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Introduction
A significant role in the theory of linear elliptic second-order partial

differential equations in two independent variables has been played by the
concept of the fundamental solution. Such a function is a single-valued solu-
tion of the equation, regular except for an isolated point at which it possesses
a logarithmic singularity. For the special case of the Laplace equation
<pxx+<l>yy — 0 this solution can be uniquely characterized as the only (non-
constant) solution which exhibits radial symmetry. The requirement of radial
symmetry leads to an ordinary differential equation whose solution (up to a
constant) is p. log (x2+y2)1/2. This function admits an important hydro-
dynamical interpretation as the velocity potential of an incompressible, non-
viscous, two-dimensional source-flow. An amount 27rju of fluid is visualized
as flowing in unit time out of a source at the origin (i.e. across every closed
curve surrounding the source) and into a corresponding sink at infinity.

The requirement of incompressibility may be relaxed by assuming a rela-
tion—called the equation of state—between the density p oí the fluid and the
velocity | V</> |. For adiabatic flows this relation takes the form p
— [l — ((y —1)/2) | V^>| 2]i/(t-i)( where y is the ratio of specific heats of the
fluid. In this case the potential <p satisfies not the Laplace equation but the
nonlinear equation

(1) (p«.)-+(p«»)» = 0.
Because of the complicated nature of the nonlinearity in this equation, its
analysis has presented many difficulties, and various attempts have been
made to suitably approximate the coefficients. It was observed by Chaplygin
[l] in 1904 that a local approximation to the adiabatic equation of state can
be obtained by setting p=[l+<j>2.+<j>2,]~112. In this case (1) becomes the
minimal surface equation
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2 2
(2) (1   +   <t>y)<t>XX   —   2<j> ,/pytp xy  +   (1   +   4>x)4>yy   =   0

so that solutions of this equation admit interpretation as the velocity poten-
tial of a compressible fluid.

It is natural to seek source-type flows for equations (1) and (2), and this
is easily done by use of the requirement of radial symmetry. For equation (2)
we obtain in this manner the solution <b(x, y)—p log (r-\-(r2— p.2)112),
r = (x2-\-y2)112. Unlike the fundamental solution of the Laplace equation, this
function is defined only exterior to a circle of radius p, on the boundary of
which the velocity components become infinite. A similar situation is found
in the case of equation (1). Thus in compressible flow the source behaves not
as a point singularity but as a solid nucleus, interior to which the flow cannot
be continued.

In order to see the reason for this behavior, let us define the mass-flow at a
point as the product of the density p of the fluid by the velocity at the point,
m =p| V</>|. It is the amount of fluid which flows in unit time across a segment
of unit length orthogonal to the direction of flow. It is clear that if a finite
amount of fluid is to emanate in unit time from a point source, then the
mass flow must become infinite at the source. On the other hand, for the
minimal surface equation, m = (<j?x-\-<by)ll2-(l-r-<bx-\-4>l)~lli, which is less than
1 for all solutions of the equation. Similarly, the coefficients of equation (1)
are not in general defined for large values of | V<£ |, so that an a priori bound
is placed on the mass flow for any solution.

It is not hard to conjecture that there must in general be severe restric-
tions on the kind of isolated singularities admitted by solutions of (1) and
(2). A very detailed discussion of this question for the minimal surface equa-
tion (2) has been given by Bers [2; 3; 4] who has proved in particular that
every isolated singularity of a minimal surface having a simply covered plane
projection is removable. Earlier work in this direction has been done by
S. Bernstein [5] who proved that a surface z(x, y) of nonpositive curvature
which is everywhere bounded in magnitude is a constant. As a corollary,
Bernstein obtained the result that if <j>(x, y) represents a minimal surface for
all (x, y) then <j>(x, y) is a linear function, <b(x, y)=ax-\-by-r-c. Radó [ó]
pointed out a topological difficulty in Bernstein's geometrical theorem and
gave an independent proof of the property of minimal surfaces. Still another
proof has recently been given by Bers [2]. The topological difficulty in Bern-
stein's proof has been overcome by E. Hopf [7] and by Mickle [8].

In the present paper a broad class of nonlinear partial differential equa-
tions is characterized by an analogue of the mass-flow criterion discussed
above. In §1 the nature of the restriction imposed by this criterion is dis-
cussed and it is shown that the solution must satisfy a generalized maximum
principle. In §2 conditions for removability of isolated singularities are
formulated. In particular a new proof is obtained for the theorem of Bers
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already cited. The methods employed are entirely different from those used
by Bers, and it is believed that the proof presented is conceptually clearer
and simpler. In §3 certain types of multi-valued solutions are discussed and
finally some applications to the equation of gas-dynamics (1) are made in §4.
Examples are given to show that the results obtained are best-possible in
certain senses and extensions to the case of «-independent variables are
stated.

1.   A GENERALIZED MAXIMUM-MINIMUM PRINCIPLE

1.1. Equations in two independent variables. Let @ and A be functions
of x, y, <p, and the derivatives of <p with respect to x and y. Let us agree to
say that a function <j>ix, y) is an admissible solution of the partial differential
equation

(3) e, + A, = o
at a point (xo, yo) ii there exists a neighborhood N of (xo, yo) interior to which

(i) <pix, y) is twice continuously differentiable,
(ii)  0 and A become continuously differentiable functions of x and y,
(iii) equation (3) is satisfied identically,
(iv) 00x+A0¡,^O, equality holding if and only if <j>x = <py = 0.

