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ISOLATED SINGULARITIES FOR THE EXPONENTIAL TYPE

SEMILINEAR ELLIPTIC EQUATION IN R
2

R. DHANYA, J. GIACOMONI, AND S. PRASHANTH

(Communicated by Matthew J. Gursky)

Abstract. In this article we study positive solutions of the equation −∆u =
f(u) in a punctured domain Ω′ = Ω \ {0} in R

2 and show sharp conditions on
the nonlinearity f(t) that enables us to extend such a solution to the whole
domain Ω and also preserve its regularity. We also show, using the framework
of bifurcation theory, the existence of at least two solutions for certain classes
of exponential type nonlinearities.

1. Introduction

Let Ω ⊂ R
2 be a bounded domain with 0 ∈ Ω. Denote Ω

′
= Ω \ {0}. Let

f : (0,∞) −→ (0,∞) be a locally Hölder continuous function which is nondecreasing
for all large t > 0. In this article we study the following problem:

(P ′)

⎧⎨
⎩

−∆u = f(u)
u ≥ 0

}
in Ω′,

u ∈ L∞
loc(Ω

′).

It is well-known from the works of Brezis-Lions [5] that if u solves (P ′), then
indeed u solves the following problem in the distributional sense in the whole domain
Ω:

(Pα)

⎧⎨
⎩

−∆u = f(u) + αδ0
u ≥ 0

}
in Ω,

α ≥ 0, u, f(u) ∈ L∞
loc(Ω

′) ∩ L1
loc(Ω).

This leads us to the following two questions:
(Q1) Can we find a sharp condition on f that determines whether or not α = 0

in (Pα)?
(Q2) If α = 0, is it true that u is regular (say, C2) in Ω?

We make the following

Definition 1.1. We say f is a sub-exponential type function if

lim
t→∞

f(t)e−βt ≤ C for some β,C > 0.

We say f is of super-exponential type if it is not a sub-exponential type function.
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As a complete answer to question (Q1) we show (Theorem 2.1) that if f is of
super-exponential type, then α = 0, and conversely (Theorem 2.2) that (Pα) has
solutions for small α > 0 if f is of sub-exponential type.

Similarly, we answer question (Q2) by showing that for any f of sub-exponential
type, any solution u of (P0) is regular(C

2) inside Ω (Theorem 3.1). Conversely, for f
of super-exponential type with any prescribed growth at ∞ and behaviour for small
t > 0, in Lemma 3.1 and Theorem 3.3 we construct solutions u of (P0) that blow-up
only at the origin. To our knowledge, the existence of such singular solutions has
not been considered so far for super-exponential type problems. Theorem 3.2 should
be contrasted with the results in [2] and [13]. Particularly in [13], the nonlinearity
under study is of a model type, viz., f(t) = et

µ

, µ > 0. These authors show
that for a noncompact sequence of solutions to (P0) posed on a ball, concentration
phenomenon occurs for 1 < µ < 2 and total blow-up occurs for µ < 1. Clearly,
µ = 1 appears as the borderline exponent between total blow up and concentration.
In Theorem 3.2, when µ = 2, for certain classes of nonmodel type nonlinearities we
show that instead of concentration, convergence to a singular solution occurs. If

the nonlinearity is closer to a model-type, more precisely, if lim inf
t→+∞

f(t)e−t2t = +∞,

then only concentration takes place, as follows from the results in [1].

Definition 1.2. We denote by Γ the fundamental solution of −∆ in R
2. That is,

Γ(x) = − 1
2π log |x|, x ∈ R

2 \ {0}.

2. Extendability of the solution from the punctured domain

to the entire domain

In this section, we will discuss the extension of a solution of (P ′) to the whole
domain Ω.

Theorem 2.1 (Removable singularity). Let f be of super-exponential type. Then
any solution u of (P ′) extends to a distributional solution of (P0).

