PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 137, Number 12, December 2009, Pages 4099-4107 S 0002-9939(09)09988-2 Article electronically published on July 15, 2009

# ISOLATED SINGULARITIES FOR THE EXPONENTIAL TYPE SEMILINEAR ELLIPTIC EQUATION IN $\mathbb{R}^2$

R. DHANYA, J. GIACOMONI, AND S. PRASHANTH

(Communicated by Matthew J. Gursky)

ABSTRACT. In this article we study positive solutions of the equation  $-\Delta u = f(u)$  in a punctured domain  $\Omega' = \Omega \setminus \{0\}$  in  $\mathbb{R}^2$  and show sharp conditions on the nonlinearity f(t) that enables us to extend such a solution to the whole domain  $\Omega$  and also preserve its regularity. We also show, using the framework of bifurcation theory, the existence of at least two solutions for certain classes of exponential type nonlinearities.

#### 1. INTRODUCTION

Let  $\Omega \subset \mathbb{R}^2$  be a bounded domain with  $0 \in \Omega$ . Denote  $\Omega' = \Omega \setminus \{0\}$ . Let  $f: (0, \infty) \longrightarrow (0, \infty)$  be a locally Hölder continuous function which is nondecreasing for all large t > 0. In this article we study the following problem:

$$(P') \qquad \begin{cases} -\Delta u = f(u) \\ u \ge 0 \\ u \in L^{\infty}_{loc}(\Omega'). \end{cases} \text{ in } \Omega'$$

It is well-known from the works of Brezis-Lions [5] that if u solves (P'), then indeed u solves the following problem in the distributional sense in the whole domain  $\Omega$ :

$$(P_{\alpha}) \qquad \left\{ \begin{array}{c} -\Delta u = f(u) + \alpha \delta_0 \\ u \ge 0 \\ \alpha \ge 0, u, f(u) \in L^{\infty}_{loc}(\Omega') \cap L^1_{loc}(\Omega). \end{array} \right\} \text{ in } \Omega,$$

This leads us to the following two questions:

(Q1) Can we find a sharp condition on f that determines whether or not  $\alpha = 0$  in  $(P_{\alpha})$ ?

(Q2) If  $\alpha = 0$ , is it true that u is regular (say,  $C^2$ ) in  $\Omega$ ?

We make the following

**Definition 1.1.** We say f is a sub-exponential type function if

$$\lim_{t \to \infty} f(t)e^{-\beta t} \le C \quad \text{for} \quad \text{some} \quad \beta, C > 0.$$

We say f is of super-exponential type if it is not a sub-exponential type function.

©2009 American Mathematical Society

Received by the editors September 30, 2008.

<sup>2000</sup> Mathematics Subject Classification. Primary 35B32, 35B65, 35J25, 35J60.

Key words and phrases. Isolated singularity, blow-up, Laplace equation.

As a complete answer to question (Q1) we show (Theorem 2.1) that if f is of super-exponential type, then  $\alpha = 0$ , and conversely (Theorem 2.2) that  $(P_{\alpha})$  has solutions for small  $\alpha > 0$  if f is of sub-exponential type.

Similarly, we answer question (Q2) by showing that for any f of sub-exponential type, any solution u of  $(P_0)$  is regular  $(C^2)$  inside  $\Omega$  (Theorem 3.1). Conversely, for f of super-exponential type with any prescribed growth at  $\infty$  and behaviour for small t > 0, in Lemma 3.1 and Theorem 3.3 we construct solutions u of  $(P_0)$  that blow-up only at the origin. To our knowledge, the existence of such singular solutions has not been considered so far for super-exponential type problems. Theorem 3.2 should be contrasted with the results in [2] and [13]. Particularly in [13], the nonlinearity under study is of a model type, viz.,  $f(t) = e^{t^{\mu}}, \mu > 0$ . These authors show that for a noncompact sequence of solutions to  $(P_0)$  posed on a ball, concentration phenomenon occurs for  $1 < \mu < 2$  and total blow-up occurs for  $\mu < 1$ . Clearly,  $\mu = 1$  appears as the borderline exponent between total blow up and concentration. In Theorem 3.2, when  $\mu = 2$ , for certain classes of nonmodel type nonlinearities we show that instead of concentration, convergence to a singular solution occurs. If the nonlinearity is closer to a model-type, more precisely, if  $\liminf_{t \to +\infty} f(t) e^{-t^2}t = +\infty$ ,

then only concentration takes place, as follows from the results in [1].