We shall say that </>(#, y) is an admissible solution of (3) in a domain D pro-
vided that it is an admissible solution at every point of D.

We shall consider in this section the behavior of functions <pix, y) which
are single-valued admissible solutions of (3) in a neighborhood of an isolated
singular point. For simplicity of notation, the singular point will occasionally
be supposed at the origin. Points in the (x, ;y)-plane will alternatively be de-
noted by the symbol (x, y) or by the letters X,  Y, • • ■ .

It is easy to construct solutions of equations of type (3) with isolated
singularities, e.g. if <£(x, y) =log ix2+y2), then <t>Xx+<t>vV = 0 for 0<x2+;y2< w.
One may also find solutions (although not of the Laplace equation) which
are bounded at isolated singular points, e.g. if tf>ix, y) = (x2+y2)1/4, then
(| V$|$*)_+(| Vd>\<py)y = 0 for 0<x2+y2< <». However it will be seen that a
simple inference from Green's Identity permits the characterization of a
broad class of equations of type (3) whose admissible solutions are severely
limited in their behavior near isolated singular points.

Theorem I. Let <f>ix, y) be a single-valued admissible solution of (3) in 0 <x2
+y2<R2. Let

H, = lub <pix, y),      for 0 < x2 + y2 < r2 < R2,

Lr = gib 4>ix, y),      for 0 < x2 + y2 < r2.

Let
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H = lim Hr,        L = lim Lr.
r->0 r->0

Supposed) that (%2+A2yi2 = o(l/r).
Then in every neighborhood of the origin there exist points Xi and X2 such

that

<t>(Xi) 2: H,       0(X2) g L.

In particular, <j>(x, y) is bounded in 0 <x2-\-y2<R2.

The following corollaries are immediate consequences of this theorem:
1.1. An admissible solution of (3) cannot have a strict maximum or mini-

mum interior to a region of regularity. It is essential that the solution be ad-
missible. The statement is in general not true for solutions that do not satisfy
condition (iv).

1.2. Let ®=a<f>x+ß4>y, A = y<f>x-\-8^v, 4a8-(ß+y)2>0. Then the condi-
tion (a2+/32-r-y2-f-ô2)1'2| V<f>\ =o(l/r) is sufficient to ensure the existence in
every neighborhood of the origin of points Xi and X2 such that

4>(Xi) > H,       <t>(X2) < L.

That <b(x, y) is admissible follows from the condition 4a5 — (j3+y)2>0.
Further, a direct application of the inequality of Schwarz shows that
(e2+A2)1/2á (a2+ß2+y2 + 82yi2\ V<f>\. The removal of the equality signs from
the conclusion of Theorem 1 follows from the well known fact that a solution
<j>(x, y) of a second order elliptic equation a<pxx-\-2b<j>Xy-\-c<pyy-T-d<l>x-)re<i>y = Q
satisfies the maximum-minimum principle in the strict sense.

1.3. A single-valued solution of the minimal surface equation

(2)
V(i + <t>i + <t>2yi2Jx   \(i + <t>2 + 4>iyi2)y

is bounded in a neighborhood of an isolated singular point.
In this case (02-|-A2)1/2<l uniformly in <px, <f>v. It will later appear that

such a singularity is in fact removable.
We now present several lemmas in preparation for the proof of Theorem 1.

Lemma 1. Let <p(x, y) be a solution of (3) on and interior to a simple closed
differentiable arc T. Then

(4) <£ [®dy - Adx] = 0.

Proof. The integrand is an exact differential.

(2) It is sufficient that there exist a sequence of simple closed arcs about X, converging
in length to zero, on which (02+A2)"2 = o(l/r).
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Lemma 2. The conclusion of Lemma 1 remains valid if 0(x, y) is singular
at an isolated point X of D, provided that, at X, (02+A2)1/2 = o(l/r).

Proof. Let Cr be a circle of radius r about X and interior to T. Then

<b     [®dy - Adx] = (b   [&dy - Adx]

by Lemma 1. The result follows by letting r—>0, since

<£   [&dy - Adx] \^<f   (02 + A2)1/2ds
\JcT Jcr

á max {(02 + A2)1'2} -27rr = o(l/r)-r

by Schwarz's Inequality.

Lemma 3. // <p(x, y) is an admissible solution of (3) on and interior to a
simple closed differentiable arc Y, then

<b[@dy - Adx] =- 0

and equality holds if and only if 0(x, y) =constant in D.

Proof. If xpix, y) is continuously differentiable in D+Y, then

(5) f f  [QxPx + AxPv]dxdy = (f)ip[®dy - Adx].

Setrpix, y)=<Pix, y).