Proof. As noted before for some α ≥ 0, u solves (Pα). Therefore, −∆(u − f(u) ∗
Γ− αΓ) = 0. Since f(u) ∗ Γ ≥ 0 it follows that u(x) ≥ αΓ(x)− C for all x ∈ Ω for
some constant C > 0. Since f(t) is nondecreasing for all large t > 0, we obtain,
for any δ > 0 small enough, f(αΓ(x)− C) ≤ f(u(x)) for all |x| < δ. If α > 0, we
choose β = 4π

α and apply Definition 1.1 to obtain |x|−2 ≤ f(u(x)) for all |x| small.

This contradicts the fact that f(u) ∈ L1
loc(Ω). Hence, necessarily, α = 0. �

Define
β∗ = inf{β > 0 occurring in Definition 1.1}.

Then, we can show the following:

Theorem 2.2. Let f be a sub-exponential type nonlinearity. Then for all α ∈
(0, 2π

β∗ ) the problem (Pα) admits a solution. Furthermore, if f(t) ≥ Ceβt, ∀t ≥ 0,

for some β > 0, then (Pα) has no solution for all α ≥ 4π(β)−1.

Proof. We will prove the above statements using the monotone iteration technique.
In fact, we will construct a solution u of (Pα) which vanishes on ∂Ω for all suitable
α. Without loss of generality, for this purpose we assume that f is nondecreasing
for all t > 0 (if not, we replace f(t) by f(t)+ kt for some large k, use the argument
below and recover the result for f). It is clear that u0 = 0 is a sub-solution of (Pα)
for all α > 0.
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Let us define, for any β,C > 0 given by Definition 1.1,

vβ(x) = −β−1 log

(
4|x|(1 + βC

4
|x|)2

)
.

Then a simple computation gives −∆vβ = 2πβ−1δ0 + g, where

g(x) = C

(
2|x|(1 + βC

4
|x|)2

)−1

.

It can be easily checked that g ∈ Lr(Ω) for all 1 < r < 2 and g ≥ f(vβ) in Ω. Hence
vβ is a supersolution of (Pα) for all α ≤ 2πβ−1. Now, for any such α, consider the
following sequence of problems:

(Pn)

⎧⎪⎪⎨
⎪⎪⎩

−∆un = f(un−1) + αδ0 in Ω,
un = 0 on ∂Ω,
un ∈ Lp(Ω) ∀ 1 < p < ∞,

f(un) ∈ Lr(Ω) ∀ 1 < r < 2.

We construct a solution un of the problem (Pn) inductively as follows. Let w1 ∈
C2(Ω) be the solution of the problem{

−∆w1 = f(u0) in Ω,
w1 = −αΓ on ∂Ω.

Define u1 = w1 + αΓ. It can be easily seen that u1 is a solution for (P1) with
f(u1) ∈ Lr(Ω) for 1 < r < 2. Now assume that there exists a solution for (Pn−1).
Let wn ∈ W 2,r(Ω) be a solution of{

−∆wn = f(un−1) in Ω,
wn = −αΓ on ∂Ω.

By standard elliptic regularity wn is a Hölder continuous function in Ω . Then un =
wn + αΓ solves −∆un = f(un−1) + αδ0 in Ω, and un = 0 on ∂Ω. Also un ∈ Lp(Ω)
for every 1 ≤ p < ∞. Next we notice that un−vβ solves −∆(un−vβ) ≤ f(un−1)−g
a.e. in Ω and un − vβ ≤ 0 on ∂Ω (for C large enough). Hence by the maximum
principle un ≤ vβ in Ω. Also we notice that f(vβ) ∈ Lr(Ω) for 1 ≤ r < 2. Using
the monotonicity of f we conclude that f(un) ∈ Lr(Ω) for 1 ≤ r < 2. Hence we
have obtained a sequence {un} solving (Pn) and

(2.1) un ≤ vβ in Ω for all n ∈ N.

It can also be shown easily that 0 ≤ u1 ≤ u2 · · · ≤ un−1 ≤ un · · · . Now define
u(x) = limn→∞ un(x). Then it follows that u is a solution to the problem (Pα)
for any α ≤ 2π(β)−1. Since β ≥ β∗ we indeed have a solution to (Pα) for all
α < 2π(β∗)−1.

