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We present a theoretical and numerical analysis of a quantum system that is capable of functioning as a

heat engine. This system could be realized experimentally using cold bosonic atoms confined to a double

well potential that is created by splitting a harmonic trap with a focused laser. The system shows

thermalization, and can model a reversible heat engine cycle. This is the first demonstration of the

operation of a heat engine with a finite quantum heat bath.
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Recent developments in modeling the quantum dynam-
ics of isolated systems [1] have provided a quantum under-
standing of thermalization. However, they rely on
experimentally challenging systems. This has meant that
development of a quantum understanding of heat engines
has not been possible. In this Letter, we consider a model of
cold bosonic atoms confined to a double well potential. Our
analysis shows that this system exhibits thermalization
when one well is initially more energetic than the other,
and furthermore shows that the system can perform a heat
engine cycle. The system could be realized experimentally
with present technology.

The state of a quantum system evolves via the applica-
tion of a unitary operator. Consequently, all processes are
reversible and until recently it was not clear how a quantum
system could reach thermal equilibrium. Srednicki sug-
gested a solution called the eigenstate thermalization hy-
pothesis (ETH) [2], in which all eigenstates have the
properties of a thermal state. Recently, this hypothesis
was tested against other hypotheses by Rigol et al. [3]
using hard core bosons confined to a lattice and found to
be the only one that agreed.

Several experimentally simpler schemes have been
studied. Ponomarev et al. demonstrated thermal equilibra-
tion when two isolated systems with different temperatures
were coupled through interactions between atoms in the
different systems [4]. Chianca et al. allowed tunneling of
atoms between the systems in a four site lattice configura-
tion [5]. However, no simple measure of temperature could
be obtained meaning it could not be developed into a heat
engine. A quantum description of a heat engine has been
produced in Refs. [6] where the system is coupled to a
classical heat bath.

In this Letter, a quantum analysis of a heat engine is
performed where both the system and heat bath are mod-
eled quantum mechanically and atoms can tunnel between
wells. Each well is described by two energy levels allowing
temperature to be defined. One well acts as the system and
the other serves as the heat bath. Heat is added and re-
moved by tunneling of atoms between the wells. The

volume of the wells is changed by modifying the harmonic
confinement and the barrier position. All processes are
done at a rate that provides good reversibility of the engine.
The system is modeled using both the truncated Wigner
approach (TWA) to calculate the system for thousands of
atoms and the accuracy is checked using calculations of the
full quantum dynamics (FQD) for tens of atoms. Both
results agree well showing an increase in number reduces
fluctuations.
N bosons confined to a double well trapping potential,

VdwðxÞ, are described by the Hamiltonian

Ĥ ¼
Z

dx

��@
2

2m
rĉ yðxÞ � rĉ ðxÞ þ VdwðxÞ

�

þ g
Z

dx
Z

dx0 ĉ yðxÞĉ yðx0Þ�ðx� x0Þĉ ðx0Þĉ ðxÞ:
(1)

At low temperatures only the lowest laying single particle
states are populated. Here we take into account the first two
states as depicted in Fig. 1. Therefore the field operators
can be described in terms of the four localized single

particle functions, ĉ ðxÞ ¼ P
1
l¼0½�l

LðxÞb̂lL þ�l
RðxÞb̂lR�,

where b̂lr are the bosonic annihilation operators of an
atom in well r and energy level l and described by the

FIG. 1 (color online). Schematic of a double well created by
splitting a harmonic potential with a focused laser. The diagram
shows the possible tunneling and how the energy levels change
due to the interactions.
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single particle functions �l
r. This leads to the two-band

Hubbard Hamiltonian [7,8]