Lemma 4(3). Let R be a bounded region and let Fix, y) be a function twice
continuously differentiable in the closure of R. Let XGR and suppose that FiX)
= ho, Fix, y) ^h <ho on the boundary B of R. Choose hi and h2 so that h<hi<h0
<h2. Let D be the set of all points (x, y) in R at which hi < Fix, y) <h2. Clearly
D is bounded and contains X. Let YD be the boundary of D. rD=riD+r2D,
where Fix, y) = hi on TiD, Fix, y) = h2 on Y2d- Then if h > 0 and if g(x, y) is any
function continuous in R, there exists a connected domain Dih)GD with the
following properties :

(1) XGDjh),
(3) By use of a theorem of Carleman [lO] and the theory of transformation of second order

equations in two independent variables to canonical form, it is possible to prove—at least in
the case considered in 1.2—that the gradient of a nonconstant solution of (3) vanishes only at
isolated points. This property leads to a somewhat more elegant proof of Theorem I without use
of Lemma 4. However, a natural generalization of Lemma 4 permits the extension of Theorem I
to equations in n dimensions. Since Carleman's result is not valid in more than two dimensions
(e.g. the gradient of the potential of an infinite circular cylinder vanishes on the axis), it appears
that Lemma 4 is more appropriate to the problem.
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(2) the boundary T(8) of D(8) consists of a finite number of differentiate
sub-arcs of TD and a finite number of straight line segments. T(8) may be ex-
pressed as the union of two disjoint components, T(8) =Ti(S) +r2(ô), where Ti(8)
and r2(5) have distances less than 8 from Tm and r2r>, respectively.

(3) (f       | F(x, y) - hi | | g(x, y)\ds < 8/2, i = 1, 2.

Proof. Let d be the distance between Tid and T2d, dx the distance from
X to Td- Choose 8 smaller than the minimum of dx and d/2. Cover D-\-Td
with a net of squares of side eS/21/2, 0<€<1. Denote those squares that con-
tact TD by S(8). Denote by Sa(8) those squares of S(8) on which F%-t-Fy¿¿0
at any point of Td, denote by 5^(5) the remaining squares of S(8).

By the implicit function theorem, each point of Tor\Sa(8) is the center of
a circle through which passes a unique differentiable arc of Td and which
contains no other points of Td. By the Heine-Borel theorem a finite number
of such circles suffices to cover Sa(8)i~}TD- Hence there is interior to each
square of Sa(8) a finite number of nonintersecting differentiable arcs of Td,
each of which either meets Sß(8) at the boundary of the square, forms a closed
Jordan arc interior to the square, or continues uniquely into adjacent squares
of Sa(8). Thus the set Td^Sc(8) consists of a finite number of differentiable
nonintersecting arcs.

Let D(8) be the union of all open connected sets containing X, which con-
tain no points of [l,Df>\'S'(l(o')]W5/3(5). Since any arc joining Td to X must
intersect this latter set, it follows that D(8) is an open connected set con-
taining X, interior to which &2>F(x, y)>hi. Hence D(8)GD. Further, D(8)
is bounded by certain arcs Ta(8) of TD^Sa(8) and by a finite number of seg-
ments Tß(8) of the boundary of Sß(8). Every point of these segments has dis-
tance ^«5 from To- Hence the curve T(8) = ra(ô)-rT,s(o') has the required
proximity to TD for any e in the interval 0<e<l.

It is clear that ra(ô) =ria(S)+r2a(5), Tß(8)=Tiß(8)+T2ß(8), with similar
expressions for Sa(8) and Sß(8), in the sense described above. If 8<d/2, the
sets with subscript 1 will be disjoint from those with subscript 2. We de-
fine ri(8)=ri„(*)+rtf(i), etc.

If N¡ denotes the number of squares of Sß(8), then there is a constant K
such that Ns<K/(e8)2. Therefore, if L¡ denotes the total length of the polyg-
onal arcs on the boundary of Sß(8), Ls<iK/e8. On the other hand, SißGSß
and on each square of Siß(8) there is at least one point (xi, yi) of Td at which
F2x + F¡ = 0. By Taylor's theorem,

F(x, y) = hi +-Fxx[xi + 6(x - xi), yi + 0(y - yi)]

+ (x- xi)(y- yi)Fxv[    ] +  ■   T **l    i      0 <#.<!,
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where the arguments appearing in the terms Fxy [ ] and Fyy [ ] do not differ
from that of Fxx- Therefore, if M is chosen superior to the maximum of | Fxx\
+ \F**\+\F„\ ini?,
(6) | Fix, y) - hi | < AM[ix - xi)2 + iy - yi)2] < Kiieô)2

for all points (x, y) in the square of Sißih) containing (xi, yt). An analogous
argument is valid for the set S2pih).

On ria(5), Fix, y)=hx, since Y*ih)GTD. On rw(ô), (6) is valid. There-
fore,

(f      \F - hi\\g\ds =<£        \F - hi\\ g\ds < KiieS)2-ma.x \ g\ AK/eS

and an identical inequality is valid for _¿Y2(í) | F—h2\ \g\ds. The demonstra-
tion is completed by choosing e<l/4i_i_i max \g\.