**Definition 1.2.** We denote by  $\Gamma$  the fundamental solution of  $-\Delta$  in  $\mathbb{R}^2$ . That is,  $\Gamma(x) = -\frac{1}{2\pi} \log |x|, x \in \mathbb{R}^2 \setminus \{0\}.$ 

# 2. Extendability of the solution from the punctured domain to the entire domain

In this section, we will discuss the extension of a solution of (P') to the whole domain  $\Omega$ .

**Theorem 2.1** (Removable singularity). Let f be of super-exponential type. Then any solution u of (P') extends to a distributional solution of  $(P_0)$ .

Proof. As noted before for some  $\alpha \geq 0, u$  solves  $(P_{\alpha})$ . Therefore,  $-\Delta(u - f(u) * \Gamma - \alpha\Gamma) = 0$ . Since  $f(u) * \Gamma \geq 0$  it follows that  $u(x) \geq \alpha\Gamma(x) - C$  for all  $x \in \Omega$  for some constant C > 0. Since f(t) is nondecreasing for all large t > 0, we obtain, for any  $\delta > 0$  small enough,  $f(\alpha\Gamma(x) - C) \leq f(u(x))$  for all  $|x| < \delta$ . If  $\alpha > 0$ , we choose  $\beta = \frac{4\pi}{\alpha}$  and apply Definition 1.1 to obtain  $|x|^{-2} \leq f(u(x))$  for all |x| small. This contradicts the fact that  $f(u) \in L^{1}_{loc}(\Omega)$ . Hence, necessarily,  $\alpha = 0$ .

Define

 $\beta^* = \inf\{\beta > 0 \text{ occurring in Definition 1.1}\}.$ 

Then, we can show the following:

**Theorem 2.2.** Let f be a sub-exponential type nonlinearity. Then for all  $\alpha \in (0, \frac{2\pi}{\beta^*})$  the problem  $(P_{\alpha})$  admits a solution. Furthermore, if  $f(t) \geq Ce^{\overline{\beta}t}, \forall t \geq 0$ , for some  $\overline{\beta} > 0$ , then  $(P_{\alpha})$  has no solution for all  $\alpha \geq 4\pi(\overline{\beta})^{-1}$ .

*Proof.* We will prove the above statements using the monotone iteration technique. In fact, we will construct a solution u of  $(P_{\alpha})$  which vanishes on  $\partial\Omega$  for all suitable  $\alpha$ . Without loss of generality, for this purpose we assume that f is nondecreasing for all t > 0 (if not, we replace f(t) by f(t) + kt for some large k, use the argument below and recover the result for f). It is clear that  $u_0 = 0$  is a sub-solution of  $(P_{\alpha})$  for all  $\alpha > 0$ .

4100

4101

Let us define, for any  $\beta, C > 0$  given by Definition 1.1,

$$v_{\beta}(x) = -\beta^{-1} \log \left( 4|x|(1+\frac{\beta C}{4}|x|)^2 \right).$$

Then a simple computation gives  $-\Delta v_{\beta} = 2\pi \beta^{-1} \delta_0 + g$ , where

$$g(x) = C\left(2|x|(1+\frac{\beta C}{4}|x|)^2\right)^{-1}.$$

It can be easily checked that  $g \in L^{r}(\Omega)$  for all 1 < r < 2 and  $g \ge f(v_{\beta})$  in  $\Omega$ . Hence  $v_{\beta}$  is a supersolution of  $(P_{\alpha})$  for all  $\alpha \le 2\pi\beta^{-1}$ . Now, for any such  $\alpha$ , consider the following sequence of problems:

$$(P_n) \qquad \begin{cases} -\Delta u_n = f(u_{n-1}) + \alpha \delta_0 & \text{in} \quad \Omega, \\ u_n = 0 & \text{on} \quad \partial \Omega, \\ u_n \in L^p(\Omega) & \forall \quad 1$$

We construct a solution  $u_n$  of the problem  $(P_n)$  inductively as follows. Let  $w_1 \in C^2(\overline{\Omega})$  be the solution of the problem

$$\begin{cases} -\Delta w_1 = f(u_0) & \text{in} \quad \Omega, \\ w_1 = -\alpha \Gamma & \text{on} \quad \partial \Omega \end{cases}$$

Define  $u_1 = w_1 + \alpha \Gamma$ . It can be easily seen that  $u_1$  is a solution for  $(P_1)$  with  $f(u_1) \in L^r(\Omega)$  for 1 < r < 2. Now assume that there exists a solution for  $(P_{n-1})$ . Let  $w_n \in W^{2,r}(\Omega)$  be a solution of

$$\begin{cases} -\Delta w_n = f(u_{n-1}) & \text{in} \quad \Omega, \\ w_n = -\alpha \Gamma & \text{on} \quad \partial \Omega. \end{cases}$$

