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ARTICLE

Isolated proton bunch acceleration by a petawatt
laser pulse
P. Hilz 1, T.M. Ostermayr 1,2, A. Huebl 3,4, V. Bagnoud5,6, B. Borm7, M. Bussmann 3, M. Gallei8,

J. Gebhard1, D. Haffa1, J. Hartmann1, T. Kluge 3, F.H. Lindner1, P. Neumayr5, C.G. Schaefer8, U. Schramm 3,4,

P.G. Thirolf1, T .F. Rösch1, F. Wagner5,6, B. Zielbauer5 & J. Schreiber 1,2

Often, the interpretation of experiments concerning the manipulation of the energy

distribution of laser-accelerated ion bunches is complicated by the multitude of competing

dynamic processes simultaneously contributing to recorded ion signals. Here we demon-

strate experimentally the acceleration of a clean proton bunch. This was achieved with a

microscopic and three-dimensionally confined near critical density plasma, which evolves

from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer

precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly

observed with central energies between 20 and 40MeV and narrow energy spread (down to

25%) showing almost no low-energetic background. Together with three-dimensional

particle-in-cell simulations we track the complete acceleration process, evidencing the

transition from organized acceleration to Coulomb repulsion. This reveals limitations of

current high power lasers and viable paths to optimize laser-driven ion sources.
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P
roviding intense bursts of swift ions has gained particular
interest1–3 and proton kinetic energies exceeding 85MeV
have been recently demonstrated in various experiments4,5.

The acceleration field is mediated via relativistic electrons, which
induce MV/µm electric fields that vary in time and space. The
correspondingly broad ion energy distributions could be nar-
rowed by limiting the spatial extent of the ion reservoir on the
surface of irradiated opaque foils6,7 or by the use of droplets8,9.
Reducing the foil thickness to the order of the laser skin depth
also resulted in non-monotonic, peaked distributions with
improved efficiency at higher ion energies10,11. Such radiation
pressure or related volumetric acceleration mechanisms12 have in
common that the majority of electrons in the central part of the
focus are coherently pushed by the light forces and then drag ions
along. The experimentally observed ion signal, however, is typi-
cally blurred by superimposed ions from regions outside of this
central part of the laser focus. The volumetric interaction of
electrons with the laser field requires plasma densities around the
critical density nc. Plasma densities above nc are opaque for the
laser light. For densities smaller than nc plasmas are transparent.
By virtue of their 10 µm wavelength CO2 lasers enable to access
such realms with readily available gas targets13,14. The low density
does however limit the accelerated particle numbers severely.
Spatially limited targets, so-called mass-limited targets, have
attracted severe interest in theory15 and experiment9,16,17.

In this work, we exploit a so far inaccessible target parameter
space by irradiating isolated, levitated plastic spheres of 1 µm
diameter with a PW laser of 1.054 µm wavelength. In the rising
edge of the laser pulse, the sphere expands to a few micrometer-
sized plasma of approximately critical density for the near-
infrared laser pulse. The single proton bunch generated in the
interaction contains a large fraction of all target protons and are
accelerated to narrow energy bands down to 5MeV full-width at
half-maximum (FWHM). Central energies for consecutive laser
shots range from 20 to 40MeV.

Results
Experimental setup. The laser pulses provided by the PHELIX
PW laser at GSI (see Methods) contained 150 J energy with a
pulse duration of 500 fs and were focused to a diameter of 3.7±
0.3 µm (FWHM of intensity). Plastic spheres of 1 µm diameter
and hollow spheres with an outer diameter of 1 µm and 100 nm
wall thickness served as targets. The microscopic target size
inhibited any kind of mechanical support. Hence, we used a Paul

trap to levitate and position the targets. A direct opto-electronic
feedback allowed us to position the targets with an accuracy of
around ±1 µm in all three dimensions (see Methods). The
dominant source of fluctuation in laser target overlap due to
pointing jitter of the laser was minimized by placing the target 1
to 1.5 Rayleigh lengths out of focus, where the on-target peak
laser intensity amounted up to 7 × 1020W/cm2 (the peak inten-
sity in best focus would have amounted to 2 × 1021W/cm2).