The proof of Theorem I now follows by reductio ad absurdum. Suppose
in fact that <£(x, y) satisfies the conditions of Theorem I in a neighborhood of
a point X, and that there exists a neighborhood N of X such that if pG N—X,
<Pip) <H. Let C be a circle about X which lies interior to N. Let h be the
maximum value attained by <pix, y) on the boundary of C. By assumption
h<H. Let v be an integer, let C„ be the circle of radius 1/v about X. Let Y
be a point interior to C at which <pi Y) =h0>h. If v is chosen sufficiently large
Y will be exterior to C„. Choose hi and h2 so that h<hi<h0<h2<H. Let G,
be the set of all points interior to C but exterior to C„ at which Äi<</>(x, y)
<h2. Let Tu and T2v be those (disjoint) parts of the boundary of G, which
contain no points of the boundary of C„ and on which 0(x, y) =hi and <pix, y)
= h2, respectively. By Lemma 4, if hiv) is a positive quantity smaller than
half the distance between Tu and T2v and smaller than the distance of Y to
either of these sets, there exists a connected subdomain D, containing Y,
bounded by piecewise smooth arcs Tu and T2v within distance hiv) from Tu
and T2v respectively, and by certain sub-arcs C* of the boundary of C,.
Further,

f    | <¡>ix, y) - h | { | ®dy | + | Adx | }  < 5(»),
Jru

\     | 4>ix, y) - h21 { I ®dy I + I Adx \ } < hiv).

The set r„ = ri„+r2>. consists of a finite number of nonintersecting com-
ponents, each of which either meets the boundary of C in exactly two points,
or else forms a simple closed curve exterior to C Interior to the domain D,
bounded by Ty + C*, ¿i<0(x, y) <h2.

Choose a fixed v = v0 and choose hip0) sufficiently small so that <p(x, y)
P-constant in D,0. Set D = D,0. It may clearly be assumed that for all v^v0
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the construction of Dv is so made that DGDV. In fact, it is sufficient that
the net of squares used in the construction of Dr, v^Vo, is a subdivision of
the net corresponding to Vo-

The desired contradiction is now obtained by an application of Lemmas
1, 2, and 3 to D, and its boundary. In fact, let T* represent an arbitrary
component of Tie. It has been noted that T* may be completed to a simple
closed curve by adjoining to it an appropriate subarc C* of C,. Thus, if \p(x, y)
is the function conjugate to <p(x, y),

x, y) =   I   [®dy — Adx],H

Z f   <t>d* = Y, (   hidxp + r,
J r* J r»

(| q |  ̂  «00)

=Zf     W-EÍJ r*+c* J c*

= -h1zf

hid\p + r.

dip + v
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by Lemmas 1 and 2, where the summation is taken over all the (finite num-
ber of) components T* of Ft». Setting, by hypothesis,

(02 +A2)1'2 g eil/v)-v

where e—»0 as v—> »,

AfJr*
<bd\p_ä | *i| ■e(l/i/)-v2x/v + «(»)

which is arbitrarily small if v is chosen sufficiently large and 5(y) sufficiently
small. An identical argument may of course be applied to the components of
Fj, and hence to the collection ri„+r2,. Further, on the arcs C*, Aiá<£(x, y)
Slt2 since C* lies on the boundary of Dr. Therefore

Ai<pd\p=■  { | Ail + I Ä.| }-eil/v)-v2r/v

which approaches zero with increasing v. On the other hand, Lemma 3 implies
that

0 <   I   I    [e<t>x + A<f>y]dxdy _-  J  J     [©4>- + A<by]dxdy

= (p <p[@dy — Adx] = <p <pd\p.

The last term has been seen to be arbitrarily small for sufficiently large v
and sufficiently small hiv). But the first term is independent of v. This can
of course be only if the assumption </>(x, y) <H in N is erroneous. An identical
argument disposes of the assumption d>>L in i\f, and the proof of Theorem I
is complete.

The following strengthened conclusion follows immediately from the
method of proof:

1.4. If, in the conditions for admis sibility, (iii) is replaced by (iii') 0_+A¡, = 0
(©z+A^O), then in the generalized sense of Theorem I, <£(x, y) cannot have a
positive maximum inegative minimum) at X.

A particular interpretation of Theorem I is that if &2+A2 <K2 < °o for
every solution 0(x, y), then a single-valued solution cannot become un-
bounded at an isolated singular point. In particular, such an equation ad-
mits no fundamental solution. The examples of the minimal surface and
gas-dynamic equations have already been cited. Further examples may
readily be constructed by the reader.

1.2. Equations in more than 2 independent variables. No essential change
of argument is required to extend Theorem I to equations in n independent
variables,
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(7) £ (©«)., = 0.
t=l

Asjaefore, a solution <p(xi, - - • , x„) of (7) will be called admissible if <p and
{©»•^ satisfy suitable differentiability requirements and if £?_i (O,*^) ^0,

equality holding if and only if ¿Jf-i 4>% = 0. It is a purely formal matter to
extend Lemma 4 to the case of a function F(xi, - - - , xn) defined over an
w-dimensional region R. In this case the boundary T(8) consists of a finite
number of smooth bounded hypersurfaces and a finite number of hyper-
planes, such that

I    • ■   f      | F(xí, ■ ■ ■ , Xn) - h I I g I dS < 8/2, i = 1, 2.
J Jri(S)

The equation (7) no longer serves to insure the existence of a conjugate func-
tion ip,, but this function was introduced only to simplify notation and did not
enter in an essential way into the proof of Theorem I. The only modification
required is in the growth criterion at the singular point.

1.5. If<b(xi, ■ ■ ■ , xn) is an admissible solution of (7) in a neighborhood N of
an isolated singular point X, the conclusion of Theorem I remains valid provided
that near X, ( XXi 0f)1'2 = o(lA"-1).