By standard elliptic regularity  $w_n$  is a Hölder continuous function in  $\overline{\Omega}$ . Then  $u_n = w_n + \alpha \Gamma$  solves  $-\Delta u_n = f(u_{n-1}) + \alpha \delta_0$  in  $\Omega$ , and  $u_n = 0$  on  $\partial \Omega$ . Also  $u_n \in L^p(\Omega)$  for every  $1 \leq p < \infty$ . Next we notice that  $u_n - v_\beta$  solves  $-\Delta(u_n - v_\beta) \leq f(u_{n-1}) - g$  a.e. in  $\Omega$  and  $u_n - v_\beta \leq 0$  on  $\partial \Omega$  (for C large enough). Hence by the maximum principle  $u_n \leq v_\beta$  in  $\Omega$ . Also we notice that  $f(v_\beta) \in L^r(\Omega)$  for  $1 \leq r < 2$ . Using the monotonicity of f we conclude that  $f(u_n) \in L^r(\Omega)$  for  $1 \leq r < 2$ . Hence we have obtained a sequence  $\{u_n\}$  solving  $(P_n)$  and

(2.1) 
$$u_n \leq v_\beta \quad \text{in } \Omega \quad \text{for all } n \in \mathbb{N}.$$

It can also be shown easily that  $0 \leq u_1 \leq u_2 \cdots \leq u_{n-1} \leq u_n \cdots$ . Now define  $u(x) = \lim_{n \to \infty} u_n(x)$ . Then it follows that u is a solution to the problem  $(P_\alpha)$  for any  $\alpha \leq 2\pi(\beta)^{-1}$ . Since  $\beta \geq \beta^*$  we indeed have a solution to  $(P_\alpha)$  for all  $\alpha < 2\pi(\beta^*)^{-1}$ .

Let us now take  $f(t) \geq Ce^{\overline{\beta}t}, \forall t \geq 0$ , for some  $\overline{\beta} > 0$ . Suppose there exists a solution u of  $(P_{\alpha})$ . We then have  $u \geq -\frac{\alpha}{2\pi} \log |x| - C_1$  in  $\Omega$ , which, if  $\alpha \geq \frac{4\pi}{\overline{\beta}}$ , contradicts the basic conclusion that  $f(u) \in L^1_{loc}(\Omega)$ .

We then have the following:

**Corollary 2.1.** If  $f(t) \leq Ce^{\beta t^{\mu}}, \forall t \geq 0$ , for some  $0 < \mu < 1$ , then  $\beta^* = 0$ , and hence  $(P_{\alpha})$  admits a solution for every  $\alpha > 0$ .

3. Regularity and the lack of it for the extendable solution

In this section we discuss question (Q2) and show that regularity or the lack of it for the solution to  $(P_0)$  is determined by whether f is of sub-exponential type. As an application of results in Brezis-Merle [6] we have the following:

**Theorem 3.1.** Let f be a sub-exponential type nonlinearity. Then any solution u of the problem  $(P_0)$  is regular in  $\Omega$ .

*Proof.* Let u solve  $(P_0)$ . By Corollary 5.2 in [6],  $e^{k|u|} \in L^1(\Omega)$  for every k > 0. Therefore, since f is of sub-exponential type, we obtain that  $f(u) \in L^r(\Omega)$  for every  $1 < r < \infty$ . Let  $u_1$  be the solution of

$$\begin{cases} -\Delta u_1 &= f(u) & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{cases}$$

Then,  $u_1 \in W^{2,r}(\Omega)$  for all r > 1. Therefore, by Sobolev embedding  $u_1 \in C^{1,\theta}(\overline{\Omega})$  for every  $0 < \theta < 1$ . But in the interior of  $\Omega$  we have, in the sense of distributions,  $\Delta(u-u_1) = 0$ . Then, it is well-known that  $u = u_1 + h$  a.e. for some harmonic function h. Therefore, u is Hölder continuous in  $\Omega$ , and by standard elliptic regularity, it is  $C^2$  inside  $\Omega$ .

In the next two proofs we construct solutions of  $(P_0)$  which blow-up at the origin when f is of super-exponential type. Let  $B_R$  denote the open ball of radius R centered at the origin.

**Lemma 3.1.** Given any  $\mu > 1$  there exists an f of super-exponential type satisfying  $\lim_{t\to\infty} f(t)e^{-t^{\mu}} = 0$  such that the corresponding problem  $(P_0)$  posed on the unit ball  $B_1$  admits a solution that blows-up at the origin.