Pre-plasma expansion. The excellent nanosecond contrast of the
PHELIX laser prevents premature target ionization and has been
demonstrated in previous experiments with sub-micrometer thin
foil targets18. The measured autocorrelation trace in Fig. 1a was
scaled to our estimated peak intensity. Considering that the
plasma formation is related to the laser-induced damage thresh-
old that we measured on various thin, transparent plastic foils, we
estimate the start of relevant plasma dynamics 200–100 ps prior
to the peak. Instead of treating the following complex and com-
plicated, three-dimensional pre-expansion dynamics theoretically,
we can draw important conclusions on the plasma conditions
during the main pulse interaction by evaluating the experimen-
tally recorded intensity patterns in Fig. 1b–d. The observed cir-
cular fringes can be considered as a result of an automatically
generated inline-holography19, where the laser amplitude and
phase in the center are disturbed by the target plasma and the
outer regions are, depending on the size of plasma and laser
focus, less or even not at all affected. We modeled the resulting
intensity distributions at the plane of observation for different
plasma dimensions (Fig. 1e–j) (see Methods). Under these sim-
plified assumptions, the fringe pattern compares best with the
experimental images when the peak electron density is close to
the critical density. The transverse extent of this critical density
plasma exhibits an FWHM of 5.5–7.0 µm. We note that although
many factors (such as target position with respect to focal plane,
asymmetric shape, non-Gaussian distribution function of plasma
and laser) influence the observed diffraction pattern, our analysis
supports that the general appearance, i.e. the number of visible
fringes and their contrast, remains relatively constant over a large
range of densities, in line with the observation (Fig. 1b–d)
whenever we hit the target and successfully accelerated ions.

Experimental results. The emitted protons have been analyzed in
laser propagation direction employing a magnetic slit
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Fig. 1 Pre-plasma formation. a Autocorrelation curve of the PHELIX laser pulse scaled to the maximum on-target intensity 7 × 1020W/cm2. The horizontal

line marks a typical value of plasma formation intensity for plastic. The inset shows the schematic experimental setup including the relevant diagnostics.

Experimental recorded diffraction patterns at the scatter screen in front of the magnetic spectrometer for the case, b no target, c solid sphere, d hollow

sphere are shown. The scale bar corresponds to 2 cm. e–j Simulated diffraction patterns for a variety of peak electron densities nm in units of critical density

nc and corresponding plasma extension. The scale bar corresponds to 2 cm
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spectrometer (see Methods), allowing single-shot angular
resolved energy measurements and thus the absolute determi-
nation of differential proton spectra. In all laser shots, we mea-
sured proton kinetic energy distributions with narrow energy
spreads. We observed no notable variation across the accessible
angular range of ±4°, which we analyzed for four angles (Fig. 2a).
Integrating the proton spectra over energy yields the number of
protons per solid angle. For each shot, we evaluated the four
angular spectra independently and plotted the results as diamond
symbols in Fig. 2b. Solid and hollow spheres deliver similar
results, despite the factor of two difference in particle numbers
contained initially in the target. This supports our findings
regarding target pre-expansion. Contrary to foil and mechanically
mounted targets, the initial number of protons is known in our
case. Herby we can deduce the #p/sr for an ideal Coulomb
explosion, where all protons in the target are emitted into 4π sr
(dashed red line in Fig. 2b). Our measured values for #p/sr are
30–100 times larger compared to the isotropic ideal Coulomb
explosion. Though not visible in the small angular range of our
particle spectrometer, this comparison evidences a large degree of
directionality of the accelerated proton bunch, also in accordance
with our simulations. In a follow-up experiment 2 years later we
were able to reproduce the above findings.