2. Removable singularities
2.1. Single-valued solutions in two variables. The hypotheses introduced

in Theorem 1 are of a very general nature, and it can hardly be expected
that they should lead to results much more specific than that obtained. In-
deed, consider the equation

(p<t>x)x + (p4>v)v = 0

where p=e~ix+v)~a la (x2+y2)a~al)l2a, a>0. A direct computation shows that
the function <p(x, y) = [l + (x2-)-3'2)"/2]y/(x2-fy2)1/2 is an admissible solution
for 0<x2+y2< <», and that p\ V<b\ —»0 as x2-\-y2—>0. <p(x, y) satisfies the con-
clusions of Theorem 1, but it can hardly be regarded as a solution at the
origin, for it is discontinuous at this point.

It is clear then that these results cannot be sharpened without suitably
restricting the nature of the nonlinearity in the functions 0 and A. It is of
interest that relatively weak assumptions of this nature suffice to yield very
precise information on the behavior of a solution at a singular point.

Theorem II. Let ®=f(<j>x, <pv), A=g(0I, <¡>y), let the equation

(3) &X +  Ay  =   0

be of elliptic type. Let <j>(x, y) be a solution of (3) singular at an isolated point
X and single-valued in a neighborhood N of X. Then if at X, (@2+A2)1/2
= o(l/r), the singularity at X is removable.
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11.1. A solution of the minimal surface equation

(2)      r—♦_—i + r_h—i . 0,
L(i + <ñ + <ñ)mix   L(i + <pi + 4>i)mJ«

single-valued in a domain D, admits only removable isolated singularities in D.

Proof of Theorem II. Let <£(x, y) be a solution of (3) singular at an isolated
point X. Let D be a circular domain with center at X and radius r sufficiently
small so that DGN. Let the boundary of D be T. Since <£(x, y) is assumed
twice differentiate, it follows [ll] that its values on T satisfy a three-point
condition(4). Hence [14] there exists a function </>o(x, y) which assumes on F
values identical to those of <£(x, y) and is a solution of (3) throughout D.
We shall show that <pix, y)=<poix, y) in D—X.

Let Q=fi4>x, <Pv), A = gi<px, <py), 0o=/(0Oa!, 0o„), Ao = g(0oI, <j>oy), let £>,._«
and Dc be circular domains about X of radii r — e and e, respectively, let
r^-e and re be their respective boundaries. The following identity results
immediately from an integration by parts:

f \ {i<t>- <Po)x[® - 0o] +#- *o),[A - Ao]}dxdy
J J Br_e-ne

(8) = <f     i<b - fa) { [0 - @o]dy - [A - A0]dx}

-<b   i<p - <Po){ [0 - ®o]dy - [A - Aa]dx}.

Since, on T, <j>oix, y) satisfies a three-point condition, <f>lx+<f>l is uniformly
bounded in magnitude [ll; 12] in D. But 0(x, y) is regular in D — X, and it
follows that as e—»0 the first integral on the right approaches zero, since
(p(x, y)—*£o(x, y). Since 0o(x, y) is regular at X, the second integral on the
right will approach zero provided that 0(x, y) is bounded near X. By Theorem
I, <£(x, y) will be bounded near X if it is an admissible solution, that is,
if 0</>.+A0„àO, equality holding only if <j>x=(py = 0. Let us defer this question
for a moment, and assume that <£(x, y) is bounded. Then

(*) A set of boundary values is said to satisfy a three-point condition with constant A
if the space curve defined by these values has the property that any plane which meets this
curve in three or more points has maximum inclination less than A. It has been proved by
Radó [12] and von Neumann [13] that A serves as a uniform bound on the gradient among
all solutions of elliptic equations a<f>IX+2b<j>xv +c<f>vv = 0 which assume the given boundary val-
ues.

The existence of the solution 4>n(x, y) is proved in the paper of Leray and Schauder [13]
under the assumption that the boundary values admit third derivatives which satisfy a Holder
condition. However, it has been proved by L. Nirenberg in a paper to be published shortly
that the solution exists for arbitrary continuous prescribed values which satisfy a three-point
condition.
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ff {(<t> - 4>o)x[e - ©o] + (<t>~ *o)»[A - Ao]}dxdy

exists and is equal to zero. We shall show that the integrand / of this expres-
sion is of definite sign and vanishes only if <j>(x, y) =<f>o(x, y) in D.

Consider a fixed point (x, y) of D, set

r,(x, y) = 4>(x, y) - <¡>0(x, y),        r¡x(x, y) = co0,        Vv(x, y) = Xco0.

Then

I  =  0>o{&(<t>Ox + «0, <pOy + Xwo)   —  00 + X[A(<£o* + Wo, 4>0y + Xcoo)   — Ao]}.

The quantity a>o will now be considered as an independent variable, all
other quantities remaining fixed, and the subscript removed. Thus,

I = uF(u),

F'f» = 0P + X05 + \AP + \2Ag

where p=<px, q=4>y By hypothesis, (3) has elliptic character. Therefore

0PA5 > [e„ + Ap]2/4.

In particular 0pA?>O and it is no loss of generality to assume ©p>0, A„>0.
On the other hand

©P + X2A3
X(0PA5)"2 ^ -&--"-

so that

(0, + X2AS)2 ̂  4X2@PA3 > X2[@a + Ap]2

or

0P + X2A, > | X(03 + Ap) |.