Ĥ ¼ � X
r�r0;l

Jlb̂lyr b̂lr0 þ
X
r;l

Uln̂lrðn̂lr � 1Þ þX
r;l

El
rn̂

l
r

þU01
X
r;j�l0

ð2n̂lrn̂l0r þ b̂lyr b̂lyr b̂l
0
r b̂

l0
r Þ; (2)

where we have ignored interactions between atoms in
different wells. The ground and first excited state energies

are El
r ¼

R
dx�l�

r ðxÞ½� @
2

2mr2 þ VdwðxÞ��l
rðxÞ. The tunnel

coupling between the wells is Jl ¼ R
dx�l�

L ðxÞ½� @
2

2mr2þ
VdwðxÞ��l

RðxÞ. The interaction between atoms in the same
well and on the same energy level is Ul ¼ g

R
dxj�l

rðxÞj4,
and on different energy levels is U01 ¼
g
R
dxj�0

rðxÞj2j�1
rðxÞj2. This term also leads to atoms

changing energy levels.
We consider a harmonic potential with oscillator fre-

quency !0, which is split by a focused laser beam located
at x0 from the center of the harmonic potential and de-
scribed by a Gaussian potential V0 exp½�ðx� x0Þ2=2�2�.
The barrier height V0 ¼ 10@!0, with width � ¼ 0:1lho,

where lho ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!0

p
is the harmonic oscillator frequency.

For a symmetric well, localized functions representing the
energy levels in the different wells were calculated from
the single particle eigenstates of the system. This gives
J0=@!0 ¼ 0:153, J1=@!0 ¼ 0:226, E0

r=@!0 ¼ 1:37, and
E1
r=@!0 ¼ 3:31. The interaction terms can be calculated

from the integrals above and the interaction coupling, g.
The interaction coupling can be varied by the Feshbach
resonance [9] and for our purpose we use U0=@!0 ¼ 2=N,
U1 ¼ 3U0=4, and U01 ¼ U0=2. During the heat engine
cycle only El

r are modified, because other terms are ap-
proximately constant.

Thermalization of the system can be understood by first
writing the initial wave function in terms of the eigenstates
of the Hamiltonian, j�ð0Þi ¼ P

�C�j��i, where j��i are
the eigenstates with energiesE� andC� ¼ h��j�ð0Þi. The
time evolution is given by j�ðtÞi ¼ e�iHt=@j�ð0Þi. The
expectation value of an observable O is thus given by

hÔi ¼ X
��

C�
�C�e

iðE��E�Þt=@O��; (3)

where O�� ¼ h��jÔj��i. As stated above, ETH de-

scribes the long time dynamics of the system [2]. The
eigenstates of the system that make up the initial state
have the properties of thermal state. After a considerable
time, the off-diagonal terms in Eq. (3) average to zero. This
is called the long time average (LTA), which is a weighted
average of the eigenstates and is independent of time,

hÔi ¼ P
�jC�j2O��. If the system is thermalized, then

the long time average should be equal to an ensemble
average, which is given by a microcanonical average
over a narrow energy interval around the mean energy of

the system, hÔiE0
¼ 1=N

P
�;E0��E=2O��. HereN is the

number of states in the energy interval �E, E0 ¼P
�jC�j2E� is the mean energy of the system. We inves-

tigate the number of atoms in each of the energy levels.
Therefore, the following equality is expected to be valid for
thermalization:

lim
t!1hn̂

l
rðtÞi ¼ hn̂lri ¼ hn̂lriE0

: (4)

According to the ETH knowing a single eigenstate is

sufficient to compute averages, O�� � hÔiE�
[2,3]. For

Ô ¼ n̂lr this is shown in Fig. 2. The ETH also assumes
initial conditions narrow in energy. For the initial state we

use (see below) ðhĤ2i � hĤi2Þ1=2=hĤi � 0:1.
There are no general arguments supporting the ETH.