PIC simulation and comparison with experiment. We per-
formed 2D3V and 3D3V particle-in-cell simulations20,21 to sup-
port our experimental results quantitatively and elucidate the
underlying microscopic processes in more detail. It turned out
that in the case of two-dimensional simulations we were not able
to reproduce the experimental findings for a wide parameter
range. Due to the high computational cost of three-dimensional
simulations we were limited just to one single simulation. The
initial conditions for plasma density and laser intensity

distribution are chosen in such a way to closely resemble the
experimental ones (see Methods). In analogy to the experiments,
we extract absolute differential proton spectra in forward direc-
tion (blue line in Fig. 2c) and compare it exemplarily to shot
number #11 (green solid line) in Fig. 2c. Given the complexity of
the involved physics and assumptions, the quantitative agreement
of experimentally measured and simulated kinetic energy dis-
tribution is remarkably good, both in terms of energy and dif-
ferential spectral amplitude. The number of protons per solid
angle observed in simulation is represented by the blue dashed
line in Fig. 2b and matches the experimentally determined values.
Figure 2d compares our current results (red triangles) to recent
experimental studies showing narrow energy band ion beams
from laser–plasma interactions. The number of protons is nor-
malized to an energy interval of 1% of the respective kinetic
energy per nucleon and solid angle of 1 sr. Our results push the
energy frontier of narrow band laser-driven ion sources with
usable particle numbers. The spectral peak contains a factor of
>30 more particles than earlier approaches reaching into com-
parable energy ranges. The limitations of achievable proton
energies and possible routes for optimization for the presented
approach unravel when studying the results of the three-
dimensional PIC simulations in more details

Discussion
Encouraged by the quantitative agreement of the differential
spectrum in Fig. 2c, we elucidate its temporal evolution. Figure 3a
reveals that the spectral distribution remains narrow throughout
the complete interaction of the laser pulse with the plasma. Since
the plasma is transparent to the laser from the beginning, the
laser interacts with all electrons in a collective manner (Fig. 3b).
In turn, the optical properties of the plasma act back on the laser
and vice versa. The resulting normalized spatial intensity
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distribution in the polarization plane of the laser is shown for
three time points (460, 345, and 260 fs before the peak intensity
reaches the plasma) that are of interest for tracing the first phase
of proton acceleration in Fig. 3b. The corresponding instanta-
neous on-axis laser intensity acting on the plasma amount to
6.8 × 1019, 1.9 × 1020, and 3.3 × 1020W/cm2. During this period,
the laser pulse infolds the plasma transversely, as visualized in the
overlaid electron density distribution (blue colormap Fig. 2b).
This is in close analogy to a metal sphere in the donut mode of an
optical tweezer22, only here the donut mode is self-induced by the
optical properties of the plasma. Over time, a substantial fraction
of the electrons leave the target and are accelerated to large

longitudinal velocities approaching the speed of light with
growing intensity (Fig. 3c). As observable in their density dis-
tribution slice in Fig. 3b, they leave the indicated initial target
region preferably in laser propagation direction. The laser
intensity valley at the same time confines them transversely. In
Fig. 3d we visualize the resulting charge imbalance via the long-
itudinal distribution of the mean charge densities obtained by
transverse averaging the density slice of negative (electrons) and
positive (ions and protons) particles over a range of 1.5 µm. Due
to the limited number of available electrons and the asymmetric
intensity distribution, the electron density distribution (blue filled
curve) evolves asymmetrically, and so does the associated profile
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of the electric field. In consequence ions are dragged preferably
toward the intensity valley as well. Figure 3e evidences that the
accelerating field distribution remains stable over an extended
period of time, despite short-lived modulations observed in the
charge densities. As protons are the ion species with a largest
charge to mass ratio they are accelerated most promptly and
develop a negative energy chirp in the monotonic slope of the
field. When the fastest protons reach the peak of the field, which
amounts to ~2.5 MV/µm, the tail of the bunch catches up,
observable in the superimposed proton phase space. The nar-
rowest energy spread is reached at t = −50 fs with 3.5% (1MeV
FWHM @ 29MeV). It is interesting to note that the energy peak
position of the detaching proton bunch closely follows the red
line superimposed in Fig. 3a until t = −260 fs. It represents the
cumulatively time and spatially integrated laser intensity, i.e. the
laser energy that has passed through the plasma up until the
respective time. The proportionality factor between the accu-
mulated energy and central bunch energy is estimated in this case
to 2.4 MeV/J. At t = −260 fs the bunch energy no longer follows
this favorable scaling, which would otherwise result in a proton
bunch with 163MeV energy. Over the time the electron popu-
lation in the target gets more and more depleted. Hence, the
acceleration due to the electron jet is replaced gradually by
Coulomb repulsion forces. Extracting the three-dimensional ion
density distributions at time t = −230 fs, the further evolution of
the proton bunch can be well described by considering pure
Coulomb repulsion (see Methods). The time evolution of the
proton energy distribution resulting from this calculation is
visualized by the blue line in Fig. 3a. In the light of the above
explanation, we draw one important conclusion. The initial
acceleration phase, which only lasts until ~345 fs before the laser
intensity peak, terminates due to strong electron heating and the
depletion of electrons (Fig. 3b, c). The remaining time is domi-
nated by Coulomb repulsion between the leading protons from
carbon and oxygen ions. Nevertheless, the energy spread remains
low. In order to increase the kinetic energy, the favorable scaling
reflected by the red line in Fig. 3a suggests that we must seek to
extend and maintain the well-controlled initial phase for as long
as possible. In this context it is instructive to examine the con-
version efficiency from laser energy into kinetic energy of pro-
tons/ions. In our simulation 58 J laser energy pass through the
plasma. The accumulated final kinetic energy of all protons is 181
mJ, 196 mJ for oxygen ions, and 367 mJ for carbon ions,
respectively. This leads to an overall energy conversion efficiency
into protons of 0.3 and 1.3% into protons and ions combined.
Until −260 fs only 6.3 J have passed the plasma, the remaining
part of the laser pulse does not contribute to proton/ion