Thus F'(o)) >0, F(ui) ^0 according as co^O, and it follows that for every point
(x, y) in D, I = ü)oF(cú0) síO, equality holding if and only if co0 = 0. But ffoldxdy
= 0 and hence wo(x, y)=0 in D. That is, V<p(x, y)=V0o(x, y) in D. But$(x, y)
=<bo(x, y) on T, hence <p(x, y)=<p0(x, y) in D — X. The proof of Theorem 2
has thus been reduced to proving that <p(x, y) is bounded near X.

We have already observed that this will follow if <b(x, y) is an admissible
solution. It is easily seen that in general this will not be the case. This diffi-
culty is avoided by observing that a solution of (3) remains a solution if ©
and A are changed by additive constants. It may thus be assumed that 0(0, 0)
= A(0, 0)=0. The proof that %<bx-\-A<by is definite then proceeds exactly as
the above proof that I is definite, the comparison function being in this case
the solution <po(x, ;y)=0. Theorem II is thus completely proved.
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The following corollary is an immediate consequence of the method of
proof above.

112. Let@=f(x, y, <px, </>„), A = g(x, y, <px, <py), @(x, y, 0, 0)=A(x, y, 0, 0)
= 0. Then removability of an isolated singularity is reduced to solvability of the

first boundary problem for a sufficiently small domain, the other hypotheses of
Theorem II remaining unchanged.

Conditions for solvability have been given by various authors, notably by
Leray [15].

2.2. A direct approach to the problem. The proof of Theorem II given in
(2.1) has the virtue of elegance and conceptual simplicity; a more direct ap-
proach suggested to the author by Professor M. Shiffman yields a sharper
result in the case that (3) arises from a variational problem 8ffF(<px, <f>y)dxdy
= 0. Specifically, we shall prove the following theorem:

Theorem III. Let €)=f(<f>x, <j>y), A=g(<px, <py) be such that the domain of
values (<px, <py) for which (3) is elliptic is convex. Let <¡>(x, y) be a solution of (3)
singular at an isolated point X and single-valued in a neighborhood N of X.
Suppose that for this solution (3) is of elliptic type in N. Denote by <j>a the direc-
tional derivative of (f>(x, y) in the direction a. Then if, at X, (®2-\-A2)l,2 = o(l/r),
the conclusions of Theorem I are valid for <j>a.

The point of this theorem is that the equation is no longer assumed elliptic
for all (4>x, <t>y), but only for the particular solution considered. There is no
requirement that the solution should remain properly within the elliptic
domain.

I ILL <p(x, y) satisfies a uniform Lipschitz condition in N and is therefore
continuous at X. The magnitude (c^-f-^2,)1'2 of the gradient of <b(x, y) satisfies
the conclusion of Theorem I.

III.2. Suppose that (3) is the Euler-Lagrange equation for the variational
problem 8ffF(p, q)dxdy = 0. Then the singularity at X is removable.

For Theorem III implies that the closure of the set of values (<f>x, <t>v)
achieved in A^ is a compact subset of the (open) domain of ellipticity. It fol-
lows that the discriminant of (3) is bounded away from zero in N. Under
these conditions it has been proved by Shiffman [16] that <j>(x, y) has con-
tinuous derivatives at X. It then follows from the work of Morrey [17] and
of E. Hopf [18] that <j>(x, y) has second derivatives which satisfy a Holder
condition, i.e. that the singularity at X is removable.

Proof of Theorem III. A rotation of axes transforms (3) into an equation
of the same form and leaves invariant the elliptic character of the equation.
Therefore it is sufficient to demonstrate the theorem for the derivative <f>x.
We shall suppose the singularity to be at the origin. Denote by 4>a the
quantity (<f>(x-\-h) — <p(x))/h. $n is singular at the two points (0, 0) and
( — h, 0). If ho is sufficiently small, a circle T of radius 3&o about the origin
will contain in its interior both of these singular points but no other singu-
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larities of "-•*, for all h<ho- Construct circles Ti and r2, both of radius A/2,
about (0, 0) and ( — A, 0) respectively.

Since 0 and A do not depend explicitly on the coordinates (x, y), <£(x + A)
is a solution of (3) whenever </>(x) is. Therefore if D is any domain of regu-
larity bounded by a smooth curve B,

(9) <£ [(0 - ®h)dy - (A - Ah)dx] = 0,
J B

ÍÍ  {(»»M« - ©*) + (*a),(A - Ah)}dxdy
(10)

= £ *»[(e - eh)iy - (a - Ah)dx]

where 0A denotes 0[<px(x+Ä, y), <pyix+h, y)], etc.
We have already seen that the integrand on the left-hand side of (10) is

of definite sign. Further, in the circle Ti, 0A and Aa are regular, hence
(0 —0A)2 + (A—AA)2 has at the origin the same order of magnitude as 02+A2.
It follows that the proof of Theorem 1 may be carried out step by step in T\,
replacing the identities (4) and (5) by (9) and (10), respectively. Thus, if
if = sup $hix, y), L = inf 4>a(x, y) as x2+y2—»0, there will exist in every neigh-
borhood of the origin points Xi and X2 for which

**(--"i) _? B,        $Ä(X2) g L.

A similar analysis is valid for the singularity in T2.
This result can be sharpened. An application of the mean-value theorem

shows [19] that the difference of two solutions of (3) is a solution of a certain
linear elliptic equation of the form a<pxx + 2b<pxy+c<pyy+d<px+e<py = 0. There-
fore 4>A satisfies the maximum principle in the strict sense at every point of
regularity. The equality signs can thus be removed from the above relations,
and it follows readily from this that the maximum and minimum of 0a are
achieved on V. We are now at liberty to let A—»0. Since, on V, -»»(x, y) con-
verges uniformly to <£„(x, y), the stated result follows immediately.