Let us now take f(t) ≥ Ceβt, ∀t ≥ 0, for some β > 0. Suppose there exists a
solution u of (Pα). We then have u ≥ − α

2π log |x| − C1 in Ω, which, if α ≥ 4π
β
,

contradicts the basic conclusion that f(u) ∈ L1
loc(Ω) . �

We then have the following:

Corollary 2.1. If f(t) ≤ Ceβt
µ

, ∀t ≥ 0, for some 0 < µ < 1, then β∗ = 0, and
hence (Pα) admits a solution for every α > 0.
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3. Regularity and the lack of it for the extendable solution

In this section we discuss question (Q2) and show that regularity or the lack of
it for the solution to (P0) is determined by whether f is of sub-exponential type.
As an application of results in Brezis-Merle [6] we have the following:

Theorem 3.1. Let f be a sub-exponential type nonlinearity. Then any solution u
of the problem (P0) is regular in Ω.

Proof. Let u solve (P0). By Corollary 5.2 in [6], ek|u| ∈ L1(Ω) for every k > 0.
Therefore, since f is of sub-exponential type, we obtain that f(u) ∈ Lr(Ω) for
every 1 < r < ∞. Let u1 be the solution of{

−∆u1 = f(u) in Ω,
u1 = 0 on ∂Ω.

Then, u1 ∈ W 2,r(Ω) for all r > 1. Therefore, by Sobolev embedding u1 ∈ C1,θ(Ω)
for every 0 < θ < 1. But in the interior of Ω we have, in the sense of distributions,
∆(u−u1) = 0. Then, it is well-known that u = u1+h a.e. for some harmonic func-
tion h. Therefore, u is Hölder continuous in Ω, and by standard elliptic regularity,
it is C2 inside Ω. �

In the next two proofs we construct solutions of (P0) which blow-up at the
origin when f is of super-exponential type. Let BR denote the open ball of radius
R centered at the origin.

Lemma 3.1. Given any µ > 1 there exists an f of super-exponential type satisfying
limt→∞ f(t)e−tµ = 0 such that the corresponding problem (P0) posed on the unit
ball B1 admits a solution that blows-up at the origin.

Proof. Given µ > 1, define f(t) = 4(µ − 1)µ−2t1−2µet
µ

, t > 0. Clearly f satisfies
the requirements stated in the lemma. It can be checked that if we define u(x) =

(−2| log |x||)
1
µ , x ∈ B1, then, thanks to Theorem 2.1, u solves (P0) with the above

choice of f . �
In the above result, though we could choose f satisfying any prescribed super-

exponential type growth at infinity, the behaviour for small t > 0 is of singular type.
In the next result we exhibit super-exponential type nonlinearities whose growth

rate at infinity is fixed (in fact it grows like et
2

as t → ∞) but has regular behaviour
for small t > 0. For this we need to use the nonexistence results proved in [3], which
together with Theorem 3.3 stated below helps us to show the following:

Theorem 3.2. Let f : [0,∞) → [0,∞) be a C3 super-exponential type nonlinearity

with f(0) = 0, which has the form f(t) = h(t)et
2

, where h(t) = e−tµ | log t|p, µ ∈
(0, 2), p ≥ 0, or h(t) = t−θ, θ ≥ 1, for all large t > 0. Then there exists R∗ > 0
such that (P0) posed on BR∗ admits a radial solution blowing up at the origin.

Proof. We first assume the proof of Theorem 3.3. Then the nonexistence results
contained in Theorems A and B of [3] imply that the assumptions of Theorem 3.3
hold and therefore the existence of a radial solution blowing-up at the origin. �

Consider the following problem which is a regular version of (P0) posed on BR:

(PR)

⎧⎨
⎩

−∆u = f(u)
u > 0

}
in BR,

u = 0 on ∂BR, u ∈ C2
loc(BR).
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Theorem 3.3. Let f : [0,∞) → [0,∞) be a C3 super-exponential type nonlinearity

such that g � log f is convex for all large t > 0. Suppose there exist a sequence
{Rn} of positive real numbers with R∗ � lim infn→∞ Rn > 0 and a sequence {un}
of solutions to (PRn

) such that supBRn
un → ∞ as n → ∞. Then the problem (P0)

posed on BR∗ admits a solution that blows up only at the origin.