acceleration. The effective laser energy conversion efficiency may
therefore be arguably ~10× larger: 3.1% into protons and 11.8%
for protons and ions combined. Consequently, future studies,
both theoretical and experimental, should concentrate on spec-
tral, temporal, polarization and spatial shaping of the laser pulse
to further optimize the electron dynamics that is responsible for
the generated acceleration fields in the first acceleration stage. On
this track, target composition, density, and size represent further
possibilities for optimization.

In conclusion, we note that, although not yet optimized by any
means, our approach enables a target parameter space which in
conjunction with a PW-class laser results in the reproducible
emission of a proton bunch with high density and tens of MeV
energies. Simulations show a total of 1010 protons in the gener-
ated bunch, equal to 14% of the initial reservoir (micro-sphere
target) content. The simulations further suggest that the long-
itudinal proton bunch length is only 4 µm (Fig. 3f). Immediately
behind the original target, the particle density reaches ~1021

protons/cm3. Proper particle optics may be able to recover those
conditions to some extent at a place of interest for ultrahigh dose
rate investigations as well as temporally and spatially resolved
studies, but also direct collider experiments may be envisioned.
The final transverse divergence full angle amounts to 20° with a
flat distribution. This divergence establishes during the final
Coulomb repulsion phase of the acceleration, while the proton
bunch is even more directed during the initial acceleration phase.
It is remarkable that a 500 fs long laser pulse can generate a short
bunch of ~50 fs duration, four orders of magnitude smaller than
conventional particle accelerators.

Methods
Detailed experimental setup. Fig. 4 shows schematically our experimental setup.
All numbered components are described in more detail in the following sections.

PHELIX laser. The experiment employed the PHELIX laser at GSI Helmholtz-
zentrum für Schwerionenforschung. PHELIX is a glass laser system based on
chirped pulse amplification with a central wavelength of 1054 and 3 nm bandwidth.
In the experiments the pulse energy amounted to 150 J with pulse duration of 500
fs. The laser pulse was focused by an 45° offaxis parabolic copper mirror with 400
mm focal length. The beam size amounted to 250 mm. The laser contrast was
enhanced by a fast Pockels cell and optical parametric pulse cleaning techniques
leading to an amplified spontaneous emission (ASE) level below 1011 W

cm2 with a
duration of approximately 2.5 ns. The main pulse exhibits an exponential shoulder
in which the intensity raises over 110 ps from ASE level to 1016 W

cm2 . After this
exponential slope the main pulse can be assumed to be Gaussian in shape. The laser
is capable to deliver one shot every 90 min.