The proofs presented above of Theorems II and III have required that
(3) be of elliptic type when considered as a nonlinear equation which does not
involve x and y explicitly. On the other hand, suppose—to take a simple
case—that (3) has the form

(1) (p*.). + ÍP<Pv)v = 0,        p = fi<Px, <t>y) > 0.

Given a solution of (1), then p becomes a function of (x, y), so that every
solution of (1) is also a solution of the elliptic equation

pA<b + px<f>x + Pv<py = 0
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and hence shares all behavior properties of solutions of elliptic equations, even
though p may be such that (1) is of hyperbolic type. The question naturally
arises, was it necessary to assume that (3) is elliptic, or could weaker assump-
tions (e.g. that <p(x, y) should be a solution of some elliptic equation) have
sufficed? The answer is provided by the following example:

Let

,         /*»(! + «) +  [<t>h -a)'- Aatl] V\ -<«+«)/«>
P(<t>x, 4>v) =   i-> ,       0 < a <  1.

A direct computation then verifies that

4>(x, y) = y(x2+ y2)("-1,/2

is a solution of (1) regular in 0<x2+y2< ». For this solution,

p=(a;2+:y2)(l-a2)/2«i        and       (@2 + ¿2)1,2 „ ß |  v0 | = ^2+ y2~) <l-i«)/ï„(a2y2+ ,2) 1/Î

which —»0 as x2+y2—»0. Thus all hypotheses of Theorems II and III are satis-
fied except for ellipticity; yet <p(x, y) cannot be considered a solution at the
origin, for its derivatives of first order become unbounded there.

It should be noted here that the coefficients of the linear elliptic equation
satisfied by <p(x, y) become singular at the origin, i.e. the equation approaches
the boundary of the domain of ellipticity. If this were not the case then
<f>(x, y) would be identical in a circle about the origin with the solution
4>o(x, y) of the linear equation which assumed the values of <p(x, y) on the
boundary. Thus the equation considered furnishes an example of an equation
which is elliptic except at one point—where the coefficients approach zero
as the distance to the point—and for which the first boundary value problem
cannot in general be solved for any domain containing the point.

2.3. Solutions in several variables. The proof of Theorem II does not
carry over to equations in n independent variables, since it is not known
whether or not the first boundary value problem admits a solution in this
case. It has already been observed that Theorem I extends without essential
change and it is not hard to see that the same is true for Theorem III.

III.3. Let ®i=f(pi, ■ ■ ■ , pn), i=l, • ■ ■ , n, where pj=<px.. Suppose that
the domain of values (pi, • • • , pn) for which the form £f/-i (©í)p,£í£j & definite
is convex.

Let <i>(xi, - - - , xn) be a solution of (7) £1-1 (©>')*,• = 0 which is singular at
an isolated point X. Suppose that the above form is definite for this solution in
some neighborhood of X. Then, ifatX, ( XXi @2)1/2 = o(l/rn_1), the conclusions
of Theorem I are valid for each directional derivative <pa of <j>(xi, • • • , x„). In
particular, <f> is continuous at X.

Removability is reduced to solvability of the first boundary value prob-
lem for a sufficiently small sphere.
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3.  M ULTI- VALUED SOLUTIONS

Theorems I, II, and III have been proved under the assumption that the
solution <p(x, y) is single-valued in a neighborhood of the singular point.
These theorems do not in general apply as stated to multi-valued solutions.
For example, if p =fi4>l+<pv), then the infinitely multi-valued function
</>(x, y) = tan~l(vlx) is a solution of (1). This solution is unbounded at the
origin. Solutions which are «-valued and bounded in a neighborhood of an
isolated singular point may readily be constructed by use of the hodograph
variables and the method of correspondence [20 ]. However, in certain cases
the behavior of a multi-valued solution near an isolated singular point is
severely restricted.

1.6. Let <p(x, y) be an admissible solution of

(3) 0* + A„ = O

which is n-valued in a neighborhood of an isolated singular point X. Then if,
near X, (02+A2)1/2 = o(l/r), the conclusion of Theorem I is valid for <p(x, y).

Proof. It is necessary only to replace the (x, y)-plane near X by the re-
sheeted covering surface on which </>(x, y) becomes single-valued. Domains
and curves on this surface may be represented by the corresponding simply-
covered domains and curves of the (£, r/)-plane, i¡¡+in)n= ix+iy). Since com-
pactness arguments are unchanged under this transformation, the proof of
Theorem I may be repeated without essential change.

Theorem IV. Let P=fi4>l+<t>l) and let (1) ip(px)x + ifxpy)y = 0 be of elliptic
type. Let 0(x, y) be a solution of (1) having a single-valued gradient in a neigh-
borhood N of an isolated singular point X and for which p\ V<j)\ =o(l/r). Then
after a translation of X to the origin

y(6) 4>(x, y) = k arc tan-\- x(x, y)
x

where xix> y) *s single-valued in N and satisfies the conclusions of Theorem I.