Proof. In order to prove the theorem, we perform some transformations that will
put (PR) into the equivalent form of the classical Emden-Fowler equations. First,
we observe that thanks to the symmetry result of Gidas-Ni-Nirenberg, any solution
of (PR) is radially symmetric and, in fact, strictly radially decreasing about the
origin. Therefore, (PR) can be rewritten as the following ODE boundary value
problem via the transformation w(r) = u(|x| = r) for r ∈ (0, R):

(PR)

⎧⎨
⎩

−(rw′)′ = rf(w)
w > 0

}
in (0, R),

w′(0) = w(R) = 0.

We finally make the following Emden-Fowler transformation:

y(t) = w(r), where r = 2e−
t
2 , t ∈ (2 log(2R−1),∞).

Then it can be checked that (PR) is equivalent to the following problem with T =
2 log( 2

R ):

−y′′ = e−tf(y)
y > 0

}
in (T,∞),

y(T ) = y′(∞) = 0.

For our purpose, instead of the above boundary value problem, it will be more con-
venient to consider the following initial-value problem depending upon a parameter
γ > 0 :

(Pγ)

{
−y′′ = e−tf(y),

y(∞) = γ, y′(∞) = 0.

Since f(y(t)) > 0 as long as y(t) > 0, it follows from (Pγ) that y is a strictly concave
function as long as it is positive. Therefore, there exists T0(γ) > −∞ such that
y(T0(γ)) = 0 and y(t) > 0 for all t > T0(γ). T0(γ) thus defined is clearly the first
zero of the solution y of (Pγ) as we move left from infinity. Let y0 > 0 be such that
g is convex for all t > y0. We also define the point t0(γ) > T0(γ) to be such that
y(t0(γ)) = y0 for each γ > 0.

Our idea is to obtain the blow-up solution of (P0) posed on BR∗ as the upper
envelope of the sequence of solutions {un}. Let γn = un(0) and {yn} be the
corresponding sequence of solutions to (Pγn

). Thanks to our assumptions it follows

that γn → ∞ as n → ∞ and T ∗ � lim supn→∞ T0(γn) < ∞ (we remark that
lim infn→∞ T0(γn) can be −∞). By definition, T ∗ > −∞. We make the following
claim.

Claim. {yn} is a uniformly bounded sequence on compact subsets of [T∗,∞).

Proof of claim. We define the following energy function associated to (Pγn
):

En(t) = y′n − 1

2
(y′n)

2g′(yn)− eg(yn)−t, t ≥ T0(γn).
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Hence, E′
n(t) = − 1

2 (y
′
n)

3g′′(yn) ≤ 0, ∀t ≥ t0, since yn is strictly increasing and
g is convex for this range of t. Since limt→∞ En(t) = 0 we obtain that En is a
nonnegative function on (t0(γn),∞). This immediately implies that

(3.1) y′n(t)g
′(yn(t)) < 2, ∀t ≥ t0(γn).

Now, integrating the ODE in (Pγn
) we have∫ ∞

t0(γn)

f(yn(t))e
−tdt = y′n(t0(γn)).

From (3.1) and recalling that yn(t0(γn)) = y0, we get

(3.2) sup
n

∫ ∞

t0(γn)

f(yn(t))e
−tdt < ∞.

If now t0(γn) → ∞ as n → ∞, then clearly the claim holds for any interval
[a, b] ⊂ [T∗,∞). Suppose for some subsequence of {γn}, denoted again by {γn}
for convenience, we have lim supn→∞ t0(γn) < ∞. It is enough to show, in view
of the monotonicity of yn, that {yn(t)} is a bounded sequence of real numbers for
any t ∈ [T∗,∞). If this is not true, then for some subsequence of {yn(t)}n≥1, we
will have limn→∞ yn(t) = ∞. Clearly, such a t has to be larger than t0(γn) for all
large n. In view of monotonicity of yn again, it follows that yn → ∞ uniformly on
[t, t+ 1], which contradicts (3.2). Thus we prove the claim in this case also.

Define

(3.3) y(t) = sup
n≥1

yn(t), t > T∗.