Paul trap. We employed a linear Paul trap for target positioning (Fig. 5). Axial
confinement was achieved by end cap electrodes. For the employed targets typical
trap voltages were 1000–2000 kV, with frequencies in the range of 800–1500 Hz for
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Fig. 4 Schematic overview of the experimental setup. a Incoming PHELIX laser beam, b Paul trap power supply, c 660 nm illumination laser, d electro-

optical diagnostic for target damping and positioning, e Paul trap electrodes, f trapped target scatter screen for transmitted light with g and without h

target, i magnetic spectrometer, j IP raw proton/ion data (without degraders)
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stable trap operation. Typical end cap voltages were 100–300 V (DC). The distance
from the trap center to the quadrupole electrodes measured 8 mm. The distance
between the endcaps amounted to 20 mm. Targets were extracted out of a reservoir
by mechanical vibration. While falling into the already operating trap they got
charged by an ion gun and subsequently captured. In a first step the amplitude of
the trapped target was reduced by buffer gas cooling at 10−4mbar. Final stabili-
zation of the target position was achieved by electro-optical damping under
vacuum conditions smaller than 10−5mbar. Hereby, the target was illuminated by a
50 mW laser with 660 nm wavelength. Stray light from the particle was imaged by
an tele-centric lens system onto a position sensitive diode (PSD). With a beam
splitter a small fraction of this stray light was imaged onto a CCD camera. The PSD
signal was used to damp the particle by superimposing additional fields on the trap
electrodes. Overlap of the damped particle with the laser focus was ensured by the
laser focus diagnostic. By the CCD signal we ensured that the target remained quiet
and at the right position prior to a full system shot. Fifty milliseconds before
irradiation of the target with the PHELIX laser mechanical shutters protected
illumination laser, CCD, and PSD.

Targets. The PMMA hollow spheres were produced by covering polystyrene
spheres (Fig. 6a) with a PMMA layer. The polystyrene cores were subsequently
dissolved away (Fig. 6b). The solid PMMA spheres employed in the experiment
were commercially available via microparticles GmbH.

Simulation of diffraction pattern. In the case of a sub-focus-sized mass-limited
target, the laser is able to partially pass the target undisturbed. Regions containing
plasma change phase and amplitude of the laser. We simulated diffraction patterns
for various density distributions and compared it to experimentally recorded
patterns. The laser was modeled by a Gaussian intensity distribution. To mimic
divergence and focal spot size we used an M2 of 2.8. Twenty micrometer after the
focus a spherically symmetric electron density distribution n rð Þ ¼
nm exp �r2=ð2r2σÞ

� �

has been defined, where nm ¼ n0 � 9π=8ð Þ1=2r30=r
3
σ has been

varied such that the total electron number was kept constant. The phase of the laser
was modified according to the refractive index of a collisionless plasma η rð Þ ¼
1� n rð Þ=ncð Þ1=2 in regions where n rð Þ<nc . For n rð Þc the amplitude was set to 0.
Figure 7 shows the assumed waveform aberrations for two different pre-expansion
scenarios. The color scale indicates the amplitude of the wave. If the plasma is
expanded to a degree where its density is 100% under-critical the plasma acts as a
phase object. In the case of an smaller expansion the plasma is still over-critical in
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Len=1016.65 nm

Len=820.51 nm

Len=815.12 nm
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a b

Fig. 6 Electron microscopic images of targets: a polystyrene spheres and b hollow spheres made of polymethylmethacrylate
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(1000–2000 V, 800–1500 Hz)

Fig. 5 Linear Paul trap: 3D view of the employed Paul trap. Trap electrodes

are shown in red. The distance between the end cap electrodes can be

adjusted to account for different target sizes and materials (20mm in the

presented experiment)
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b

Fig. 7 Schematic representation of waveform aberrations induced by the

plasma. a In the case of a 100% under-critical plasma the phase of the wave

is distorted, the wave amplitude remains unchanged. b Over-critical regions

block the incoming wave
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the center. In these regions the amplitude is set to zero. The remaining phase object
is smaller and acts on the phase in a stronger manner than in the under-critical
case. The plasma was considered as thin lens. The obtained phase and amplitude
maps were used to solve the Kirchhoff’s diffraction formula to predict the intensity
distribution at the scatter screen. To mimic a flat-top beam we normalized the
obtained diffraction patterns with respect to the undisturbed beam and applied an
aperture.