Proof. Given  $\mu > 1$ , define  $f(t) = 4(\mu - 1)\mu^{-2}t^{1-2\mu}e^{t^{\mu}}, t > 0$ . Clearly f satisfies the requirements stated in the lemma. It can be checked that if we define  $u(x) = (-2|\log |x||)^{\frac{1}{\mu}}, x \in B_1$ , then, thanks to Theorem 2.1, u solves  $(P_0)$  with the above choice of f.

In the above result, though we could choose f satisfying any prescribed superexponential type growth at infinity, the behaviour for small t > 0 is of singular type. In the next result we exhibit super-exponential type nonlinearities whose growth rate at infinity is fixed (in fact it grows like  $e^{t^2}$  as  $t \to \infty$ ) but has regular behaviour for small t > 0. For this we need to use the nonexistence results proved in [3], which together with Theorem 3.3 stated below helps us to show the following:

**Theorem 3.2.** Let  $f:[0,\infty) \to [0,\infty)$  be a  $C^3$  super-exponential type nonlinearity with f(0) = 0, which has the form  $f(t) = h(t)e^{t^2}$ , where  $h(t) = e^{-t^{\mu}}|\log t|^p, \mu \in$  $(0,2), p \ge 0$ , or  $h(t) = t^{-\theta}, \theta \ge 1$ , for all large t > 0. Then there exists  $R_* > 0$ such that  $(P_0)$  posed on  $B_{R_*}$  admits a radial solution blowing up at the origin.

*Proof.* We first assume the proof of Theorem 3.3. Then the nonexistence results contained in Theorems A and B of [3] imply that the assumptions of Theorem 3.3 hold and therefore the existence of a radial solution blowing-up at the origin.  $\Box$ 

Consider the following problem which is a regular version of  $(P_0)$  posed on  $B_R$ :

$$(P_R) \qquad \left\{ \begin{array}{cc} -\Delta u &=& f(u) \\ u &>& 0 \\ u &= 0 \text{ on } \partial B_R, u \in C^2_{loc}(B_R) \end{array} \right\} \text{ in } B_R,$$

4102

**Theorem 3.3.** Let  $f:[0,\infty) \to [0,\infty)$  be a  $C^3$  super-exponential type nonlinearity such that  $g \triangleq \log f$  is convex for all large t > 0. Suppose there exist a sequence  $\{R_n\}$  of positive real numbers with  $R_* \triangleq \liminf_{n\to\infty} R_n > 0$  and a sequence  $\{u_n\}$ of solutions to  $(P_{R_n})$  such that  $\sup_{B_{R_n}} u_n \to \infty$  as  $n \to \infty$ . Then the problem  $(P_0)$ posed on  $B_{R_*}$  admits a solution that blows up only at the origin.

*Proof.* In order to prove the theorem, we perform some transformations that will put  $(P_R)$  into the equivalent form of the classical Emden-Fowler equations. First, we observe that thanks to the symmetry result of Gidas-Ni-Nirenberg, any solution of  $(P_R)$  is radially symmetric and, in fact, strictly radially decreasing about the origin. Therefore,  $(P_R)$  can be rewritten as the following ODE boundary value problem via the transformation w(r) = u(|x| = r) for  $r \in (0, R)$ :

(P<sub>R</sub>) 
$$\begin{cases} -(rw')' = rf(w) \\ w > 0 \\ w'(0) = w(R) = 0. \end{cases}$$
 in (0, R),

We finally make the following Emden-Fowler transformation:

$$y(t) = w(r)$$
, where  $r = 2e^{-\frac{t}{2}}$ ,  $t \in (2\log(2R^{-1}), \infty)$ .

Then it can be checked that  $(P_R)$  is equivalent to the following problem with  $T = 2\log(\frac{2}{R})$ :

$$\begin{array}{rcl} -y'' &=& e^{-t}f(y) \\ y &>& 0 \\ & y(T) = y'(\infty) = 0. \end{array} \right\} \quad \text{in } (T,\infty),$$

For our purpose, instead of the above boundary value problem, it will be more convenient to consider the following initial-value problem depending upon a parameter  $\gamma > 0$ :

$$(P_{\gamma}) \qquad \qquad \left\{ \begin{array}{l} -y'' = e^{-t}f(y), \\ y(\infty) = \gamma, y'(\infty) = 0. \end{array} \right.$$

Since f(y(t)) > 0 as long as y(t) > 0, it follows from  $(P_{\gamma})$  that y is a strictly concave function as long as it is positive. Therefore, there exists  $T_0(\gamma) > -\infty$  such that  $y(T_0(\gamma)) = 0$  and y(t) > 0 for all  $t > T_0(\gamma)$ .  $T_0(\gamma)$  thus defined is clearly the first zero of the solution y of  $(P_{\gamma})$  as we move left from infinity. Let  $y_0 > 0$  be such that g is convex for all  $t > y_0$ . We also define the point  $t_0(\gamma) > T_0(\gamma)$  to be such that  $y(t_0(\gamma)) = y_0$  for each  $\gamma > 0$ .