Clearly, y is positive and nondecreasing on [T∗,∞). For each n, choose T1(γn) > T∗
by the rule yn(T1(γn)) =

γn

2 . Clearly, T1(γn) → ∞ as n → ∞ and y(T1(γn)) ≥ γn

2 .
Hence y(T1(γn)) → ∞ as n → ∞. By the monotonicity of y we conclude that
y(t) → ∞ as t → ∞. By Helly’s theorem, up to a subsequence, yn → y pointwise
a.e. in [T∗,∞). Integrating the ODE satisfied by yn twice, we get

yn(t)− yn(s) =

∫ t

s

(ρ− s)f(yn(ρ))e
−ρdρ, T∗ < s < t < ∞.

Passing to the limit as n → ∞ on either side of the above equation we obtain
that y also satisfies the same integral equation for a.e. t in (T∗,∞). From (3.2)
and Fatou’s Lemma, we obtain that

∫∞
T∗

f(y(t))e−tdt < ∞. Thus, y solves the

differential equation −y′′ = e−tf(y) in (T∗,∞) with
∫∞
T∗

f(y(t))e−tdt < ∞. Going

back to our original variable x ∈ BR∗ and defining u(x) = y(2 log( 2
|x| )), we obtain

that u solves the following problem:⎧⎪⎪⎨
⎪⎪⎩

−∆u = f(u)
u > 0

}
in BR∗ \ {0},

lim|x|→0 u(x) = ∞,∫
BR∗

f(u) < ∞.

By the result of Brezis and Lions [5], in fact u solves the problem (Pα) posed on
BR∗ for some α ≥ 0. Since f is of super-exponential type from Theorem 2.1 we
obtain that α = 0. �
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4. Bifurcation analysis of the branch

converging to a singular solution

Let f : [0,∞) → (0,∞) (in particular, f(0) > 0) be a C3 nondecreasing convex
nonlinearity which has one of the following forms for m ∈ R and all large t > 0:

(f1) f(t) = tmet
2−tµ , 1 < µ < 2,

(f2) f(t) = tmet
2−tµ , 0 < µ < 1 or f(t) = tmet

2+tµ , 0 < µ < 2.

Consider the following problem depending on a parameter λ > 0:

(Pλ)

⎧⎨
⎩

−∆u = λf(u)
u > 0

}
in B1,

u = 0 on ∂B1.

Let S = {(λ, u) ∈ R
+ × C2,γ(Ω) |u solves (Pλ)} denote the set of solutions of

(Pλ). Using tools from bifurcation theory and Theorem 3.2 we describe qualitative
properties of a branch of solutions to the problem (Pλ) with the above choice of
f . In particular, we highlight the fact that we obtain at least two solutions to
(Pλ) when f is of the form (f1) for certain small ranges of λ (see property (3) in
Theorem 4.1 below).

Theorem 4.1. Let f be of the form (f1) or (f2). Then there exists a connected
branch of solutions C in S and a positive real number Λ with the following properties:

(1) C ⊂ (0,Λ]× C2,γ(Ω) for some 0 < γ < 1.
(2) For 0 ≤ λ ≤ Λ, (λ,wλ) ∈ C, where wλ is the minimal solution to (Pλ).
(3) (Bending) ∃ δ > 0 such that for λ ∈ (Λ−δ,Λ), there exists another solution

uλ with (λ, uλ) ∈ C. If f is of the form (f2), in fact we can choose δ = Λ.
(4) If f is of the form (f1), ∃ ε > 0 such that (λ, uλ) ∈ C, λ ≤ ε ⇒ uλ = wλ.
(5) (Convergence to singular solution) If f is of the form (f1), there exists

a pair (λ∗, u∗) with 0 < λ∗ ≤ Λ, u∗ a singular solution to (Pλ∗) and a
sequence {(λn, un)} ⊂ C such that λn → λ∗, un(0) → ∞ and un → u∗ in
C2

loc(B1 \ {0}).
(6) (Concentration) If f is of the form (f2), there exists a sequence {(λn, un)}

⊂ C such that λn → 0, un(0) → ∞ and |∇un|2dx ⇀ 4πδ0 in the sense of
measure.