Wide angle spectrometer and image plate evaluation. We employed a slit
spectrometer in our experiment. Herby a magnetic field disperses different particle

momenta spatially. Different particle species can have the same momentum. To
obtain proton spectra we used degraders to prevent the carbon ions to reach the
spectrometer (protons have a higher penetration depth than carbon ions with the
same momentum). Heavy ion spectra (in our case carbon and oxygen) are sacri-
ficed for spatial information. The magnetic slit spectrometer (Fig. 8) consists out of
two dipole magnets. The first magnet was located 240 mm behind the target. The
magnet had a length of 240 mm and a gap of 170 mm. The entry slit was made out
of 20-mm-thick tungsten blocks on a 60-mm-thick steel front plate and had a
width of 500 µm. Its orientation was parallel to the laser polarization. The distance
between detector and slit amounted to 620 mm. A second dipole magnet was
placed directly in front of the detector to increase the dispersion further. The
second magnet consisted out of three gaps with 45 mm width and had a length of
120 mm. The magnetic field in the center of the first dipole magnet amounts to 0.1
and 0.3 T for the second. We employed 3D particle tracking to account for the
inhomogeneous magnetic fields of the spectrometer. The necessary magnetic field
maps were measured with a three-axis hall probe.

The evaluation routine for the proton spectra will be presented exemplarily on
shoot #11. We used Bas-TR image plates (IP) as detectors covered in 100-µm-thick
aluminum foil. Parts of the detector were additionally covered with 1-mm-thick
CR39 nuclear track detectors wrapped in 15-µm-thick aluminum. Positions of
CR39 are shown in Fig. 9b (yellow squares). The IPs were scanned with an MS-
FLA5100 scanner from Fuji with a resolution of 100 µm. In the case of saturation
(saturation only occurred for carbon data) the image plates were scanned twice.
The obtained raw data were converted into photostimulated luminescence (PSL)
using Fuji’s conversion plugin for ImageJ. Scans were composed into an HDR
image shown in Fig. 9a. A via particle tracing obtained energy-angle map was
aligned within the PSL image. Some important iso-energy lines for protons are
shown in Fig. 9a–c. Protons with energy of 3.4 MeV are able to penetrate the 100-
µm-thick aluminum shielding of the IPs representing the low-energy cutoff of our
spectrometer. Protons with 11MeV are able to penetrate regions which were
additionally covered with CR39. At regions where protons with an energy of 24.8
MeV would be situated C6+ ions with 75MeV are able to penetrate the 100-µm-
thick aluminum. C6+ ions with energies exceeding 249MeV are be able to
penetrate the 0.9-mm-thick CR39 detector together with 130 µm alumina. Protons
with the same deflection correspond to an kinetic energy of 83 MeV. In no shoot
we recorded image plate signal at these deflections. This implies that we were able

Entry slit
60 mm

240 mm

200 mm 120 mm

Fig. 8 Ion spectrometer. 3D view of the employed particle spectrometer

including relevant dimensions. The ions enter through a 0.5 mm high slit

made out of tungsten into the first dipole magnet. After a drift length of

200mm they enter the second dipole magnet. The detector was located

directly at the exit of the second magnet
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to discriminate uniquely proton signal from carbon signal for the proton energy
range spanning from 3.4 to 83MeV (yellow squares in Fig. 9d, e).