There are proofs that quantum systems, whose classical
analogues are chaotic, satisfy the ETH in the semiclassical
limit [10]. It is not computationally tractable to calculate
the classical counterpart of our system for hundreds of
atoms; therefore, we look at the mean-field version of
our system first. In this approach we replace the operators

with complex numbers b̂lr ! blr in the Heisenberg equa-

tions of motion db̂lr
dt ¼ i

@
½Ĥ; b̂lr� and get

i
dblr
dt

¼ �Jlbl�r þ 2Uljblrj2blr þ ðEl
r �UlÞblr

þ 2U01jb1�l
r j2blr þ 2U01bl�r b1�l

r b1�l
r ; (5)

where l ¼ f1; 2g, r ¼ fL; Rg, and �L ¼ R, �R ¼ L. The dy-
namics of the system is chaotic (see, e.g., [11]). For ex-
ample, the imaginary and real parts of b1L shown in the inset
of Fig. 2 clearly exhibit chaotic behavior. It follows that the
trajectories are sensitive to initial conditions. We apply the

FIG. 2 (color online). The expectation values of the occupation
numbers in an energy window near the mean energy of the
system E0 for N ¼ 40. The intersection with the mean energy of
the system (dotted line) gives approximate values of the ther-
malized values. This supports the ETH. Inset: The dynamics of
the field b1L from t ¼ 0 to t ¼ 10!�1

0 in the symmetric double

well for two slightly different initial conditions. The two trajec-
tories starting at A and ending at BðB0Þ are not periodic, they
gradually diverge and cover finite space. This demonstrates
chaos in our system [21].
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truncated Wigner approximation, which is a powerful tool
for the investigation of quantum dynamics in interacting
many body systems [12]. This amounts to solving Eq. (5)
with different initial conditions, which accurately samples
quantum noise in the system [13], and averaging after-
wards. Since the trajectories of the system are chaotic,
this might lead to equilibration within the TWA. For a
coherent state, we sample the initial conditions as b ¼
b0 þ 1

2 ð�1 þ i�2Þ, where jb0j2 ¼ nþ 1=2 and �i are

Gaussian random variables. The coherent state corre-
sponds to a condensed state of bosons. Another possibility
is a Fock state, which is sampled as b ¼ ðpþ q�Þei2��,
where � is a Gaussian random variable and � is a uniform
random variable in the interval [0, 1], p ¼
1
2 ð2N þ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ N

p Þ1=2, and q ¼ 1
4p . The initial con-

figuration of N ¼ 104 atoms used is n0L ¼ N=2, n0R ¼
3N=8, n1L ¼ 0, n1R ¼ N=8, so the right well is more ener-

getic than the left well. The number of atoms in the excited
state is small so the temperature is low enough to satisfy
the two-band approximation (see later). The system under-
goes thermalization up to a time t ¼ 100!�1

0 (see Fig. 3).

The expectation values of the occupation number of parti-
cles approach a constant value, which is independent of the
initial state (being coherent state or Fock state) and agrees
well with ETH. We find the system has thermalized with
values n1r=N � 0:089 for both the left and right wells, and
n0r þ n1r ¼ N=2.

Another method simulates the FQD by creating the
Hamiltonian in the Fock basis of localized functions and
propagates using the unitary matrix UðtÞ ¼ expð�iHt=@Þ.

To make this approach computationally tractable the sys-
tem is limited to 40 atoms. However, this is enough to
verify the results of the TWA. Figure 3 shows that the FQD
gives values that oscillate around the TWA results. These
oscillations reduce for larger numbers of atoms and for the
N ¼ 104 atoms we expect good agreement with the TWA.
Equation (4) is verified and compared with n1r , which we
average between times t!0 ¼ 80 to t!0 ¼ 100 to account

for the oscillations, and gives good agreement, n1r=N �
hn̂1ri=N � hn̂1riE0

=N � 0:089.

The heat engine scheme is similar to the Otto cycle [14],
and was chosen to be experimentally simple. Heat is trans-
ferred from one well to another via tunneling of atoms. The
work is done on the trapping potential by the expansion of
atoms in a well when its size is slowly increased. Here the
right well is the engine while the left well serves as the heat
bath, and this corresponds to the clockwise solid line in
Fig. 4. The heat engine process starts at t ¼ 100!�1

0 .

