENIX Collaboration published only pp data, the
ALICE Collaboration has results also for pp and pPb.
Unfortunately, there is no clear evidence of a nuclear
effect from the data alone. This might be due to asymmetric
kγ⊥ × Ph⊥ binning by ALICE and we argue that in more
symmetric configurations the nuclear effect would be more
apparent. In addition to γh� production the PHENIX
experiment measured also π0h� production [6,7]. The data
seem to indicate a suppression in the γh� vs π0h�
production in the bins that are close to the away-side peak.
It would be interesting to make a detailed side-by-side
comparison of γh� vs π0h� production in CGC.
As a future work we plan to take into account next-to-

leading order corrections which bring 2 → 3 partonic
processes into play. First, already in the collinear framework,
the presence of an additional (unobserved) parton present in
the final state naturally disrupts the γh back-to-back kin-
ematics. As the Sudakov effect is associated with soft gluon
branching it is most important in the region close to
the away-side peak with the momentum imbalance k⊥ ¼
jq⊥ þ kγ⊥j such that k⊥ ≪ Q. By contrast, the 2 → 3

processes are genuine hard branchings, that are able to
support large momentum imbalances k⊥ ∼Q. Therefore,
next-to-leading order corrections and Sudakov effects are
important to get a more complete phase-space picture of γh
correlations. This has recently been applied in describing
hard-p⊥ γ-jet data in pp; see, e.g., [61,62] and also [57]. We
also mention here recent works on transverse momentum
resummation in γ-jet production that also takes into account
a preferred direction set by the final state jet [63,64].
In the small-x kinematics region with k⊥ ∼QS we are

interested, a complete next-to-leading order treatment
would include considering the gg → qq̄γ [65,66] and
qg → qgγ channels [67,68] (see also [69,70] for related
higher order computations in eA collisions). With the
current photon detectors in the midrapidity region for both
RHIC and LHC, as a first step, the inclusion of the gg →
qq̄γ channel might be enough. Considering planned
forward upgrades [71,72], where the isolated photon
signal would be more favourably extracted from the π0

FIG. 8. The difference between pA and pp Gaussian widths
squared of the pout distributions as a function of xE at

ffiffiffi
s

p ¼
200 GeV and

ffiffiffi
s

p ¼ 5.02 TeV collision energies.

FIG. 7. Gaussian widths of the pout distributions as a function
of the hard scale kγ⊥ for midrapidity pp collisions. The pp
results at

ffiffiffi
s

p ¼ 200 and
ffiffiffi
s

p ¼ 510 GeV are compared to the data
from PHENIX [7]. The magenta bands correspond to the CGC w
Sud computation, while the teal bands correspond to the Sud
computation.
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background, taking into account also the qg → qgγ channel
becomes important.
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APPENDIX: COLLINEAR FORMULA

Here we recall the collinear formula for the pt → hγX cross section. We have

dσ
d2kγ⊥dηγd2Ph⊥dηh

¼
X
q

e2q

Z
dzh
z2h

Dqðzh; μ2Þxpfqðxp; μ2ÞxAfgðxA; μ2ÞαSσ̂δð2Þðk⊥Þ; ðA1Þ

where for the qg → qγ channel [73] we have2

σ̂ ¼ αe
Ncŝ2

�
−
û
ŝ
−
ŝ
û

�
; ðA2Þ

with the conventional Mandelstam variables ŝ ¼ ðpþ kÞ2, t̂ ¼ ðk − kγÞ2 and û ¼ ðp − kγÞ2. The parton momenta fractions
are fixed as xp ¼ ðkþγ þ qÞ=Pþ

p and xA ¼ ðk−γ þ q−Þ=P−
A. Taking into account the Sudakov resummation yields the

following result:

dσ
d2kγ⊥dηγd2Ph⊥dηh

¼
X
q

e2q

Z
dzh
z2h

Z
d2b⊥
ð2πÞ2 e

ik⊥·b⊥Dqðzh; μ2bÞxpfqðxp; μ2bÞxAfgðxA; μ2bÞαSðμ2bÞσ̂e−SSudðb⊥;QÞ−Snon−pertðb⊥;QÞ:

ðA3Þ

The Sudakov factor SSudðb⊥; QÞ þ Snon−pertðb⊥; QÞ contains
perturbative and nonperturbative pieces as in (13). The
perturbative piece has the same form as in (8), however,
because of the initial stage gluon, in the collinear limit one
has B ¼ 2Bq þ Bg [the double-log A coefficient remains the
same as in (10)]. In the nonperturbative piece we have
now Snon−pertðb⊥;QÞ¼2Sqnon−pertðb⊥;QÞþSgnon−pertðb⊥;QÞ.
It is useful to explicitly confirm that we can recover (A1)

from (1) in the leading twist limit. First let us rewrite (A2)
in a more convenient form. Using û ¼ −2p · kγ ¼ −k2γ⊥=z
and ŝ ¼ 2q · kγ ¼ k2γ⊥=zð1 − zÞ we get

σ̂ ¼ αe
2Nc

PqγðzÞ
q · kγ

z2

k2γ⊥
: ðA4Þ

Recall now that the transverse momentum dependent gluon
distribution φðY; k⊥Þ function is related to the adjoint
dipole N Yðk⊥Þ as [74]

φðY; k⊥Þ ¼ ðπR2
AÞ

Nck2⊥
4αS

N Yðk⊥Þ: ðA5Þ

Integrating φðY; k⊥Þ over k⊥ returns the gluon distribution

xfgðxÞ ¼
1

π2

Z
d2k⊥
ð2πÞ2 φðY; k⊥Þ; ðA6Þ

which may be formally inverted as φðY; k⊥Þ ¼
xfgðxÞπ2ð2πÞ2δð2Þðk⊥Þ. In the large Nc limit, the adjoint
dipole and the fundamental dipole in coordinate space are
related as N Yðb⊥Þ ¼ Ñ CF=CA

Y ðb⊥Þ, see, e.g., [75]. In the
leading twist approximation this effectively becomes
N Yðb⊥Þ ≃ 2Ñ Yðb⊥Þ and so we can write (in momentum
space)

Ñ Yðk⊥Þ ≃ xfgðxÞ
8π4αS
Nc

δð2Þðk⊥Þ: ðA7Þ

Then, Eq. (1) yields Eq. (A1).

2The qq̄ → gγ channel is negligible in this kinematics region,
see for example Fig. 12 in [6].
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