Our idea is to obtain the blow-up solution of  $(P_0)$  posed on  $B_{R_*}$  as the upper envelope of the sequence of solutions  $\{u_n\}$ . Let  $\gamma_n = u_n(0)$  and  $\{y_n\}$  be the corresponding sequence of solutions to  $(P_{\gamma_n})$ . Thanks to our assumptions it follows that  $\gamma_n \to \infty$  as  $n \to \infty$  and  $T^* \triangleq \limsup_{n\to\infty} T_0(\gamma_n) < \infty$  (we remark that  $\liminf_{n\to\infty} T_0(\gamma_n)$  can be  $-\infty$ ). By definition,  $T^* > -\infty$ . We make the following claim.

Claim.  $\{y_n\}$  is a uniformly bounded sequence on compact subsets of  $[T_*, \infty)$ .

*Proof of claim.* We define the following energy function associated to  $(P_{\gamma_n})$ :

$$E_n(t) = y'_n - \frac{1}{2}(y'_n)^2 g'(y_n) - e^{g(y_n) - t}, \ t \ge T_0(\gamma_n).$$

Hence,  $E'_n(t) = -\frac{1}{2}(y'_n)^3 g''(y_n) \le 0, \forall t \ge t_0$ , since  $y_n$  is strictly increasing and g is convex for this range of t. Since  $\lim_{t\to\infty} E_n(t) = 0$  we obtain that  $E_n$  is a nonnegative function on  $(t_0(\gamma_n), \infty)$ . This immediately implies that

(3.1) 
$$y'_n(t)g'(y_n(t)) < 2, \ \forall t \ge t_0(\gamma_n).$$

Now, integrating the ODE in  $(P_{\gamma_n})$  we have

$$\int_{t_0(\gamma_n)}^{\infty} f(y_n(t))e^{-t}dt = y'_n(t_0(\gamma_n)).$$

From (3.1) and recalling that  $y_n(t_0(\gamma_n)) = y_0$ , we get

(3.2) 
$$\sup_{n} \int_{t_0(\gamma_n)}^{\infty} f(y_n(t)) e^{-t} dt < \infty.$$

If now  $t_0(\gamma_n) \to \infty$  as  $n \to \infty$ , then clearly the claim holds for any interval  $[a,b] \subset [T_*,\infty)$ . Suppose for some subsequence of  $\{\gamma_n\}$ , denoted again by  $\{\gamma_n\}$  for convenience, we have  $\limsup_{n\to\infty} t_0(\gamma_n) < \infty$ . It is enough to show, in view of the monotonicity of  $y_n$ , that  $\{y_n(t)\}$  is a bounded sequence of real numbers for any  $t \in [T_*,\infty)$ . If this is not true, then for some subsequence of  $\{y_n(t)\}_{n\geq 1}$ , we will have  $\lim_{n\to\infty} y_n(t) = \infty$ . Clearly, such a t has to be larger than  $t_0(\gamma_n)$  for all large n. In view of monotonicity of  $y_n$  again, it follows that  $y_n \to \infty$  uniformly on [t,t+1], which contradicts (3.2). Thus we prove the claim in this case also.

Define

(3.3) 
$$y(t) = \sup_{n \ge 1} y_n(t), \quad t > T_*.$$

Clearly, y is positive and nondecreasing on  $[T_*, \infty)$ . For each n, choose  $T_1(\gamma_n) > T_*$ by the rule  $y_n(T_1(\gamma_n)) = \frac{\gamma_n}{2}$ . Clearly,  $T_1(\gamma_n) \to \infty$  as  $n \to \infty$  and  $y(T_1(\gamma_n)) \ge \frac{\gamma_n}{2}$ . Hence  $y(T_1(\gamma_n)) \to \infty$  as  $n \to \infty$ . By the monotonicity of y we conclude that  $y(t) \to \infty$  as  $t \to \infty$ . By Helly's theorem, up to a subsequence,  $y_n \to y$  pointwise a.e. in  $[T_*, \infty)$ . Integrating the ODE satisfied by  $y_n$  twice, we get

$$y_n(t) - y_n(s) = \int_s^t (\rho - s) f(y_n(\rho)) e^{-\rho} d\rho, \ T_* < s < t < \infty.$$