Proof. The form of the representation (6) is clear from the single-valued-
ness of V<¡> in N. If A = 0, Theorem 1 may be applied directly. Otherwise,
observe that 0(x, y) = k arc tan iy/x) is a solution of (3) and verify the identity

ff p | V0 |2 + p* | VÖ |2 - (p + p*)iV<p-V4>)dxdy
(H) D r        r d<i>       doi

= <p xix, y)\ p-p* — \ds
J T L    on onj

where D is a domain bounded by a piecewise smooth curve T, interior to
which <p and 6 are regular. Here p =/«>*+<$, P*=/(^+^)-
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Since only the derivatives of (p(x, y)—which are assumed single-valued—
enter into the proof of Lemmas 1 and 2, it is a consequence of these lemmas
that

p — ds = 0
r    dn

even if the curve Y contains the singular point. Further, on the circle C, con-
sidered in Lemma 2, dO/dn = dd/dr = 0. Thus

y      de
p* —ds = o.

r      dn

Exactly as in the proof of Theorem 2, it may be shown that the integrand
in the left-hand term of (11) is a positive definite functional of X.+X»-
It follows that the proof of Theorem I may be repeated directly, with the
identity (5) replaced by the identity (11).

IV. 1. Let p =fi4>l+4>l) and let (1) be of elliptic type. Let 0(x, y) be a solu-
tion of (3) having an n-valued gradient in a neighborhood N of an isolated
singular point X, near which p | V<p| = oil/r). Then after a translation of X to the
origin

y4>ix, y) = k arc tan-\- x(x, y)
x

where x(x, y) is n-valued in N and satisfies the conclusion of Theorem 1.
Proof. Equation (3) is equivalent to the system of equations

P<Px   =  lpy, P<t>y  =   —  tyx

where ^(x, y) =fip<pxdy—p<pydx). In polar coordinates (r, d) these equations
become

1
f»Pr = —*Pe,        P<t>e = ripr.

r

This system is invariant under the transformation r = £", 6 = na. It follows that
if x(£, n), yil-, r)) are defined by the relation ix+iy) = (£+in)n, then <Kx(£, v),
yií, *?)) wül be a solution of

(P<¿£){ + (p*,), = 0
with single-valued gradient in N. Further, since

2 2. 1/2
pi<t>x + <py)      = -(r)/r

where e(r)—*0 as r—>0,

i¿ __ aV/2    x      e(/n)
p(*í + </v   • —— =-

M/"-1 t"
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or

2 2 i/2      ne(tn)

The result thus follows from Theorem IV.

4. The equation of gas dynamics
Consider the case

r      y -1    2      2 n1'^-1)
P=|l-— (*. + *») I , 1<7<2.

Equation (1) is then elliptic for <p2x-\-<p2y<2/(l-\-y), hyperbolic for 2/(1+7)
<<t>l+4>y<2/(y-\), and in general not defined for 4&+4£>2/{y—1). In
this case the gradient of any solution <f>(x, y) is bounded, so that <p(x, y) is
in fact continuous at any isolated singular point X.

It follows immediately from Theorems I and 1.6 (§3) that a finitely multi-
valued solution cannot attain a maximum or minimum at X whether the
solution be of elliptic, hyperbolic, or mixed nature. If the solution is elliptic
near X and has an «-valued gradient, then by IV. 1

y4>(x, y) = k arc tan-\- %(x, y)
x

where x(x, y) is bounded and w-valued at X. But | V$| is bounded, hence
Xr = 0(l), (l/r2)Xe= -k/r2+0(l), %(x, y) = -k arc tan (y/x)+0(r2) arc tan
(y/x)-\-0(r)-\-const. It follows that k = 0(r2) =0, and we thus obtain

IV.2. A solution of the gas dynamic equation, elliptic and having an n-valued
gradient in a neighborhood of an isolated singular point X, is itself n-valued
and continuous and satisfies the maximum principle at X.

III.4. Let 4>(x, y) be a solution of the gas-dynamic equation, singular at an
isolated point X and single-valued in a neighborhood N of X. Then if in N,
0i+0»<2/(1+7), the singularity at X is removable.

This is an immediate consequence of 111.2. The equation arises from the
variational problem

Î fj I j pd[<t>l + 4>l]\ dxdy = 0.

Added in proof. In §2.2 of this paper, a proof of a strengthened form of
Theorem III is made to depend on a technique developed by M. Shiffman in
connection with two-dimensional variational problems. The author wishes to
point out that Theorem III of the present paper can be used in conjunction
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with Shiftman's technique to prove continuity of the first derivatives of solu-
tions in a much more general case. Continuity of the second derivatives then
follows as before from results of C. B. Morrey and E. Hopf. The details of
the argument are not difficult and are omitted. A precise statement follows.

Theorem III a. Let 0 =/(#_, <py), A = g(<p_, <£„) be such that the domain of
values i<j>x, 4>y) for which

(3) 0, + A, = 0
is of elliptic type is convex. Let </>(x, y) be a solution of (3) singular at an isolated
point X and single-valued in a neighborhood N of X. Suppose that for this solu-
tion (3) is of elliptic type in N. Then if at X, (O2 +A2)1/2 = o(l/V), the singularity
at X is removable.
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