ðaÞ ! ðbÞ: the laser barrier starts at x0 ¼ 0:2=lho and the
harmonic confinement is adiabatically reduced to ! ¼
0:8!0, so the populations of the localized functions remain
roughly constant. This relates to the power stroke in the
Otto cycle and work is done by the engine. ðbÞ ! ðcÞ: the
barrier moves to the left, x0 ¼ �0:2=lho, leading to a rapid
change in the populations. This is the heat rejection stage
of the Otto cycle and heat is extracted from the right well.
ðcÞ ! ðdÞ: the harmonic confinement is adiabatically in-
creased and the populations of the localized functions
again remain roughly constant. This is the compression
stage in the Otto cycle and work is done on the engine.
ðdÞ ! ðaÞ: the final stage sees the barrier move to the right
and relates to the combustion stage of the Otto cycle. Here
heat is added to the engine. While the volume does change
in the steps ðbÞ ! ðcÞ and ðdÞ ! ðaÞ, it is small relative to
the adiabatic processes. The slight asymmetry of the evo-
lution is due to the finite evolution time of the system,
which was necessary to limit numerical inaccuracy.
If a system is thermalized, it reaches a thermal state,

which is described by the thermal density matrix 	T ¼
expð�Ĥ=kBTÞ=Trfexpð�Ĥ=kBTÞg [15]. The temperature

FIG. 3 (color online). The heat engine cycle. Top: the energy
of the localized states in the double well system as the system
evolves. Bottom: the population expectation value of each of the
energy levels for TWA (dark lines) and FQD (faint lines). The
initial state is jN=2; 3N=8; 0; N=8i and is first allowed to ther-
malize. The tunneling and interaction strengths are kept constant
throughout the simulations at J0=@!0 ¼ 0:153, J1=@!0 ¼
0:226, U0=@!0 ¼ 2=N, U1 ¼ 3U0=4, and U01 ¼ U0=2.

FIG. 4 (color online). Pressure-volume plot for the right and
left wells. Each well produces work proportional to the area
enclosed by the curves.
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T is chosen to best fit the data, and is used to calculate nlr ¼
Trð	Tn̂

l
rÞ. At t ¼ 100!�1

0 the system is thermalized with

T1 � 2:6@!0=kB. We notice here that the two wells are not
always in thermal equilibrium during the engine cycle,
since we require the atoms flow from one well into another.
However, the system reaches thermal equilibrium at t ¼
200!�1

0 with T2 � 2:2@!0=kB and completes the cycle

with T � T1. The thermal energy, kBT, is of the same order
as the gap between the ground and first excited single
particle states, E1

r � E0
r � 2@!0, which validates the

two-level approximation.
The pressure and volume (or length for a quasi–one

dimensional system) in each well can be used to demon-
strate the efficiency of the engine. If we assume the wells
can be approximated by harmonic oscillators, then we can
use the harmonic oscillator length as the length scale of the

system, so lr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!r

p ¼ @=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðE1

r � E0
rÞ

p
. For simplic-

ity, we use the pressure for an ideal gas, P ¼ 2Er=3V [16],
where Er ¼ n0rE

0
r þ n1rE

1
r is the kinetic energy of a well,

and taking V � 2lr, we get P ¼ Er=3lr. The pressure and
volume of the left and right wells are plotted in Fig. 4 and
we see the hysteresis of the heat engine, which shows work
has been done. The whole isolated system cannot produce
work, since the two processes in Fig. 4 cancel each other.
This is consistent with the second law of thermodynamics.