Passing to the limit as  $n \to \infty$  on either side of the above equation we obtain that y also satisfies the same integral equation for a.e. t in  $(T_*,\infty)$ . From (3.2) and Fatou's Lemma, we obtain that  $\int_{T_*}^{\infty} f(y(t))e^{-t}dt < \infty$ . Thus, y solves the differential equation  $-y'' = e^{-t}f(y)$  in  $(T_*,\infty)$  with  $\int_{T_*}^{\infty} f(y(t))e^{-t}dt < \infty$ . Going back to our original variable  $x \in B_{R_*}$  and defining  $u(x) = y(2\log(\frac{2}{|x|}))$ , we obtain that u solves the following problem:

$$\begin{cases} -\Delta u = f(u) \\ u > 0 \end{cases} \text{ in } B_{R_*} \setminus \{0\},\\ \lim_{|x| \to 0} u(x) = \infty,\\ \int_{B_{R_*}} f(u) < \infty. \end{cases}$$

By the result of Brezis and Lions [5], in fact u solves the problem  $(P_{\alpha})$  posed on  $B_{R_*}$  for some  $\alpha \geq 0$ . Since f is of super-exponential type from Theorem 2.1 we obtain that  $\alpha = 0$ .

4104

# 4. BIFURCATION ANALYSIS OF THE BRANCH CONVERGING TO A SINGULAR SOLUTION

Let  $f: [0,\infty) \to (0,\infty)$  (in particular, f(0) > 0) be a  $C^3$  nondecreasing convex nonlinearity which has one of the following forms for  $m \in \mathbb{R}$  and all large t > 0:

(f1)  $f(t) = t^m e^{t^2 - t^{\mu}}, 1 < \mu < 2,$ (f2)  $f(t) = t^m e^{t^2 - t^{\mu}}, 0 < \mu < 1$  or  $f(t) = t^m e^{t^2 + t^{\mu}}, 0 < \mu < 2.$ 

Consider the following problem depending on a parameter  $\lambda > 0$ :

$$(P_{\lambda}) \qquad \begin{cases} -\Delta u &= \lambda f(u) \\ u &> 0 \\ u &= 0 \text{ on } \partial B_{1}. \end{cases} \text{ in } B_{1},$$

Let  $\mathcal{S} = \{(\lambda, u) \in \mathbb{R}^+ \times C^{2,\gamma}(\overline{\Omega}) | u \text{ solves } (P_{\lambda})\}$  denote the set of solutions of  $(P_{\lambda})$ . Using tools from bifurcation theory and Theorem 3.2 we describe qualitative properties of a branch of solutions to the problem  $(P_{\lambda})$  with the above choice of f. In particular, we highlight the fact that we obtain at least two solutions to  $(P_{\lambda})$  when f is of the form (f1) for certain small ranges of  $\lambda$  (see property (3) in Theorem 4.1 below).

**Theorem 4.1.** Let f be of the form (f1) or (f2). Then there exists a connected branch of solutions C in S and a positive real number  $\Lambda$  with the following properties:

- (1)  $\mathcal{C} \subset (0, \Lambda] \times C^{2, \gamma}(\overline{\Omega})$  for some  $0 < \gamma < 1$ .
- (2) For  $0 \leq \lambda \leq \Lambda$ ,  $(\lambda, w_{\lambda}) \in C$ , where  $w_{\lambda}$  is the minimal solution to  $(P_{\lambda})$ .
- (3) (Bending)  $\exists \delta > 0$  such that for  $\lambda \in (\Lambda \delta, \Lambda)$ , there exists another solution  $u_{\lambda}$  with  $(\lambda, u_{\lambda}) \in \mathcal{C}$ . If f is of the form (f2), in fact we can choose  $\delta = \Lambda$ .
- (4) If f is of the form (f1),  $\exists \epsilon > 0$  such that  $(\lambda, u_{\lambda}) \in \mathcal{C}, \lambda \leq \epsilon \Rightarrow u_{\lambda} = w_{\lambda}$ .
- (5) (Convergence to singular solution) If f is of the form (f1), there exists a pair  $(\lambda^*, u^*)$  with  $0 < \lambda^* \leq \Lambda$ ,  $u^*$  a singular solution to  $(P_{\lambda^*})$  and a sequence  $\{(\lambda_n, u_n)\} \subset \mathcal{C}$  such that  $\lambda_n \to \lambda^*$ ,  $u_n(0) \to \infty$  and  $u_n \to u^*$  in  $C^2_{loc}(B_1 \setminus \{0\}).$
- (6) (Concentration) If f is of the form (f2), there exists a sequence  $\{(\lambda_n, u_n)\}$  $\subset \mathcal{C}$  such that  $\lambda_n \to 0$ ,  $u_n(0) \to \infty$  and  $|\nabla u_n|^2 dx \rightharpoonup 4\pi \delta_0$  in the sense of measure.