Lineouts of the PSL signal are shown in Fig. 9e. The left lineout shows the PSL
signal which was shielded by 100 µm aluminum (Position II in Fig. 9a, b). The right
lineout shows the PSL signal which was shielded by 130 µm aluminum and 0.9 mm
CR39 (Position I in Fig. 9a, b). Due the different degraders regions of the IP can be
identified that can only be reached by protons indicated as yellow regions in
Fig. 9d, e). The cutoff lines in Fig. 9a–c are shown as vertical lines with
corresponding color. We constructed energy-angle bins shown in Fig. 9c (blue,
green, and red quadrilaterals). Herby the energy bin width has been chosen in such
a way that corresponding bins in detector space had a height of 1500 µm, which
corresponds to the slit projection on the IP. Due to the negligible angle dependence
of the raw data signal, the angle bin width has been arbitrarily chosen to be 2792
mrad. Different angle bin sizes yielded similar results. One energy-angle bin
contains about 450 pixel of the IP. Pixel which were partially covered by a bin were
weighted according to their overlap. The conversion function from PSL to #p/pixel
has been calibrated with a Tandem accelerator (MLL). The energy loss of the
protons in the degraders has been taken into account for each bin individually. The
final spectra are obtained at the borders of the CR39. Energy bins with values
between 3.5 and 22MeV were evaluated behind 100 µm aluminum (Fig. 9c
red–green quadrilaterals). For energies above 22MeV the IP signal behind CR39
was used (Fig. 9c red–blue quadrilaterals). The corresponding spectra are shown in
Fig. 9d. Also here the cutoff lines are indicated by vertical lines with corresponding
color. Yellow boxes mark regions where the signal is purely caused by protons. The
resulting final spectrum is shown in Fig. 2c. Regarding carbon ion energies we can
only make weak statements based on cutoff lines. In the experiment 100 µm
aluminum was penetrated by carbon ions with a kinetic energy of at least 75 MeV.
The absence of a cutoff line behind CR39 in our shoots evidences that the C6+
energies were smaller than 250MeV.

Particle-in-cell simulations. Particle-in-cell simulations were performed using a
0.2.0 pre-release of PIConGPU. The simulated 3D domain spans 104 × 139 × 104
µm (x, y, z) with 3456 × 4624 × 3456 cells, resolving each Δx ¼ Δy ¼ Δz ¼ 30 nm
and Δt ¼ 57:5 as. For the interaction with the main pulse, a pre-expanded, pre-
ionized target with radial Gaussian density profile is modeled. Peak density cor-
responds to ne ¼ 0:8 nc (ωpe � Δt < 0:09) with a standard deviation of
σ ¼ 3:0625 μm. Its constituents C5O2H8 are modeled after PMMA, assuming no
de-mixing before the main interaction. GSI’s PHELIX laser is modeled as finite
Gaussian beam with central wavelength λ = 1053 nm, linear polarization in x and
propagation in y. Focusing the laser pulse on target, a normalized field strength
a0 ¼ 17 in a 13.5 μm focal spot over a pulse length Δt ¼ 500 fs
(both FWHM intensity) interacts self-consistently with the initial density dis-
tribution. Self-consistent numerical methods deployed are the Yee field solver,
trilinear field-to-particle interpolation, Boris particle push, Esirkepov current
deposition, six initial macroparticles per cell with TSC shape. Consistently,
boundary conditions are treated as absorbing and starting conditions as
quasi-neutral.

The overall simulation run on 8000 Nvidia K20x GPUs on Titan (ORNL) for
42,000 time steps within 11.5 h. During runtime, 1 PByte of raw output was
generated which was aggregated with ADIOS and on-the-fly compressed with zlib.
Parallel post-processing was performed on the Rhea cluster (ORNL), accessing the
same file system. Extensive preparatory 2D3V simulations were executed on the
cluster Hypnos (HZDR) with 8-16 Nvidia K80 GPUs, scanning the pre-expansion
of the target from full density down to 0.016 nc and variations in density profiles.
Due to the symmetry assumptions of 2D simulations (infinite cylinders in the third
dimension), these simulations were not conclusive and made 3D3V simulations
necessary.

Coulomb repulsion calculation. We generated low resolution
Δx ¼ Δy ¼ Δz ¼ 500 nmð Þ 3D density maps for electrons carbons/oxygens and
protons for t = −260 fs. The 3D maps were deduced from xy and yz density slices
via interpolation. To account for neutralizing effects of bound electrons we reduced
the carbon/oxygen charge density by the overlaying electron density. The so
obtained 3D charge density distributions of carbons/oxygen and protons were used
as input in a Coulomb repulsion code (General Particle Tracer (GPT)). Starting
velocities were assumed to be monoenergetic. We used mean kinetic energies
extracted out of spectra from the simulation at t = −260 fs as starting parameters.

Data availability. The data that support the plots within this article and other
findings of this study are available from the corresponding authors on reasonable
request. Additionally, 3D3V particle-in-cell simulation input parameters and data
of Fig. 3 are available under DOI:10.5281/zenodo.1005729.
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