The entropy of a well is another quantity along with
temperature, which can be measured to verify that the
system has come into thermal equilibrium. It is given by
S ¼ �kBTrf	r log	rg, where 	r is the reduced density
matrix traced over the other well. As expected, it starts
from zero at t ¼ 0 and approaches S � 0:1kBN at t ¼
100!�1

0 . The entropy and other thermodynamic quantities

can be measured from scanning the density profile of a
quantum gas [17]. A focused electron beam with extremely
high resolution of 150 nm can be used for this purpose [18].

The efficiency can be calculated as 
 ¼ W =Qin, where
work done is W � P

l¼0;1

R
nlRdE

l
R and heat added to the

engine is Qin �
P

l¼0;1

R
�lRdn

l
R, where "lr ¼ El

r þ
2Ulnlr þ 2U01n1�l

r is the energy of a single particle shifted
by the mean-field contribution from other particles in the
same level [6]. We obtain 
 � 0:14. This is close to the
Carnot efficiency 
 � 1� T2=T1 � 0:15.

To experimentally realize the heat engine cycle, a mag-
netic trap with radial and axial trapping frequencies of
!?=2� ¼ 4 kHz and !0=2� ¼ 40 Hz can be used to
confine atoms in a 1D trapping potential. In this case the
ratio of the corresponding oscillator lengths is lho=l? �
10, such that the width of the focused laser beam is � �
l?. For 7Li atoms this gives � � 0:6 �m. A narrow laser
beam was recently reported with � � 0:7 �m and posi-
tioning the beam to a lateral precision of 0:05 �m [19].
Taking the 1D interaction strength g ¼ 2@2as=ma2? [16]

yields the estimate for the two-body scattering length as �
100 nm=N. The scattering length for 7Li atoms was
achieved as small as �10�4 nm [20]; therefore, the num-

ber of particles should not exceed N � 106. For such a
realistic setup the full cycle of the engine will take �1 s.
In conclusion, we have demonstrated thermalization of

cold bosonic atoms confined to a double well potential,
which is described by the two-band Hubbard model. We
have shown that this can be utilized for the realization of an
isolated finite quantum engine, where one well produces
work and another well serves as the heat bath. If realized
experimentally, this will demonstrate the first isolated
quantum engine with finite heat bath.
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[18] T. Gericke, P. Würtz, D. Reitz, T. Langen, and H. Ott,

Nature Phys. 4, 949 (2008).
[19] C. Weitenberg et al., Nature (London) 471, 319 (2011).
[20] S. E. Pollack et al., Phys. Rev. Lett. 102, 090402 (2009).
[21] A. Katok and B. Hasselblatt, A First Course in Dynamics:

With a Panorama of Recent Developments (Cambridge
University Press, Cambridge, U.K., 2004).

PRL 108, 085303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

085303-4

http://dx.doi.org/10.1103/PhysRevA.30.504
http://dx.doi.org/10.1103/PhysRevE.68.066113
http://dx.doi.org/10.1103/PhysRevA.81.022113
http://dx.doi.org/10.1080/00018732.2010.514702
http://arXiv.org/abs/cond-mat/9410046v2
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevLett.106.010405
http://dx.doi.org/10.1103/PhysRevLett.106.010405
http://dx.doi.org/10.1103/PhysRevA.83.043607
http://dx.doi.org/10.1103/PhysRevA.83.043607
http://dx.doi.org/10.1103/PhysRevE.61.4774
http://dx.doi.org/10.1140/epjd/e2006-00075-5
http://dx.doi.org/10.1103/PhysRevLett.97.180402
http://dx.doi.org/10.1103/PhysRevLett.97.180402
http://dx.doi.org/10.1209/0295-5075/90/10005
http://dx.doi.org/10.1103/PhysRevLett.99.200402
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevE.64.056119
http://dx.doi.org/10.1103/PhysRevE.64.056119
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1016/j.optcom.2009.06.033
http://dx.doi.org/10.1016/j.optcom.2009.06.033
http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1038/nphys1102
http://dx.doi.org/10.1038/nature09827
http://dx.doi.org/10.1103/PhysRevLett.102.090402