*Proof.* From the Gidas-Ni-Nirenberg symmetry result, we see that all solutions of  $(P_{\lambda})$  are radially symmetric. The existence of the connected branch C follows from the Crandall-Rabinowitz Theorem (see [7]). First, observe that we can get the existence and the uniqueness of a branch of minimal solutions to  $(P_{\lambda})$  near (0,0)using the Implicit Function Theorem (since f(0) > 0). In fact, using sub- and supersolution techniques, we can extend this local branch to a maximal branch of minimal solutions  $\{(\lambda, w_{\lambda})\}$  for  $\lambda \in (0, \Lambda)$ . We can show easily that  $0 < \Lambda < \infty$ since f is superlinear at infinity and also that there is no solution to  $(P_{\lambda})$  for  $\lambda > \Lambda$ . By elliptic regularity, we can show that  $w_{\lambda}$  belongs to  $C^{2,\gamma}(\overline{\Omega})$  for some  $\gamma \in (0,1)$ . This proves (1)-(2).

Moreover, since f' is a nondecreasing function and  $w_{\lambda}$  is the minimal solution (thus, stable),  $\lambda_1(-\Delta - \lambda f'(w_\lambda)) > 0$  for  $0 \le \lambda < \Lambda$  (which implies that the map  $\lambda \to w_{\lambda}$  is  $C^2$  and  $w_{\lambda}$  is locally unique for  $\lambda \in [0, \Lambda)$ . It follows that for  $\lambda \in (0, \Lambda)$ ,

$$\int_{\Omega} |\nabla w_{\lambda}|^2 - \lambda \int_{\Omega} f'(w_{\lambda}) w_{\lambda}^2 \ge 0.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

From Vitali's Convergence Theorem, we get that there exists a weak solution  $u_{\Lambda}$  to  $(P_{\Lambda})$  such that  $w_{\lambda} \to u_{\Lambda}$  in  $H_0^1(\Omega)$  as  $\lambda \to \Lambda$ . Then, from elliptic regularity and Schauder estimates, we get that  $u_{\Lambda} \in C^{2,\gamma}(\overline{\Omega})$ . From the above, it follows that

$$\lambda_1(-\Delta - \Lambda f'(u_\Lambda)) = 0.$$

Using the Fredholm Alternative and letting  $L = -\Delta - \Lambda f'(u_{\Lambda})$ , it is easy to see that  $C_0^{2,\gamma}(\Omega) = \mathcal{N}(L) \oplus \mathcal{R}(L)$ , where  $\mathcal{N}(L)$  (resp.  $\mathcal{R}(L) \subset C^{0,\gamma}(\overline{\Omega})$ ) denotes the kernel of L (resp. the range of L). From the Krein-Rutman Theorem, it follows that  $\mathcal{N}(L)$  is one dimensional, spanned by a positive function  $\phi_1$ . Moreover, since L is self-adjoint,  $\mathcal{R}(L) = \{\phi_1\}^{\perp}$ . Then the transversality condition is satisfied since

$$-\int_{\Omega} (f'(u_{\Lambda}) + \Lambda f''(u_{\Lambda}) \frac{dw_{\lambda}}{d\lambda}(\Lambda))\phi_1^2 < 0.$$

Therefore, we can apply Theorem 1.7 in [7], and there exists  $\nu > 0$  such that the solutions to  $(P_{\lambda})$  near  $(\Lambda, u_{\Lambda})$  form a twice continuously differentiable curve  $\mathcal{B} = \{(\lambda(s), \tilde{u}(s)) | |s| < \nu\}$  with  $\lambda(0) = \Lambda$ , and from computation of Theorem 4.8 in [8] (see also Theorem 1.1 in [9]),  $\lambda'(0) = 0$ ,  $\lambda''(0) < 0$ . Therefore, the curve  $\mathcal{C}$ bends to the left at  $\lambda = \Lambda$ . Appealing to the uniqueness and multiplicity result in [11] (see Theorems 1.2,1.3 and Proposition 8.3), we complete the proof of (3).