Proof. From the Gidas-Ni-Nirenberg symmetry result, we see that all solutions of
(Pλ) are radially symmetric. The existence of the connected branch C follows from
the Crandall-Rabinowitz Theorem (see [7]). First, observe that we can get the
existence and the uniqueness of a branch of minimal solutions to (Pλ) near (0, 0)
using the Implicit Function Theorem (since f(0) > 0). In fact, using sub- and
supersolution techniques, we can extend this local branch to a maximal branch of
minimal solutions {(λ,wλ)} for λ ∈ (0,Λ). We can show easily that 0 < Λ < ∞
since f is superlinear at infinity and also that there is no solution to (Pλ) for λ > Λ.
By elliptic regularity, we can show that wλ belongs to C2,γ(Ω) for some γ ∈ (0, 1).
This proves (1)-(2).

Moreover, since f ′ is a nondecreasing function and wλ is the minimal solution
(thus, stable), λ1(−∆ − λf ′(wλ)) > 0 for 0 ≤ λ < Λ (which implies that the map
λ → wλ is C2 and wλ is locally unique for λ ∈ [0,Λ)). It follows that for λ ∈ (0,Λ),∫

Ω

|∇wλ|2 − λ

∫
Ω

f ′(wλ)w
2
λ ≥ 0.
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From Vitali’s Convergence Theorem, we get that there exists a weak solution uΛ

to (PΛ) such that wλ → uΛ in H1
0 (Ω) as λ → Λ. Then, from elliptic regularity and

Schauder estimates, we get that uΛ ∈ C2,γ(Ω). From the above, it follows that

λ1(−∆− Λf ′(uΛ)) = 0.

Using the Fredholm Alternative and letting L = −∆ − Λf ′(uΛ), it is easy to see

that C2,γ
0 (Ω) = N(L) ⊕ R(L), where N(L) (resp. R(L) ⊂ C0,γ(Ω)) denotes the

kernel of L (resp. the range of L). From the Krein-Rutman Theorem, it follows
that N(L) is one dimensional, spanned by a positive function φ1. Moreover, since
L is self-adjoint, R(L) = {φ1}⊥. Then the transversality condition is satisfied since

−
∫
Ω

(f ′(uΛ) + Λf ′′(uΛ)
dwλ

dλ
(Λ))φ2

1 < 0.

Therefore, we can apply Theorem 1.7 in [7], and there exists ν > 0 such that
the solutions to (Pλ) near (Λ, uΛ) form a twice continuously differentiable curve
B = {(λ(s), ũ(s))| |s| < ν} with λ(0) = Λ, and from computation of Theorem 4.8
in [8] (see also Theorem 1.1 in [9]), λ′(0) = 0, λ′′(0) < 0. Therefore, the curve C
bends to the left at λ = Λ. Appealing to the uniqueness and multiplicity result in
[11] (see Theorems 1.2,1.3 and Proposition 8.3), we complete the proof of (3).

If f is of the form (f 1), from property (4) and the global bifurcation theory of
Rabinowitz (see [14]) we see that there exists (λn, un) ∈ C and λ∗ > 0 such that
λn → λ∗ and un(0) → ∞ (since C cannot “cross” the minimal solutions branch
which is locally unique). Making the preliminary reductions as in Section 7 in [11]
and from Theorem 3.3, (5) follows.

If f is of the form (f 2), from property (3) and the global bifurcation result of
Crandall-Rabinowitz again, we get that λ = 0 is the unique asymptotic bifurcation
line for C. Let uλ, λ ∈ (0, λ) be as in (3). Clearly, we have that uλ(0) → ∞ as
λ → 0. We obtain (6) by using Theorem B in [2]. �

Remark 4.2. We guess that if f is of the form (f 1), C has infinitely many turning
points similar to the problems studied in [10] and [12].

Remark 4.3. From properties (5) and (6) in Theorem 4.1, we get two different situ-
ations determined by the asymptotic behaviour of f . For the detailed microscopic
blow-up analysis of uλ see [2] and [4], where more general cases are considered.
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