If f is of the form (f1), from property (4) and the global bifurcation theory of Rabinowitz (see [14]) we see that there exists  $(\lambda_n, u_n) \in \mathcal{C}$  and  $\lambda_* > 0$  such that  $\lambda_n \to \lambda_*$  and  $u_n(0) \to \infty$  (since  $\mathcal{C}$  cannot "cross" the minimal solutions branch which is locally unique). Making the preliminary reductions as in Section 7 in [11] and from Theorem 3.3, (5) follows.

If f is of the form (f2), from property (3) and the global bifurcation result of Crandall-Rabinowitz again, we get that  $\lambda = 0$  is the unique asymptotic bifurcation line for C. Let  $u_{\lambda}, \lambda \in (0, \lambda)$  be as in (3). Clearly, we have that  $u_{\lambda}(0) \to \infty$  as  $\lambda \to 0$ . We obtain (6) by using Theorem B in [2].

*Remark* 4.2. We guess that if f is of the form (f1), C has infinitely many turning points similar to the problems studied in [10] and [12].

Remark 4.3. From properties (5) and (6) in Theorem 4.1, we get two different situations determined by the asymptotic behaviour of f. For the detailed microscopic blow-up analysis of  $u_{\lambda}$  see [2] and [4], where more general cases are considered.

## Acknowledgement

One of the authors would like to thank Professor Adimurthi for helpful discussions on some of the material in this work.

### References

- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393-413. MR1079983 (91j:35016)
- [2] Adimurthi and S. Prashanth, Failure of Palais-Smale condition and blow-up analysis for the critical exponent problem in R<sup>2</sup>, Proc. Indian Acad. Sci. Math. Sci. 107, No. 3 (1997), 283-317. MR1467434 (98j:35056)
- [3] Adimurthi and S. Prashanth, Critical exponent problem in R<sup>2</sup>-border-line between existence and non-existence of positive solutions for Dirichlet problem, Advances Differential Equations 5, No. 1-3 (2000), 67-95. MR1734537 (2000i:35054)

- [4] Adimurthi and M. Struwe, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Funct. Anal. 175, No. 1 (2000), 125-167. MR1774854 (2001g:35063)
- [5] H. Brézis and P.-L. Lions, A Note on Isolated Singularities for Linear Elliptic Equations, Mathematical Analysis and Applications, Part A, Advances in Math. Suppl. Stud., 7A, Academic Press, New York–London, 1981, 263-266. MR634242 (83e:35039)
- [6] H. Brezis and F. Merle, Uniform estimates and blow-up behaviour for solutions of -Δu = V(x)e<sup>u</sup> in two dimensions, Comm. Partial Differential Equations 16, No. 8-9 (1991), 1223-1253. MR1132783 (92m:35084)
- [7] M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR0288640 (44:5836)
- [8] M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal. 52 (1973), 161-180. MR0341212 (49:5962)
- M.G. Crandall and P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58, No. 3 (1975), 207-218. MR0382848 (52:3730)
- [10] E.N. Dancer, Infinitely many turning points for some supercritical problems, Ann. Mat. Pura Appl. (4) 178 (2000), 225-233. MR1849387 (2002g:35077)
- [11] J. Giacomoni, S. Prashanth and K. Sreenadh, A global multiplicity result for N-Laplacian with critical nonlinearity of concave-convex type, J. Diff. Equations 232 (2007), 544-572. MR2286391 (2007k:35140)
- [12] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1972/73), 241-269. MR0340701 (49:5452)
- [13] T. Ogawa and T. Suzuki, Nonlinear elliptic equations with critical growth related to the Trudinger inequality, Asymptotic Analysis 12 (1996), 25-40. MR1373480 (98f:35054)
- [14] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513. MR0301587 (46:745)

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, CENTER FOR APPLICABLE MATHEMATICS, P.B. No. 6503, SHARADANAGAR, CHIKKABOMMASANDRA, BANGALORE 560065, INDIA *E-mail address:* dhanya@math.tifrbng.res.in

Laboratoire de Mathématiques Appliquées, Université de Pau et des Pays de l'Adour, B.P. 576, 64012 Pau cedex, France

E-mail address: jgiacomo@univ-pau.fr

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, CENTER FOR APPLICABLE MATHEMATICS, P.B. NO. 6503, SHARADANAGAR, CHIKKABOMMASANDRA, BANGALORE 560065, INDIA

*E-mail address*: pras@math.tifrbng.res.in